1
|
Darby JRT, Saini BS, Holman SL, Hammond SJ, Perumal SR, Macgowan CK, Seed M, Morrison JL. Acute-on-chronic: using magnetic resonance imaging to disentangle the haemodynamic responses to acute and chronic fetal hypoxaemia. Front Med (Lausanne) 2024; 11:1340012. [PMID: 38933113 PMCID: PMC11199546 DOI: 10.3389/fmed.2024.1340012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction The fetal haemodynamic response to acute episodes of hypoxaemia are well characterised. However, how these responses change when the hypoxaemia becomes more chronic in nature such as that associated with fetal growth restriction (FGR), is less well understood. Herein, we utilised a combination of clinically relevant MRI techniques to comprehensively characterize and differentiate the haemodynamic responses occurring during acute and chronic periods of fetal hypoxaemia. Methods Prior to conception, carunclectomy surgery was performed on non-pregnant ewes to induce FGR. At 108-110 days (d) gestational age (GA), pregnant ewes bearing control (n = 12) and FGR (n = 9) fetuses underwent fetal catheterisation surgery. At 117-119 days GA, ewes underwent MRI sessions where phase-contrast (PC) and T2 oximetry were used to measure blood flow and oxygenation, respectively, throughout the fetal circulation during a normoxia and then an acute hypoxia state. Results Fetal oxygen delivery (DO2) was lower in FGR fetuses than controls during the normoxia state but cerebral DO2 remained similar between fetal groups. Acute hypoxia reduced both overall fetal and cerebral DO2. FGR increased ductus venosus (DV) and foramen ovale (FO) blood flow during both the normoxia and acute hypoxia states. Pulmonary blood flow (PBF) was lower in FGR fetuses during the normoxia state but similar to controls during the acute hypoxia state when PBF in controls was decreased. Conclusion Despite a prevailing level of chronic hypoxaemia, the FGR fetus upregulates the preferential streaming of oxygen-rich blood via the DV-FO pathway to maintain cerebral DO2. However, this upregulation is unable to maintain cerebral DO2 during further exposure to an acute episode of hypoxaemia. The haemodynamic alterations required at the level of the liver and lung to allow the DV-FO pathway to maintain cerebral DO2, may have lasting consequences on hepatic function and pulmonary vascular regulation after birth.
Collapse
Affiliation(s)
- Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Brahmdeep S. Saini
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sarah J. Hammond
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging & Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Christopher K. Macgowan
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
| | - Mike Seed
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Dibbon KC, Mercer GV, Maekawa AS, Hanrahan J, Steeves KL, Ringer LCM, Simpson AJ, Simpson MJ, Baschat AA, Kingdom JC, Macgowan CK, Sled JG, Jobst KJ, Cahill LS. Polystyrene micro- and nanoplastics cause placental dysfunction in mice†. Biol Reprod 2024; 110:211-218. [PMID: 37724921 DOI: 10.1093/biolre/ioad126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Maternal exposure to microplastics and nanoplastics has been shown to result in fetal growth restriction in mice. In this study, we investigated the placental and fetal hemodynamic responses to plastics exposure in mice using high-frequency ultrasound. Healthy, pregnant CD-1 dams were given either 106 ng/L of 5 μm polystyrene microplastics or 106 ng/L of 50 nm polystyrene nanoplastics in drinking water throughout gestation and were compared with controls. Maternal exposure to both microplastics and nanoplastics resulted in evidence of placental dysfunction that was highly dependent on the particle size. The umbilical artery blood flow increased by 48% in the microplastic-exposed group and decreased by 25% in the nanoplastic-exposed group compared to controls (p < 0.05). The microplastic- and nanoplastic-exposed fetuses showed a significant decrease in the middle cerebral artery pulsatility index of 10% and 13%, respectively, compared to controls (p < 0.05), indicating vasodilation of the cerebral circulation, a fetal adaptation that is part of the brain sparing response to preserve oxygen delivery. Hemodynamic markers of placental dysfunction and fetal hypoxia were more pronounced in the group exposed to polystyrene nanoplastics, suggesting nanoplastic exposure during human pregnancy has the potential to disrupt fetal brain development, which in turn may cause suboptimal neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Katherine C Dibbon
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Grace V Mercer
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Alexandre S Maekawa
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jenna Hanrahan
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Katherine L Steeves
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lauren C M Ringer
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ahmet A Baschat
- Department of Gynecology & Obstetrics, Johns Hopkins Center for Fetal Therapy, Johns Hopkins University, Baltimore, MD, USA
| | - John C Kingdom
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- Translational Medicine, Hospital for Sick Children , Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John G Sled
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children , Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre, Hospital for Sick Children , Toronto, Ontario, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Discipline of Radiology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
3
|
Andescavage NN, Pradhan S, Gimovsky AC, Kapse K, Donofrio MT, Cheng JJ, Sharker Y, Wessel D, du Plessis AJ, Limperopoulos C. Magnetic Resonance Spectroscopy of Brain Metabolism in Fetuses With Congenital Heart Disease. J Am Coll Cardiol 2023; 82:1614-1623. [PMID: 37821172 DOI: 10.1016/j.jacc.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Congenital heart disease (CHD) remains a significant risk factor for neurologic injury because altered fetal hemodynamics may be unable to support typical brain development during critical periods of growth and maturation. OBJECTIVES The primary objective was to assess differences in the cerebral biochemical profile between healthy fetuses and fetuses with complex CHD and to relate these with infant outcomes. METHODS Pregnant participants underwent fetal magnetic resonance imaging with cerebral proton magnetic resonance spectroscopy acquisitions as part of a prospective observational study. Cerebral metabolites of N-acetyl aspartate, creatine, choline, myo-inositol, scyllo-inositol, lactate, and relevant ratios were quantified using LCModel. RESULTS We acquired 503 proton magnetic resonance spectroscopy images (controls = 333; CHD = 170) from 333 participants (controls = 221; CHD = 112). Mean choline levels were higher in CHD compared with controls (CHD 2.47 IU [Institutional Units] ± 0.44 and Controls 2.35 IU ± 0.45; P = 0.02), whereas N-acetyl aspartate:choline ratios were lower among CHD fetuses compared with controls (CHD 1.34 ± 0.40 IU vs controls 1.44 ± 0.48 IU; P = 0.001). Cerebral lactate was detected in all cohorts but increased in fetuses with transposition of the great arteries and single-ventricle CHD (median: 1.63 [IQR: 0.56-3.27] in transposition of the great arteries and median: 1.28 [IQR: 0-2.42] in single-ventricle CHD) compared with 2-ventricle CHD (median: 0.79 [IQR: 0-1.45]). Cerebral lactate also was associated with increased odds of death before discharge (OR: 1.75; P = 0.04). CONCLUSIONS CHD is associated with altered cerebral metabolites in utero, particularly in the third trimester period of pregnancy, which is characterized by exponential brain growth and maturation, and is associated with survival to hospital discharge. The long-term neurodevelopmental consequences of these findings warrant further study.
Collapse
Affiliation(s)
- Nickie N Andescavage
- Department of Neonatology, Children's National Hospital, Washington, DC, USA; Developing Brain Institute, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Subechhya Pradhan
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA
| | - Alexis C Gimovsky
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Kushal Kapse
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA
| | - Mary T Donofrio
- Department of Pediatrics, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA; Department of Cardiology, Children's National Hospital, Washington, DC, USA
| | - Jenhao Jacob Cheng
- Department of Biostatistics, Children's National Hospital, Washington, DC, USA
| | - Yushuf Sharker
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA
| | - David Wessel
- Department of Pediatrics, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA; Department of Critical Care Medicine, Children's National Hospital, Washington, DC, USA
| | - Adre J du Plessis
- Department of Pediatrics, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA; Prenatal Pediatric Institute, Children's National Hospital, Washington, DC, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA; Department of Radiology, Children's National Hospital, Washington, DC, USA; Department of Radiology, the George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
| |
Collapse
|
4
|
Clark A, Flouri D, Mufti N, James J, Clements E, Aughwane R, Aertsen M, David A, Melbourne A. Developments in functional imaging of the placenta. Br J Radiol 2023; 96:20211010. [PMID: 35234516 PMCID: PMC10321248 DOI: 10.1259/bjr.20211010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
The placenta is both the literal and metaphorical black box of pregnancy. Measurement of the function of the placenta has the potential to enhance our understanding of this enigmatic organ and serve to support obstetric decision making. Advanced imaging techniques are key to support these measurements. This review summarises emerging imaging technology being used to measure the function of the placenta and new developments in the computational analysis of these data. We address three important examples where functional imaging is supporting our understanding of these conditions: fetal growth restriction, placenta accreta, and twin-twin transfusion syndrome.
Collapse
Affiliation(s)
- Alys Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | | | - Joanna James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Eleanor Clements
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Rosalind Aughwane
- Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | - Michael Aertsen
- Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - Anna David
- Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | | |
Collapse
|
5
|
Emam D, Aertsen M, Van der Veeken L, Fidon L, Patkee P, Kyriakopoulou V, De Catte L, Russo F, Demaerel P, Vercauteren T, Rutherford M, Deprest J. Longitudinal MRI Evaluation of Brain Development in Fetuses with Congenital Diaphragmatic Hernia around the Time of Fetal Endotracheal Occlusion. AJNR Am J Neuroradiol 2023; 44:205-211. [PMID: 36657946 PMCID: PMC9891331 DOI: 10.3174/ajnr.a7760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/10/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND PURPOSE Congenital diaphragmatic hernia is associated with high mortality and morbidity, including evidence suggesting neurodevelopmental comorbidities after birth. The aim of this study was to document longitudinal changes in brain biometry and the cortical folding pattern in fetuses with congenital diaphragmatic hernia compared with healthy fetuses. MATERIALS AND METHODS This is a retrospective cohort study including fetuses with isolated congenital diaphragmatic hernia between January 2007 and May 2019, with at least 2 MR imaging examinations. For controls, we used images from fetuses who underwent MR imaging for an unrelated condition that did not compromise fetal brain development and fetuses from healthy pregnant women. Biometric measurements and 3D segmentations of brain structures were used as well as qualitative and quantitative grading of the supratentorial brain. Brain development was correlated with disease-severity markers. RESULTS Forty-two fetuses were included, with a mean gestational age at first MR imaging of 28.0 (SD, 2.1) weeks and 33.2 (SD, 1.3) weeks at the second imaging. The mean gestational age in controls was 30.7 (SD, 4.2) weeks. At 28 weeks, fetuses with congenital diaphragmatic hernia had abnormal qualitative and quantitative maturation, more extra-axial fluid, and larger total skull volume. By 33 weeks, qualitative grading scores were still abnormal, but quantitative scoring was in the normal range. In contrast, the extra-axial fluid volume remained abnormal with increased ventricular volume. Normal brain parenchymal volumes were found. CONCLUSIONS Brain development in fetuses with congenital diaphragmatic hernia around 28 weeks appears to be delayed. This feature is less prominent at 33 weeks. At this stage, there was also an increase in ventricular and extra-axial space volume.
Collapse
Affiliation(s)
- D Emam
- From the Department of Development and Regeneration (D.E., L.V.d.V., L.D.C., F.R., J.D.), Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Leuven, Belgium
- Department Obstetrics and Gynaecology (D.E., L.F.), Faculty of Medicine, Tanta University, Tanta, Egypt
| | - M Aertsen
- Department of Imaging and Pathology (M.A., P.D.), Clinical Department of Radiology, University Hospitals, KU Leuven, Leuven, Belgium
| | - L Van der Veeken
- From the Department of Development and Regeneration (D.E., L.V.d.V., L.D.C., F.R., J.D.), Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Leuven, Belgium
- Clinical Department Obstetrics and Gynaecology (L.V.d.V., L.D.C., F.R., J.D.), University Hospitals Leuven, Leuven, Belgium
| | - L Fidon
- Department Obstetrics and Gynaecology (D.E., L.F.), Faculty of Medicine, Tanta University, Tanta, Egypt
- Division of Imaging Sciences and Biomedical Engineering, Perinatal Imaging and Health and School of Biomedical Engineering and Imaging Sciences (L.F., T.V., J.D.), King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - P Patkee
- Centre for the Developing Brain (P.P., V.K., M.R., J.D.)
| | | | - L De Catte
- From the Department of Development and Regeneration (D.E., L.V.d.V., L.D.C., F.R., J.D.), Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Leuven, Belgium
- Clinical Department Obstetrics and Gynaecology (L.V.d.V., L.D.C., F.R., J.D.), University Hospitals Leuven, Leuven, Belgium
| | - F Russo
- From the Department of Development and Regeneration (D.E., L.V.d.V., L.D.C., F.R., J.D.), Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Leuven, Belgium
- Clinical Department Obstetrics and Gynaecology (L.V.d.V., L.D.C., F.R., J.D.), University Hospitals Leuven, Leuven, Belgium
| | - P Demaerel
- Department of Imaging and Pathology (M.A., P.D.), Clinical Department of Radiology, University Hospitals, KU Leuven, Leuven, Belgium
| | - T Vercauteren
- Division of Imaging Sciences and Biomedical Engineering, Perinatal Imaging and Health and School of Biomedical Engineering and Imaging Sciences (L.F., T.V., J.D.), King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - M Rutherford
- Centre for the Developing Brain (P.P., V.K., M.R., J.D.)
| | - J Deprest
- From the Department of Development and Regeneration (D.E., L.V.d.V., L.D.C., F.R., J.D.), Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Leuven, Belgium
- Clinical Department Obstetrics and Gynaecology (L.V.d.V., L.D.C., F.R., J.D.), University Hospitals Leuven, Leuven, Belgium
- Centre for the Developing Brain (P.P., V.K., M.R., J.D.)
