1
|
Strapazzon G, Taboni A, Dietrichs ES, Luks AM, Brugger H. Avalanche burial pathophysiology - a unique combination of hypoxia, hypercapnia and hypothermia. J Physiol 2024; 602:5785-5800. [PMID: 39073871 DOI: 10.1113/jp284607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
For often unclear reasons, the survival times of critically buried avalanche victims vary widely from minutes to hours. Individuals can survive and sustain organ function if they can breathe under the snow and maintain sufficient delivery of oxygen and efflux of carbon dioxide. We review the physiological responses of humans to critical avalanche burial, a model which shares similarities and differences with apnoea and accidental hypothermia. Within a few minutes of burial, an avalanche victim is exposed to hypoxaemia and hypercapnia, which have important effects on the respiratory and cardiovascular systems and pose a major threat to the central nervous system. As burial time increases, an avalanche victim also develops hypothermia. Despite progressively reduced metabolism, reduced oxygen and increased carbon dioxide tensions may exacerbate the pathophysiological consequences of hypothermia. Hypercapnia seems to be the main cause of cardiovascular instability, which, in turn, is the major reason for reduced cerebral oxygenation despite reductions in cerebral metabolic activity caused by hypothermia. 'Triple H syndrome' refers to the interaction of hypoxia, hypercapnia and hypothermia in a buried avalanche victim. Future studies should investigate how the respiratory gases entrapped in the porous snow structure influence the physiological responses of buried individuals and how haemoconcentration, blood viscosity and cell deformability affect blood flow and oxygen delivery. Attention should also be devoted to identifying strategies to prolong avalanche survival by either mitigating hypoxia and hypercapnia or reducing core temperature so that neuroprotection occurs before the onset of cerebral hypoxia.
Collapse
Affiliation(s)
- Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Department of Medicine - DIMEM, University of Padova, Padova, Italy
| | - Anna Taboni
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | | | - Andrew M Luks
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| |
Collapse
|
2
|
Bourdas DI, Geladas ND. Impact of glossopharyngeal insufflation and complete exhalation on breath-hold performance and physiological parameters in elite skin divers. Eur J Appl Physiol 2024:10.1007/s00421-024-05632-x. [PMID: 39400737 DOI: 10.1007/s00421-024-05632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE This study examined the physiological responses of ten elite divers to normal breathing (BHn), glossopharyngeal inhalation (BHi), and complete exhalation (BHe) prior to five maximal breath-hold (BH) efforts. METHODS Breath-hold time (BHT), hemological variables, mean arterial pressure (MAP), other hemodynamic indices, and diaphragmatic activity (DA) were recorded. During BHs, phases were identified as easy-going (EPh: minimal DA), struggling (SPh: increased DA), PhI (MAP transition), PhII (MAP stabilization), and PhIII (steep MAP increase). RESULTS BHi significantly extended BHT (309.14 ± 12.91 s) compared to BHn (288.77 ± 10.99 s) and BHe (151.18 ± 10.94 s) (P = 0.001). BHT, EPh, and SPh in BHi increased by 7.05%, 2.57%, and 11.08% over BHn, respectively. PhIII appeared earlier in BHe than in other conditions (P < 0.001) and accounted for 47.07%, 44.96%, and 60.18% of BHT in BHn, BHi, and BHe, respectively. SPh comprised 47.10%, 46.01%, and 45.13% of BHT in BHn, BHi, and BHe, respectively, with SPh onset coinciding with PhIII onset in BHn and BHi but not in BHe. Bradycardia was more pronounced in BHe, maintaining better stroke volume. No significant differences in red blood cells or maximal MAP were noted across conditions. CONCLUSION Glossopharyngeal inhalation improves BHT and extends EPh and SPh durations. PhIII onset is linked to SPh in BHn and BHi but not in BHe. BHe triggers an earlier MAP rise, leading to stronger parasympathetic responses. Despite similar maximal MAP across conditions, the higher BHT and tissue hypoxemia in BHi and BHn suggest MAP is a key limiting factor in apnoea.
Collapse
Affiliation(s)
- Dimitrios I Bourdas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Ethnikis Antistasis 41, 17237, Daphni, Greece.
| | - Nickos D Geladas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Ethnikis Antistasis 41, 17237, Daphni, Greece
| |
Collapse
|
3
|
Wang W, Wu D, Wang H, Zhang Z, Jiang X, Li S, Shi Y, Gao X. Acute Effects of Breath-Hold Conditions on Aerobic Fitness in Elite Rugby Players. Life (Basel) 2024; 14:917. [PMID: 39202660 PMCID: PMC11355650 DOI: 10.3390/life14080917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
The effects of face immersion and concurrent exercise on the diving reflex evoked by breath-hold (BH) differ, yet little is known about the combined effects of different BH conditions on aerobic fitness in elite athletes. This study aimed to assess the acute effects of various BH conditions on 18 male elite rugby players (age: 23.5 ± 1.8 years; height: 183.3 ± 3.4 cm; body mass: 84.8 ± 8.5 kg) and identify the BH condition eliciting the greatest aerobic fitness activation. Participants underwent five warm-up conditions: baseline regular breathing, dynamic dry BH (DD), static dry BH (SD), wet dynamic BH (WD), and wet static BH (WS). Significant differences (p < 0.05) were found in red blood cells (RBCs), red blood cell volume (RGB), and hematocrit (HCT) pre- and post-warm-up. Peak oxygen uptake (VO2peak) and relative oxygen uptake (VO2/kgpeak) varied significantly across conditions, with BH groups showing notably higher values than the regular breathing group (p < 0.05). Interaction effects of facial immersion and movement conditions were significant for VO2peak, VO2/kgpeak, and the cardiopulmonary optimal point (p < 0.05). Specifically, VO2peak and peak stroke volume (SVpeak) were significantly higher in the DD group compared to that in other conditions. Increases in VO2peak were strongly correlated with changes in RBCs and HCT induced by DD warm-up (r∆RBC = 0.84, r∆HCT = 0.77, p < 0.01). In conclusion, DD BH warm-up appears to optimize subsequent aerobic performance in elite athletes.
Collapse
Affiliation(s)
- Wendi Wang
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing 100061, China; (W.W.); (D.W.); (H.W.)
| | - Dongzhe Wu
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing 100061, China; (W.W.); (D.W.); (H.W.)
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Hao Wang
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing 100061, China; (W.W.); (D.W.); (H.W.)
| | - Zhiqiang Zhang
- Department of Sports and Arts, China Agricultural University, Beijing 100083, China; (Z.Z.); (X.J.); (S.L.); (Y.S.)
| | - Xuming Jiang
- Department of Sports and Arts, China Agricultural University, Beijing 100083, China; (Z.Z.); (X.J.); (S.L.); (Y.S.)
| | - Shufeng Li
- Department of Sports and Arts, China Agricultural University, Beijing 100083, China; (Z.Z.); (X.J.); (S.L.); (Y.S.)
| | - Yongjin Shi
- Department of Sports and Arts, China Agricultural University, Beijing 100083, China; (Z.Z.); (X.J.); (S.L.); (Y.S.)
| | - Xiaolin Gao
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing 100061, China; (W.W.); (D.W.); (H.W.)
| |
Collapse
|
4
|
Hensel O. Cold stimulation of the oral cavity redistributes blood towards the brain in healthy volunteers. Eur J Neurol 2024; 31:e16227. [PMID: 38308448 PMCID: PMC11235682 DOI: 10.1111/ene.16227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND The aim of this study was to analyze cold stimulation-induced changes in cerebral and cardiac hemodynamics. METHODS Upon ingestion of an ice cube, the changes in resistance index, mean flow velocity and flow index of the middle cerebral arteries (MCA) were assessed using transcranial Doppler sonography. Extracranial duplex sonography was used to measure the mean flow velocity and resistance index of the right internal carotid artery (ICA). The change in mean arterial pressure, heart rate, root mean square of successive differences (RMSSD) and end-tidal carbon dioxide pressure were analyzed additionally. These changes were compared to sham stimulation. RESULTS Compared with sham stimulation, cooling of the oral cavity resulted in significant changes in cerebral and cardiac hemodynamics. The cold stimulation decreased the resistance index in the MCA (-4.5% ± 5.4%, p < 0.0001) and right ICA (-6.3% ± 15.6%, p = 0.001). This was accompanied by an increase in mean flow velocity (4.1% ± 8.0%, p < 0.0001) and flow index (10.1% ± 43.6%, p = 0.008) in the MCA. The cardiac effects caused an increase in mean arterial pressure (1.8% ± 11.2%, p = 0.017) and RMSSD (55% ± 112%, p = 0.048), while simultaneously decreasing the heart rate (-4.3% ± 9.6%, p = 0.0001). CONCLUSION Cooling of the oral cavity resulted in substantial changes in cerebral and cardiac hemodynamics resulting in a blood flow diversion to the brain.
Collapse
Affiliation(s)
- Ole Hensel
- Department of NeurologyMartin Luther University Halle‐WittenbergHalleGermany
- Department of RadiologyMartin Luther University Halle‐WittenbergHalleGermany
| |
Collapse
|
5
|
Rixen M, Weickmann J, Gebauer RA, Weidenbach M, Markel F, Michaelis A, Dähnert I, Wüstenfeld J, Münch D, Poschart M, Sieber A, Schagatay E, Paech C. First Real-Life Data on the Diving Response in Healthy Children. Pediatr Cardiol 2024; 45:314-322. [PMID: 38177487 DOI: 10.1007/s00246-023-03370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024]
Abstract
Swimming and diving are popular recreational activities, representing an effective option in maintaining and improving cardiovascular fitness in healthy people. To date, only little is known about the cardiovascular adaption to submersion in children. This study was conducted to improve an understanding thereof. We used a stepwise apnea protocol with apnea at rest, apnea with facial immersion, and at last apnea during whole body submersion. Continuous measurement of heart rate, oxygen saturation, and peripheral resistance index was done. Physiologic data and analysis of influencing factors on heart rate, oxygen saturation, and peripheral vascular tone response are reported. The current study presents the first data of physiologic diving response in children. Data showed that facial or whole body submersion leads to a major drop in heart rate, and increase of peripheral resistance, while the oxygen saturation seems to be unaffected by static apnea in most children, with apnea times of up to 75 s without change in oxygen saturation.
Collapse
Affiliation(s)
- Mareike Rixen
- Department for Pediatric Cardiology, University of Leipzig - Heart Center, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Johannes Weickmann
- Department for Pediatric Cardiology, University of Leipzig - Heart Center, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Roman Antonin Gebauer
- Department for Pediatric Cardiology, University of Leipzig - Heart Center, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Michael Weidenbach
- Department for Pediatric Cardiology, University of Leipzig - Heart Center, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Franziska Markel
- Department for Pediatric Cardiology, University of Leipzig - Heart Center, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Anna Michaelis
- Department for Pediatric Cardiology, University of Leipzig - Heart Center, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Ingo Dähnert
- Department for Pediatric Cardiology, University of Leipzig - Heart Center, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Jan Wüstenfeld
- Department of Sports Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institut for Applied Training Science, Marschnerstrasse 29, Leipzig, Germany
| | - David Münch
- Landestauchsportverband Sachsen E.V, Am Sportforum 3, 04105, Leipzig, Germany
| | - Max Poschart
- SC DHfK Leipzig E.V, Am Sportforum 10, 04105, Leipzig, Germany
| | - Arne Sieber
- Oxygen Scientific GmbH, Eichbachgasse 151, 8041, Graz, Austria
| | - Erika Schagatay
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Christian Paech
- Department for Pediatric Cardiology, University of Leipzig - Heart Center, Strümpellstr. 39, 04289, Leipzig, Germany.
| |
Collapse
|
6
|
Bourdas DI, Geladas ND. Physiological responses during static apnoea efforts in elite and novice breath-hold divers before and after two weeks of dry apnoea training. Respir Physiol Neurobiol 2024; 319:104168. [PMID: 37797907 DOI: 10.1016/j.resp.2023.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
This study examined the effect of breath-hold (BH) training on apnoeic performance in novice BH divers (NBH:n = 10) and compared them with data from elite BH divers (EBH:n = 11). Both groups performed 5-maximal BHs (PRE). The NBH group repeated this protocol after two weeks of BH training (POST). The NBH group during BH efforts significantly increased red blood cell concentration (4.56 ± 0.16Mio/μl) by 5.06%, hemoglobin oxygen saturation steady state duration (110.32 ± 29.84 s) by 15.48%, and breath-hold time (BHT:144.19 ± 47.35 s) by 33.77%, primarily due to a 59.70% increase in struggle phase (71.85 ± 30.89 s), in POST. EBH group exhibited longer BHT (283.95 ± 36.93 s) and struggle-phase (150.10 ± 34.69 s) than NBH (POST). Elite divers recorded a higher peak MAP (153.18 ± 12.28 mmHg) compared to novices (PRE:123.70 ± 15.65 mmHg, POST:128.30 ± 19.16 mmHg), suggesting that a higher peak MAP is associated with a better BHT. The concurrent abrupt increase of diaphragmatic activity and MAP, seen only in the EBH group, suggests a potential interaction. Additionally, apnoea training increases red blood cells concentration in repeated apnoea efforts and increases BH stamina.
