1
|
Fan L, Wang H, Kassab GS, Lee LC. Review of cardiac-coronary interaction and insights from mathematical modeling. WIREs Mech Dis 2024; 16:e1642. [PMID: 38316634 PMCID: PMC11081852 DOI: 10.1002/wsbm.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Cardiac-coronary interaction is fundamental to the function of the heart. As one of the highest metabolic organs in the body, the cardiac oxygen demand is met by blood perfusion through the coronary vasculature. The coronary vasculature is largely embedded within the myocardial tissue which is continually contracting and hence squeezing the blood vessels. The myocardium-coronary vessel interaction is two-ways and complex. Here, we review the different types of cardiac-coronary interactions with a focus on insights gained from mathematical models. Specifically, we will consider the following: (1) myocardial-vessel mechanical interaction; (2) metabolic-flow interaction and regulation; (3) perfusion-contraction matching, and (4) chronic interactions between the myocardium and coronary vasculature. We also provide a discussion of the relevant experimental and clinical studies of different types of cardiac-coronary interactions. Finally, we highlight knowledge gaps, key challenges, and limitations of existing mathematical models along with future research directions to understand the unique myocardium-coronary coupling in the heart. This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Biomedical Engineering Cardiovascular Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lei Fan
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Haifeng Wang
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, California, USA
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Zhu XH, Chen W. Quantitative 17 O MRSI of myocardial oxygen metabolic rate, blood flow, and oxygen extraction fraction under normal and high workload conditions. Magn Reson Med 2024; 91:1645-1658. [PMID: 38084378 PMCID: PMC11089813 DOI: 10.1002/mrm.29908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE The heart is a highly aerobic organ consuming most of the oxygen the body in supporting heart function. Quantitative imaging of myocardial oxygen metabolism and perfusion is essential for studying cardiac physiopathology in vivo. Here, we report a new imaging method that can simultaneously assess myocardial oxygen metabolism and blood flow in the rat heart. METHODS This novel method is based on the 17 O-MRSI combined with brief inhalation of 17 O-isotope labeled oxygen gas for quantitative imaging of myocardial metabolic rate of oxygen consumption (MVO2 ), myocardial blood flow (MBF), and oxygen extraction fraction (OEF). We demonstrate this imaging method under basal and high workload conditions in rat hearts at 9.4 T. RESULTS We show that this 17 O MRSI-based approach can directly measure and image MVO2 (1.35-4.06 μmol/g/min), MBF (0.49-1.38 mL/g/min), and OEF (0.33-0.44) in the heart of anesthetized rat under basal and high workload (21.6 × 103 -56.7 × 103 mmHg • bpm) conditions. Under high workload condition, MVO2 and MBF values in healthy rats approximately doubled, whereas OEF remained unchanged, indicating a strong coupling between myocardial oxygen metabolic demand and supply through blood perfusion. CONCLUSION The 17 O-MRSI method has been used to simultaneously image the myocardial metabolic rate of oxygen consumption, blood flow, and oxygen extraction fraction in small animal hearts, which are sensitive to the physiological changes induced by high workload. This approach could provide comprehensive measures that are critical for studying myocardial function in normal and diseased states and has a potential for translation.
Collapse
Affiliation(s)
- Xiao-Hong Zhu
- Center for Magnetic Resonance Research, Radiology Department, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei Chen
- Center for Magnetic Resonance Research, Radiology Department, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Swamy MMM, Zubir MZM, Mutmainah, Tsuboi S, Murai Y, Monde K, Hirano KI, Jin T. A near-infrared fluorescent long-chain fatty acid toward optical imaging of cardiac metabolism in living mice. Analyst 2022; 147:4206-4212. [DOI: 10.1039/d2an00999d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A near infrared fluorescence labelled long-chain fatty acid (FFA), Alexa680-BMPP (BMPP: 15-(4-(3-aminopropyl)phenyl)-3-methyl pentadecanoic acid), was synthesized as a fluorescent probe toward optical imaging of cardiac metabolism.
Collapse
Affiliation(s)
- Mahadeva M. M. Swamy
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan
| | - Mohamad Zarif Mohd Zubir
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan
| | - Mutmainah
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan
| | - Setsuko Tsuboi
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
| | - Yuta Murai
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan
| | - Kenji Monde
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan
| | - Ken-ichi Hirano
- Laboratory of Cardiovascular Disease, Novel, Non-invasive, and Nutritional Therapeutics (CNT), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, 6-2-4, Furuedai Suita, Osaka 565-0874, Japan
| | - Takashi Jin
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
| |
Collapse
|
4
|
de Wit-Verheggen VHW, van de Weijer T. Changes in Cardiac Metabolism in Prediabetes. Biomolecules 2021; 11:1680. [PMID: 34827678 PMCID: PMC8615987 DOI: 10.3390/biom11111680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023] Open
Abstract
In type 2 diabetes mellitus (T2DM), there is an increased prevalence of cardiovascular disease (CVD), even when corrected for atherosclerosis and other CVD risk factors. Diastolic dysfunction is one of the early changes in cardiac function that precedes the onset of cardiac failure, and it occurs already in the prediabetic state. It is clear that these changes are closely linked to alterations in cardiac metabolism; however, the exact etiology is unknown. In this narrative review, we provide an overview of the early cardiac changes in fatty acid and glucose metabolism in prediabetes and its consequences on cardiac function. A better understanding of the relationship between metabolism, mitochondrial function, and cardiac function will lead to insights into the etiology of the declined cardiac function in prediabetes.