- Division of Imaging Sciences and Biomedical Engineering, Perinatal Imaging and Health and School of Biomedical Engineering and Imaging Sciences (L.F., T.V., J.D.), King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
- Institute for Women's Health (J.D.), University College London, London, UK
| |
Collapse
|
6
|
Casati D, Zavatta A, Cortinovis I, Spada E, Faiola S, Laoreti A, Cetin I, Lanna M. Cerebro-placental and umbilico-cerebral ratios in uncomplicated monochorionic twins: Longitudinal references and comparison with singletons. Prenat Diagn 2022; 42:1111-1119. [PMID: 35801284 DOI: 10.1002/pd.6210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/24/2022] [Accepted: 07/03/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Monochorionic twins (MC) are at high risk of adverse outcomes and Doppler investigation of umbilical and cerebral flows is mandatory for their surveillance. The cerebro-placental (CPR) and umbilico-cerebral (UCR) ratios are considered non-invasive measures of fetal adaptation to hypoxemia. We aimed to provide longitudinal references for CPR and UCR from 16 to 37 weeks of gestation that are specific for MC twins, and compare these with singleton charts. METHODS Longitudinal study of a cohort of consecutive uncomplicated MC twin pregnancies monitored at our unit from 2010 to 2018. The estimated centile curves were obtained estimating the median with fractional polynomials by a multilevel model and the external centiles through the residuals. The comparison with singletons references was made through graphic evaluation. RESULTS One-hundred-fifty-two MC pregnancies were included with a median of 10 longitudinal ultrasounds each. References for CPR and UCR in function of gestational age are presented. Compared to singletons, MC twins showed an earlier and greater circulatory redistribution with lower CPR and higher UCR median values. CONCLUSIONS MC twin-specific references for CPR and UCR suitable for serial monitoring are presented. The comparison with singleton references demonstrates substantial differences in the hemodynamic balance that must be considered when interpreting findings in MC twins. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Daniela Casati
- Department of Woman, Mother and Neonate, Buzzi Children's Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Alice Zavatta
- Fetal Therapy Unit 'Umberto Nicolini', Department of Woman, Mother and Neonate, Buzzi Children's Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Ivan Cortinovis
- Laboratory G.A. Maccacaro, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Spada
- Laboratorio della Conoscenza - Carlo Corchia A.P.S, Florence, Italy
| | - Stefano Faiola
- Fetal Therapy Unit 'Umberto Nicolini', Department of Woman, Mother and Neonate, Buzzi Children's Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Arianna Laoreti
- Fetal Therapy Unit 'Umberto Nicolini', Department of Woman, Mother and Neonate, Buzzi Children's Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Irene Cetin
- Fetal Therapy Unit 'Umberto Nicolini', Department of Woman, Mother and Neonate, Buzzi Children's Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Mariano Lanna
- Fetal Therapy Unit 'Umberto Nicolini', Department of Woman, Mother and Neonate, Buzzi Children's Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| |
Collapse
|
7
|
In utero hypoxia attenuated acetylcholine-mediated vasodilatation via CHRM3/p-NOS3 in fetal sheep MCA: role of ROS/ERK1/2. Hypertens Res 2022; 45:1168-1182. [PMID: 35585170 DOI: 10.1038/s41440-022-00935-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
Hypoxia can lead to adult middle cerebral artery (MCA) dysfunction and increase the risk of cerebrovascular diseases. It is largely unknown whether intrauterine hypoxia affects fetal MCA vasodilatation. This study investigated the effects and mechanisms of intrauterine hypoxia on fetal MCA vasodilatation. Near-term fetal sheep were exposed to intrauterine hypoxia. Human umbilical vein endothelial cells (HUVECs) were exposed to hypoxia in cellular experiments. Vascular tone measurement, molecular analysis, and transmission electron microscope (TEM) were utilized to determine vascular functions, tissue anatomy, and molecular pathways in fetal MCA. In fetal MCA, acetylcholine (ACh) induced reliable relaxation, which was markedly attenuated by intrauterine hypoxia. Atropine, P-F-HHSiD, L-NAME, and u0126 blocked most ACh-mediated dilation, while AF-DX 116 and tropicamide partially inhibited the dilation. Indomethacin and SB203580 did not significantly change ACh-mediated dilation. Tempol and PS-341 could restore the attenuated ACh-mediated vasodilatation following intrauterine hypoxia. The mRNA expression levels of CHRM2 and CHRM3 and the protein levels of CHRM3, p-NOS3, SOD2, ERK1/2, p-ERK1/2, MAPK14, and p-MAPK14 were significantly reduced by intrauterine hypoxia. The dihydroethidium assay showed that the production of ROS was increased under intrauterine hypoxia. TEM analysis revealed endothelial cells damaged by intrauterine hypoxia. In HUVECs, hypoxia increased ROS formation and decreased the expression of CHRM3, p-NOS3, SOD1, SOD2, SOD3, ERK1/2, p-ERK1/2, and p-MAPK14, while tempol and PS-341 potentiated p-NOS3 protein expression. In conclusion, in utero hypoxia reduced ACh-mediated vasodilatation in ovine MCA predominantly via decreased CHRM3 and p-NOS3, and the decreased NOS3 bioactivities might be attributed to ROS and ERK1/2.
Collapse
|
8
|
Reid C, Romero M, Chang SB, Osman N, Puglisi JL, Wilson CG, Blood AB, Zhang L, Wilson SM. Long-Term Hypoxia Negatively Influences Ca2+ Signaling in Basilar Arterial Myocytes of Fetal and Adult Sheep. Front Physiol 2022; 12:760176. [PMID: 35115953 PMCID: PMC8804533 DOI: 10.3389/fphys.2021.760176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Cerebral arterial vasoreactivity is vital to the regulation of cerebral blood flow. Depolarization of arterial myocytes elicits whole-cell Ca2+ oscillations as well as subcellular Ca2+ sparks due to activation of ryanodine receptors on the sarcoplasmic reticulum. Previous evidence illustrates that contraction of cerebral arteries from sheep and underlying Ca2+ signaling pathways are modified by age and that long-term hypoxia (LTH) causes aberrations in Ca2+ signaling pathways and downstream effectors impacting vasoregulation. We hypothesize that age and LTH affect the influence of membrane depolarization on whole-cell intracellular Ca2+ oscillations and sub-cellular Ca2+ spark activity in cerebral arteries. To test this hypothesis, we examined Ca2+ oscillatory and spark activities using confocal fluorescence imaging techniques of Fluo-4 loaded basilar arterial myocytes of low- and high-altitude term fetal (∼145 days of gestation) and adult sheep, where high-altitude pregnant and non-pregnant sheep were placed at 3,801 m for >100 days. Ca2+ oscillations and sparks were recorded using an in situ preparation evaluated in the absence or presence of 30 mM K+ (30K) to depolarize myocytes. Myocytes from adult animals tended to have a lower basal rate of whole-cell Ca2+ oscillatory activity and 30K increased the activity within cells. LTH decreased the ability of myocytes to respond to depolarization independent of age. These observations illustrate that both altitude and age play a role in affecting whole-cell and localized Ca2+ signaling, which are important to arterial vasoreactivity and cerebral blood flow.
Collapse
Affiliation(s)
- Casey Reid
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Stephanie B. Chang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Noah Osman
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jose L. Puglisi
- Department of Biostatistics, School of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Christopher G. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Arlin B. Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
- *Correspondence: Sean M. Wilson,
| |
Collapse
|
9
|
Sun L, van Amerom JFP, Marini D, Portnoy S, Lee FT, Saini BS, Lim JM, Aguet J, Jaeggi E, Kingdom JC, Macgowan CK, Miller SP, Huang G, Seed M. MRI characterization of hemodynamic patterns of human fetuses with cyanotic congenital heart disease. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 58:824-836. [PMID: 34097323 DOI: 10.1002/uog.23707] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES To characterize, using magnetic resonance imaging (MRI), the distribution of blood flow and oxygen transport in human fetuses with subtypes of congenital heart disease (CHD) that present with neonatal cyanosis. METHODS Blood flow was measured in the major vessels of 152 late-gestation human fetuses with CHD and 40 gestational-age-matched normal fetuses, using cine phase-contrast MRI. Oxygen saturation (SaO2 ) was measured in the major vessels of 57 fetuses with CHD and 40 controls. RESULTS Compared with controls, we found lower combined ventricular output in fetuses with single-ventricle physiology, with the lowest being observed in fetuses with severe forms of Ebstein's anomaly. Obstructive lesions of the left or right heart were associated with increased flow across the contralateral side. Pulmonary blood flow was reduced in fetuses with Ebstein's anomaly, while those with Ebstein's anomaly and tricuspid atresia had reduced umbilical flow. Flow in the superior vena cava was elevated in fetuses with transposition of the great arteries, normal in fetuses with hypoplastic left heart, tetralogy of Fallot or tricuspid atresia and reduced in fetuses with Ebstein's anomaly. Umbilical vein SaO2 was reduced in fetuses with hypoplastic left heart or tetralogy of Fallot. Ascending aorta and superior vena cava SaO2 were reduced in nearly all CHD subtypes. CONCLUSIONS Fetuses with cyanotic CHD exhibit profound changes in the distribution of blood flow and oxygen transport, which result in changes in cerebral, pulmonary and placental blood flow and oxygenation. These alterations of fetal circulatory physiology may influence the neonatal course and help account for abnormalities of prenatal growth and development that have been described in newborns with cyanotic CHD. © 2021 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- L Sun
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - J F P van Amerom
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - D Marini
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - S Portnoy
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - F-T Lee
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - B S Saini
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - J M Lim
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - J Aguet
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - E Jaeggi
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - J C Kingdom
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - C K Macgowan
- Department of Medical Biophysics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - S P Miller
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - G Huang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - M Seed
- Division of Paediatric Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Sacchi C, O'Muircheartaigh J, Batalle D, Counsell SJ, Simonelli A, Cesano M, Falconer S, Chew A, Kennea N, Nongena P, Rutherford MA, Edwards AD, Nosarti C. Neurodevelopmental Outcomes following Intrauterine Growth Restriction and Very Preterm Birth. J Pediatr 2021; 238:135-144.e10. [PMID: 34245768 DOI: 10.1016/j.jpeds.2021.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To evaluate whether intrauterine growth restriction (IUGR) adds further neurodevelopmental risk to that posed by very preterm birth alone in terms of alterations in brain growth and poorer toddlerhood outcomes. STUDY DESIGN Participants were 314 infants of very preterm birth enrolled in the Evaluation of Preterm Imaging Study (e-Prime) who were subsequently followed up in toddlerhood. IUGR was identified postnatally from discharge records (n = 49) and defined according to prenatal evaluation of growth restriction confirmed by birth weight <10th percentile for gestational age and/or alterations in fetal Doppler. Appropriate for gestational age (AGA; n = 265) was defined as birth weight >10th percentile for gestational age at delivery. Infants underwent magnetic resonance imaging at term-equivalent age (median = 42 weeks); T2-weighted images were obtained for voxelwise gray matter volumes. Follow-up assessments were conducted at corrected median age of 22 months using the Bayley Scales of Infant and Toddler Development III and the Modified-Checklist for Autism in Toddlers. RESULTS Infants of very preterm birth with IUGR displayed a relative volumetric decrease in gray matter in limbic regions and a relative increase in frontoinsular, temporal-parietal, and frontal areas compared with peers of very preterm birth who were AGA. At follow-up, toddlers born very preterm with IUGR had significantly lower cognitive (effect size = 0.42) and motor (effect size = 0.41) scores and were more likely to have a positive Modified-Checklist for Autism in Toddlers screening for autism (OR = 2.12) compared with peers of very preterm birth who were AGA. CONCLUSIONS IUGR might confer a neurodevelopmental risk that is greater than that posed by very preterm alone, in terms of both alterations in brain growth and poorer toddlerhood outcomes.
Collapse
Affiliation(s)
- Chiara Sacchi
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Serena Jane Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Alessandra Simonelli
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Michela Cesano
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Nigel Kennea
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Phumza Nongena
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mary Ann Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
11
|
Comparison of motor outcomes between preschool children with univentricular and biventricular critical heart disease not diagnosed with cerebral palsy or acquired brain injury. Cardiol Young 2021; 31:1788-1795. [PMID: 33685537 DOI: 10.1017/s1047951121000895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This comparison study of two groups within an inception cohort aimed to compare the frequency of motor impairment between preschool children with univentricular and biventricular critical congenital heart disease (CHD) not diagnosed with cerebral palsy/acquired brain injury, describe and compare their motor profiles and explore predictors of motor impairment in each group.Children with an intellectual quotient <70 or cerebral palsy/acquired brain injury were excluded. Motor skills were assessed with the Movement Assessment Battery for Children-2. Total scores <5th percentile indicated motor impairment. Statistical analysis included χ2 test and multiple logistic regression analysis.At a mean age of 55.4 (standard deviation 3.77) months, motor impairment was present in 11.8% of those with biventricular critical CHD, and 32.4% (p < 0.001) of those with univentricular critical CHD. The greatest difference between children with biventricular and univentricular CHD was seen in total test scores 8.73(2.9) versus 6.44(2.8) (p < 0.01) and in balance skills, 8.84 (2.8) versus 6.97 (2.5) (p = 0.001). Manual dexterity mean scores of children with univentricular CHD were significantly below the general population mean (>than one standard deviation). Independent odds ratio for motor impairment in children with biventricular critical CHD was presence of chromosomal abnormality, odds ratio 10.9 (CI 2.13-55.8) (p = 0.004); and in children with univentricular critical CHD odds ratio were: postoperative day 1-5 highest lactate (mmol/L), OR: 1.65 (C1.04-2.62) (p = 0.034), and dialysis requirement any time before the 4.5-year-old assessment, OR: 7.8 (CI 1.08-56.5) (p = 0.042).Early assessment of motor skills, particularly balance and manual dexterity, allows for intervention and supports that can address challenges during the school years.