Collapse
Affiliation(s)
- Dimitrios I Bourdas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Ethnikis Antistasis 41, 17237 Daphni, Greece.
| | - Nickos D Geladas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Ethnikis Antistasis 41, 17237 Daphni, Greece
| |
Collapse
|
7
|
Tabisz H, Modlinska A, Kujawski S, Słomko J, Zalewski P. Whole-body cryotherapy as a treatment for chronic medical conditions? Br Med Bull 2023; 146:43-72. [PMID: 37170956 DOI: 10.1093/bmb/ldad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Whole-body cryotherapy (WBC) is a controlled exposure of the whole body to cold to gain health benefits. In recent years, data on potential applications of WBC in multiple clinical settings have emerged. SOURCES OF DATA PubMed, EBSCO and Clinical Key search using keywords including terms 'whole body', 'cryotherapy' and 'cryostimulation'. AREAS OF AGREEMENT WBC could be applied as adjuvant therapy in multiple conditions involving chronic inflammation because of its potent anti-inflammatory effects. Those might include systemic inflammation as in rheumatoid arthritis. In addition, WBC could serve as adjuvant therapy for chronic inflammation in some patients with obesity. AREAS OF CONTROVERSY WBC probably might be applied as an adjuvant treatment in patients with chronic brain disorders including mild cognitive impairment and general anxiety disorder and in patients with depressive episodes and neuroinflammation reduction as in multiple sclerosis. WBC effects in metabolic disorder treatment are yet to be determined. WBC presumably exerts pleiotropic effects and therefore might serve as adjuvant therapy in multi-systemic disorders, including myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). GROWING POINTS The quality of studies on the effects of WBC in the clinical setting is in general low; hence, randomized controlled trials with adequate sample size and longer follow-up periods are needed. AREAS ARE TIMELY FOR DEVELOPING RESEARCH Further studies should examine the mechanism underlying the clinical efficacy of WBC. Multiple conditions might involve chronic inflammation, which in turn could be a potential target of WBC. Further research on the application of WBC in neurodegenerative disorders, neuropsychiatric disorders and ME/CFS should be conducted.
Collapse
Affiliation(s)
- Hanna Tabisz
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, Bydgoszcz 85-077, Poland
| | - Aleksandra Modlinska
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, Bydgoszcz 85-077, Poland
| | - Sławomir Kujawski
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, Bydgoszcz 85-077, Poland
| | - Joanna Słomko
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, Bydgoszcz 85-077, Poland
| | - Pawel Zalewski
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, Bydgoszcz 85-077, Poland
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Warsaw Medical University, 1b Banacha Street, Warsaw 02-097, Poland
| |
Collapse
|
8
|
Greenfield K, Verling W, Larcombe T, Connett GJ. Case report: Open water swimming as a possible treatment for asthma. Front Med (Lausanne) 2023; 10:1169639. [PMID: 37215731 PMCID: PMC10198464 DOI: 10.3389/fmed.2023.1169639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Asthma is a complex medical problem for which currently available treatment can be incompletely effective. This case report describes a 49 year old woman who had suffered from asthma since her teenage years that resolved after she took up regular open water swimming. After sharing this case report with an international open water swimming community on social media, over one hundred people with asthma commented that their symptoms had also improved after taking up this activity. The mechanism whereby open water swimming might alleviate asthma has not been established. Possibilities include benefits to mental health, anti-inflammatory effects, being more fit, improved immune function and suppression of the bronchoconstrictive component of the diving reflex. Further research might usefully confirm or refute these clinical observations.
Collapse
Affiliation(s)
- Kirsty Greenfield
- Primary Care Practice, Cheviot Road Surgery, Southampton, United Kingdom
| | - William Verling
- Department of Paediatrics, Dorset County Hospital, Dorchester, Dorset, United Kingdom
| | - Thomas Larcombe
- Southampton Children's Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Gary James Connett
- National Institute for Health Research, Southampton Biomedical Research Centre, Southampton Children's Hospital, Southampton, United Kingdom
| |
Collapse
|
9
|
Massini DA, Scaggion D, DE Oliveira TP, Macedo AG, Almeida TF, Pessôa Filho DM. Training methods for maximal static apnea performance: a systematic review and meta-analysis. J Sports Med Phys Fitness 2023; 63:77-85. [PMID: 35437303 DOI: 10.23736/s0022-4707.22.13621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Currently, there is an increase in people practicing freediving (FD) both in competition and leisure. As a sports practice, its modalities are grouped into static, dynamic, and constant weight apnea. The aim of this systematic review and meta-analysis (PROSPERO-CRD42021230322) was to identify the training methods used to improve the static apnea time (AT) performance. EVIDENCE ACQUISITION Ten training protocols were analyzed from eight studies published until March 09, 2022. The effect size (Hedge's g) and its confidence interval (CI<inf>95%</inf>) were calculated from the AT measured pre- and post-training. EVIDENCE SYNTHESIS Three different apnea training methods were verified, the breath-hold (BH) that uses BH exercises, physical training with strength and cardiorespiratory exercises, and cross training that combines BH exercises with physical training. These training methods were applied to 138 participants of both sexes with or without experience in apnea episode or diving practice. In general, the AT improvement showed a large effect after the interventions (g=1.30, CI<inf>95%</inf>=0.85-1.76, P<0.01). CONCLUSIONS All three methods were effective in improving static AT, however from the existing protocols is not possible to recommend an ideal to improve AT and therefore FD performance.
Collapse
Affiliation(s)
- Danilo A Massini
- Post-Graduate Program in Human Development and Technology from São Paulo State University (UNESP), Rio Claro, Brazil.,University Center of São Paulo State (UNICEP), Rio Claro, Brazil.,São Paulo State University (UNESP), Bauru, Brazil
| | - Danilo Scaggion
- University Center of São Paulo State (UNICEP), Rio Claro, Brazil
| | - Thiago P DE Oliveira
- Post-Graduate Program in Human Development and Technology from São Paulo State University (UNESP), Rio Claro, Brazil
| | - Anderson G Macedo
- Post-Graduate Program in Human Development and Technology from São Paulo State University (UNESP), Rio Claro, Brazil.,São Paulo State University (UNESP), Bauru, Brazil
| | - Tiago F Almeida
- São Paulo State University (UNESP), Bauru, Brazil - .,CIPER, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - Dalton M Pessôa Filho
- Post-Graduate Program in Human Development and Technology from São Paulo State University (UNESP), Rio Claro, Brazil.,São Paulo State University (UNESP), Bauru, Brazil
| |
Collapse
|
10
|
Persson G, Lodin-Sundström A, Linér MH, Andersson SHA, Sjögreen B, Andersson JPA. Splenic contraction and cardiovascular responses are augmented during apnea compared to rebreathing in humans. Front Physiol 2023; 14:1109958. [PMID: 36960158 PMCID: PMC10028099 DOI: 10.3389/fphys.2023.1109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
The spleen contracts during apnea, releasing stored erythrocytes, thereby increasing systemic hemoglobin concentration (Hb). We compared apnea and rebreathing periods, of equal sub-maximal duration (mean 137 s; SD 30), in eighteen subjects to evaluate whether respiratory arrest or hypoxic and hypercapnic chemoreceptor stimulation is the primary elicitor of splenic contraction and cardiovascular responses during apnea. Spleen volume, Hb, cardiovascular variables, arterial (SaO2), cerebral (ScO2), and deltoid muscle oxygen saturations (SmO2) were recorded during the trials and end-tidal partial pressure of oxygen (PETO2) and carbon dioxide (PETCO2) were measured before and after maneuvers. The spleen volume was smaller after apnea, 213 (89) mL, than after rebreathing, 239 (95) mL, corresponding to relative reductions from control by 20.8 (17.8) % and 11.6 (8.0) %, respectively. The Hb increased 2.4 (2.0) % during apnea, while there was no significant change with rebreathing. The cardiovascular responses, including bradycardia, decrease in cardiac output, and increase in total peripheral resistance, were augmented during apnea compared to during rebreathing. The PETO2 was higher, and the PETCO2 was lower, after apnea compared to after rebreathing. The ScO2 was maintained during maneuvers. The SaO2 decreased 3.8 (3.1) % during apnea, and even more, 5.4 (4.4) %, during rebreathing, while the SmO2 decreased less during rebreathing, 2.2 (2.8) %, than during apnea, 8.3 (6.2) %. We conclude that respiratory arrest per se is an important stimulus for splenic contraction and Hb increase during apnea, as well as an important initiating factor for the apnea-associated cardiovascular responses and their oxygen-conserving effects.
Collapse
Affiliation(s)
- Gustav Persson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- *Correspondence: Gustav Persson, ; Johan P. A. Andersson,
| | - Angelica Lodin-Sundström
- Department of Health Sciences, Mid Sweden University, Sundsvall, Sweden
- Department of Biology, Lund University, Lund, Sweden
| | - Mats H. Linér
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Samuel H. A. Andersson
- Department of Biology, Lund University, Lund, Sweden
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | | | - Johan P. A. Andersson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- *Correspondence: Gustav Persson, ; Johan P. A. Andersson,
| |
Collapse
|
11
|
de Asís-Fernández F, Sereno D, Turner AP, González-Mohíno F, González-Ravé JM. Effects of apnoea training on aerobic and anaerobic performance: A systematic review and meta-analysis. Front Physiol 2022; 13:964144. [PMID: 36237527 PMCID: PMC9551563 DOI: 10.3389/fphys.2022.964144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Trained breath-hold divers have shown physiological adaptations that might improve athletes’ aerobic and anaerobic performance.Objective This study aimed to systematically review the scientific literature and perform a meta-analysis to assess the effects of voluntary apnoea training on markers of anaerobic and aerobic performance, such as blood lactate and VO2max.Methods A literature search on three databases (Web of Science, PubMed and SCOPUS) was conducted in March 2022. The inclusion criteria were 1) peer-reviewed journal publication; 2) clinical trials; 3) healthy humans; 4) effects of apnoea training; 5) variables included markers of aerobic or anaerobic performance, such as lactate and VO2max.Results 545 manuscripts were identified following database examination. Only seven studies met the inclusion criteria and were, therefore, included in the meta-analysis. 126 participants were allocated to either voluntary apnoea training (ApT; n = 64) or normal breathing (NB; n = 63). Meta-analysis on the included studies demonstrated that ApT increased the peak blood lactate concentration more than NB (MD = 1.89 mmol*L−1 [95% CI 1.05, 2.73], z = 4.40, p < 0.0001). In contrast, there were no statistically significant effects of ApT on VO2max (MD = 0.89 ml*kg−1*min−1 [95% CI −1.23, 3.01], z = 0.82, p = 0.41).Conclusion ApT might be an alternative strategy to enhace anaerobic performance associated with increased maximum blood lactate; however, we did not find evidence of ApT effects on physiological aerobic markers, such as VO2max.Systematic Review Registration: [PRISMA], identifier [registration number].
Collapse
Affiliation(s)
- Francisco de Asís-Fernández
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
- Breatherapy Research Group, Instituto de Neurociencias y Ciencias del Movimiento (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Sereno
- Breatherapy Research Group, Instituto de Neurociencias y Ciencias del Movimiento (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
- Sports Training Laboratory, Faculty of Sports Sciences, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Anthony P. Turner
- Sport, Physical Education and Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Fernando González-Mohíno
- Sports Training Laboratory, Faculty of Sports Sciences, Universidad de Castilla-La Mancha, Toledo, Spain
- Facultad de Ciencias de la Vida y de la Naturaleza, Universidad Nebrija, Madrid, Spain
- *Correspondence: Fernando González-Mohíno,
| | - José María González-Ravé
- Sports Training Laboratory, Faculty of Sports Sciences, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
12
|
Peng H, Oikawa S, Inai Y, Maeda S, Akama T. Effects of lung volume and trigeminal nerve stimulation on diving response in breath-hold divers and non-divers. Respir Physiol Neurobiol 2022; 303:103918. [PMID: 35550439 DOI: 10.1016/j.resp.2022.103918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE This study investigated the effects of lung volume and trigeminal nerve stimulation (TS) on diving responses in breath-hold divers (BHDs) and non-divers (NDs). METHODS Eight BHDs and nine NDs performed four breath-hold trials at different lung volumes, with or without TS, and one trial of TS. Haemodynamic parameters and electrocardiograms were measured for each trial. RESULTS During the TS trial, the total peripheral resistance increased more in BHDs. Breath-hold performed at total lung capacity showed a more pronounced decrease in stroke volume and cardiac output in BHDs. The decrease in heart rate and increase in total peripheral resistance were more pronounced in BHDs when breath-holding was performed with TS. CONCLUSION The more pronounced diving response in BHDs was attributed to the greater increase in total peripheral resistance caused by TS. Furthermore, the lower stroke volume and cardiac output in BH performed at total lung capacity could also cause a more pronounced diving response in BHDs.