Collapse
Affiliation(s)
- Vera H. W. de Wit-Verheggen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
| | - Tineke van de Weijer
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
5
|
Bonou M, Mavrogeni S, Kapelios CJ, Markousis-Mavrogenis G, Aggeli C, Cholongitas E, Protogerou AD, Barbetseas J. Cardiac Adiposity and Arrhythmias: The Role of Imaging. Diagnostics (Basel) 2021; 11:diagnostics11020362. [PMID: 33672778 PMCID: PMC7924558 DOI: 10.3390/diagnostics11020362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Increased cardiac fat depots are metabolically active tissues that have a pronounced pro-inflammatory nature. Increasing evidence supports a potential role of cardiac adiposity as a determinant of the substrate of atrial fibrillation and ventricular arrhythmias. The underlying mechanism appears to be multifactorial with local inflammation, fibrosis, adipocyte infiltration, electrical remodeling, autonomic nervous system modulation, oxidative stress and gene expression playing interrelating roles. Current imaging modalities, such as echocardiography, computed tomography and cardiac magnetic resonance, have provided valuable insight into the relationship between cardiac adiposity and arrhythmogenesis, in order to better understand the pathophysiology and improve risk prediction of the patients, over the presence of obesity and traditional risk factors. However, at present, given the insufficient data for the additive value of imaging biomarkers on commonly used risk algorithms, the use of different screening modalities currently is indicated for personalized risk stratification and prognostication in this setting.
Collapse
Affiliation(s)
- Maria Bonou
- Department of Cardiology, Laiko General Hospital, 11527 Athens, Greece; (M.B.); (J.B.)
| | - Sophie Mavrogeni
- Department of Cardiology, Onassis Cardiac Surgery Center, 17674 Athens, Greece; (S.M.); (G.M.-M.)
| | - Chris J. Kapelios
- Department of Cardiology, Laiko General Hospital, 11527 Athens, Greece; (M.B.); (J.B.)
- Correspondence: ; Tel.: +30-213-2061032; Fax: +30-213-2061761
| | | | - Constantina Aggeli
- First Department of Cardiology, Hippokration General Hospital, Medical School of National & Kapodistrian University, 11527 Athens, Greece;
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Medical School of National & Kapodistrian University, 11527 Athens, Greece;
| | - Athanase D. Protogerou
- Cardiovascular Prevention & Research Unit, Clinic and Laboratory of Pathophysiology, National & Kapodistrian University Athens School of Medicine, 11527 Athens, Greece;
| | - John Barbetseas
- Department of Cardiology, Laiko General Hospital, 11527 Athens, Greece; (M.B.); (J.B.)
| |
Collapse
|
6
|
van de Weijer T, Schrauwen-Hinderling VB. Application of Magnetic Resonance Spectroscopy in metabolic research. Biochim Biophys Acta Mol Basis Dis 2019; 1865:741-748. [DOI: 10.1016/j.bbadis.2018.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023]
|
7
|
Boutagy NE, Feher A, Alkhalil I, Umoh N, Sinusas AJ. Molecular Imaging of the Heart. Compr Physiol 2019; 9:477-533. [PMID: 30873600 DOI: 10.1002/cphy.c180007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multimodality cardiovascular imaging is routinely used to assess cardiac function, structure, and physiological parameters to facilitate the diagnosis, characterization, and phenotyping of numerous cardiovascular diseases (CVD), as well as allows for risk stratification and guidance in medical therapy decision-making. Although useful, these imaging strategies are unable to assess the underlying cellular and molecular processes that modulate pathophysiological changes. Over the last decade, there have been great advancements in imaging instrumentation and technology that have been paralleled by breakthroughs in probe development and image analysis. These advancements have been merged with discoveries in cellular/molecular cardiovascular biology to burgeon the field of cardiovascular molecular imaging. Cardiovascular molecular imaging aims to noninvasively detect and characterize underlying disease processes to facilitate early diagnosis, improve prognostication, and guide targeted therapy across the continuum of CVD. The most-widely used approaches for preclinical and clinical molecular imaging include radiotracers that allow for high-sensitivity in vivo detection and quantification of molecular processes with single photon emission computed tomography and positron emission tomography. This review will describe multimodality molecular imaging instrumentation along with established and novel molecular imaging targets and probes. We will highlight how molecular imaging has provided valuable insights in determining the underlying fundamental biology of a wide variety of CVDs, including: myocardial infarction, cardiac arrhythmias, and nonischemic and ischemic heart failure with reduced and preserved ejection fraction. In addition, the potential of molecular imaging to assist in the characterization and risk stratification of systemic diseases, such as amyloidosis and sarcoidosis will be discussed. © 2019 American Physiological Society. Compr Physiol 9:477-533, 2019.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Attila Feher
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Imran Alkhalil
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Nsini Umoh
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA.,Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Schrauwen-Hinderling VB, Schols AM. Imaging in metabolic research: challenges and opportunities. J Appl Physiol (1985) 2018; 124:jap009062017. [DOI: 10.1152/japplphysiol.00906.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Vera B. Schrauwen-Hinderling
- Department of Radiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, The Netherlands
| | - Annemie M.W.J. Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, The Netherlands
| |
Collapse
|