Collapse
|
12
|
Dudink I, Hüppi PS, Sizonenko SV, Castillo-Melendez M, Sutherland AE, Allison BJ, Miller SL. Altered trajectory of neurodevelopment associated with fetal growth restriction. Exp Neurol 2021; 347:113885. [PMID: 34627856 DOI: 10.1016/j.expneurol.2021.113885] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022]
Abstract
Fetal growth restriction (FGR) is principally caused by suboptimal placental function. Poor placental function causes an under supply of nutrients and oxygen to the developing fetus, restricting development of individual organs and overall growth. Estimated fetal weight below the 10th or 3rd percentile with uteroplacental dysfunction, and knowledge regarding the onset of growth restriction (early or late), provide diagnostic criteria for fetuses at greatest risk for adverse outcome. Brain development and function is altered with FGR, with ongoing clinical and preclinical studies elucidating neuropathological etiology. During the third trimester of pregnancy, from ~28 weeks gestation, neurogenesis is complete and neuronal complexity is expanding, through axonal and dendritic outgrowth, dendritic branching and synaptogenesis, accompanied by myelin production. Fetal compromise over this period, as occurs in FGR, has detrimental effects on these processes. Total brain volume and grey matter volume is reduced in infants with FGR, first evident in utero, with cortical volume particularly vulnerable. Imaging studies show that cerebral morphology is disturbed in FGR, with altered cerebral cortex, volume and organization of brain networks, and reduced connectivity of long- and short-range circuits. Thus, FGR induces a deviation in brain development trajectory affecting both grey and white matter, however grey matter volume is preferentially reduced, contributed by cell loss, and reduced neurite outgrowth of surviving neurons. In turn, cell-to-cell local networks are adversely affected in FGR, and whole brain left and right intrahemispheric connections and interhemispheric connections are altered. Importantly, disruptions to region-specific brain networks are linked to cognitive and behavioral impairments.
Collapse
Affiliation(s)
- Ingrid Dudink
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Petra S Hüppi
- Department of Pediatrics, Obstetrics and Gynecology, University of Geneva, Switzerland
| | - Stéphane V Sizonenko
- Department of Pediatrics, Obstetrics and Gynecology, University of Geneva, Switzerland
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
13
|
Lee FT, Seed M, Sun L, Marini D. Fetal brain issues in congenital heart disease. Transl Pediatr 2021; 10:2182-2196. [PMID: 34584890 PMCID: PMC8429876 DOI: 10.21037/tp-20-224] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Following the improvements in the clinical management of patients with congenital heart disease (CHD) and their increased survival, neurodevelopmental outcome has become an emerging priority in pediatric cardiology. Large-scale efforts have been made to protect the brain during the postnatal, surgical, and postoperative period; however, the presence of brain immaturity and injury at birth suggests in utero and peripartum disturbances. Over the past decade, there has been considerable interest and investigations on fetal brain growth in the setting of CHD. Advancements in fetal brain imaging have identified abnormal brain development in fetuses with CHD from the macrostructural (brain volumes and cortical folding) down to the microstructural (biochemistry and water diffusivity) scale, with more severe forms of CHD showing worse disturbances and brain abnormalities starting as early as the first trimester. Anomalies in common genetic developmental pathways and diminished cerebral substrate delivery secondary to altered cardiovascular physiology are the forefront hypotheses, but other factors such as impaired placental function and maternal psychological stress have surfaced as important contributors to fetal brain immaturity in CHD. The characterization and timing of fetal brain disturbances and their associated mechanisms are important steps for determining preventative prenatal interventions, which may provide a stronger foundation for the developing brain during childhood.
Collapse
Affiliation(s)
- Fu-Tsuen Lee
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mike Seed
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada.,Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Davide Marini
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Inocencio IM, Tran NT, Khor SJ, Wiersma M, Nakamura S, Walker DW, Wong FY. The cerebral haemodynamic response to somatosensory stimulation in preterm newborn lambs is reduced with dopamine or dobutamine infusion. Exp Neurol 2021; 341:113687. [PMID: 33713656 DOI: 10.1016/j.expneurol.2021.113687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND In the adult brain, increases in neural activity lead to increases in local blood flow. However, in the preterm neonate, studies of cerebral functional haemodynamics have yielded inconsistent results, including negative responses suggesting decreased perfusion and localised tissue hypoxia, probably due to immature neurovascular coupling. Furthermore, the impact of vasoactive medications, such as dopamine and dobutamine used as inotropic therapies in preterm neonates, on cerebrovascular responses to somatosensory input is unknown. We aimed to characterise the cerebral haemodynamic functional response after somatosensory stimulation in the preterm newborn brain, with and without dopamine or dobutamine treatment. METHODS We studied the cerebral haemodynamic functional response in 13 anaesthetised preterm lambs, using near infrared spectroscopy to measure changes in cerebral oxy- and deoxyhaemoglobin (ΔoxyHb, ΔdeoxyHb) following left median nerve stimulation using stimulus trains of 1.8, 4.8 and 7.8 s. The 4.8 and 7.8 s stimulations were repeated during dopamine or dobutamine infusion. RESULTS Stimulation always produced a somatosensory evoked response. Majority of preterm lambs demonstrated positive functional responses (i.e. increased ΔoxyHb) in the contralateral cortex following stimulus trains of all durations. Dopamine increased baseline oxyHb and total Hb, whereas dobutamine increased baseline deoxyHb. Both dopamine and dobutamine reduced the evoked ΔoxyHb responses to 4.8 and 7.8 s stimulations. CONCLUSIONS Somatosensory stimulation increases cerebral oxygenation in the preterm brain, consistent with increased cerebral blood flow due to neurovascular coupling. Notably, our results show that dopamine/dobutamine reduces oxygen delivery relative to consumption in the preterm brain during somatosensory stimulations, suggesting there may be a risk of intermittent localised tissue hypoxia which has clear implications for clinical practice and warrants further investigation.
Collapse
Affiliation(s)
- Ishmael M Inocencio
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Nhi T Tran
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Song J Khor
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Manon Wiersma
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Shinji Nakamura
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - David W Walker
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Flora Y Wong
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia; Monash Newborn, Monash Medical Centre, Melbourne, Australia.
| |
Collapse
|
15
|
Wang S, Freud LR, Detterich J, Moon-Grady AJ, Donofrio MT, Jaeggi ET, Szwast AL, Morris SA, Kavanaugh-Mchugh A, Howley LW, van der Velde ME, Cuneo BF, Phoon CK, Tworetzky W, Pruetz JD. Extracardiac Doppler indices predict perinatal mortality in fetuses with Ebstein anomaly and tricuspid valve dysplasia. Prenat Diagn 2021; 41:332-340. [PMID: 33242215 DOI: 10.1002/pd.5873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Ebstein anomaly and tricuspid valve dysplasia (EA/TVD) carry high perinatal mortality. Past studies have focused on cardiac predictors of mortality; we sought to describe the fetal echo (FE) extracardiac Dopplers in this cohort and determine their association with perinatal mortality. METHOD Fetuses with EA/TVD at 23 centers from 2005-2011 were included for retrospective study. Doppler pattern and velocity of the umbilical artery (UA), umbilical vein (UV), ductus venosus (DV), and middle cerebral artery (MCA) were collected. Bivariate and multivariate analyzes were performed. The primary outcome measure was perinatal mortality, defined as fetal demise or neonatal death. RESULTS Of 190 cases that met eligibility criteria, alterations were seen in 50% of UA, 16% of UV, 48% of DV, and 8% of MCA Doppler indices on the last FE (median 27.4 weeks). Independent predictors of perinatal mortality included abnormal UA Doppler pattern of absence or reversed end diastolic flow (OR 9.7) and UV velocity z score <1 (OR 2.5), in addition to diagnosis <32 weeks (OR 4.2) and tricuspid valve (TV) annulus z score ≥6 (OR 5.3). CONCLUSION Abnormal UA Doppler pattern and decreased UV velocity are independent predictors of perinatal mortality in EA/TVD fetuses and should be used to refine mortality risk and guide perinatal management.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Pediatrics, Division of Cardiology, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Lindsay R Freud
- Department of Pediatrics, Division of Cardiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jon Detterich
- Department of Pediatrics, Division of Cardiology, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Anita J Moon-Grady
- Department of Pediatrics, Division of Cardiology, Benioff Children's Hospital, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Mary T Donofrio
- Department of Pediatrics, Division of Cardiology, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Edgar T Jaeggi
- Department of Pediatrics, Division of Cardiology, Hospital for Sick Children, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
| | - Anita L Szwast
- Department of Pediatrics, Division of Cardiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shaine A Morris
- Department of Pediatrics, Division of Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Ann Kavanaugh-Mchugh
- Department of Pediatrics, Division of Cardiology, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lisa W Howley
- Department of Pediatrics, Division of Cardiology, The Children's Heart Clinic and Children's Minnesota, Minnesota, USA
| | - Mary E van der Velde
- Department of Pediatrics, Division of Cardiology, C.S. Mott Children's Hospital, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bettina F Cuneo
- Department of Pediatrics, Division of Cardiology, The Children's Heart Clinic and Children's Minnesota, Minnesota, USA
| | - Colin K Phoon
- Department of Pediatrics, Division of Cardiology, Hassenfeld Children's Hospital at NYU Langone, New York University School of Medicine, New York, New York, USA
| | - Wayne Tworetzky
- Department of Pediatrics, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jay D Pruetz
- Department of Pediatrics, Division of Cardiology, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
16
|
Sorensen DW, Carreon D, Williams JM, Pearce WJ. Hypoxic modulation of fetal vascular MLCK abundance, localization, and function. Am J Physiol Regul Integr Comp Physiol 2021; 320:R1-R18. [PMID: 33112654 PMCID: PMC7847055 DOI: 10.1152/ajpregu.00212.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022]
Abstract
Changes in vascular contractility are among the most important physiological effects of acute and chronic fetal hypoxia. Given the essential role of myosin light-chain kinase (MLCK) in smooth muscle contractility and its heterogeneous distribution, this study explores the hypothesis that subcellular changes in MLCK distribution contribute to hypoxic modulation of fetal carotid artery contractility. Relative to common carotid arteries from normoxic term fetal lambs (FN), carotids from fetal lambs gestated at high altitude (3,802 m) (FH) exhibited depressed contractility without changes in MLCK mRNA or protein abundance. Patterns of confocal colocalization of MLCK with α-actin and 20-kDa regulatory myosin light chain (MLC20) enabled calculation of subcellular MLCK fractions: 1) colocalized with the contractile apparatus, 2) colocalized with α-actin distant from the contractile apparatus, and 3) not colocalized with α-actin. Chronic hypoxia did not affect MLCK abundance in the contractile fraction, despite a concurrent decrease in contractility. Organ culture for 72 h under 1% O2 decreased total MLCK abundance in FN and FH carotid arteries, but decreased the contractile MLCK abundance only in FH carotid arteries. Correspondingly, culture under 1% O2 depressed contractility more in FH than FN carotid arteries. In addition, hypoxia appeared to attenuate ubiquitin-independent proteasomal degradation of MLCK, as reported for other proteins. In aggregate, these results demonstrate that the combination of chronic hypoxia followed by hypoxic culture can induce MLCK translocation among at least three subcellular fractions with possible influences on contractility, indicating that changes in MLCK distribution are a significant component of fetal vascular responses to hypoxia.
Collapse
Affiliation(s)
- Dane W Sorensen
- Divisions of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Desirelys Carreon
- Divisions of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - James M Williams
- Divisions of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| | - William J Pearce
- Divisions of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
17
|
Peyvandi S, Xu D, Wang Y, Hogan W, Moon-Grady A, Barkovich AJ, Glenn O, McQuillen P, Liu J. Fetal Cerebral Oxygenation Is Impaired in Congenital Heart Disease and Shows Variable Response to Maternal Hyperoxia. J Am Heart Assoc 2020; 10:e018777. [PMID: 33345557 PMCID: PMC7955474 DOI: 10.1161/jaha.120.018777] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Impairments in fetal oxygen delivery have been implicated in brain dysmaturation seen in congenital heart disease (CHD), suggesting a role for in utero transplacental oxygen therapy. We applied a novel imaging tool to quantify fetal cerebral oxygenation by measuring T2* decay. We compared T2* in fetuses with CHD with controls with a focus on cardiovascular physiologies (transposition or left‐sided obstruction) and described the effect of brief administration of maternal hyperoxia on T2* decay. Methods and Results This is a prospective study performed on pregnant mothers with a prenatal diagnosis of CHD compared with controls in the third trimester. Participants underwent a fetal brain magnetic resonance imaging scan including a T2* sequence before and after maternal hyperoxia. Comparisons were made between control and CHD fetuses including subgroup analyses by cardiac physiology. Forty‐four mothers (CHD=24, control=20) participated. Fetuses with CHD had lower total brain volume (238.2 mm3, 95% CI, 224.6–251.9) compared with controls (262.4 mm3, 95% CI, 245.0–279.8, P=0.04). T2* decay time was faster in CHD compared with controls (beta=−14.4, 95% CI, −23.3 to −5.6, P=0.002). The magnitude of change in T2* with maternal hyperoxia was higher in fetuses with transposition compared with controls (increase of 8.4 ms, 95% CI, 0.5–14.3, P=0.01), though between‐subject variability was noted. Conclusions Cerebral tissue oxygenation is lower in fetuses with complex CHD. There was variability in the response to maternal hyperoxia by CHD subgroup that can be tested in future larger studies. Cardiovascular physiology is critical when designing neuroprotective clinical trials in the fetus with CHD.
Collapse
Affiliation(s)
- Shabnam Peyvandi
- Department of Pediatrics Division of Cardiology University of California San Francisco San Francisco CA.,Department of Epidemiology and Biostatistics University of California San Francisco San Francisco CA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging University of California San Francisco San Francisco CA
| | - Yan Wang
- Department of Radiology and Biomedical Imaging University of California San Francisco San Francisco CA
| | - Whitnee Hogan
- Department of Pediatrics Division of Cardiology University of California San Francisco San Francisco CA
| | - Anita Moon-Grady
- Department of Pediatrics Division of Cardiology University of California San Francisco San Francisco CA
| | - A James Barkovich
- Department of Radiology and Biomedical Imaging University of California San Francisco San Francisco CA
| | - Orit Glenn
- Department of Radiology and Biomedical Imaging University of California San Francisco San Francisco CA
| | - Patrick McQuillen
- Department of Pediatrics, Division of Critical Care University of California San Francisco San Francisco CA
| | - Jing Liu
- Department of Radiology and Biomedical Imaging University of California San Francisco San Francisco CA
| |
Collapse
|
18
|
The application of in utero magnetic resonance imaging in the study of the metabolic and cardiovascular consequences of the developmental origins of health and disease. J Dev Orig Health Dis 2020; 12:193-202. [PMID: 33308364 PMCID: PMC8162788 DOI: 10.1017/s2040174420001154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Observing fetal development in utero is vital to further the understanding of later-life diseases. Magnetic resonance imaging (MRI) offers a tool for obtaining a wealth of information about fetal growth, development, and programming not previously available using other methods. This review provides an overview of MRI techniques used to investigate the metabolic and cardiovascular consequences of the developmental origins of health and disease (DOHaD) hypothesis. These methods add to the understanding of the developing fetus by examining fetal growth and organ development, adipose tissue and body composition, fetal oximetry, placental microstructure, diffusion, perfusion, flow, and metabolism. MRI assessment of fetal growth, organ development, metabolism, and the amount of fetal adipose tissue could give early indicators of abnormal fetal development. Noninvasive fetal oximetry can accurately measure placental and fetal oxygenation, which improves current knowledge on placental function. Additionally, measuring deficiencies in the placenta’s transport of nutrients and oxygen is critical for optimizing treatment. Overall, the detailed structural and functional information provided by MRI is valuable in guiding future investigations of DOHaD.