Collapse
Affiliation(s)
- Heng Peng
- Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa-city, Saitama 359-1192, Japan.
| | - Satoshi Oikawa
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa-city, Saitama 359-1192, Japan
| | - Yuto Inai
- Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa-city, Saitama 359-1192, Japan
| | - Seiji Maeda
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa-city, Saitama 359-1192, Japan
| | - Takao Akama
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa-city, Saitama 359-1192, Japan
| |
Collapse
|
13
|
Baranova T, Podyacheva E, Zemlyanukhina T, Berlov D, Danilova M, Glotov O, Glotov A. Vascular Reactions of the Diving Reflex in Men and Women Carrying Different ADRA1A Genotypes. Int J Mol Sci 2022; 23:ijms23169433. [PMID: 36012699 PMCID: PMC9409260 DOI: 10.3390/ijms23169433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
The diving reflex is an oxygen-saving mechanism which is accompanied by apnea, reflex bradycardia development, peripheral vasoconstriction, spleen erythrocyte release, and selective redistribution of blood flow to the organs most vulnerable to lack of oxygen, such as the brain, heart, and lungs. However, this is a poorly studied form of hypoxia, with a knowledge gap on physiological and biochemical adaptation mechanisms. The reflective sympathetic constriction of the resistive vessels is realized via ADRA1A. It has been shown that ADRA1A SNP (p.Arg347Cys; rs1048101) is associated with changes in tonus in vessel walls. Moreover, the Cys347 allele has been shown to regulate systolic blood pressure. The aim of this work was to evaluate whether the ADRA1A polymorphism affected the pulmonary vascular reactions in men and women in response to the diving reflex. Men (n = 52) and women (n = 50) untrained in diving aged 18 to 25 were recruited into the study. The vascular reactions and blood flow were examined by integrated rheography and rheography of the pulmonary artery. Peripheral blood circulation was registered by plethysmography. The ADRA1A gene polymorphism (p.Arg347Cys; rs1048101) was determined by PCR-RFLP. In both men and women, reflective pulmonary vasodilation did occur in response to the diving reflex, but in women this vasodilation was more pronounced and was accompanied by a higher filling of the lungs with blood.. Additionally, ADRA1A SNP (p.Arg347Cys; rs1048101) is associated with sex. Interestingly, women with the Arg347 allele demonstrated the highest vasodilation of the lung vessels. Therefore, our data may help to indicate women with the most prominent adaptive reactions to the diving reflex. Our data also indicate that women and men with the Cys allele of the ADRA1A gene polymorphism have the highest risk of developing lung hypertension in response to the diving reflex. The diving reflex is an oxygen-saving mechanism which is accompanied by apnea, reflex bradycardia development, peripheral vasoconstriction, spleen erythrocyte release, and selective redistribution of blood flow to the organs most vulnerable to lack of oxygen, such as the brain, heart, and lungs. However, this is a poorly studied form of hypoxia, with a knowledge gap on physiological and biochemical adaptation mechanisms.
Collapse
Affiliation(s)
- Tatyana Baranova
- Faculty of Biology, Saint Petersburg State University, 199034 Saint-Petersburg, Russia
- Correspondence: ; Tel.: +7-921-331-6581
| | - Ekaterina Podyacheva
- Faculty of Biology, Saint Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Tatyana Zemlyanukhina
- Faculty of Biology, Saint Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Dmitrii Berlov
- Faculty of Biology, Herzen State Pedagogical University of Russia, 191186 Saint-Petersburg, Russia
| | - Maria Danilova
- Department of Genomic Medicine, D.O. Ott’s Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - Oleg Glotov
- Department of Genomic Medicine, D.O. Ott’s Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia
- Department of Experimental Medical Virology, Molecular Genetics and Biobanking of Pediatric Research and Clinical Center for Infectious Diseases, 197022 Saint-Petersburg, Russia
| | - Andrey Glotov
- Department of Genomic Medicine, D.O. Ott’s Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia
| |
Collapse
|
14
|
Global longitudinal strain assessment of cardiac function and extravascular lung water formation after diving using semi-closed circuit rebreather. Eur J Appl Physiol 2022; 122:945-954. [DOI: 10.1007/s00421-022-04887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
|
15
|
Fico BG, Alhalimi TA, Tanaka H. Vascular Responses to Simulated Breath-Hold Diving Involving Multiple Reflexes. Am J Physiol Regul Integr Comp Physiol 2022; 322:R153-R160. [PMID: 35018822 DOI: 10.1152/ajpregu.00202.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Breath-hold diving evokes a complex cardiovascular response. The degrees of hypertension induced by the diving reflex are substantial and accentuated by the underwater swimming. This condition provides a circulatory challenge to properly buffer and cushion cardiac pulsations. We determined hemodynamic changes during the diving maneuver. A total of 20 healthy young adults were studied. Hemodynamics were measured during exercise on a cycle ergometer, apnea, face immersion in cold water (trigeminal stimulation), and simulated breath-hold diving. Dynamic arterial compliance (measured by changes in carotid artery diameter via ultrasound divided by changes in carotid blood pressure as assessed by arterial tonometry) increased with simulated diving compared with rest (p=0.007) and was elevated compared with exercise and apnea alone (p<0.01). A significant increase in heart rate was observed with exercise, apnea, and facial immersion when compared with rest (p<0.001). However, simulated diving brought the heart rate down to resting levels. Cardiac output increased with all conditions (p<0.001), with an attenuated response during simulated diving compared with exercise and facial immersion (p<0.05). Mean blood pressure was elevated during all conditions (p<0.001), with a further elevation observed during simulated diving compared with exercise (p<0.001), apnea (p=0.016), and facial immersion (p<0.001). Total peripheral resistance was decreased during exercise and facial immersion compared with rest (p<0.001) but was increased during simulated diving compared with exercise (p<0.001), apnea (p=0.008), and facial immersion (p=0.003). We concluded that central artery compliance is augmented during simulated breath-hold diving to help buffer cardiac pulsations.
Collapse
Affiliation(s)
- Brandon G Fico
- Cardiovascular Aging Research Laboratory, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Taha Ali Alhalimi
- Cardiovascular Aging Research Laboratory, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Hirofumi Tanaka
- Cardiovascular Aging Research Laboratory, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
16
|
Grossman KJ, Lim DJ, Murias JM, Belfry GR. The Effect of Breathing Patterns Common to Competitive Swimming on Gas Exchange and Muscle Deoxygenation During Heavy-Intensity Fartlek Exercise. Front Physiol 2021; 12:723951. [PMID: 34899369 PMCID: PMC8652135 DOI: 10.3389/fphys.2021.723951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022] Open
Abstract
During competitive freestyle swimming, the change of direction requires a turn followed by ∼15 m of underwater kicking at various intensities that require a ∼5 s breath-hold (BH). Upon surfacing, breathing must be regulated, as head rotation is necessary to facilitate the breath while completing the length of the pool (∼25 s). This study compared the respiratory and muscle deoxygenation responses of regulated breathing vs. free breathing, during these 25–5 s cycles. It was hypothesized that with the addition of a BH and sprint during heavy-intensity (HVY) exercise, oxygen uptake (VO2) and oxygen saturation (SatO2) would decrease, and muscle deoxygenation ([HHb]) and total hemoglobin ([Hbtot]) would increase. Ten healthy male participants (24 ± 3 years) performed 4–6 min trials of HVY cycling in the following conditions: (1) continuous free breathing (CONLD); (2) continuous with 5 s BH every 25 s (CONLD-BH); (3) Fartlek (FLK), a 5 s sprint followed by 25 s of HVY; and (4) a combined Fartlek and BH (FLK-BH). Continuous collection of VO2 and SatO2, [Hbtot], and [HHb] via breath-by-breath gas analysis and near-infrared spectroscopy (normalized to baseline) was performed. Breathing frequency and tidal volumes were matched between CONLD and CONLD-BH and between FLK and FLK-BH. As a result, VO2 was unchanged between CONLD (2.12 ± 0.35 L/min) and CONLD-BH (2.15 ± 0.42 L/min; p = 0.116) and between FLK (2.24 ± 0.40 L/min) and FLK-BH (2.20 ± 0.45 L/min; p = 0.861). SatO2 was higher in CONLD (63 ± 1.9%) than CONLD-BH (59 ± 3.3%; p < 0.001), but was unchanged between FLK (61 ± 2.2%) and FLK-BH (62 ± 3.1%; p = 0.462). Δ[Hbtot] is higher in CONLD (3.3 ± 1.6 μM) than CONLD-BH (-2.5 ± 1.2 μM; Δ177%; p < 0.001), but was unchanged between FLK (2.0 ± 1.6 μM) and FLK-BH (0.82 ± 1.4 μM; p = 0.979). Δ[HHb] was higher in CONLD (7.3 ± 1.8μM) than CONLD-BH (7.0 ± 2.0μM; Δ4%; p = 0.011) and lower in FLK (6.7 ± 1.8μM) compared to FLK-BH (8.7 ± 2.4 μM; p < 0.001). It is suggested that the unchanged VO2 between CONLD and CONLD-BH was supported by increased deoxygenation as reflected by decreased Δ[Hbtot] and blunted Δ[HHb], via apneic-driven redistribution of blood flow away from working muscles, which was reflected by the decreased SatO2. However, the preserved VO2 during FLK-BH vs. FLK has been underpinned by an increase in [HHb].
Collapse
Affiliation(s)
- Kevin J Grossman
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - David J Lim
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, ON, Canada
| | - Glen R Belfry
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
17
|
Di Giacomo A, Ghiani GM, Todde F, Tocco F. Cardiovascular Responses to Simultaneous Diving and Muscle Metaboreflex Activation. Front Physiol 2021; 12:730983. [PMID: 34744773 PMCID: PMC8569620 DOI: 10.3389/fphys.2021.730983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/17/2021] [Indexed: 11/15/2022] Open
Abstract
Background: The aim of study was to assess hemodynamic changes during the simultaneous activation of muscle metaboreflex (MM) and diving reflex (DR) in a laboratory setting. We hypothesized that as long as the exercise intensity is mild DR can overwhelm the MM. Methods: Ten trained divers underwent all four phases (randomly assigned) of the following protocol. (A) Postexercise muscle ischemia session (PEMI): 3 min of resting followed by 3 min of handgrip at 30% of maximum force, followed immediately by 3 min of PEMI on the same arm induced by inflating a sphygmomanometer. Three minutes of recovery was further allowed after the cuff was deflated for a total of 6 min of recovery. (B) Control exercise recovery session: the same rest-exercise protocol used for A followed by 6 min of recovery without inflation. (C) DR session: the same rest-exercise protocol used for A followed by 1 min of breath-hold (BH) with face immersion in cold water. (D) PEMI-DR session: the same protocol used for A with 60 s of BH with face immersion in cold water during the first minute of PEMI. Stroke volume (SV), heart rate (HR), and cardiac output (CO) were collected by means of an impedance method. Results: At the end of apnea, HR was decreased in condition C and D with respect to A (−40.8 and −40.3%, respectively vs. −9.1%; p < 0.05). Since SV increase was less pronounced at the same time point (C = +32.4 and D = +21.7% vs. A = +6.0; p < 0.05), CO significantly decreased during C and D with respect to A (−23 and −29.0 vs. −1.4%, respectively; p < 0.05). Conclusion: Results addressed the hypothesis that DR overcame the MM in our setting.
Collapse
Affiliation(s)
- Annalisa Di Giacomo
- Department of Medical Sciences and Public Health, School of Sport Medicine, University of Cagliari, Cagliari, Italy
| | - Giovanna Maria Ghiani
- Department of Medical Sciences and Public Health, School of Sport Medicine, University of Cagliari, Cagliari, Italy
| | - Francesco Todde
- Department of Medical Sciences and Public Health, School of Sport Medicine, University of Cagliari, Cagliari, Italy
| | - Filippo Tocco
- Department of Medical Sciences and Public Health, School of Sport Medicine, University of Cagliari, Cagliari, Italy
| |
Collapse
|
18
|
Marlinge M, Chefrour M, Billaut F, Zavarro M, Rostain JC, Coulange M, Guieu R, Joulia F. Blood Adenosine Increase During Apnea in Spearfishermen Reinforces the Efficiency of the Cardiovascular Component of the Diving Reflex. Front Physiol 2021; 12:743154. [PMID: 34675819 PMCID: PMC8523798 DOI: 10.3389/fphys.2021.743154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
The physiopathology consequences of hypoxia during breath-hold diving are a matter of debate. Adenosine (AD), an ATP derivative, is suspected to be implicated in the adaptive cardiovascular response to apnea, because of its vasodilating and bradycardic properties, two clinical manifestations observed during voluntary apnea. The aim of this study was to evaluate the adenosine response to apnea-induced hypoxia in trained spearfishermen (SFM) who are used to perform repetitive dives for 4-5 h. Twelve SFM (11 men and 1 woman, mean age 41 ± 3 years, apnea experience: 18 ± 9 years) and 10 control (CTL) subjects (age 44 ± 7 years) were enrolled in the study. Subjects were asked to main a dry static apnea and stopped it when they began the struggle phase (average duration: SFM 120 ± 78 s, CTL 78 ± 12 s). Capillary blood samples were collected at baseline and immediately after the apnea and analyzed for standard parameters and adenosine blood concentration ([AD]b). Heart rate (HR), systolic (SBP), and diastolic (DBP) blood pressures were also recorded continuously during the apnea. During the apnea, an increase in SBP and DBP and a decrease in HR were observed in both SFM and CTL. At baseline, [AD]b was higher in SFM compared with CTL (1.05 ± 0.2 vs. 0.73 ± 0.11 μM, p < 0.01). [AD]b increased significantly at the end of the apnea in both groups, but the increase was significantly greater in SFM than in controls (+90.4 vs. +12%, p < 0.01). Importantly, in SFM, we also observed significant correlations between [AD]b and HR (R = -0.8, p = 0.02), SpO2 (R = -0.69, p = 0.01), SBP (R = -0.89, p = 0.02), and DBP (R = -0.68, p = 0.03). Such associations were absent in CTL. The adenosine release during apnea was associated with blood O2 saturation and cardiovascular parameters in trained divers but not in controls. These data therefore suggest that adenosine may play a major role in the adaptive cardiovascular response to apnea and could reflect the level of training.
Collapse
Affiliation(s)
- Marion Marlinge
- C2VN, Center for Cardiovascular and Nutrition Research, INSERM 1263, INRAE 1260, Aix Marseille University, Marseille, France.,Laboratory of Biochemistry, Timone Hospital, Marseille, France
| | | | | | | | - Jean-Claude Rostain
- C2VN, Center for Cardiovascular and Nutrition Research, INSERM 1263, INRAE 1260, Aix Marseille University, Marseille, France
| | - Mathieu Coulange
- C2VN, Center for Cardiovascular and Nutrition Research, INSERM 1263, INRAE 1260, Aix Marseille University, Marseille, France.,Department of Hyperbaric Medicine, Hospital Sainte Marguerite, Marseille, France
| | - Régis Guieu
- C2VN, Center for Cardiovascular and Nutrition Research, INSERM 1263, INRAE 1260, Aix Marseille University, Marseille, France.,Laboratory of Biochemistry, Timone Hospital, Marseille, France
| | - Fabrice Joulia
- C2VN, Center for Cardiovascular and Nutrition Research, INSERM 1263, INRAE 1260, Aix Marseille University, Marseille, France.,UFR STAPS, Toulon University, La Garde, France
| |
Collapse
|
19
|
Abstract
PURPOSE Water immersion adds additional drag and metabolic demand for limb movement with respect to air, but its effect on the internal metabolic power (Ėint) of cycling is unknown. We aimed at quantifying the increase in Ėint during underwater cycling with respect to dry conditions at different pedaling rates. METHODS 12 healthy subjects (4 females) pedaled on a waterproof cycle ergometer in an experimental pool that was either empty (DRY) or filled with tap water at 30.8 ± 0.6 °C (WET). Four different pedal cadences (fp) were studied (40, 50, 60 and 70 rpm) at 25, 50, 75 and 100 W. The metabolic power at steady state was measured via open circuit respirometry and Ėint was calculated as the metabolic power extrapolated for 0 W. RESULTS Ėint was significantly higher in WET than in DRY at 50, 60 and 70 rpm (81 ± 31 vs 32 ± 30 W, 167 ± 35 vs 50 ± 29 W, 311 ± 51 vs 81 ± 30 W, respectively, all p < 0.0001), but not at 40 rpm (16 ± 5 vs 11 ± 17 W, p > 0.99). Ėint increased with the third power of fp both in WET and DRY (R2 = 0.49 and 0.91, respectively). CONCLUSION Water drag increased Ėint, although limbs unloading via the Archimedes' principle and limbs shape could be potential confounding factors. A simple formula was developed to predict the increase in mechanical power in dry conditions needed to match the rate of energy expenditure during underwater cycling: 44 fp3 - 7 W, where fp is expressed in hertz.
Collapse
Affiliation(s)
- Giovanni Vinetti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY Department of Anaesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
20
|
Möller F, Jacobi E, Hoffmann U, Muth T, Schipke JD. Oxygen-enriched Air Decreases Ventilation during High-intensity Fin-swimming Underwater. Int J Sports Med 2021; 43:230-236. [PMID: 34399427 PMCID: PMC8885326 DOI: 10.1055/a-1554-5093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Oxygen-enriched air is commonly used in the sport of SCUBA-diving and might affect ventilation and heart rate, but little work exists for applied diving settings. We hypothesized that ventilation is decreased especially during strenuous underwater fin-swimming when using oxygen-enriched air as breathing gas. Ten physically-fit divers (age: 25±4; 5 females; 67±113 open-water dives) performed incremental underwater fin-swimming until exhaustion at 4 m water depth with either normal air or oxygen-enriched air (40% O
2
) in a double-blind, randomized within-subject design. Heart rate and ventilation were measured throughout the dive and maximum whole blood lactate samples were determined post-exercise. ANOVAs showed a significant effect for the factor breathing gas (F(1, 9)=7.52; P=0.023; η
2p
=0.455), with a lower ventilation for oxygen-enriched air during fin-swimming velocities of 0.6 m·s
−1
(P=0.032) and 0.8 m·s
−1
(P=0.037). Heart rate, lactate, and time to exhaustion showed no significant differences. These findings indicate decreased ventilation by an elevated oxygen fraction in the breathing gas when fin-swimming in shallow-water submersion with high velocity (>0.5 m·s
−1
). Applications are within involuntary underwater exercise or rescue scenarios for all dives with limited gas supply.
Collapse
Affiliation(s)
- Fabian Möller
- Department of Exercise Physiology, German Sport University Cologne, Cologne, Germany
| | - Elena Jacobi
- Department of Exercise Physiology, German Sport University Cologne, Cologne, Germany
| | - Uwe Hoffmann
- Department of Exercise Physiology, German Sport University Cologne, Cologne, Germany
| | - Thomas Muth
- Occupational, Social, Environmental Medicine, Heinrich-Heine-Universitat Dusseldorf, Dusseldorf, Germany
| | - Jochen D Schipke
- Research Group Experimenal Surgery, University Hospital Düsseldorf, Dusseldorf, Germany
| |
Collapse
|
21
|
Bouten J, De Bock S, Bourgois G, de Jager S, Dumortier J, Boone J, Bourgois JG. Heart Rate and Muscle Oxygenation Kinetics During Dynamic Constant Load Intermittent Breath-Holds. Front Physiol 2021; 12:712629. [PMID: 34366898 PMCID: PMC8339880 DOI: 10.3389/fphys.2021.712629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction: Acute apnea evokes bradycardia and peripheral vasoconstriction in order to conserve oxygen, which is more pronounced with face immersion. This response is contrary to the tachycardia and increased blood flow to muscle tissue related to the higher oxygen consumption during exercise. The aim of this study was to investigate cardiovascular and metabolic responses of dynamic dry apnea (DRA) and face immersed apnea (FIA). Methods: Ten female volunteers (17.1 ± 0.6 years old) naive to breath-hold-related sports, performed a series of seven dynamic 30 s breath-holds while cycling at 25% of their peak power output. This was performed in two separate conditions in a randomized order: FIA (15°C) and DRA. Heart rate and muscle tissue oxygenation through near-infrared spectroscopy were continuously measured to determine oxygenated (m[O2Hb]) and deoxygenated hemoglobin concentration (m[HHb]) and tissue oxygenation index (mTOI). Capillary blood lactate was measured 1 min after the first, third, fifth, and seventh breath-hold. Results: Average duration of the seven breath-holds did not differ between conditions (25.3 s ± 1.4 s, p = 0.231). The apnea-induced bradycardia was stronger with FIA (from 134 ± 4 to 85 ± 3 bpm) than DRA (from 134 ± 4 to 100 ± 5 bpm, p < 0.001). mTOI decreased significantly from 69.9 ± 0.9% to 63.0 ± 1.3% (p < 0.001) which is reflected in a steady decrease in m[O2Hb] (p < 0.001) and concomitant increase in m[HHb] (p = 0.001). However, this was similar in both conditions (0.121 < p < 0.542). Lactate was lower after the first apnea with FIA compared to DRA (p = 0.038), while no differences were observed in the other breath-holds. Conclusion: Our data show strong decreases in heart rate and muscle tissue oxygenation during dynamic apneas. A stronger bradycardia was observed in FIA, while muscle oxygenation was not different, suggesting that FIA did not influence muscle oxygenation. An order of mechanisms was observed in which, after an initial tachycardia, heart rate starts to decrease after muscle tissue deoxygenation occurs, suggesting a role of peripheral vasoconstriction in the apnea-induced bradycardia. The apnea-induced increase in lactate was lower in FIA during the first apnea, probably caused by the stronger bradycardia.
Collapse
Affiliation(s)
- Janne Bouten
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Sander De Bock
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Gil Bourgois
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Sarah de Jager
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jasmien Dumortier
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan Boone
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium.,Centre of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jan G Bourgois
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium.,Centre of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
22
|
Holmström PK, Karlsson Ö, Lindblom H, McGawley K, Schagatay EK. Enhanced splenic volume and contraction in elite endurance athletes. J Appl Physiol (1985) 2021; 131:474-486. [PMID: 34166106 DOI: 10.1152/japplphysiol.01066.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Splenic contraction, which leads to ejection of stored erythrocytes, is greater in athletes involved in regular freediving or high-altitude activities. As this response facilitates oxygen-carrying capacity, similar characteristics may be expected of elite endurance athletes. Therefore, our aims were to compare resting and apnea-induced splenic volume in endurance athletes and untrained individuals, and to assess the athletes' exercise-induced splenic volume. Twelve elite biathletes (7 women) and 12 controls (6 women) performed a maximal effort apnea in a seated position. In addition, the biathletes completed a maximal roller-skiing time trial. Splenic dimensions were measured by ultrasonic imaging for subsequent volume calculations, whereas Hb was analyzed from capillary blood samples and cardiorespiratory variables were monitored continuously. Baseline splenic volume was larger in the biathletes (214 ± 56 mL) compared with controls (157 ± 39 mL, P = 0.008) and apnea-induced splenic contraction was also greater in the biathletes (46 ± 20 mL vs. 30 ± 16 mL, P = 0.035). Hb increased immediately after apnea in the biathletes (4.5 ± 4.8%, P = 0.029) but not in the controls (-0.7 ± 3.1%, P = 0.999). Increases in exercise-induced splenic contraction (P = 0.008) and Hb (P = 0.001) were greater compared with the apnea-induced responses among the athletes. Baseline splenic volume tended to be correlated with V̇o2max (r = 0.584, P = 0.059). We conclude that elite biathletes have greater splenic volume with a greater ability to contract and elevate Hb compared with untrained individuals. These characteristics may transiently enhance O2-carrying capacity and possibly increase O2 uptake, thereby helping biathletes to cope with high intermittent O2 demands and severe O2 deficits that occur during biathlon training and competition.NEW & NOTEWORTHY This study demonstrates that elite biathletes have larger splenic volume, apnea-induced splenic contraction, and Hb elevation compared with untrained individuals, which is likely functional to cope with high O2 demands and substantial O2 deficits. We believe that enhanced splenic contraction may be of importance during competitions involving cross-country skiing, to regulate circulating Hb and enhance O2-carrying capacity, which may protect [Formula: see text] and increase O2 uptake.
Collapse
Affiliation(s)
- Pontus K Holmström
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Öyvind Karlsson
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Hampus Lindblom
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Kerry McGawley
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Erika K Schagatay
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
23
|
Mulder E, Schagatay E, Sieber A. First Evaluation of a Newly Constructed Underwater Pulse Oximeter for Use in Breath-Holding Activities. Front Physiol 2021; 12:649674. [PMID: 33981249 PMCID: PMC8107719 DOI: 10.3389/fphys.2021.649674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Studying risk factors in freediving, such as hypoxic blackout, requires development of new methods to enable remote underwater monitoring of physiological variables. We aimed to construct and evaluate a new water- and pressure proof pulse oximeter for use in freediving research. The study consisted of three parts: (I) A submersible pulse oximeter (SUB) was developed on a ruggedized platform for recording of physiological parameters in challenging environments. Two MAX30102 sensors were used to record plethysmograms, and included red and infra-red emitters, diode drivers, photodiode, photodiode amplifier, analog to digital converter, and controller. (II) We equipped 20 volunteers with two transmission pulse oximeters (TPULS) and SUB to the fingers. Arterial oxygen saturation (SpO2) and heart rate (HR) were recorded, while breathing room air (21% O2) and subsequently a hypoxic gas (10.7% O2) at rest in dry conditions. Bland-Altman analysis was used to evaluate bias and precision of SUB relative to SpO2 values from TPULS. (III) Six freedivers were monitored with one TPULS and SUB placed at the forehead, during a maximal effort immersed static apnea. For dry baseline measurements (n = 20), SpO2 bias ranged between −0.8 and −0.6%, precision between 1.0 and 1.5%; HR bias ranged between 1.1 and 1.0 bpm, precision between 1.4 and 1.9 bpm. For the hypoxic episode, SpO2 bias ranged between −2.5 and −3.6%, precision between 3.6 and 3.7%; HR bias ranged between 1.4 and 1.9 bpm, precision between 2.0 and 2.1 bpm. Freedivers (n = 6) performed an apnea of 184 ± 53 s. Desaturation- and resaturation response time of SpO2 was approximately 15 and 12 s shorter in SUB compared to TPULS, respectively. Lowest SpO2 values were 76 ± 10% for TPULS and 74 ± 13% for SUB. HR traces for both pulse oximeters showed similar patterns. For static apneas, dropout rate was larger for SUB (18%) than for TPULS (<1%). SUB produced similar SpO2 and HR values as TPULS, both during normoxic and hypoxic breathing (n = 20), and submersed static apneas (n = 6). SUB responds more quickly to changes in oxygen saturation when sensors were placed at the forehead. Further development of SUB is needed to limit signal loss, and its function should be tested at greater depth and lower saturation.
Collapse
Affiliation(s)
- Eric Mulder
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Erika Schagatay
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| | - Arne Sieber
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
24
|
Mulder E, Sieber A, Schagatay E. Using Underwater Pulse Oximetry in Freediving to Extreme Depths to Study Risk of Hypoxic Blackout and Diving Response Phases. Front Physiol 2021; 12:651128. [PMID: 33868018 PMCID: PMC8047056 DOI: 10.3389/fphys.2021.651128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Deep freediving exposes humans to hypoxia and dramatic changes in pressure. The effect of depth on gas exchange may enhance risk of hypoxic blackout (BO) during the last part of the ascent. Our aim was to investigate arterial oxygen saturation (SpO2) and heart rate (HR) in shallow and deep freedives, central variables, which have rarely been studied underwater in deep freediving. Four male elite competitive freedivers volunteered to wear a newly developed underwater pulse oximeter for continuous monitoring of SpO2 and HR during self-initiated training in the sea. Two probes were placed on the temples, connected to a recording unit on the back of the freediver. Divers performed one "shallow" and one "deep" constant weight dive with fins. Plethysmograms were recorded at 30 Hz, and SpO2 and HR were extracted. Mean ± SD depth of shallow dives was 19 ± 3 m, and 73 ± 12 m for deep dives. Duration was 82 ± 36 s in shallow and 150 ± 27 s in deep dives. All divers desaturated more during deeper dives (nadir 55 ± 10%) compared to shallow dives (nadir 80 ± 22%) with a lowest SpO2 of 44% in one deep dive. HR showed a "diving response," with similar lowest HR of 42 bpm in shallow and deep dives; the lowest value (28 bpm) was observed in one shallow dive. HR increased before dives, followed by a decline, and upon resurfacing a peak after which HR normalized. During deep dives, HR was influenced by the level of exertion across different diving phases; after an initial drop, a second HR decline occurred during the passive "free fall" phase. The underwater pulse oximeter allowed successful SpO2 and HR monitoring in freedives to 82 m depth - deeper than ever recorded before. Divers' enhanced desaturation during deep dives was likely related to increased exertion and extended duration, but the rapid extreme desaturation to below 50% near surfacing could result from the diminishing pressure, in line with the hypothesis that risk of hypoxic BO may increase during ascent. Recordings also indicated that the diving response is not powerful enough to fully override the exercise-induced tachycardia during active swimming. Pulse oximetry monitoring of essential variables underwater may be an important step to increase freediving safety.