Collapse
|
19
|
Abstract
Cerebrovascular autoregulation is the ability to maintain stable cerebral blood flow within a range of cerebral perfusion pressures. When cerebral perfusion pressure is outside the limits of effective autoregulation, the brain is subjected to hypoperfusion or hyperperfusion, which may cause vascular injury, hemorrhage, and/or hypoxic white matter injury. Infants born preterm, after fetal growth restriction, with congenital heart disease, or with hypoxic-ischemic encephalopathy are susceptible to a failure of cerebral autoregulation. Bedside assessment of cerebrovascular autoregulation would offer the opportunity to prevent brain injury. Clinicians need to know which patient populations and circumstances are associated with impaired/absent cerebral autoregulation.
Collapse
Affiliation(s)
- Elisabeth M W Kooi
- Division of Neonatology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Hanzeplein 1, PO Box 30001, Groningen 9700 RB, The Netherlands.
| | - Anne E Richter
- Division of Neonatology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Hanzeplein 1, PO Box 30001, Groningen 9700 RB, The Netherlands
| |
Collapse
|
20
|
Acharya G, Ebbing C, Karlsen HO, Kiserud T, Rasmussen S. Sex-specific reference ranges of cerebroplacental and umbilicocerebral ratios: longitudinal study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 56:187-195. [PMID: 31503378 DOI: 10.1002/uog.21870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES Observational studies have shown that low cerebroplacental ratio (CPR) values predict an increased risk of adverse perinatal outcome. The inverse ratio, i.e. the umbilicocerebral ratio (UCR), has been suggested to be a better predictor as it rises with increasing degree of fetal compromise. However, longitudinal reference ranges for UCR have not been established, and whether gestational-age-dependent changes in CPR or UCR differ between male and female fetuses has not been studied. Thus, the aims of this study were to investigate sex-specific, gestational-age-associated serial changes in CPR and UCR during the second half of pregnancy and to establish longitudinal reference ranges. METHODS This was a secondary analysis of prospectively collected data from a dual-center longitudinal observational cohort study of low-risk singleton pregnancies. Doppler blood-flow velocity waveforms were obtained serially from the umbilical artery (UA) and fetal middle cerebral artery (MCA) from 19-41 weeks' gestation, and pulsatility indices (PIs) were determined. CPR and UCR were calculated as the ratios MCA-PI/UA-PI and UA-PI/MCA-PI, respectively. The course and outcome of pregnancies were recorded, and the sex of the fetus was determined after delivery. Reference intervals for CPR and UCR were constructed using multilevel modeling, and gestational-age-specific Z-scores in male and female fetuses were compared. RESULTS Of a total of 299 pregnancies enrolled, 284 (148 male and 136 female fetuses) were included in the final analysis, and 979 paired measurements of UA-PI and MCA-PI were used to construct sex-specific longitudinal reference intervals. The relationship of both CPR and UCR with gestational age was U-shaped, but in opposite directions. There was a small but significant difference in Z-scores of CPR and UCR between male and female fetuses throughout the second half of pregnancy (P = 0.007). CONCLUSIONS We have established longitudinal reference ranges for CPR and UCR suitable for serial monitoring, with the possibility of refining assessment by using fetal sex-specific ranges and conditioning by a previous measurement. The clinical significance of such refinements needs further evaluation. © 2019 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of the International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- G Acharya
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø and Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Science, Intervention & Technology, Karolinska Institutet and Center for Fetal Medicine Karolinska, University Hospital, Stockholm, Sweden
| | - C Ebbing
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - H O Karlsen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - T Kiserud
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - S Rasmussen
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
21
|
Ortinau CM, Shimony JS. The Congenital Heart Disease Brain: Prenatal Considerations for Perioperative Neurocritical Care. Pediatr Neurol 2020; 108:23-30. [PMID: 32107137 PMCID: PMC7306416 DOI: 10.1016/j.pediatrneurol.2020.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/21/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
Abstract
Altered brain development has been highlighted as an important contributor to adverse neurodevelopmental outcomes in children with congenital heart disease. Abnormalities begin prenatally and include micro- and macrostructural disturbances that lead to an altered trajectory of brain growth throughout gestation. Recent progress in fetal imaging has improved understanding of the neurobiological mechanisms and risk factors for impaired fetal brain development. The impact of the prenatal environment on postnatal neurological care has also gained increased focus. This review summarizes current data on the timing and pattern of altered prenatal brain development in congenital heart disease, the potential mechanisms of these abnormalities, and the association with perioperative neurological complications.
Collapse
Affiliation(s)
- Cynthia M Ortinau
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri.
| | - Joshua S Shimony
- Mallinkrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
22
|
Baik-Schneditz N, Pichler G, Schwaberger B, Binder-Heschl C, Mileder L, Reiss IKH, Avian A, Greimel P, Klaritsch P, Urlesberger B. Effect of Intrauterine Growth Restriction on Cerebral Regional Oxygen Saturation in Preterm and Term Neonates during Immediate Postnatal Transition. Neonatology 2020; 117:324-330. [PMID: 32516786 DOI: 10.1159/000507583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/29/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is associated with adverse perinatal outcome. Affected fetuses commonly display typical blood flow redistribution towards the brain ("brain sparing"). Accordingly, increased cerebral oxygen saturation has been observed in IUGR neonates within the first days of life. AIM The aim of our study was to assess cerebral oxygenation behavior during immediate neonatal transition in IUGR infants. METHODS This is a retrospective single-center observational cohort study. Cerebral regional oxygen saturation (crSO2) was measured with near-infrared spectroscopy in neonates during the first 15 min after birth. Neonates with IUGR (IUGR group) were matched for gestational age (±1 week) and gender with neonates that were appropriate for gestational age (AGA). The AGA:IUGR matching ratio was 3:1. Arterial oxygen saturation (SpO2), heart rate (HR), crSO2, and cerebral fractional tissue oxygen extraction (cFTOE) were compared between the groups. RESULTS Between August 2010 and October 2017, 45 neonates with IUGR were identified and matched to 135 AGA neonates. Mean gestational age was 33.1 ± 3.0 weeks in the IUGR group and 33.5 ± 2.7 weeks in the AGA group. Mean birth weight was 1,559 ± 582 g in the IUGR group and 2,051 ± 679 g in the AGA group. There was a significant group difference in crSO2 beginning at 5 min and continuing for the rest of the observation time with higher crSO2 values in the IUGR group (main effect group: p = 0.011; interaction time × group: p = 0.039). In cFTOE, a significant difference could be observed at 5-9 and 11-13 min with lower rates of oxygen extraction in the IUGR group (main effect group: p = 0.025; interaction time × group: p = 0.463). Concerning SpO2 and HR, there was no significant difference between the IUGR and the AGA neonates. CONCLUSION Neonates of the IUGR group did show significantly higher crSO2 values and significantly lower cFTOE values already during immediate neonatal transition compared to the AGA group.
Collapse
Affiliation(s)
- Nariae Baik-Schneditz
- Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria, .,Research Unit for Neonatal Micro- and Macrocirculation, Division of Neonatology, Medical University of Graz, Graz, Austria, .,Research Unit for Cerebral Development and Oximetry, Division of Neonatology, Medical University of Graz, Graz, Austria,
| | - Gerhard Pichler
- Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria.,Research Unit for Neonatal Micro- and Macrocirculation, Division of Neonatology, Medical University of Graz, Graz, Austria.,Research Unit for Cerebral Development and Oximetry, Division of Neonatology, Medical University of Graz, Graz, Austria
| | - Bernhard Schwaberger
- Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria.,Research Unit for Neonatal Micro- and Macrocirculation, Division of Neonatology, Medical University of Graz, Graz, Austria.,Research Unit for Cerebral Development and Oximetry, Division of Neonatology, Medical University of Graz, Graz, Austria
| | - Corinna Binder-Heschl
- Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria.,Research Unit for Neonatal Micro- and Macrocirculation, Division of Neonatology, Medical University of Graz, Graz, Austria.,Research Unit for Cerebral Development and Oximetry, Division of Neonatology, Medical University of Graz, Graz, Austria
| | - Lukas Mileder
- Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria.,Research Unit for Neonatal Micro- and Macrocirculation, Division of Neonatology, Medical University of Graz, Graz, Austria.,Research Unit for Cerebral Development and Oximetry, Division of Neonatology, Medical University of Graz, Graz, Austria
| | - Irwin K H Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center (MC), University MC Rotterdam, Rotterdam, The Netherlands
| | - Alexander Avian
- Institute for Medical Informatics, Statistics, and Documentation, Medical University of Graz, Graz, Austria
| | - Patrick Greimel
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Philipp Klaritsch
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Berndt Urlesberger
- Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria.,Research Unit for Neonatal Micro- and Macrocirculation, Division of Neonatology, Medical University of Graz, Graz, Austria.,Research Unit for Cerebral Development and Oximetry, Division of Neonatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
23
|
Cohen E, Baerts W, Caicedo Dorado A, Naulaers G, van Bel F, Lemmers PMA. Cerebrovascular autoregulation in preterm fetal growth restricted neonates. Arch Dis Child Fetal Neonatal Ed 2019; 104:F467-F472. [PMID: 30355781 DOI: 10.1136/archdischild-2017-313712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/12/2018] [Accepted: 09/22/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the effect of fetal growth restriction (FGR) on cerebrovascular autoregulation in preterm neonates during the first 3 days of life. DESIGN Case-control study. SETTING Neonatal intensive care unit of the Wilhelmina Children's Hospital, The Netherlands. PATIENTS 57 FGR (birth weight <10th percentile) and 57 appropriate for gestational age (AGA) (birth weight 20th-80th percentiles) preterm neonates, matched for gender, gestational age, respiratory and blood pressure support. METHODS The correlation between continuously measured mean arterial blood pressure and regional cerebral oxygen saturation was calculated to generate the cerebral oximetry index (COx). Mean COx was calculated for each patient for each postnatal day. The percentage of time with impaired autoregulation (COx>0.5) was also calculated. RESULTS FGR neonates had higher mean COx values than their AGA peers on day 2 (0.15 (95% CI 0.11 to 0.18) vs 0.09 (95% CI 0.06 to 0.13), p=0.029) and day 3 (0.17 (95% CI 0.13 to 0.20) vs 0.09 (95% CI 0.06 to 0.12), p=0.003) of life. FGR neonates spent more time with impaired autoregulation (COx value >0.5) than controls on postnatal day 2 (19% (95% CI 16% to 22%) vs 14% (95% CI 12% to 17%), p=0.035) and day 3 (20% (95% CI 17% to 24%) vs 15% (95% CI 12% to 18%), p=0.016). CONCLUSION FGR preterm neonates more frequently display impaired cerebrovascular autoregulation compared with AGA peers on days 2 and 3 of life which may predispose them to brain injury. Further studies are required to investigate whether this impairment persists beyond the first few days of life and whether this impairment is linked to poor neurodevelopmental outcome.
Collapse
Affiliation(s)
- Emily Cohen
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands.,The Ritchie Centre, Hudson Institute of Medical Research and Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Willem Baerts
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alexander Caicedo Dorado
- Department of Applied Mathematics and Computer Science, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota, Colombia
| | - Gunnar Naulaers
- Department of Neonatology, University Hospital Leuven, Leuven, Belgium
| | - Frank van Bel
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Petra M A Lemmers
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
24
|
Cahill LS, Hoggarth J, Lerch JP, Seed M, Macgowan CK, Sled JG. Fetal brain sparing in a mouse model of chronic maternal hypoxia. J Cereb Blood Flow Metab 2019; 39:1172-1184. [PMID: 29271304 PMCID: PMC6547196 DOI: 10.1177/0271678x17750324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hypoxic stress is a common occurrence during human pregnancy, yet little is known about its effects on the fetal brain. This study examined the fetal hemodynamic responses to chronic hypoxia in an experimental mouse model of chronic maternal hypoxia (11% O2 from E14.5 to E17.5). Using high-frequency Doppler ultrasound, we found fetal cerebral and ductus venosus blood flow were both elevated by 69% and pulmonary blood flow was decreased by 62% in the fetuses exposed to chronic hypoxia compared to controls. This demonstrates that brain sparing persists during chronic fetal hypoxia and is mediated by "streaming," where highly oxygenated blood preferentially flows through the ductus venosus towards the cerebral circulation, bypassing the liver and the lungs. Consistent with these changes in blood flow, the fetal brain volume measured by MRI is preserved, while the liver and lung volumes decreased compared to controls. However, hypoxia exposed fetuses were rendered vulnerable to an acute hypoxic challenge (8% O2 for 3 min), demonstrating global blood flow decreases consistent with imminent fetal demise rather than elevated cerebral blood flow. Despite this vulnerability, there were no differences in adult brain morphology in the mice exposed to chronic maternal hypoxia compared to controls.