Collapse
Affiliation(s)
- Eric Mulder
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Arne Sieber
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Erika Schagatay
- Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
- Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
25
|
Physiology, pathophysiology and (mal)adaptations to chronic apnoeic training: a state-of-the-art review. Eur J Appl Physiol 2021; 121:1543-1566. [PMID: 33791844 PMCID: PMC8144079 DOI: 10.1007/s00421-021-04664-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
Breath-hold diving is an activity that humans have engaged in since antiquity to forage for resources, provide sustenance and to support military campaigns. In modern times, breath-hold diving continues to gain popularity and recognition as both a competitive and recreational sport. The continued progression of world records is somewhat remarkable, particularly given the extreme hypoxaemic and hypercapnic conditions, and hydrostatic pressures these athletes endure. However, there is abundant literature to suggest a large inter-individual variation in the apnoeic capabilities that is thus far not fully understood. In this review, we explore developments in apnoea physiology and delineate the traits and mechanisms that potentially underpin this variation. In addition, we sought to highlight the physiological (mal)adaptations associated with consistent breath-hold training. Breath-hold divers (BHDs) are evidenced to exhibit a more pronounced diving-response than non-divers, while elite BHDs (EBHDs) also display beneficial adaptations in both blood and skeletal muscle. Importantly, these physiological characteristics are documented to be primarily influenced by training-induced stimuli. BHDs are exposed to unique physiological and environmental stressors, and as such possess an ability to withstand acute cerebrovascular and neuronal strains. Whether these characteristics are also a result of training-induced adaptations or genetic predisposition is less certain. Although the long-term effects of regular breath-hold diving activity are yet to be holistically established, preliminary evidence has posed considerations for cognitive, neurological, renal and bone health in BHDs. These areas should be explored further in longitudinal studies to more confidently ascertain the long-term health implications of extreme breath-holding activity.
Collapse
|
26
|
Blawas AM, Ware KE, Schmaltz E, Zheng L, Spruance J, Allen AS, West N, Devos N, Corcoran DL, Nowacek DP, Eward WC, Fahlman A, Somarelli JA. An integrated comparative physiology and molecular approach pinpoints mediators of breath-hold capacity in dolphins. Evol Med Public Health 2021; 9:420-430. [PMID: 35169481 PMCID: PMC8833867 DOI: 10.1093/emph/eoab036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/17/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background and objectives
Ischemic events, such as ischemic heart disease and stroke, are the number one cause of death globally. Ischemia prevents blood, carrying essential nutrients and oxygen, from reaching tissues, leading to cell and tissue death, and eventual organ failure. While humans are relatively intolerant to ischemic events, other species, such as marine mammals, have evolved a unique tolerance to chronic ischemia/reperfusion during apneic diving. To identify possible molecular features of an increased tolerance for apnea, we examined changes in gene expression in breath-holding dolphins.
Methodology
Here, we capitalized on the adaptations possesed by bottlenose dolphins (Tursiops truncatus) for diving as a comparative model of ischemic stress and hypoxia tolerance to identify molecular features associated with breath holding. Given that signals in the blood may influence physiological changes during diving, we used RNA-Seq and enzyme assays to examine time-dependent changes in gene expression in the blood of breath-holding dolphins.
Results
We observed time-dependent upregulation of the arachidonate 5-lipoxygenase (ALOX5) gene and increased lipoxygenase activity during breath holding. ALOX5 has been shown to be activated during hypoxia in rodent models, and its metabolites, leukotrienes, induce vasoconstriction.
Conclusions and implications
The upregulation of ALOX5 mRNA occurred within the calculated aerobic dive limit of the species, suggesting that ALOX5 may play a role in the dolphin’s physiological response to diving, particularly in a pro-inflammatory response to ischemia and in promoting vasoconstriction. These observations pinpoint a potential molecular mechanism by which dolphins, and perhaps other marine mammals, respond to the prolonged breath holds associated with diving.
Collapse
Affiliation(s)
- Ashley M Blawas
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
| | - Kathryn E Ware
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Emma Schmaltz
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
| | - Larry Zheng
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
| | - Jacob Spruance
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Austin S Allen
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
| | | | - Nicolas Devos
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - David L Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Douglas P Nowacek
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - William C Eward
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
- Duke University Medical Center, Duke Cancer Institute, Durham, NC, USA
| | - Andreas Fahlman
- Global Diving Research, Inc., Ottawa, ON, Canada
- Research Department, Fundación Oceanogrāfic de la Comunitat Valenciana, Valencia, Spain
| | - Jason A Somarelli
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Duke University Medical Center, Duke Cancer Institute, Durham, NC, USA
| |
Collapse
|
27
|
A Step further-The Role of Trigeminocardiac Reflex in Therapeutic Implications: Hypothesis, Evidence, and Experimental Models. J Neurosurg Anesthesiol 2021; 34:364-371. [PMID: 33538537 DOI: 10.1097/ana.0000000000000760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/04/2021] [Indexed: 11/27/2022]
Abstract
The trigeminocardiac reflex (TCR) is a well-recognized brainstem reflex that represents a unique interaction between the brain and the heart through the Vth and Xth cranial nerves and brainstem nuclei. The TCR has mainly been reported as an intraoperative phenomenon causing cardiovascular changes during skull-base surgeries. However, it is now appreciated that the TCR is implicated during non-neurosurgical procedures and in nonsurgical conditions, and its complex reflex pathways have been explored as potential therapeutic options in various neurological and cardiovascular diseases. This narrative review presents an in-depth overview of hypothetical and experimental models of the TCR phenomenon in relation to the Vth and Xth cranial nerves. In addition, primitive interactions between these 2 cranial nerves and their significance are highlighted. Finally, therapeutic models of the complex interactions of the TCR and areas for further research will be considered.
Collapse
|
28
|
Sadler C, Brett K, Heerboth A, Swisher AR, Mehregani N, Touriel R, Cannon DT. Safety proposals for freediving time limits should consider the metabolic-rate dependence of oxygen stores depletion. Diving Hyperb Med 2020; 50:356-362. [PMID: 33325016 DOI: 10.28920/dhm50.4.356-362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/07/2020] [Indexed: 11/05/2022]
Abstract
INTRODUCTION There is no required training for breath-hold diving, making dissemination of safety protocols difficult. A recommended breath-hold dive time limit of 60 s was proposed for amateur divers. However, this does not consider the metabolic-rate dependence of oxygen stores depletion. We aimed to measure the effect of apnoea time and metabolic rate on arterial and tissue oxygenation. METHODS Fifty healthy participants (23 (SD 3) y, 22 women) completed four periods of apnoea for 60 s (or to tolerable limit) during rest and cycle ergometry at 20, 40, and 60 W. Apnoea was initiated after hyperventilation to achieve PETCO2 of approximately 25 mmHg. Pulse oximetry, frontal lobe oxygenation, and pulmonary gas exchange were measured throughout. We defined hypoxia as SpO2 < 88%. RESULTS Static and exercise (20, 40, 60 W) breath-hold break times were 57 (SD 7), 50 (11), 48 (11), and 46 (11) s (F [2.432, 119.2] = 32.0, P < 0.01). The rise in PETCO2 from initiation to breaking of apnoea was dependent on metabolic rate (time × metabolic rate interaction; F [3,147] = 38.6, P < 0.0001). The same was true for the fall in SpO2 (F [3,147] = 2.9, P = 0.03). SpO2 fell to < 88% on 14 occasions in eight participants, all of whom were asymptomatic. CONCLUSIONS Independent of the added complexities of a fall in ambient pressure on ascent, the effect of apnoea time on hypoxia depends on the metabolic rate and is highly variable among individuals. Therefore, we contend that a universally recommended time limit for breath-hold diving or swimming is not useful to guarantee safety.
Collapse
Affiliation(s)
- Charlotte Sadler
- Department of Emergency Medicine, University of California, San Diego, USA.,Corresponding author: Dr Charlotte Sadler, Department of Emergency Medicine, University of California, San Diego, USA,
| | - Kaighley Brett
- Department of Emergency Medicine, University of California, San Diego, USA
| | - Aaron Heerboth
- Department of Emergency Medicine, University of California, San Diego, USA
| | - Austin R Swisher
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| | - Nader Mehregani
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| | - Ross Touriel
- Department of Emergency Medicine, University of California, San Diego, USA
| | - Daniel T Cannon
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| |
Collapse
|
29
|
Baroreflex responses during dry resting and exercise apnoeas in air and pure oxygen. Eur J Appl Physiol 2020; 121:539-547. [PMID: 33151437 PMCID: PMC7862076 DOI: 10.1007/s00421-020-04544-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/26/2020] [Indexed: 12/02/2022]
Abstract
Purpose We analysed the characteristics of arterial baroreflexes during the first phase of apnoea (φ1). Methods 12 divers performed rest and exercise (30 W) apnoeas (air and oxygen). We measured beat-by-beat R-to-R interval (RRi) and mean arterial pressure (MAP). Mean RRi and MAP values defined the operating point (OP) before (PRE-ss) and in the second phase (φ2) of apnoea. Baroreflex sensitivity (BRS, ms·mmHg−1) was calculated with the sequence method. Results In PRE-ss, BRS was (median [IQR]): at rest, 20.3 [10.0–28.6] in air and 18.8 [13.8–25.2] in O2; at exercise 9.2[8.4–13.2] in air and 10.1[8.4–13.6] in O2. In φ1, during MAP decrease, BRS was lower than in PRE-ss at rest (6.6 [5.3–11.4] in air and 7.7 [4.9–14.3] in O2, p < 0.05). At exercise, BRS in φ1 was 6.4 [3.9–13.1] in air and 6.7 [4.1–9.5] in O2. After attainment of minimum MAP (MAPmin), baroreflex resetting started. After attainment of minimum RRi, baroreflex sequences reappeared. In φ2, BRS at rest was 12.1 [9.6–16.2] in air, 12.9 [9.2–15.8] in O2. At exercise (no φ2 in air), it was 7.9 [5.4–10.7] in O2. In φ2, OP acts at higher MAP values. Conclusion In apnoea φ1, there is a sudden correction of MAP fall via baroreflex. The lower BRS in the earliest φ1 suggests a possible parasympathetic mechanism underpinning this reduction. After MAPmin, baroreflex resets, displacing its OP at higher MAP level; thus, resetting may not be due to central command. After resetting, restoration of BRS suggests re-establishment of vagal drive.
Collapse
|
30
|
Holmström PK, Bird JD, Thrall SF, Kalker A, Herrington BA, Soriano JE, Mann LM, Rampuri ZH, Brutsaert TD, Karlsson Ø, Sherpa MT, Schagatay EKA, Day TA. The effects of high altitude ascent on splenic contraction and the diving response during voluntary apnoea. Exp Physiol 2020; 106:160-174. [DOI: 10.1113/ep088571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022]
Affiliation(s)
| | - Jordan D. Bird
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Scott F. Thrall
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Ann Kalker
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
- Radboud University Nijmegen Netherlands
| | - Brittney A. Herrington
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Jan E. Soriano
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Leah M. Mann
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Zahrah H. Rampuri
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| | - Tom D. Brutsaert
- Department of Exercise Science Syracuse University Syracuse NY USA
| | - Øyvind Karlsson
- Swedish Winter Sports Research Centre Mid Sweden University Östersund Sweden
| | | | - Erika K. A. Schagatay
- Department of Health Sciences Mid Sweden University Östersund Sweden
- Swedish Winter Sports Research Centre Mid Sweden University Östersund Sweden
| | - Trevor A. Day
- Department of Biology Faculty of Science and Technology Mount Royal University Calgary Alberta Canada
| |
Collapse
|
31
|
Zubac D, Ivančev V, Valić Z, Šimunič B. Long-lasting exercise involvement protects against decline in V̇O 2max and V̇O 2 kinetics in moderately active women. Appl Physiol Nutr Metab 2020; 46:108-116. [PMID: 32640173 DOI: 10.1139/apnm-2020-0307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We studied the effects of age on different physiological parameters, including those derived from (i) maximal cardiopulmonary exercise testing (CPET), (ii) moderate-intensity step transitions, and (iii) tensiomyography (TMG)-derived variables in moderately active women. Twenty-eight women (age, 19 to 53 years), completed 3 laboratory visits, including baseline data collection, TMG assessment, maximal oxygen uptake test via CPET, and a step-transition test from 20 W to a moderate-intensity cycling power output (PO), corresponding to oxygen uptake at 90% gas exchange threshold. During the step transitions, breath-by-breath pulmonary oxygen uptake, near infrared spectroscopy derived muscle deoxygenation (ΔHHb), and beat-by-beat cardiovascular response were continuously monitored. There were no differences observed between the young and middle-aged women in their maximal oxygen uptake and peak PO, while the maximal heart rate (HR) was 12 bpm lower in middle-aged compared with young (p = 0.016) women. Also, no differences were observed between the age groups in τ pulmonary oxygen uptake, ΔHHb, and τHR during on-transients. The first regression model showed that age did not attenuate the maximal CPET capacity in the studied population (p = 0.638), while in the second model a faster τ pulmonary oxygen uptake, combined with shorter TMG-derived contraction time (Tc) of the vastus lateralis (VL), were associated with a higher maximal oxygen uptake (∼30% of explained variance, p = 0.039). In conclusion, long lasting exercise involvement protects against a maximal oxygen uptake and τpulmonary oxygen uptake deterioration in moderately active women. Novelty: Faster τ pulmonary oxygen uptake and shorter Tc of the VL explain 33% of the variance in superior maximal oxygen uptake attainment. No differences between age groups were found in τ pulmonary oxygen uptake, τΔHHb, and τHR during on-transients.
Collapse
Affiliation(s)
- Damir Zubac
- Institute for Kinesiology Research, Science and Research Center of Koper, Koper, Slovenia.,Faculty of Kinesiology, University of Split, Split, Croatia
| | | | - Zoran Valić
- Department of Integrative Physiology, University of Split, School of Medicine, Split, Croatia
| | - Boštjan Šimunič
- Institute for Kinesiology Research, Science and Research Center of Koper, Koper, Slovenia
| |
Collapse
|
32
|
Holmström P, Mulder E, Starfelt V, Lodin-Sundström A, Schagatay E. Spleen Size and Function in Sherpa Living High, Sherpa Living Low and Nepalese Lowlanders. Front Physiol 2020; 11:647. [PMID: 32695011 PMCID: PMC7339931 DOI: 10.3389/fphys.2020.00647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/20/2020] [Indexed: 11/13/2022] Open
Abstract
High-altitude (HA) natives have evolved some beneficial responses leading to superior work capacity at HA compared to native lowlanders. Our aim was to study two responses potentially protective against hypoxia: the spleen contraction elevating hemoglobin concentration (Hb) and the cardiovascular diving response in Sherpa highlanders, compared to lowlanders. Male participants were recruited from three groups: (1) 21 Sherpa living at HA (SH); (2) seven Sherpa living at low altitude (SL); and (3) ten native Nepalese lowlanders (NL). They performed three apneas spaced by a two-min rest at low altitude (1370 m). Their peripheral oxygen saturation (SpO2), heart rate (HR), and spleen volume were measured across the apnea protocol. Spleen volume at rest was 198 ± 56 mL in SH and 159 ± 35 mL in SL (p = 0.047). The spleen was larger in Sherpa groups compared to the 129 ± 22 mL in NL (p < 0.001 compared to SH; p = 0.046 compared to SL). Spleen contraction occurred in all groups during apnea, but it was greater in Sherpa groups compared to NL (p < 0.001). HR was lower in Sherpa groups compared to NL both during rest (SL: p < 0.001; SH: p = 0.003) and during maximal apneas (SL: p < 0.001; SH: p = 0.06). The apnea-induced HR reduction was 8 ± 8% in SH, 10 ± 4% in SL (NS), and 18 ± 6% in NL (SH: p = 0.005; SL: p = 0.021 compared to NL). Resting SpO2 was similar in all groups. The progressively decreasing baseline spleen size across SH, SL, and NL suggests a role of the spleen at HA and further that both genetic predisposition and environmental exposure determine human spleen size. The similar HR responses of SH and SL suggest that a genetic component is involved in determining the cardiovascular diving response.
Collapse
Affiliation(s)
- Pontus Holmström
- Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Eric Mulder
- Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Victor Starfelt
- Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Angelica Lodin-Sundström
- Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Department of Nursing Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Erika Schagatay
- Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
33
|
Taboni A, Fagoni N, Moia C, Vinetti G, Ferretti G. Gas exchange and cardiovascular responses during breath-holding in divers. Respir Physiol Neurobiol 2019; 267:27-34. [PMID: 31201868 DOI: 10.1016/j.resp.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/15/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022]
Abstract
To check whether the evolution of alveolar pressures of O2 (PAO2) and CO2 (PACO2) explains the cardiovascular responses to apnoea, eight divers performed resting apnoeas of increasing duration in air and in O2. We measured heart rate (fH), arterial pressure (AP), and peripheral resistances (TPR) beat-by-beat, PAO2 and PACO2 at the end of each apnoea. The three phases of the cardiovascular response to apnoea were observed. In O2, TPR increase (9 ± 4 mmHg min l-1) and fH decrease (-11 ± 8 bpm) were lower than in air (15 ± 5 mmHg min l-1 and -28 ± 13 bpm, respectively). At end of maximal apnoeas in air, PAO2 and PACO2 were 50 ± 9 and 48 ± 5 mmHg, respectively; corresponding values in O2 were 653 ± 8 mmHg and 55 ± 5 mmHg. At end of phase II, PAO2 and PACO2 in air were 90 ± 13 mmHg and 42 ± 4 mmHg respectively; corresponding values in O2 were 669 ± 7 mmHg and 47 ± 6 mmHg. The PACO2 increase may trigger the AP rise in phase III.
Collapse
Affiliation(s)
- Anna Taboni
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, rue Michel Servet 1, CH-1211, Geneva, Switzerland.
| | - Nazzareno Fagoni
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Christian Moia
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, rue Michel Servet 1, CH-1211, Geneva, Switzerland; Department of Basic Neurosciences, University of Geneva, rue Michel Servet 1, CH-1211, Geneva, Switzerland
| | - Giovanni Vinetti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Guido Ferretti
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, rue Michel Servet 1, CH-1211, Geneva, Switzerland; Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Department of Basic Neurosciences, University of Geneva, rue Michel Servet 1, CH-1211, Geneva, Switzerland
| |
Collapse
|
34
|
Viana E, Bentley DJ, Logan-Sprenger HM. A Physiological Overview of the Demands, Characteristics, and Adaptations of Highly Trained Artistic Swimmers: a Literature Review. SPORTS MEDICINE-OPEN 2019; 5:16. [PMID: 31089903 PMCID: PMC6517465 DOI: 10.1186/s40798-019-0190-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/21/2019] [Indexed: 11/23/2022]
Abstract
Artistic swimming (AS) is a very unique sport consisting of difficult artistically choreographed routines ranging in the number of athletes (one to ten: solo, duet, team, combination, highlight routine) and with elements performed quickly and precisely above, below, and on the surface of the water. As a result, the physical and physiological demands placed on an athlete are unique to the sport with the most pronounced adaptation being the bradycardic response to long apneic periods spent underwater while performing strenuous movements. This indeed influences training prescription and the desired training outcomes. This review paper explores the physiological demands of AS, the physiological characteristics that influence AS performance, and innovative approaches to enhancing training and performance in elite performers.
Collapse
Affiliation(s)
- Eric Viana
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, Canada.
| | - David J Bentley
- Canadian Sport Institute Ontario, 857 Morningside Avenue, Toronto, Ontario, Canada
| | - Heather M Logan-Sprenger
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, Canada.,Canadian Sport Institute Ontario, 857 Morningside Avenue, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Bain AR, Drvis I, Dujic Z, MacLeod DB, Ainslie PN. Physiology of static breath holding in elite apneists. Exp Physiol 2019; 103:635-651. [PMID: 29512224 DOI: 10.1113/ep086269] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/02/2018] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review provides an up-to-date assessment of the physiology involved with extreme static dry-land breath holding in trained apneists. What advances does it highlight? We specifically highlight the recent findings involved with the cardiovascular, cerebrovascular and metabolic function during a maximal breath hold in elite apneists. ABSTRACT Breath-hold-related activities have been performed for centuries, but only recently, within the last ∼30 years, has it emerged as an increasingly popular competitive sport. In apnoea sport, competition relates to underwater distances or simply maximal breath-hold duration, with the current (oxygen-unsupplemented) static breath-hold record at 11 min 35 s. Remarkably, many ultra-elite apneists are able to suppress respiratory urges to the point where consciousness fundamentally limits a breath-hold duration. Here, arterial oxygen saturations as low as ∼50% have been reported. In such cases, oxygen conservation to maintain cerebral functioning is critical, where responses ascribed to the mammalian dive reflex, e.g. sympathetically mediated peripheral vasoconstriction and vagally mediated bradycardia, are central. In defence of maintaining global cerebral oxygen delivery during prolonged breath holds, the cerebral blood flow may increase by ∼100% from resting values. Interestingly, near the termination of prolonged dry static breath holds, recent studies also indicate that reductions in the cerebral oxidative metabolism can occur, probably attributable to the extreme hypercapnia and irrespective of the hypoxaemia. In this review, we highlight and discuss the recent data on the cardiovascular, metabolic and, particularly, cerebrovascular function in competitive apneists performing maximal static breath holds. The physiological adaptation and maladaptation with regular breath-hold training are also summarized, and future research areas in this unique physiological field are highlighted; particularly, the need to determine the potential long-term health impacts of extreme breath holding.
Collapse
Affiliation(s)
- Anthony R Bain
- Center for Heart, Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada.,Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Ivan Drvis
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - David B MacLeod
- Human Pharmacology and Physiology Laboratory, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Philip N Ainslie
- Center for Heart, Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
36
|
Marlinge M, Coulange M, Fitzpatrick RC, Delacroix R, Gabarre A, Lainé N, Cautela J, Louge P, Boussuges A, Rostain J, Guieu R, Joulia FC. Physiological stress markers during breath-hold diving and SCUBA diving. Physiol Rep 2019; 7:e14033. [PMID: 30912280 PMCID: PMC6434169 DOI: 10.14814/phy2.14033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
This study investigated the sources of physiological stress in diving by comparing SCUBA dives (stressors: hydrostatic pressure, cold, and hyperoxia), apneic dives (hydrostatic pressure, cold, physical activity, hypoxia), and dry static apnea (hypoxia only). We hypothesized that despite the hypoxia induces by a long static apnea, it would be less stressful than SCUBA dive or apneic dives since the latter combined high pressure, physical activity, and cold exposure. Blood samples were collected from 12SCUBA and 12 apnea divers before and after dives. On a different occasion, samples were collected from the apneic group before and after a maximal static dry apnea. We measured changes in levels of the stress hormones cortisol and copeptin in each situation. To identify localized effects of the stress, we measured levels of the cardiac injury markers troponin (cTnI) and brain natriuretic peptide (BNP), the muscular stress markers myoglobin and lactate), and the hypoxemia marker ischemia-modified albumin (IMA). Copeptin, cortisol, and IMA levels increased for the apneic dive and the static dry apnea, whereas they decreased for the SCUBA dive. Troponin, BNP, and myoglobin levels increased for the apneic dive, but were unchanged for the SCUBA dive and the static dry apnea. We conclude that hypoxia induced by apnea is the dominant trigger for the release of stress hormones and cardiac injury markers, whereas cold or and hyperbaric exposures play a minor role. These results indicate that subjects should be screened carefully for pre-existing cardiac diseases before undertaking significant apneic maneuvers.
Collapse
Affiliation(s)
- Marion Marlinge
- C2VNINSERMINRAAix‐Marseille Université (AMU)MarseilleFrance
- APHM: Assistance Publique des Hopitaux de MarseilleMarseilleFrance
| | - Mathieu Coulange
- C2VNINSERMINRAAix‐Marseille Université (AMU)MarseilleFrance
- Department of Hyperbaric MedicineSainte Marguerite University HospitalMarseilleFrance
| | | | - Romain Delacroix
- C2VNINSERMINRAAix‐Marseille Université (AMU)MarseilleFrance
- APHM: Assistance Publique des Hopitaux de MarseilleMarseilleFrance
- Laboratory of BiochemistryTimone University HospitalMarseilleFrance
| | - Alexie Gabarre
- C2VNINSERMINRAAix‐Marseille Université (AMU)MarseilleFrance
- APHM: Assistance Publique des Hopitaux de MarseilleMarseilleFrance
- Laboratory of BiochemistryTimone University HospitalMarseilleFrance
| | - Nicolas Lainé
- APHM: Assistance Publique des Hopitaux de MarseilleMarseilleFrance
- Department of Hyperbaric MedicineSainte Marguerite University HospitalMarseilleFrance
| | | | - Pierre Louge
- Department of CardiologyNorth HospitalMarseilleFrance
| | - Alain Boussuges
- C2VNINSERMINRAAix‐Marseille Université (AMU)MarseilleFrance
- HIA Saint AnneToulonFrance
| | | | - Régis Guieu
- C2VNINSERMINRAAix‐Marseille Université (AMU)MarseilleFrance
- APHM: Assistance Publique des Hopitaux de MarseilleMarseilleFrance
| | - Fabrice C. Joulia
- C2VNINSERMINRAAix‐Marseille Université (AMU)MarseilleFrance
- UFR STAPS Université de ToulonLa GardeFrance
| |
Collapse
|
37
|
McCulloch PF, Lahrman KA, DelPrete B, DiNovo KM. Innervation of the Nose and Nasal Region of the Rat: Implications for Initiating the Mammalian Diving Response. Front Neuroanat 2018; 12:85. [PMID: 30483070 PMCID: PMC6243009 DOI: 10.3389/fnana.2018.00085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/28/2018] [Indexed: 11/13/2022] Open
Abstract
Most terrestrial animals demonstrate an autonomic reflex that facilitates survival during prolonged submersion under water. This diving response is characterized by bradycardia, apnea and selective increases in peripheral vascular resistance. Stimulation of the nose and nasal passages is thought to be primarily responsible for providing the sensory afferent signals initiating this protective reflex. Consequently, the primary objective of this research was to determine the central terminal projections of nerves innervating the external nose, nasal vestibule and nasal passages of rats. We injected wheat germ agglutinin (WGA) into specific external nasal locations, into the internal nasal passages of rats both with and without intact anterior ethmoidal nerves (AENs), and directly into trigeminal nerves innervating the nose and nasal region. The central terminations of these projections within the medulla were then precisely mapped. Results indicate that the internal nasal branch of the AEN and the nasopalatine nerve, but not the infraorbital nerve (ION), provide primary innervation of the internal nasal passages. The results also suggest afferent fibers from the internal nasal passages, but not external nasal region, project to the medullary dorsal horn (MDH) in an appropriate anatomical way to cause the activation of secondary neurons within the ventral MDH that express Fos protein during diving. We conclude that innervation of the anterior nasal passages by the AEN and nasopalatine nerve is likely to provide the afferent information responsible for the activation of secondary neurons within MDH during voluntary diving in rats.