Collapse
Affiliation(s)
- Lindsay S Cahill
- 1 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Johnathan Hoggarth
- 1 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- 1 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,2 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,3 Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Mike Seed
- 4 Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.,5 Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- 2 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,5 Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John G Sled
- 1 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,2 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,5 Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Seed M. In Utero Brain Development in Fetuses With Congenital Heart Disease: Another Piece of the Jigsaw Provided by Blood Oxygen Level-Dependent Magnetic Resonance Imaging. Circ Cardiovasc Imaging 2019; 10:e007181. [PMID: 29141841 DOI: 10.1161/circimaging.117.007181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mike Seed
- From the Division of Cardiology, Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
26
|
Abstract
The human cerebral vasculature originates in the fourth week of gestation and continues to expand and diversify well into the first few years of postnatal life. A key feature of this growth is smooth muscle differentiation, whereby smooth muscle cells within cerebral arteries transform from migratory to proliferative to synthetic and finally to contractile phenotypes. These phenotypic transformations can be reversed by pathophysiological perturbations such as hypoxia, which causes loss of contractile capacity in immature cerebral arteries. In turn, loss of contractility affects all whole-brain cerebrovascular responses, including those involved in flow-metabolism coupling, vasodilatory responses to acute hypoxia and hypercapnia, cerebral autoregulation, and reactivity to activation of perivascular nerves. Future strategies to minimize cerebral injury following hypoxia-ischemic insults in the immature brain might benefit by targeting treatments to preserve and promote contractile differentiation in the fetal cerebrovasculature. This could potentially be achieved through inhibition of receptor tyrosine kinase-mediated growth factors, such as vascular endothelial growth factor and platelet-derived growth factor, which are mobilized by hypoxic and ischemic injury and which facilitate contractile dedifferentiation. Interruption of the effects of other vascular mitogens, such as endothelin and angiotensin-II, and even some miRNA species, also could be beneficial. Future experimental work that addresses these possibilities offers promise to improve current clinical management of neonates who have suffered and survived hypoxic, ischemic, asphyxic, or inflammatory cerebrovascular insults.
Collapse
Affiliation(s)
- William J Pearce
- From the Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA.
| |
Collapse
|
27
|
Nalivaeva NN, Turner AJ, Zhuravin IA. Role of Prenatal Hypoxia in Brain Development, Cognitive Functions, and Neurodegeneration. Front Neurosci 2018; 12:825. [PMID: 30510498 PMCID: PMC6254649 DOI: 10.3389/fnins.2018.00825] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
Abstract
This review focuses on the role of prenatal hypoxia in the development of brain functions in the postnatal period and subsequent increased risk of neurodegenerative disorders in later life. Accumulating evidence suggests that prenatal hypoxia in critical periods of brain formation results in significant changes in development of cognitive functions at various stages of postnatal life which correlate with morphological changes in brain structures involved in learning and memory. Prenatal hypoxia also leads to a decrease in brain adaptive potential and plasticity due to the disturbance in the process of formation of new contacts between cells and propagation of neuronal stimuli, especially in the cortex and hippocampus. On the other hand, prenatal hypoxia has a significant impact on expression and processing of a variety of genes involved in normal brain function and their epigenetic regulation. This results in changes in the patterns of mRNA and protein expression and their post-translational modifications, including protein misfolding and clearance. Among proteins affected by prenatal hypoxia are a key enzyme of the cholinergic system-acetylcholinesterase, and the amyloid precursor protein (APP), both of which have important roles in brain function. Disruption of their expression and metabolism caused by prenatal hypoxia can also result, apart from early cognitive dysfunctions, in development of neurodegeneration in later life. Another group of enzymes affected by prenatal hypoxia are peptidases involved in catabolism of neuropeptides, including amyloid-β peptide (Aβ). The decrease in the activity of neprilysin and other amyloid-degrading enzymes observed after prenatal hypoxia could result over the years in an Aβ clearance deficit and accumulation of its toxic species which cause neuronal cell death and development of neurodegeneration. Applying various approaches to restore expression of neuronal genes disrupted by prenatal hypoxia during postnatal development opens an avenue for therapeutic compensation of cognitive dysfunctions and prevention of Aβ accumulation in the aging brain and the model of prenatal hypoxia in rodents can be used as a reliable tool for assessment of their efficacy.
Collapse
Affiliation(s)
- Natalia N. Nalivaeva
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Anthony J. Turner
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Igor A. Zhuravin
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Research Centre, Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| |
Collapse
|
28
|
Arthuis CJ, Mendes V, Même S, Même W, Rousselot C, Winer N, Novell A, Perrotin F. Comparative determination of placental perfusion by magnetic resonance imaging and contrast-enhanced ultrasound in a murine model of intrauterine growth restriction. Placenta 2018; 69:74-81. [PMID: 30213488 DOI: 10.1016/j.placenta.2018.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Exploration of placental perfusion is essential in screening for dysfunctions impairing fetal growth. The objective of this study was to assess the potential value of contrast-enhanced ultrasonography (CEUS) and magnetic resonance imaging (MRI) for examining placental perfusion in a murine model of intrauterine growth restriction (IUGR). We also studied the reproducibility of perfusion quantification by CEUS. METHODS Pregnant Sprague Dawley rat models of IUGR were studied during the third trimester. Unilateral uterine artery ligation induced IUGR. Placental perfusion was evaluated by CEUS and perfusion MRI with gadolinium for both ligated and control fetoplacental units. The kinetic parameters of the two imaging modalities were then compared. RESULTS The analysis included 20 rats. The study showed good reproducibility of the CEUS indicators. The CEUS perfusion index approximated the blood flow rate and was halved in the ligation group (27.9 [u.a] (±14.8)) versus 61 [u.a] (±22.3) on the control side (P = 0.0003). MRI with gadolinium injection showed a clear reduction in the blood flow rate to 51.2 mL/min/100 mL (IQR 34.9-54.9) in the ligated horn, compared with 90.9 mL/min/100 mL (IQR 85.1-95.7) for the control side (P < 0.0001). The semiquantitative indicators obtained from the kinetic curves for both CEUS and MRI showed similar trends. Nonetheless, values were more widely dispersed with CEUS than MRI. DISCUSSION The similar results for the quantification of placental perfusion by MRI and CEUS reinforce the likelihood that CEUS can be used to identify IUGR in a murine model induced by uterine vessel ligation.
Collapse
Affiliation(s)
- C-J Arthuis
- UMR Inserm U930, University of Tours, 10 bd ter Tonnellé, 37032, Tours Cedex 1, France; Department of Obstetrics and Gynecology, University Hospital Regional Center Tours, 10bd Tonnellé, 37044, Tours, France; Department of Obstetrics and Gynecology, University Hospital of Nantes, CIC Mère Enfant Nantes, UMR 1280, INRA Phan Physiologie des Adaptations Nutritionnelles, France.
| | - V Mendes
- UMR Inserm U930, University of Tours, 10 bd ter Tonnellé, 37032, Tours Cedex 1, France; Department of Obstetrics and Gynecology, University Hospital Regional Center Tours, 10bd Tonnellé, 37044, Tours, France
| | - S Même
- CNRS, Center of Molecular Biophysics, Rue Charles Sadron, 45071, Orléans Cedex, France
| | - W Même
- CNRS, Center of Molecular Biophysics, Rue Charles Sadron, 45071, Orléans Cedex, France
| | - C Rousselot
- Department of Anatomy, Cytology and Pathology, University Hospital Regional Center Tours, 10 bd Tonnellé, 37044, Tours, France
| | - N Winer
- Department of Obstetrics and Gynecology, University Hospital of Nantes, CIC Mère Enfant Nantes, UMR 1280, INRA Phan Physiologie des Adaptations Nutritionnelles, France
| | - A Novell
- UMR Inserm U930, University of Tours, 10 bd ter Tonnellé, 37032, Tours Cedex 1, France
| | - F Perrotin
- UMR Inserm U930, University of Tours, 10 bd ter Tonnellé, 37032, Tours Cedex 1, France; Department of Obstetrics and Gynecology, University Hospital Regional Center Tours, 10bd Tonnellé, 37044, Tours, France
| |
Collapse
|
29
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
30
|
Bukiya AN, Dopico AM. Fetal Cerebral Circulation as Target of Maternal Alcohol Consumption. Alcohol Clin Exp Res 2018; 42:1006-1018. [PMID: 29672868 PMCID: PMC5984173 DOI: 10.1111/acer.13755] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/08/2018] [Indexed: 12/29/2022]
Abstract
Alcohol (ethanol [EtOH]) is one of the most widely used psychoactive substances worldwide. Alcohol consumption during pregnancy may result in a wide range of morphological and neurodevelopmental abnormalities termed fetal alcohol spectrum disorders (FASD), with the most severe cases diagnosed as fetal alcohol syndrome (FAS). FAS and FASD are not readily curable and currently represent the leading preventable causes of birth defect and neurodevelopmental delay in the United States. The etiology of FAS/FASD remains poorly understood. This review focuses on the effects of prenatal alcohol exposure (PAE) on fetal cerebrovascular function. A brief introduction to the epidemiology of alcohol consumption and the developmental characteristics of fetal cerebral circulation is followed by several sections that discuss current evidence documenting alcohol-driven alterations of fetal cerebral blood flow, artery function, and microvessel networks. The material offers mechanistic insights at the vascular level itself into the pathophysiology of PAE.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Alex M Dopico
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
31
|
Peyvandi S, Latal B, Miller SP, McQuillen PS. The neonatal brain in critical congenital heart disease: Insights and future directions. Neuroimage 2018; 185:776-782. [PMID: 29787864 DOI: 10.1016/j.neuroimage.2018.05.045] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/18/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental outcomes are impaired in survivors of critical congenital heart disease (CHD) in several developmental domains including motor, cognitive and sensory outcomes. These deficits can extend into the adolescent and early adulthood years. The cause of these neurodevelopmental impairments is multi-factorial and includes patient specific risk factors, cardiac anatomy and physiology as well as brain changes seen on MRI. Advances in imaging techniques have identified delayed brain development in the neonate with critical CHD as well as acquired brain injury. These abnormalities are seen even before corrective neonatal cardiac surgery. This review focuses on describing brain changes seen on MRI in neonates with CHD, risk factors for these changes and the association with neurodevelopmental outcome. There is an emerging focus on the impact of cardiovascular physiology on brain health and the complex heart-brain interplay that influences ultimate neurodevelopmental outcome in these patients.
Collapse
Affiliation(s)
- Shabnam Peyvandi
- Division of Pediatric Cardiology, University of California San Francisco Benioff Children's Hospital, USA.
| | - Beatrice Latal
- University Children's Hospital Zurich, Child Development Center and Children's Research Center, Zurich, Switzerland
| | - Steven P Miller
- University of Toronto, Hospital for Sick Children, Department of Neurology, Canada
| | - Patrick S McQuillen
- Division of Critical Care, University of California San Francisco Benioff Children's Hospital, USA
| |
Collapse
|
32
|
Duan AQ, Darby JRT, Soo JY, Lock MC, Zhu MY, Flynn LV, Perumal SR, Macgowan CK, Selvanayagam JB, Morrison JL, Seed M. Feasibility of phase-contrast cine magnetic resonance imaging for measuring blood flow in the sheep fetus. Am J Physiol Regul Integr Comp Physiol 2017; 317:R780-R792. [PMID: 29351431 DOI: 10.1152/ajpregu.00273.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phase-contrast cine MRI (PC-MRI) is the gold-standard noninvasive technique for measuring vessel blood flow and has previously been applied in the human fetal circulation. We aimed to assess the feasibility of using PC-MRI to define the distribution of the fetal circulation in sheep. Fetuses were catheterized at 119-120 days of gestation (term, 150 days) and underwent MRI at ∼123 days of gestation under isoflurane anesthesia, ventilated at a FIO2 of 1.0. PC-MRI was performed using a fetal arterial blood pressure catheter signal for cardiac triggering. Blood flows were measured in the major fetal vessels, including the main pulmonary artery, ascending and descending aorta, superior vena cava, ductus arteriosus, left and right pulmonary arteries, umbilical vein, ductus venosus, and common carotid artery and were indexed to estimated fetal weight. The combined ventricular output, pulmonary blood flow, and flow across the foramen ovale were calculated from vessel flows. Intraobserver and interobserver agreement and reproducibility was assessed. Blood flow measurements were successfully obtained in 61 out of 74 vessels (82.4%) interrogated in 9 fetuses. There was good intraobserver [R = 0.998, P < 0.0001; intraclass correlation (ICC) = 0.997] and interobserver agreement (R = 0.996, P < 0.0001; ICC = 0.996). Repeated MRI measurements showed good reproducibility (R = 0.989, P = 0.0002; ICC = 0.990). We conclude that PC-MRI using fetal catheters for gating triggers is feasible in the major vessels of late gestation fetal sheep. This approach may provide a useful new tool for assessing the circulatory characteristics of fetal sheep models of human disease, including fetal growth restriction and congenital heart disease.
Collapse
Affiliation(s)
- An Qi Duan
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Meng Yuan Zhu
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lucy V Flynn
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging, and Research Laboratories, South Australian Health and Medical Research Institute, Gilles Plains, Adelaide, Australia
| | - Christopher K Macgowan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Division of Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Mike Seed
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Rahman A, Cahill LS, Zhou YQ, Hoggarth J, Rennie MY, Seed M, Macgowan CK, Kingdom JC, Adamson SL, Sled JG. A mouse model of antepartum stillbirth. Am J Obstet Gynecol 2017; 217:443.e1-443.e11. [PMID: 28619691 DOI: 10.1016/j.ajog.2017.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Many stillbirths of normally formed fetuses in the third trimester could be prevented via delivery if reliable means to anticipate this outcome existed. However, because the etiology of these stillbirths is often unexplained and although the underlying mechanism is presumed to be hypoxia from placental insufficiency, the placentas often appear normal on histopathological examination. Gestational age is a risk factor for antepartum stillbirth, with a rapid rise in stillbirth rates after 40 weeks' gestation. We speculate that a common mechanism may explain antepartum stillbirth in both the late-term and postterm periods. Mice also show increasing rates of stillbirth when pregnancy is artificially prolonged. The model therefore affords an opportunity to characterize events that precede stillbirth. OBJECTIVE The objective of the study was to prolong gestation in mice and monitor fetal and placental growth and cardiovascular changes. STUDY DESIGN From embryonic day 15.5 to embryonic day 18.5, pregnant CD-1 mice received daily progesterone injections to prolong pregnancy by an additional 24 hour period (to embryonic day 19.5). To characterize fetal and placental development, experimental assays were performed throughout late gestation (embryonic day 15.5 to embryonic day 19.5), including postnatal day 1 pups as controls. In addition to collecting fetal and placental weights, we monitored fetal blood flow using Doppler ultrasound and examined the fetoplacental arterial vascular geometry using microcomputed tomography. Evidence of hypoxic organ injury in the fetus was assessed using magnetic resonance imaging and pimonidazole immunohistochemistry. RESULTS At embryonic day 19.5, mean fetal weights were reduced by 14% compared with control postnatal day 1 pups. Ultrasound biomicroscopy showed that fetal heart rate and umbilical artery flow continued to increase at embryonic day 19.5. Despite this, the embryonic day 19.5 fetuses had significant pimonidazole staining in both brain and liver tissue, indicating fetal hypoxia. Placental weights at embryonic day 19.5 were 21% lower than at term (embryonic day 18.5). Microcomputed tomography showed no change in quantitative morphology of the fetoplacental arterial vasculature between embryonic day 18.5 and embryonic day 19.5. CONCLUSION Prolongation of pregnancy renders the murine fetus vulnerable to significant growth restriction and hypoxia because of differential loss of placental mass rather than any compromise in fetoplacental blood flow. Our data are consistent with a hypoxic mechanism of antepartum fetal death in human term and postterm pregnancy and validates the inability of umbilical artery Doppler to safely monitor such fetuses. New tests of placental function are needed to identify the late-term fetus at risk of hypoxia to intervene by delivery to avoid antepartum stillbirth.