Collapse
Affiliation(s)
- Paul F McCulloch
- Department of Physiology, College Graduate Studies, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Kenneth A Lahrman
- Department of Physiology, College Graduate Studies, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Benjamin DelPrete
- Department of Physiology, College Graduate Studies, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Karyn M DiNovo
- Department of Physiology, College Graduate Studies, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
38
|
Adaptation to Hypoxia in Sleep Apnea Patients: Multifaceted Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30357711 DOI: 10.1007/5584_2018_268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Obstructive sleep apnea syndrome (OSA) is a form of sleep disordered breathing. The key phenomena are multiple repetitive pauses or restriction of airflow in the airway, defined as apnea and hypopnea. This study was based on a retrospective analysis of the results of polysomnographic (PSG) recordings of 230 adult patients (62 women and 168 men), being evaluated for OSA. The mean age, body mass index (BMI), apnea-hypopnea index (AHI), and pulse oximetry (SO2 nadir) of all patients were 50.4 ± 12.7 years, 30.4 ± 5.4 kg/m2, 33.6 ± 26.6 1/h, and 80.7 ± 12.1%, respectively. Statistical analysis was performed taking into account the moment of obstructive apnea occurrence and duration, sleep stage, and the SaO2 nadir associated with these events. We found a lengthening of apneic episodes with progressing of sleep-time, which depended on the sleep-time. There was rather a fast increase in apnea duration in the first quartile of sleep-time. In the later sleep phases, the dynamics of the increase were four-fold weaker. The lengthening of apnea duration was dependent on the severity of AHI, but was hardly related to the sleep stage or arterial desaturation. In conclusion, the results revealed two time scales of a lengthening of apneic episodes as a function of sleep-time in OSA patients. Sympathetic activation and spleen reflex may be involved in the observed phenomenon. Although the exact mechanisms of increasing duration of apneic episodes with the passage of sleep remain elusive, we believe these mechanisms are liable to be multifaceted.
Collapse
|
39
|
Physiological resolution of periodic breath holding during heavy-intensity Fartlek exercise. Eur J Appl Physiol 2018; 118:2627-2639. [DOI: 10.1007/s00421-018-3986-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/02/2018] [Indexed: 11/25/2022]
|
40
|
Fernandez FA, Martin-Martin R, García-Camacha I, Juarez D, Fidel P, González-Ravé JM. Medium term effects of physical conditioning on breath-hold diving performance. Respir Physiol Neurobiol 2018; 259:70-74. [PMID: 30081211 DOI: 10.1016/j.resp.2018.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
The current study aimed to analyze the effects of physical conditioning inclusion on apnea performance after a 22-week structured apnea training program. Twenty-nine male breath-hold divers participated and were allocated into: (1) cross-training in apnea and physical activity (CT; n = 10); (2) apnea training only (AT; n = 10); and control group (CG; n = 9). Measures were static apnea (STA), dynamic with fins (DYN) and dynamic no fins (DNF) performance, body composition, hemoglobin, vital capacity (VC), maximal aerobic capacity (VO2max), resting metabolic rate, oxygen saturation, and pulse during a static apnea in dry conditions at baseline and after the intervention. Total performance, referred as POINTS (constructed from the variables STA, DNF and DYN) was used as a global performance variable on apnea indoor diving. + 30, +26 vs. + 4 average POINTS of difference after-before training for CT, AT and CG respectively were found. After a discriminant analysis, CT appears to be the most appropriate for DNF performance. The post-hoc analysis determined that the CT was the only group in which the difference of means was significant before and after training for the VC (p < 0.01) and VO2max (p < 0.05) variables. Inclusion of physical activity in apnea training increased VC and VO2max in breath hold divers; divers who followed a mixed training, physical training and hypoxic training, achieved increased DNF performance.
Collapse
Affiliation(s)
- F A Fernandez
- Breatherapy, Faculty of Health, CSEU La Salle, Madrid, Spain.
| | - R Martin-Martin
- Statistics and Operational Research Area, University of Castilla-la Mancha, Toledo, Spain
| | - I García-Camacha
- Statistics and Operational Research Area, University of Castilla-la Mancha, Toledo, Spain
| | - D Juarez
- Faculty of Sports Sciences, University of Castilla-La Mancha, Toledo, Spain
| | - P Fidel
- Statistics and Operational Research Area, University of Castilla-la Mancha, Toledo, Spain
| | - J M González-Ravé
- Faculty of Sports Sciences, University of Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
41
|
Prodel E, Barbosa TC, Nóbrega AC, Vianna LC. Cardiovascular response to trigeminal nerve stimulation at rest and during exercise in humans: does sex matter? Am J Physiol Regul Integr Comp Physiol 2018; 315:R68-R75. [DOI: 10.1152/ajpregu.00406.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sought to investigate the possibility that there are sex differences in the cardiovascular responses to trigeminal nerve stimulation (TGS) with cold exposure to the face at rest and during dynamic exercise. In 9 healthy men (age: 28 ± 3 yr; height: 178 ± 1 cm; weight: 77 ± 8 kg) and 13 women (age 26 ± 5 yr; height 164 ± 3 cm; weight 63 ± 7 kg) beat-to-beat heart rate (HR) and blood pressure were recorded. Mean arterial pressure (MAP), stroke volume (SV), cardiac index (CI), and total vascular resistance index (TVRI) were calculated. TGS was applied for 3 min at rest and in-between 10-min steady-state cycling exercise at a HR of 110 beats/min, the measurements were obtained during the last minute of each period. At rest, TGS increased MAP (men: Δ18 ± 8 mmHg; women: Δ23 ± 8 mmHg; means ± SD), TVRI (men: Δ1.1 ± 0.6 mmHg·l−1·min·m−2; women: Δ1.2 ± 1.2 mmHg·l−1·min·m−2) and SV (men: Δ19 ± 15 ml; women: Δ16 ± 11 ml) in both groups. CI increased with TGS in women but not in men. However, men presented a bradycardic response to TGS (Δ−11 ± 8 beats/min) that was not significant in women compared with baseline. Cycling exercise increased HR, MAP, SV, and CI and decreased TVRI in men and women. TGS during exercise further increased MAP in men and women and did not change CI in either group. SV and TVRI increased with TGS during exercise only in women. TGS during exercise evoked bradycardia in men (Δ−7 ± 9 beats/min), whereas HR was unchanged in women. Our findings indicate sex differences in TGS-related cardiovascular responses at rest and during exercise.
Collapse
Affiliation(s)
- Eliza Prodel
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Thales C. Barbosa
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Antonio C. Nóbrega
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Lauro C. Vianna
- NeuroVASQ–Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasilia, Federal District, Brazil
| |
Collapse
|
42
|
Abstract
Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018.
Collapse
|
43
|
Ichinose M, Matsumoto M, Fujii N, Yoshitake N, Nishiyasu T. Voluntary apnea during dynamic exercise activates the muscle metaboreflex in humans. Am J Physiol Heart Circ Physiol 2017; 314:H434-H442. [PMID: 29101169 DOI: 10.1152/ajpheart.00367.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voluntary apnea during dynamic exercise evokes marked bradycardia, peripheral vasoconstriction, and pressor responses. However, the mechanism(s) underlying the cardiovascular responses seen during apnea in exercising humans is unknown. We therefore tested the hypothesis that the muscle metaboreflex contributes to the apnea-induced pressor response during dynamic exercise. Thirteen healthy subjects participated in apnea and control trials. In both trials, subjects performed a two-legged dynamic knee extension exercise at a workload that elicited heart rates at ~100 beats/min. In the apnea trial, after reaching a steady state, subjects began voluntary apnea. Immediately after cessation of the apnea, arterial occlusion was initiated at both thighs and the subjects stopped exercising. The occlusion was sustained for 3 min in the postexercise period. In the control trial, the occlusion was started without subjects performing the apnea. The apnea induced marked bradycardia, pressor responses, and decreases in arterial O2 saturation, cardiac output, and total vascular conductance. In addition, arterial blood pressure was significantly higher and total vascular conductance was significantly lower in the apnea trials than the control trials throughout the occlusion period. In separate sessions, we measured apnea-induced changes in exercising leg blood flow in the same subjects. Leg blood flow was significantly reduced by apnea and reached the resting level at the peak of the apnea response. We conclude that the muscle metaboreflex is activated by the decrease in O2 delivery to the working muscle during apnea in exercising humans and contributes to the large pressor response. NEW & NOTEWORTHY We demonstrated that apnea during dynamic exercise activates the muscle metaboreflex in humans. This result indicates that a reduction in O2 delivery to working muscle triggers the muscle metaboreflex during apnea. Activation of the muscle metaboreflex is one of the mechanisms underlying the marked apnea-induced pressor response.
Collapse
Affiliation(s)
- Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University , Tokyo , Japan
| | - Mayumi Matsumoto
- Institute of Health and Sport Sciences, University of Tsukuba , Ibaraki , Japan
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba , Ibaraki , Japan
| | - Narumi Yoshitake
- Institute of Health and Sport Sciences, University of Tsukuba , Ibaraki , Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sport Sciences, University of Tsukuba , Ibaraki , Japan
| |
Collapse
|
44
|
Guimard A, Collomp K, Zorgati H, Brulaire S, Woorons X, Amiot V, Prieur F. Effect of swim intensity on responses to dynamic apnoea. J Sports Sci 2017; 36:1015-1021. [PMID: 28682161 DOI: 10.1080/02640414.2017.1349328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of this study was to determine the influence of swim intensity on acute responses to dynamic apnoea. 9 swimmers performed one 50 m front crawl trial in four different conditions: at 400 m velocity (V400) with normal breathing (NB), at V400 in complete apnoea (Ap), at maximal velocity (Vmax) with NB and at Vmax in Ap. Peak heart rate (HRpeak), blood lactate concentration after exercise (Lacpost ex) and Borg rating of perceived exertion (RPE) were measured. Arterial oxygen saturation (SpO2) was monitored with a pulse oximeter at forehead level during and after exercise. In Ap, swimming at V400 induced a significantly lower HRpeak and Lacpost ex than swimming at Vmax whilst RPE and the kinetics of SpO2 were not different at V400 and at Vmax. The minimal value of SpO2 in Ap was reached 10 to 11 s after the end of V400 and Vmax (81.7 ± 10.1% and 84.4 ± 10.6%, respectively). Swimming a 50 m front crawl in Ap resulted in a large decrease in SpO2 which occurred only after the cessation of exercise. The higher duration of apnoea during submaximal exercise could explain why SpO2 and RPE reached the same values as for maximal exercise..
Collapse
Affiliation(s)
- A Guimard
- a CIAMS , Univ Paris-Sud, Université Paris Saclay , Orsay Cedex , France.,b CIAMS, Université d'Orléans , Orléans , France
| | - K Collomp
- a CIAMS , Univ Paris-Sud, Université Paris Saclay , Orsay Cedex , France.,b CIAMS, Université d'Orléans , Orléans , France .,c Département des Analyses , AFLD , Chatenay-Malabry , France
| | - H Zorgati
- d Laboratory of Physiology and Functional Explorations, Ibn Eljazzar Faculty of Medicine , University of Sousse , Sousse , Tunisia
| | - S Brulaire
- a CIAMS , Univ Paris-Sud, Université Paris Saclay , Orsay Cedex , France.,b CIAMS, Université d'Orléans , Orléans , France
| | - X Woorons
- e Unité de Recherche Pluridisciplinaire Sport Santé Société (URePSSS) -EA 7369 , Université de Lille , Lille , France
| | - V Amiot
- f Service de Médecine du Sport et d'Exploration Fonctionnelle Respiratoire , CHR Orléans La Source , Orléans Cedex 1 , France
| | - F Prieur
- a CIAMS , Univ Paris-Sud, Université Paris Saclay , Orsay Cedex , France.,b CIAMS, Université d'Orléans , Orléans , France
| |
Collapse
|
45
|
Bierens JJLM, Lunetta P, Tipton M, Warner DS. Physiology Of Drowning: A Review. Physiology (Bethesda) 2017; 31:147-66. [PMID: 26889019 DOI: 10.1152/physiol.00002.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Drowning physiology relates to two different events: immersion (upper airway above water) and submersion (upper airway under water). Immersion involves integrated cardiorespiratory responses to skin and deep body temperature, including cold shock, physical incapacitation, and hypovolemia, as precursors of collapse and submersion. The physiology of submersion includes fear of drowning, diving response, autonomic conflict, upper airway reflexes, water aspiration and swallowing, emesis, and electrolyte disorders. Submersion outcome is determined by cardiac, pulmonary, and neurological injury. Knowledge of drowning physiology is scarce. Better understanding may identify methods to improve survival, particularly related to hot-water immersion, cold shock, cold-induced physical incapacitation, and fear of drowning.