Collapse
|
34
|
Cahill LS, Rennie MY, Hoggarth J, Yu LX, Rahman A, Kingdom JC, Seed M, Macgowan CK, Sled JG. Feto- and utero-placental vascular adaptations to chronic maternal hypoxia in the mouse. J Physiol 2017; 596:3285-3297. [PMID: 28861917 DOI: 10.1113/jp274845] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/25/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Chronic fetal hypoxia is one of the most common complications of pregnancy and is known to cause fetal growth restriction. The structural adaptations of the placental vasculature responsible for growth restriction with chronic hypoxia are not well elucidated. Using a mouse model of chronic maternal hypoxia in combination with micro-computed tomography and scanning electron microscopy, we found several placental adaptations that were beneficial to fetal growth including capillary expansion, thinning of the interhaemal membrane and increased radial artery diameters, resulting in a large drop in total utero-placental vascular resistance. One of the mechanisms used to achieve the rapid increase in capillaries was intussusceptive angiogenesis, a strategy used in human placental development to form terminal gas-exchanging villi. These results contribute to our understanding of the structural mechanisms of the placental vasculature responsible for fetal growth restriction and provide a baseline for understanding adaptive physiological responses of the placenta to chronic hypoxia. ABSTRACT The fetus and the placenta in eutherian mammals have a unique set of compensatory mechanisms to respond to several pregnancy complications including chronic maternal hypoxia. This study examined the structural adaptations of the feto- and utero-placental vasculature in an experimental mouse model of chronic maternal hypoxia (11% O2 from embryonic day (E) 14.5-E17.5). While placental weights were unaffected by exposure to chronic hypoxia, using micro-computed tomography, we found a 44% decrease in the absolute feto-placental arterial vascular volume and a 30% decrease in total vessel segments in the chronic hypoxia group compared to control group. Scanning electron microscopy imaging showed significant expansion of the capillary network; consequently, the interhaemal membrane was 11% thinner to facilitate maternal-fetal exchange in the chronic hypoxia placentas. One of the mechanisms for the rapid capillary expansion was intussusceptive angiogenesis. Analysis of the utero-placental arterial tree showed significant increases (24%) in the diameter of the radial arteries, resulting in a decrease in the total utero-placental resistance by 2.6-fold in the mice exposed to chronic maternal hypoxia. Together these adaptations acted to preserve placental weight whereas fetal weight was decreased.
Collapse
Affiliation(s)
- Lindsay S Cahill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Monique Y Rennie
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Johnathan Hoggarth
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa X Yu
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anum Rahman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John C Kingdom
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mike Seed
- Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Chakraborty A, de Wit NM, van der Flier WM, de Vries HE. The blood brain barrier in Alzheimer's disease. Vascul Pharmacol 2016; 89:12-18. [PMID: 27894893 DOI: 10.1016/j.vph.2016.11.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting millions of people worldwide. One of the prominent causative factors of AD pathogenesis is cerebral vascular dysfunction, which results in diminished cerebral perfusion. Moreover, due to the loss of the protective function of the blood-brain barrier (BBB), impaired clearance of excess neurotoxic amyloid beta (Aβ) occurs, causing vascular perturbation and diminished cognitive functioning. The relationship between the prevalence of AD and vascular risk factors is complex and not fully understood. In this review we illustrate the vascular risk factors, their effects on BBB function and their contributions to the onset of AD. Additionally, we discuss the underlying factors that may lead to altered neurovascular function and/or cerebral hypoperfusion in AD.
Collapse
Affiliation(s)
- A Chakraborty
- Blood-brain barrier research group, Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007, MB Amsterdam, The Netherlands.
| | - N M de Wit
- Blood-brain barrier research group, Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007, MB Amsterdam, The Netherlands
| | - W M van der Flier
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands;; Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - H E de Vries
- Blood-brain barrier research group, Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, P.O. Box 7057, 1007, MB Amsterdam, The Netherlands
| |
Collapse
|
36
|
Hendaus MA, Jomha FA, Alhammadi AH. Melatonin in the management of perinatal hypoxic-ischemic encephalopathy: light at the end of the tunnel? Neuropsychiatr Dis Treat 2016; 12:2473-2479. [PMID: 27729791 PMCID: PMC5045913 DOI: 10.2147/ndt.s115533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) affects one to three per 1,000 live full-term births and can lead to severe and permanent neuropsychological sequelae, such as cerebral palsy, epilepsy, mental retardation, and visual motor or visual perceptive dysfunction. Melatonin has begun to be contemplated as a good choice in order to diminish the neurological sequelae from hypoxic-ischemic brain injury. Melatonin emerges as a very interesting medication, because of its capacity to cross all physiological barriers extending to subcellular compartments and its safety and effectiveness. The purpose of this commentary is to detail the evidence on the use of melatonin as a neuroprotection agent. The pharmacologic aspects of the drug as well as its potential neuroprotective characteristics in human and animal studies are described in this study. Melatonin seems to be safe and beneficial in protecting neonatal brains from perinatal HIE. Larger randomized controlled trials in humans are required, to implement a long-awaited feasible treatment in order to avoid the dreaded sequelae of HIE.
Collapse
Affiliation(s)
- Mohamed A Hendaus
- Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation
- Department of Clinical Pediatrics, Weill-Cornell Medical College, Doha, Qatar
| | - Fatima A Jomha
- School of Pharmacy, Lebanese International University, Khiara, Lebanon
| | - Ahmed H Alhammadi
- Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation
- Department of Clinical Pediatrics, Weill-Cornell Medical College, Doha, Qatar
| |
Collapse
|
37
|
The hemodynamics of late-onset intrauterine growth restriction by MRI. Am J Obstet Gynecol 2016; 214:367.e1-367.e17. [PMID: 26475425 DOI: 10.1016/j.ajog.2015.10.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/24/2015] [Accepted: 10/06/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Late-onset intrauterine growth restriction (IUGR) results from a failure of the placenta to supply adequate nutrients and oxygen to the rapidly growing late-gestation fetus. Limitations in current monitoring methods present the need for additional techniques for more accurate diagnosis of IUGR in utero. New magnetic resonance imaging (MRI) technology now provides a noninvasive technique for fetal hemodynamic assessment, which could provide additional information over conventional Doppler methods. OBJECTIVE The objective of the study was to use new MRI techniques to measure hemodynamic parameters and brain growth in late-onset IUGR fetuses. STUDY DESIGN This was a prospective observational case control study to compare the flow and T2 of blood in the major fetal vessels and brain imaging findings using MRI. Indexed fetal oxygen delivery and consumption were calculated. Middle cerebral artery and umbilical artery pulsatility indexes and cerebroplacental ratio were acquired using ultrasound. A score of ≥ 2 of the 4 following parameters defined IUGR: (1) birthweight the third centile or less or 20% or greater drop in the centile in estimated fetal weight; (2) lowest cerebroplacental ratio after 30 weeks less than the fifth centile; (3) ponderal index < 2.2; and (4) placental histology meets predefined criteria for placental underperfusion. Measurements were compared between the 2 groups (Student t test) and correlations between parameters were analyzed (Pearson's correlation). MRI measurements were compared with Doppler parameters for identifying IUGR defined by postnatal criteria (birthweight, placental histology, ponderal index) using receiver-operating characteristic curves. RESULTS We studied 14 IUGR and 26 non-IUGR fetuses at 35 weeks' gestation. IUGR fetuses had lower umbilical vein (P = .004) and pulmonary blood flow (P = .01) and higher superior vena caval flow (P < .0001) by MRI. IUGR fetuses had asymmetric growth but smaller brains than normal fetuses (P < .0001). Newborns with IUGR also had smaller brains with otherwise essentially normal findings on MRI. Vessel T2s, oxygen delivery, oxygen consumption, middle cerebral artery pulsatility index, and cerebroplacental ratio were all significantly lower in IUGR fetuses, whereas there was no significant difference in umbilical artery pulsatility index. IUGR score correlated positively with superior vena caval flow and inversely with oxygen delivery, oxygen consumption, umbilical vein T2, and cerebroplacental ratio. Receiver-operating characteristic curves revealed equivalent performance of MRI and Doppler techniques in identifying IUGR that was defined based on postnatal parameters with superior vena caval flow area under the curve of 0.94 (95% confidence interval, 0.87-1.00) vs a cerebroplacental ratio area under the curve of 0.80 (95% confidence interval, 0.64-0.97). CONCLUSION MRI revealed the expected circulatory redistribution in response to hypoxia in IUGR fetuses. The reduced oxygen delivery in IUGR fetuses indicated impaired placental oxygen transport, whereas reduced oxygen consumption presumably reflected metabolic adaptation to diminished substrate delivery, resulting in slower fetal growth. Despite brain sparing, placental insufficiency limits fetal brain growth. Superior vena caval flow and umbilical vein T2 by MRI may be useful new markers of late-onset IUGR.
Collapse
|
38
|
Cohen E, Baerts W, Alderliesten T, Derks J, Lemmers P, van Bel F. Growth restriction and gender influence cerebral oxygenation in preterm neonates. Arch Dis Child Fetal Neonatal Ed 2016; 101:F156-61. [PMID: 26311070 DOI: 10.1136/archdischild-2015-308843] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/04/2015] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the effect of fetal growth restriction and gender on cerebral oxygenation in preterm neonates during the first 3 days of life. DESIGN Case-control study. SETTING Neonatal Intensive Care Unit of the Wilhelmina Children's Hospital, The Netherlands. PATIENTS 68 (41 males) small for gestational age (SGA) (birth weight <10th percentile) and 136 (82 males) appropriate for gestational age (AGA) (birth weight 20th-80th percentile) neonates, matched for gender, gestational age, ventilatory and blood pressure support. METHODS Regional cerebral oxygen saturation (rScO2) and cerebral fractional tissue oxygen extraction (cFTOE) as measured by near-infrared spectroscopy throughout the first 72 h of life were compared between SGA and AGA neonates. The effect of gender was also explored within these comparisons. RESULTS SGA neonates demonstrated higher rScO2 (71% SEM 0.2 vs 68% SEM 0.2) and lower cFTOE (0.25 SEM 0.002 vs 0.29 SEM 0.002) than AGA neonates. There was an independent effect of gender on rScO2 and cFTOE, resulting in the finding that SGA males displayed highest rScO2 and lowest cFTOE (73% SEM 0.3 respectively 0.24 SEM 0.003). AGA males and SGA females showed comparable rScO2 (69% SEM 0.2 vs 69% SEM 0.4) and cFTOE (0.28 SEM 0.002 vs 0.28 SEM 0.004). AGA females showed lowest rScO2 and highest cFTOE (66% SEM 0.2 respectively 0.30 SEM 0.002). CONCLUSIONS Growth restriction and gender influence cerebral oxygenation and oxygen extraction in preterm neonates throughout the first 3 days of life.
Collapse
Affiliation(s)
- Emily Cohen
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands The Ritchie Centre, Hudson Institute of Medical Research and Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Willem Baerts
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Thomas Alderliesten
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jan Derks
- Department of Obstetrics, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Petra Lemmers
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Frank van Bel
- Department of Neonatology, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
39
|
Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol 2016; 594:807-23. [PMID: 26607046 PMCID: PMC4753264 DOI: 10.1113/jp271402] [Citation(s) in RCA: 360] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
Fetal growth restriction (FGR) is a significant complication of pregnancy describing a fetus that does not grow to full potential due to pathological compromise. FGR affects 3-9% of pregnancies in high-income countries, and is a leading cause of perinatal mortality and morbidity. Placental insufficiency is the principal cause of FGR, resulting in chronic fetal hypoxia. This hypoxia induces a fetal adaptive response of cardiac output redistribution to favour vital organs, including the brain, and is in consequence called brain sparing. Despite this, it is now apparent that brain sparing does not ensure normal brain development in growth-restricted fetuses. In this review we have brought together available evidence from human and experimental animal studies to describe the complex changes in brain structure and function that occur as a consequence of FGR. In both humans and animals, neurodevelopmental outcomes are influenced by the timing of the onset of FGR, the severity of FGR, and gestational age at delivery. FGR is broadly associated with reduced total brain volume and altered cortical volume and structure, decreased total number of cells and myelination deficits. Brain connectivity is also impaired, evidenced by neuronal migration deficits, reduced dendritic processes, and less efficient networks with decreased long-range connections. Subsequent to these structural alterations, short- and long-term functional consequences have been described in school children who had FGR, most commonly including problems in motor skills, cognition, memory and neuropsychological dysfunctions.
Collapse
Affiliation(s)
- Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, and The Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Petra S Huppi
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Switzerland
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
40
|
Hassell KJ, Ezzati M, Alonso-Alconada D, Hausenloy DJ, Robertson NJ. New horizons for newborn brain protection: enhancing endogenous neuroprotection. Arch Dis Child Fetal Neonatal Ed 2015; 100:F541-52. [PMID: 26063194 PMCID: PMC4680177 DOI: 10.1136/archdischild-2014-306284] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/28/2015] [Indexed: 01/09/2023]
Abstract
Intrapartum-related events are the third leading cause of childhood mortality worldwide and result in one million neurodisabled survivors each year. Infants exposed to a perinatal insult typically present with neonatal encephalopathy (NE). The contribution of pure hypoxia-ischaemia (HI) to NE has been debated; over the last decade, the sensitising effect of inflammation in the aetiology of NE and neurodisability is recognised. Therapeutic hypothermia is standard care for NE in high-income countries; however, its benefit in encephalopathic babies with sepsis or in those born following chorioamnionitis is unclear. It is now recognised that the phases of brain injury extend into a tertiary phase, which lasts for weeks to years after the initial insult and opens up new possibilities for therapy.There has been a recent focus on understanding endogenous neuroprotection and how to boost it or to supplement its effectors therapeutically once damage to the brain has occurred as in NE. In this review, we focus on strategies that can augment the body's own endogenous neuroprotection. We discuss in particular remote ischaemic postconditioning whereby endogenous brain tolerance can be activated through hypoxia/reperfusion stimuli started immediately after the index hypoxic-ischaemic insult. Therapeutic hypothermia, melatonin, erythropoietin and cannabinoids are examples of ways we can supplement the endogenous response to HI to obtain its full neuroprotective potential. Achieving the correct balance of interventions at the correct time in relation to the nature and stage of injury will be a significant challenge in the next decade.
Collapse
Affiliation(s)
- K Jane Hassell
- Institute for Women's Health, University College London, London, UK
| | - Mojgan Ezzati
- Institute for Women's Health, University College London, London, UK
| | | | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, London, UK
| | | |
Collapse
|
41
|
Huseynova SA, Panakhova NF, Orujova PA, Hasanov SS, Guliyev MR, Yagubova VI. Altered endothelial nitric oxide synthesis in preterm and small for gestational age infants. Pediatr Int 2015; 57:269-75. [PMID: 25294660 DOI: 10.1111/ped.12520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/14/2014] [Accepted: 09/17/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND Preterm infants are often exposed to neuronal and endothelial damage. The aim of the present study was to investigate the correlation between endothelial dysfunction and neuronal injury in preterm infants. METHODS We compared serum nitric oxide (NO), endothelial nitric oxide synthase (eNOS) and neuron-specific enolase (NSE) concentrations in 33 moderate preterm (MP) and 47 late preterm (LP) infants using standard ELISA. Each group was classified as appropriate for gestational age (AGA) or small for gestational age (SGA). RESULTS Compared to the AGA infants, the SGA infants had higher NO on day 1 (MP: mean, 72.3 ng/mL, range, 50.9-99.5 ng/mL vs 52.2 ng/mL, range, 28.1-68.2 ng/mL, P < 0.05; LP: mean, 58.4 ng/mL, range, 25.7-66.4 ng/mL vs 43.7 ng/mL, range, 21.2-60.6 ng/mL, P < 0.05), lower eNOS concentration on day 3 in the MP group (mean, 5.8 IU/mL, range, 1.2-7.9 IU/mL vs 8.9 IU/mL, range, 4.2-14.6 IU/mL, P < 0.05), and on day 1 in the LP group (mean, 5.5 IU/mL, range, 1.5-8.1 IU/mL vs 7.7 IU/mL, range, 4.4-13.8 IU/mL, P < 0.05). The NO/eNOS ratio was higher in SGA infants compared with the AGA subgroups (MP: mean, 13.8, range, 9.9-20.2 vs mean, 9.9, range, 4.7-13.1, P < 0.05; LP: mean, 12.2, range, 9.2-19.9 vs mean, 9.9, range, 5.4-14.4, P < 0.05). AGA infants had lower NSE concentration compared with the SGA infants on day 1 in the LP group (mean, 27.4 ng/mL, range, 20-43 ng/mL vs mean, 40.89 ng/mL, range, 34-51 ng/mL, P < 0.05). A positive correlation was found between NO/eNOS ratio and NSE concentration (r = 0.75, P < 0.05 and r = 0.64, P < 0.05 on days 1 and 3, respectively). CONCLUSION High NO concentration in the context of low eNOS activity suggests a possible role of NO in the development of neuronal injury in SGA infants.
Collapse
|
42
|
Sun L, Macgowan CK, Sled JG, Yoo SJ, Manlhiot C, Porayette P, Grosse-Wortmann L, Jaeggi E, McCrindle BW, Kingdom J, Hickey E, Miller S, Seed M. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 2015; 131:1313-23. [PMID: 25762062 DOI: 10.1161/circulationaha.114.013051] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/13/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Fetal hypoxia has been implicated in the abnormal brain development seen in newborns with congenital heart disease (CHD). New magnetic resonance imaging technology now offers the potential to investigate the relationship between fetal hemodynamics and brain dysmaturation. METHODS AND RESULTS We measured fetal brain size, oxygen saturation, and blood flow in the major vessels of the fetal circulation in 30 late-gestation fetuses with CHD and 30 normal controls using phase-contrast magnetic resonance imaging and T2 mapping. Fetal hemodynamic parameters were calculated from a combination of magnetic resonance imaging flow and oximetry data and fetal hemoglobin concentrations estimated from population averages. In fetuses with CHD, reductions in umbilical vein oxygen content (P<0.001) and failure of the normal streaming of oxygenated blood from the placenta to the ascending aorta were associated with a mean reduction in ascending aortic saturation of 10% (P<0.001), whereas cerebral blood flow and cerebral oxygen extraction were no different from those in controls. This accounted for the mean 15% reduction in cerebral oxygen delivery (P=0.08) and 32% reduction cerebral Vo2 in CHD fetuses (P<0.001), which were associated with a 13% reduction in fetal brain volume (P<0.001). Fetal brain size correlated with ascending aortic oxygen saturation and cerebral Vo2 (r=0.37, P=0.004). CONCLUSIONS This study supports a direct link between reduced cerebral oxygenation and impaired brain growth in fetuses with CHD and raises the possibility that in utero brain development could be improved with maternal oxygen therapy.
Collapse
Affiliation(s)
- Liqun Sun
- From Department of Ultrasound, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (L.S.); Division of Pediatric Cardiology, Department of Pediatrics (L.S., S.-J.Y., C.M., P.P., L.G.-W., E.J., B.W.M., M.S.), Department of Physiology and Experimental Medicine (C.K.M., J.G.S.), Department of Diagnostic Imaging (S.-J.Y., L.G.-W., M.S.), Department of Cardiovascular Surgery (E.H.), and Department of Pediatric Neurology (S.M.), University of Toronto and Hospital for Sick Children, Toronto, ON, Canada; and Department of Obstetrics and Gynecology, University of Toronto and Mount Sinai Hospital, Toronto, ON, Canada (J.K.)
| | - Christopher K Macgowan
- From Department of Ultrasound, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (L.S.); Division of Pediatric Cardiology, Department of Pediatrics (L.S., S.-J.Y., C.M., P.P., L.G.-W., E.J., B.W.M., M.S.), Department of Physiology and Experimental Medicine (C.K.M., J.G.S.), Department of Diagnostic Imaging (S.-J.Y., L.G.-W., M.S.), Department of Cardiovascular Surgery (E.H.), and Department of Pediatric Neurology (S.M.), University of Toronto and Hospital for Sick Children, Toronto, ON, Canada; and Department of Obstetrics and Gynecology, University of Toronto and Mount Sinai Hospital, Toronto, ON, Canada (J.K.)
| | - John G Sled
- From Department of Ultrasound, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (L.S.); Division of Pediatric Cardiology, Department of Pediatrics (L.S., S.-J.Y., C.M., P.P., L.G.-W., E.J., B.W.M., M.S.), Department of Physiology and Experimental Medicine (C.K.M., J.G.S.), Department of Diagnostic Imaging (S.-J.Y., L.G.-W., M.S.), Department of Cardiovascular Surgery (E.H.), and Department of Pediatric Neurology (S.M.), University of Toronto and Hospital for Sick Children, Toronto, ON, Canada; and Department of Obstetrics and Gynecology, University of Toronto and Mount Sinai Hospital, Toronto, ON, Canada (J.K.)
| | - Shi-Joon Yoo
- From Department of Ultrasound, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (L.S.); Division of Pediatric Cardiology, Department of Pediatrics (L.S., S.-J.Y., C.M., P.P., L.G.-W., E.J., B.W.M., M.S.), Department of Physiology and Experimental Medicine (C.K.M., J.G.S.), Department of Diagnostic Imaging (S.-J.Y., L.G.-W., M.S.), Department of Cardiovascular Surgery (E.H.), and Department of Pediatric Neurology (S.M.), University of Toronto and Hospital for Sick Children, Toronto, ON, Canada; and Department of Obstetrics and Gynecology, University of Toronto and Mount Sinai Hospital, Toronto, ON, Canada (J.K.)
| | - Cedric Manlhiot
- From Department of Ultrasound, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (L.S.); Division of Pediatric Cardiology, Department of Pediatrics (L.S., S.-J.Y., C.M., P.P., L.G.-W., E.J., B.W.M., M.S.), Department of Physiology and Experimental Medicine (C.K.M., J.G.S.), Department of Diagnostic Imaging (S.-J.Y., L.G.-W., M.S.), Department of Cardiovascular Surgery (E.H.), and Department of Pediatric Neurology (S.M.), University of Toronto and Hospital for Sick Children, Toronto, ON, Canada; and Department of Obstetrics and Gynecology, University of Toronto and Mount Sinai Hospital, Toronto, ON, Canada (J.K.)
| | - Prashob Porayette
- From Department of Ultrasound, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (L.S.); Division of Pediatric Cardiology, Department of Pediatrics (L.S., S.-J.Y., C.M., P.P., L.G.-W., E.J., B.W.M., M.S.), Department of Physiology and Experimental Medicine (C.K.M., J.G.S.), Department of Diagnostic Imaging (S.-J.Y., L.G.-W., M.S.), Department of Cardiovascular Surgery (E.H.), and Department of Pediatric Neurology (S.M.), University of Toronto and Hospital for Sick Children, Toronto, ON, Canada; and Department of Obstetrics and Gynecology, University of Toronto and Mount Sinai Hospital, Toronto, ON, Canada (J.K.)
| | - Lars Grosse-Wortmann
- From Department of Ultrasound, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (L.S.); Division of Pediatric Cardiology, Department of Pediatrics (L.S., S.-J.Y., C.M., P.P., L.G.-W., E.J., B.W.M., M.S.), Department of Physiology and Experimental Medicine (C.K.M., J.G.S.), Department of Diagnostic Imaging (S.-J.Y., L.G.-W., M.S.), Department of Cardiovascular Surgery (E.H.), and Department of Pediatric Neurology (S.M.), University of Toronto and Hospital for Sick Children, Toronto, ON, Canada; and Department of Obstetrics and Gynecology, University of Toronto and Mount Sinai Hospital, Toronto, ON, Canada (J.K.)
| | - Edgar Jaeggi
- From Department of Ultrasound, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (L.S.); Division of Pediatric Cardiology, Department of Pediatrics (L.S., S.-J.Y., C.M., P.P., L.G.-W., E.J., B.W.M., M.S.), Department of Physiology and Experimental Medicine (C.K.M., J.G.S.), Department of Diagnostic Imaging (S.-J.Y., L.G.-W., M.S.), Department of Cardiovascular Surgery (E.H.), and Department of Pediatric Neurology (S.M.), University of Toronto and Hospital for Sick Children, Toronto, ON, Canada; and Department of Obstetrics and Gynecology, University of Toronto and Mount Sinai Hospital, Toronto, ON, Canada (J.K.)
| | - Brian W McCrindle
- From Department of Ultrasound, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (L.S.); Division of Pediatric Cardiology, Department of Pediatrics (L.S., S.-J.Y., C.M., P.P., L.G.-W., E.J., B.W.M., M.S.), Department of Physiology and Experimental Medicine (C.K.M., J.G.S.), Department of Diagnostic Imaging (S.-J.Y., L.G.-W., M.S.), Department of Cardiovascular Surgery (E.H.), and Department of Pediatric Neurology (S.M.), University of Toronto and Hospital for Sick Children, Toronto, ON, Canada; and Department of Obstetrics and Gynecology, University of Toronto and Mount Sinai Hospital, Toronto, ON, Canada (J.K.)
| | - John Kingdom
- From Department of Ultrasound, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (L.S.); Division of Pediatric Cardiology, Department of Pediatrics (L.S., S.-J.Y., C.M., P.P., L.G.-W., E.J., B.W.M., M.S.), Department of Physiology and Experimental Medicine (C.K.M., J.G.S.), Department of Diagnostic Imaging (S.-J.Y., L.G.-W., M.S.), Department of Cardiovascular Surgery (E.H.), and Department of Pediatric Neurology (S.M.), University of Toronto and Hospital for Sick Children, Toronto, ON, Canada; and Department of Obstetrics and Gynecology, University of Toronto and Mount Sinai Hospital, Toronto, ON, Canada (J.K.)
| | - Edward Hickey
- From Department of Ultrasound, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (L.S.); Division of Pediatric Cardiology, Department of Pediatrics (L.S., S.-J.Y., C.M., P.P., L.G.-W., E.J., B.W.M., M.S.), Department of Physiology and Experimental Medicine (C.K.M., J.G.S.), Department of Diagnostic Imaging (S.-J.Y., L.G.-W., M.S.), Department of Cardiovascular Surgery (E.H.), and Department of Pediatric Neurology (S.M.), University of Toronto and Hospital for Sick Children, Toronto, ON, Canada; and Department of Obstetrics and Gynecology, University of Toronto and Mount Sinai Hospital, Toronto, ON, Canada (J.K.)
| | - Steven Miller
- From Department of Ultrasound, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (L.S.); Division of Pediatric Cardiology, Department of Pediatrics (L.S., S.-J.Y., C.M., P.P., L.G.-W., E.J., B.W.M., M.S.), Department of Physiology and Experimental Medicine (C.K.M., J.G.S.), Department of Diagnostic Imaging (S.-J.Y., L.G.-W., M.S.), Department of Cardiovascular Surgery (E.H.), and Department of Pediatric Neurology (S.M.), University of Toronto and Hospital for Sick Children, Toronto, ON, Canada; and Department of Obstetrics and Gynecology, University of Toronto and Mount Sinai Hospital, Toronto, ON, Canada (J.K.)
| | - Mike Seed
- From Department of Ultrasound, International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (L.S.); Division of Pediatric Cardiology, Department of Pediatrics (L.S., S.-J.Y., C.M., P.P., L.G.-W., E.J., B.W.M., M.S.), Department of Physiology and Experimental Medicine (C.K.M., J.G.S.), Department of Diagnostic Imaging (S.-J.Y., L.G.-W., M.S.), Department of Cardiovascular Surgery (E.H.), and Department of Pediatric Neurology (S.M.), University of Toronto and Hospital for Sick Children, Toronto, ON, Canada; and Department of Obstetrics and Gynecology, University of Toronto and Mount Sinai Hospital, Toronto, ON, Canada (J.K.).
| |
Collapse
|
43
|
Cohen E, Baerts W, van Bel F. Brain-Sparing in Intrauterine Growth Restriction: Considerations for the Neonatologist. Neonatology 2015; 108:269-76. [PMID: 26330337 DOI: 10.1159/000438451] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/07/2015] [Indexed: 11/19/2022]
Abstract
Intrauterine growth restriction (IUGR) is most commonly caused by placental insufficiency, in response to which the fetus adapts its circulation to preserve oxygen and nutrient supply to the brain ('brain-sparing'). Currently, little is known about the postnatal course and consequences of this antenatal adaptation of the cerebral circulation. The altered cerebral haemodynamics may persist after birth, which would imply a different approach with regard to cerebral monitoring and clinical management of IUGR preterm neonates than their appropriately grown peers. Few studies are available with regard to this topic, and the small body of evidence shows controversy. This review discusses the cerebral circulatory adaptations of IUGR fetuses and appraises the available literature on their postnatal cerebral circulation with potential clinical consequences.