Collapse
Affiliation(s)
| | - Philippe Lunetta
- Department of Pathology and Forensic Medicine, University of Turku, Turku, Finland
| | - Mike Tipton
- Department of Sport and Exercise Science, Extreme Environments Laboratory, University of Portsmouth, Portsmouth, United Kingdom; and
| | - David S Warner
- Departments of Anesthesiology, Neurobiology and Surgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
46
|
Oh YJ, Jung JY, Kim SS, Chae KS, Rhu J, Lee C. The association of kidney function with repetitive breath-hold diving activities of female divers from Korea, Haenyeo. BMC Nephrol 2017; 18:75. [PMID: 28228118 PMCID: PMC5322595 DOI: 10.1186/s12882-017-0481-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/09/2017] [Indexed: 02/04/2023] Open
Abstract
Background Voluntary apnea during breath-hold diving (BHD) induces cardiovascular changes including bradycardia, reduced cardiac output, and arterial hypertension. Although the impacts of repetitive BHD on cardiovascular health have been studied previously, the long-term risk for kidney dysfunction has never been investigated. Methods A cross-sectional propensity score-matched study was performed to evaluate the influence of repetitive long-lasting BHD on kidney function. Using matching propensity scores (PS), 715 breath-hold female divers (Haenyeo) and non-divers were selected for analysis from 1,938 female divers and 3,415 non-divers, respectively. The prevalence of chronic kidney disease (CKD) defined as an estimated glomerular filtration rate (eGFR) calculated to be less than 60 ml/min/1.73 m2 was investigated in both diver and non-diver groups. Results The prevalence of CKD was significantly higher in breath-hold divers compared with non-divers after PS matching (12.6% vs. 8.0%, P = 0.004). In multivariate analysis, BHD activity was significantly associated with the risk of CKD in an unmatched cohort (OR, 1.976; 95% CI, 1.465–2.664). In the PS-matched cohort, BHD remained the independent risk factor for CKD even after adjusting for multiple covariates (OR 1.967; 95% CI, 1.341–2.886). Conclusion Shallow but repetitive intermittent apnea by BHD, sustained for a long period of time, may potentially cause a deterioration in kidney function, as a long-term consequence. Electronic supplementary material The online version of this article (doi:10.1186/s12882-017-0481-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Jung Oh
- Department of Internal Medicine, Cheju Halla General Hospital, Doryeong-ro 65, Jeju, 63127, Korea.,Department of Internal Medicine, Gachon University Graduate School of Medicine, Incheon, Korea
| | - Ji Yong Jung
- Department of Internal Medicine, Gachon University School of Medicine, Incheon, Korea.,Department of Internal Medicine, Division of Nephrology, Gachon University Gil Medical Center, Incheon, Korea
| | - Sung Soo Kim
- Department of Internal Medicine, Cheju Halla General Hospital, Doryeong-ro 65, Jeju, 63127, Korea
| | - Kyong-Suk Chae
- Department of Internal Medicine, Cheju Halla General Hospital, Doryeong-ro 65, Jeju, 63127, Korea
| | - Jiwon Rhu
- Department of Internal Medicine, Cheju Halla General Hospital, Doryeong-ro 65, Jeju, 63127, Korea
| | - Chungsik Lee
- Department of Internal Medicine, Cheju Halla General Hospital, Doryeong-ro 65, Jeju, 63127, Korea.
| |
Collapse
|
47
|
Baranova TI, Berlov DN, Glotov OS, Korf EA, Minigalin AD, Mitrofanova AV, Ahmetov II, Glotov AS. Genetic determination of the vascular reactions in humans in response to the diving reflex. Am J Physiol Heart Circ Physiol 2016; 312:H622-H631. [PMID: 27923785 DOI: 10.1152/ajpheart.00080.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to investigate the genetic mechanisms of the defense vascular reactions in response to the diving reflex in humans with polymorphisms in the genes ADBR2, ACE, AGTR1, BDKRB2, and REN We hypothesized that protective vascular reactions, in response to the diving reflex, are genetically determined and are distinguished in humans with gene polymorphisms of the renin-angiotensin and kinin-bradykinin system. A total of 80 subjects (19 ± 1.4 yr) participated in the study. The intensity of the vascular response was estimated using photoplethysmogram. The I/D polymorphism (rs4340) of ACE was analyzed by PCR. REN (G/A, rs2368564), AGTR1 (A/C, rs5186), BDKRB2 (T/C, rs1799722), and ADBR2 (A/G, rs1042713) polymorphisms were examined using the two-step multiplex PCR followed by carrying allele hybridization on the biochip. Subjects with the BDKRB2 (C/C), ACE (D/D), and ADBR2 (G/G, G/A) genotypes exhibited the strongest peripheral vasoconstriction in response to diving. In subjects with a combination of the BDKRB2 (C/C) plus ACE (D/D) genotypes, we observed the lowest pulse wave amplitude and pulse transit time values and the highest arterial blood pressure during face immersion compared with the heterozygous individuals, suggesting that these subjects are more susceptible to diving hypoxia. This study observed that humans with gene polymorphisms of the renin-angiotensin and kinin-bradykinin systems demonstrate various expressions of protective vascular reactions in response to the diving reflex. The obtained results might be used in estimation of resistance to hypoxia of any origin in human beings or in a medical practice.NEW & NOTEWORTHY Our study demonstrates that the vascular reactions in response to the diving reflex are genetically determined and depend on gene polymorphisms of the kinin-bradykinin and the renin-angiotensin systems.
Collapse
Affiliation(s)
- Tatiana I Baranova
- Department of General Physiology, Saint Petersburg State University, Saint Petersburg, Russia;
| | - Dmitrii N Berlov
- Department of General Physiology, Saint Petersburg State University, Saint Petersburg, Russia.,ITMO University, Saint Petersburg, Russia
| | - Oleg S Glotov
- Biobank of the Research Park, Saint Petersburg State University, Saint Petersburg, Russia
| | - Ekaterina A Korf
- Department of General Physiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alexey D Minigalin
- Department of General Physiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alla V Mitrofanova
- Katz Drug Discovery Center and Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ildus I Ahmetov
- Ildus I. Ahmetov Sport Technology Research Center, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia; and
| | - Andrey S Glotov
- Biobank of the Research Park, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
48
|
Anderson S, Chamberlain MR, Musgrove S, Partusch A, Tice KRJ, Thorp DB. Is V̇O 2 suppressed during nonapnoeic facial submersion? Appl Physiol Nutr Metab 2016; 41:1171-1176. [PMID: 27801599 DOI: 10.1139/apnm-2016-0268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian dive response (DR) is described as oxygen-conserving based on measures of bradycardia, peripheral vasoconstriction, and decreased ventilation (V̇E). Using a model of simulated diving, this study examined the effect of nonapnoeic facial submersions (NAFS) on oxygen consumption (V̇O2). 19 participants performed four 2-min NAFS with 8 min of rest between each. Two submersions were performed in 5 °C water, 2 in 25 °C water. Heart rate (HR) was collected using chest strap monitors. A tube connected to the inspired port of a non-rebreathing valve allowed participants to breathe during facial submersion. Expired air was directed to a metabolic cart to determine V̇O2 and V̇E. Baseline (BL) HR, V̇O2, and V̇E values were determined by the average during the 2 min prior to facial submersion; cold shock response (CSR) values were the maximum during the first 30 s of facial submersion; and NAFS values were the minimum during the last 90 s of facial submersion. A 2-way repeated-measures ANOVA indicated that both HR and V̇E were greater during the CSR (92.5 ± 3.6 beats/min, 16.3 ± 0.8 L/min) compared with BL (78.9 ± 3.2 beats/min, 8.7 ± 0.4 L/min), while both were decreased from BL during the NAFS (60.0 ± 4.0 beats/min, 6.0 ± 0.4 L/min) (all, p < 0.05). HRCSR was higher and HRNAFS lower in 5 °C versus 25 °C water (p < 0.05), while V̇E was greater in 5 °C conditions (p < 0.05). V̇O2 exceeded BL during the CSR and decreased below BL during the NAFS (BL: 5.3 ± 0.1, CSR: 9.8 ± 0.4, NAFS: 3.1 ± 0.2 mL·kg-1·min-1, p < 0.05). The data illustrate that NAFS alone contributes to the oxygen conservation associated with the human DR.
Collapse
Affiliation(s)
- Sarah Anderson
- Department of Human Physiology, Gonzaga University, 502 E Boone Ave., Spokane, WA 99258, USA.,Department of Human Physiology, Gonzaga University, 502 E Boone Ave., Spokane, WA 99258, USA
| | - Maggie R Chamberlain
- Department of Human Physiology, Gonzaga University, 502 E Boone Ave., Spokane, WA 99258, USA.,Department of Human Physiology, Gonzaga University, 502 E Boone Ave., Spokane, WA 99258, USA
| | - Samantha Musgrove
- Department of Human Physiology, Gonzaga University, 502 E Boone Ave., Spokane, WA 99258, USA.,Department of Human Physiology, Gonzaga University, 502 E Boone Ave., Spokane, WA 99258, USA
| | - Antonia Partusch
- Department of Human Physiology, Gonzaga University, 502 E Boone Ave., Spokane, WA 99258, USA.,Department of Human Physiology, Gonzaga University, 502 E Boone Ave., Spokane, WA 99258, USA
| | - Keagan R J Tice
- Department of Human Physiology, Gonzaga University, 502 E Boone Ave., Spokane, WA 99258, USA.,Department of Human Physiology, Gonzaga University, 502 E Boone Ave., Spokane, WA 99258, USA
| | - David B Thorp
- Department of Human Physiology, Gonzaga University, 502 E Boone Ave., Spokane, WA 99258, USA.,Department of Human Physiology, Gonzaga University, 502 E Boone Ave., Spokane, WA 99258, USA
| |
Collapse
|
49
|
Costalat G, Coquart J, Castres I, Joulia F, Sirost O, Clua E, Lemaître F. The oxygen-conserving potential of the diving response: A kinetic-based analysis. J Sports Sci 2016; 35:678-687. [PMID: 27167834 DOI: 10.1080/02640414.2016.1183809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We investigated the oxygen-conserving potential of the human diving response by comparing trained breath-hold divers (BHDs) to non-divers (NDs) during simulated dynamic breath-holding (BH). Changes in haemodynamics [heart rate (HR), stroke volume (SV), cardiac output (CO)] and peripheral muscle oxygenation [oxyhaemoglobin ([HbO2]), deoxyhaemoglobin ([HHb]), total haemoglobin ([tHb]), tissue saturation index (TSI)] and peripheral oxygen saturation (SpO2) were continuously recorded during simulated dynamic BH. BHDs showed a breaking point in HR kinetics at mid-BH immediately preceding a more pronounced drop in HR (-0.86 bpm.%-1) while HR kinetics in NDs steadily decreased throughout BH (-0.47 bpm.%-1). By contrast, SV remained unchanged during BH in both groups (all P > 0.05). Near-infrared spectroscopy (NIRS) results (mean ± SD) expressed as percentage changes from the initial values showed a lower [HHb] increase for BHDs than for NDs at the cessation of BH (+24.0 ± 10.1 vs. +39.2 ± 9.6%, respectively; P < 0.05). As a result, BHDs showed a [tHb] drop that NDs did not at the end of BH (-7.3 ± 3.2 vs. -3.0 ± 4.7%, respectively; P < 0.05). The most striking finding of the present study was that BHDs presented an increase in oxygen-conserving efficiency due to substantial shifts in both cardiac and peripheral haemodynamics during simulated BH. In addition, the kinetic-based approach we used provides further credence to the concept of an "oxygen-conserving breaking point" in the human diving response.
Collapse
Affiliation(s)
| | - Jeremy Coquart
- a CETAPS Laboratory , Normandie University , Mont Saint-Aignan , France
| | - Ingrid Castres
- a CETAPS Laboratory , Normandie University , Mont Saint-Aignan , France
| | - Fabrice Joulia
- b UMR MD2, Aix Marseille University and IRBA , Marseille , France
| | - Olivier Sirost
- a CETAPS Laboratory , Normandie University , Mont Saint-Aignan , France
| | - Eric Clua
- c NRS-EPHE , USR3278 , Papetoai , French Polynesia
| | - Frédéric Lemaître
- a CETAPS Laboratory , Normandie University , Mont Saint-Aignan , France
| |
Collapse
|
50
|
Konstantinidou S, Soultanakis H. Cardiorespiratory responses and reduced apneic time to cold-water face immersion after high intensity exercise. Respir Physiol Neurobiol 2015; 220:33-9. [PMID: 26343750 DOI: 10.1016/j.resp.2015.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 11/29/2022]
Abstract
Apnea after exercise may evoke a neurally mediated conflict that may affect apneic time and create a cardiovascular strain. The physiological responses, induced by apnea with face immersion in cold water (10 °C), after a 3-min exercise bout, at 85% of VO2max,were examined in 10 swimmers. A pre-selected 40-s apnea, completed after rest (AAR), could not be met after exercise (AAE), and was terminated with an agonal gasp reflex, and a reduction of apneic time, by 75%. Bradycardia was evident with immersion after both, 40-s of AAR and after AAE (P<0.05). The dramatic elevation of, systolic pressure and pulse pressure, after AAE, were indicative of cardiovascular stress. Blood pressure after exercise without apnea was not equally elevated. The activation of neurally opposing functions as those elicited by the diving reflex after high intensity exercise may create an autonomic conflict possibly related to oxygen-conserving reflexes stimulated by the trigeminal nerve, and those elicited by exercise.
Collapse
Affiliation(s)
- Sylvia Konstantinidou
- National & Kapodistrian University of Athens, School of Physical Education and Sports Sciences, Division of Aquatic Sports, Ethnikis Antistasis 41, Dafni, 17237 Athens, Greece.
| | - Helen Soultanakis
- National & Kapodistrian University of Athens, School of Physical Education and Sports Sciences, Division of Aquatic Sports, Ethnikis Antistasis 41, Dafni, 17237 Athens, Greece.
| |
Collapse
|