Collapse
Affiliation(s)
- Emily Cohen
- Department of Neonatology, Wilhelmina Children's Hospital/Utrecht University Medical Centre, Utrecht, The Netherlands
| | | | | |
Collapse
|
44
|
Pearce WJ. The fetal cerebral circulation: three decades of exploration by the LLU Center for Perinatal Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:177-91. [PMID: 25015811 DOI: 10.1007/978-1-4939-1031-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
For more than three decades, research programs in the Center of Perinatal Biology have focused on the vascular biology of the fetal cerebral circulation. In the 1980s, research in the Center demonstrated that cerebral autoregulation operated over a narrower pressure range, and was more vulnerable to insults, in fetuses than in adults. Other studies were among the first to establish that compared to adult cerebral arteries, fetal cerebral arteries were more hydrated, contained smaller smooth muscle cells and less connective tissue, and had endothelium less capable of producing NO. Work in the 1990s revealed that pregnancy depressed reactivity to NO in extra-cerebral arteries, but elevated it in cerebral arteries through effects involving changes in cGMP metabolism. Comparative studies verified that fetal lamb cerebral arteries were an excellent model for cerebral arteries from human infants. Biochemical studies demonstrated that cGMP metabolism was dramatically upregulated, but that contraction was far more dependent on calcium influx, in fetal compared to adult cerebral arteries. Further studies established that chronic hypoxia accelerates functional maturation of fetal cerebral arteries, as indicated by increased contractile responses to adrenergic agonists and perivascular adrenergic nerves. In the 2000s, studies of signal transduction established age-dependent roles for PKG, PKC, PKA, ERK, ODC, IP3, myofilament calcium sensitivity, and many other mechanisms. These diverse studies clearly demonstrated that fetal cerebral arteries were functionally quite distinct compared to adult cerebral arteries. In the current decade, research in the Center has expanded to a more molecular focus on epigenetic mechanisms and their role in fetal vascular adaptation to chronic hypoxia, maternal drug abuse, and nutrient deprivation. Overall, the past three decades have transformed thinking about, and understanding of, the fetal cerebral circulation due in no small part to the sustained research efforts by faculty and staff in the Center for Perinatal Biology.
Collapse
Affiliation(s)
- William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, 92350, Loma Linda, CA, USA,
| |
Collapse
|
45
|
Brain sparing in fetal mice: BOLD MRI and Doppler ultrasound show blood redistribution during hypoxia. J Cereb Blood Flow Metab 2014; 34:1082-8. [PMID: 24714036 PMCID: PMC4050255 DOI: 10.1038/jcbfm.2014.62] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 11/08/2022]
Abstract
Mice reproduce many features of human pregnancy and have been widely used to model disorders of pregnancy. However, it has not been known whether fetal mice reproduce the physiologic response to hypoxia known as brain sparing, where blood flow is redistributed to preserve oxygenation of the brain at the expense of other fetal organs. In the present study, blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and Doppler ultrasound were used to determine the effect of acute hypoxia on the fetal blood flow in healthy, pregnant mice. As the maternal inspired gas mixture was varied between 100% and 8% oxygen on the timescale of minutes, the BOLD signal intensity decreased by 44±18% in the fetal liver and by 12±7% in the fetal brain. Using Doppler ultrasound measurements, mean cerebral blood velocity was observed to rise by 15±8% under hypoxic conditions relative to hyperoxia. These findings are consistent with active regulation of cerebral oxygenation and clearly show brain sparing in fetal mice.
Collapse
|
46
|
Silpanisong J, Pearce WJ. Vasotrophic regulation of age-dependent hypoxic cerebrovascular remodeling. Curr Vasc Pharmacol 2014; 11:544-63. [PMID: 24063376 DOI: 10.2174/1570161111311050002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/08/2012] [Accepted: 07/12/2012] [Indexed: 02/07/2023]
Abstract
Hypoxia can induce functional and structural vascular remodeling by changing the expression of trophic factors to promote homeostasis. While most experimental approaches have been focused on functional remodeling, structural remodeling can reflect changes in the abundance and organization of vascular proteins that determine functional remodeling. Better understanding of age-dependent hypoxic macrovascular remodeling processes of the cerebral vasculature and its clinical implications require knowledge of the vasotrophic factors that influence arterial structure and function. Hypoxia can affect the expression of transcription factors, classical receptor tyrosine kinase factors, non-classical G-protein coupled factors, catecholamines, and purines. Hypoxia's remodeling effects can be mediated by Hypoxia Inducible Factor (HIF) upregulation in most vascular beds, but alterations in the expression of growth factors can also be independent of HIF. PPARγ is another transcription factor involved in hypoxic remodeling. Expression of classical receptor tyrosine kinase ligands, including vascular endothelial growth factor, platelet derived growth factor, fibroblast growth factor and angiopoietins, can be altered by hypoxia which can act simultaneously to affect remodeling. Tyrosine kinase-independent factors, such as transforming growth factor, nitric oxide, endothelin, angiotensin II, catecholamines, and purines also participate in the remodeling process. This adaptation to hypoxic stress can fundamentally change with age, resulting in different responses between fetuses and adults. Overall, these mechanisms integrate to assure that blood flow and metabolic demand are closely matched in all vascular beds and emphasize the view that the vascular wall is a highly dynamic and heterogeneous tissue with multiple cell types undergoing regular phenotypic transformation.
Collapse
Affiliation(s)
- Jinjutha Silpanisong
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | | |
Collapse
|
47
|
Brew N, Walker D, Wong FY. Cerebral vascular regulation and brain injury in preterm infants. Am J Physiol Regul Integr Comp Physiol 2014; 306:R773-86. [PMID: 24647591 DOI: 10.1152/ajpregu.00487.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebrovascular lesions, mainly germinal matrix hemorrhage and ischemic injury to the periventricular white matter, are major causes of adverse neurodevelopmental outcome in preterm infants. Cerebrovascular lesions and neuromorbidity increase with decreasing gestational age, with the white matter predominantly affected. Developmental immaturity in the cerebral circulation, including ongoing angiogenesis and vasoregulatory immaturity, plays a major role in the severity and pattern of preterm brain injury. Prevention of this injury requires insight into pathogenesis. Cerebral blood flow (CBF) is low in the preterm white matter, which also has blunted vasoreactivity compared with other brain regions. Vasoreactivity in the preterm brain to cerebral perfusion pressure, oxygen, carbon dioxide, and neuronal metabolism is also immature. This could be related to immaturity of both the vasculature and vasoactive signaling. Other pathologies arising from preterm birth and the neonatal intensive care environment itself may contribute to impaired vasoreactivity and ineffective CBF regulation, resulting in the marked variations in cerebral hemodynamics reported both within and between infants depending on their clinical condition. Many gaps exist in our understanding of how neonatal treatment procedures and medications have an impact on cerebral hemodynamics and preterm brain injury. Future research directions for neuroprotective strategies include establishing cotside, real-time clinical reference values for cerebral hemodynamics and vasoregulatory capacity and to demonstrate that these thresholds improve long-term outcomes for the preterm infant. In addition, stimulation of vascular development and repair with growth factor and cell-based therapies also hold promise.
Collapse
Affiliation(s)
- Nadine Brew
- The Ritchie Centre, Monash Institute of Medical Research-Prince Henry's Institute, Melbourne, Clayton, Victoria, Australia; and
| | - David Walker
- The Ritchie Centre, Monash Institute of Medical Research-Prince Henry's Institute, Melbourne, Clayton, Victoria, Australia; and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Flora Y Wong
- The Ritchie Centre, Monash Institute of Medical Research-Prince Henry's Institute, Melbourne, Clayton, Victoria, Australia; and Monash Newborn, Monash Medical Centre, Melbourne, Victoria, Australia; and Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Barvitenko NN, Aslam M, Filosa J, Matteucci E, Nikinmaa M, Pantaleo A, Saldanha C, Baskurt OK. Tissue oxygen demand in regulation of the behavior of the cells in the vasculature. Microcirculation 2014; 20:484-501. [PMID: 23441854 DOI: 10.1111/micc.12052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/19/2013] [Indexed: 12/20/2022]
Abstract
The control of arteriolar diameters in microvasculature has been in the focus of studies on mechanisms matching oxygen demand and supply at the tissue level. Functionally, important vascular elements include EC, VSMC, and RBC. Integration of these different cell types into functional units aimed at matching tissue oxygen supply with tissue oxygen demand is only achieved when all these cells can respond to the signals of tissue oxygen demand. Many vasoactive agents that serve as signals of tissue oxygen demand have their receptors on all these types of cells (VSMC, EC, and RBC) implying that there can be a coordinated regulation of their behavior by the tissue oxygen demand. Such functions of RBC as oxygen carrying by Hb, rheology, and release of vasoactive agents are considered. Several common extra- and intracellular signaling pathways that link tissue oxygen demand with control of VSMC contractility, EC permeability, and RBC functioning are discussed.
Collapse
|
49
|
Subudhi AW, Fan JL, Evero O, Bourdillon N, Kayser B, Julian CG, Lovering AT, Roach RC. AltitudeOmics: effect of ascent and acclimatization to 5260 m on regional cerebral oxygen delivery. Exp Physiol 2013; 99:772-81. [PMID: 24243839 DOI: 10.1113/expphysiol.2013.075184] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cerebral hypoxaemia associated with rapid ascent to high altitude can be life threatening; yet, with proper acclimatization, cerebral function can be maintained well enough for humans to thrive. We investigated adjustments in global and regional cerebral oxygen delivery (DO2) as 21 healthy volunteers rapidly ascended and acclimatized to 5260 m. Ultrasound indices of cerebral blood flow in internal carotid and vertebral arteries were measured at sea level, upon arrival at 5260 m (ALT1; atmospheric pressure 409 mmHg) and after 16 days of acclimatization (ALT16). Cerebral DO2 was calculated as the product of arterial oxygen content and flow in each respective artery and summed to estimate global cerebral blood flow. Vascular resistances were calculated as the quotient of mean arterial pressure and respective flows. Global cerebral blood flow increased by ∼70% upon arrival at ALT1 (P < 0.001) and returned to sea-level values at ALT16 as a result of changes in cerebral vascular resistance. A reciprocal pattern in arterial oxygen content maintained global cerebral DO2 throughout acclimatization, although DO2 to the posterior cerebral circulation was increased by ∼25% at ALT1 (P = 0.032). We conclude that cerebral DO2 is well maintained upon acute exposure and acclimatization to hypoxia, particularly in the posterior and inferior regions of the brain associated with vital homeostatic functions. This tight regulation of cerebral DO2 was achieved through integrated adjustments in local vascular resistances to alter cerebral perfusion during both acute and chronic exposure to hypoxia.
Collapse
Affiliation(s)
- Andrew W Subudhi
- University of Colorado Denver Anschutz Medical Campus, Department of Emergency Medicine, Altitude Research Center, Aurora, CO, USA University of Colorado Colorado Springs, Department of Biology, Colorado Springs, CO, USA
| | - Jui-Lin Fan
- University of Lausanne, Institute of Sport Sciences, Lausanne, Switzerland University of Geneva, Lemanic Doctoral School of Neuroscience, Geneva, Switzerland
| | - Oghenero Evero
- University of Colorado Denver Anschutz Medical Campus, Department of Emergency Medicine, Altitude Research Center, Aurora, CO, USA
| | - Nicolas Bourdillon
- University of Lausanne, Institute of Sport Sciences, Lausanne, Switzerland
| | - Bengt Kayser
- University of Lausanne, Institute of Sport Sciences, Lausanne, Switzerland
| | - Colleen G Julian
- University of Colorado Denver Anschutz Medical Campus, Department of Emergency Medicine, Altitude Research Center, Aurora, CO, USA
| | - Andrew T Lovering
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Robert C Roach
- University of Colorado Denver Anschutz Medical Campus, Department of Emergency Medicine, Altitude Research Center, Aurora, CO, USA
| |
Collapse
|
50
|
Van Mieghem T, Hodges R, Jaeggi E, Ryan G. Functional echocardiography in the fetus with non-cardiac disease. Prenat Diagn 2013; 34:23-32. [DOI: 10.1002/pd.4254] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Tim Van Mieghem
- Fetal Medicine Unit, Mount Sinai Hospital; University of Toronto; Toronto Canada
| | - Ryan Hodges
- Fetal Medicine Unit, Mount Sinai Hospital; University of Toronto; Toronto Canada
| | - Edgar Jaeggi
- Fetal Cardiac Program, Pediatric Cardiology, Hospital for Sick Children; University of Toronto; Toronto Canada
| | - Greg Ryan
- Fetal Medicine Unit, Mount Sinai Hospital; University of Toronto; Toronto Canada
| |
Collapse
|