1
|
Pimentel VD, Acha BT, Gomes GF, Macedo de Sousa Cardoso JL, Sena da Costa CL, Carvalho Batista NJ, Rufino Arcanjo DD, Alves WDS, de Assis Oliveira F. Anti-inflammatory effect of Anadenanthera colubrina var. cebil (Griseb.) Altschul in experimental elastase-induced pulmonary emphysema in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118216. [PMID: 38642622 DOI: 10.1016/j.jep.2024.118216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants have shown promise in the search for new treatments of pulmonary emphysema. Anadenanthera colubrina, a species native to the Caatinga biome in northeastern Brazil, is widely recognized and traditionally employed in the treatment of pulmonary diseases. Many studies corroborate popular knowledge about the medicinal applications of A. colubrina, which has demonstrated a remarkable variety of pharmacological properties, however, its anti-inflammatory and antioxidant properties are highlighted. AIM OF THE STUDY The objective of this study was to investigate the anti-inflammatory potential of the crude hydroethanolic extract of A. colubrina var. cebil (Griseb.) Altschul on pulmonary emphysema in rats as well as to determine its potential genotoxic and cytotoxic effects using the micronucleus assay. MATERIALS AND METHODS The stem bark of the plant was collected in Pimenteiras-PI and sample was extracted by maceration using 70% ethanol. A portion of the extract underwent phytochemical analyses using TLC and HPLC. In this study, 8-week-old, male Wistar rats weighing approximately ±200 g was utilized following approval by local ethics committee for animal experimentation (No. 718/2022). Pulmonary emphysema was induced through orotracheal instillation of elastase, and treatment with A. colubrina extract or dexamethasone (positive control) concomitantly during induction. Twenty-eight days after the initiation of the protocol, plasma was used for cytokine measurement. Bronchoalveolar lavage (BAL) was used for leukocyte count. After euthanasia, lung samples were processed for histological analysis and quantification of oxidative stress markers. The micronucleus test was performed by evaluating the number of polychromatic erythrocytes (PCE) with micronuclei (MNPCE) to verify potential genotoxic effects of A. colubrina. A differential count of PCE and normochromatic erythrocytes (NCE) was performed to verify the potential cytotoxicity of the extract. Parametric data were subjected to normality analysis and subsequently to analysis of variance and Tukey or Dunnett post-test, non-parametric data were treated using the Kruskal-Wallis test with Dunn's post-test for unpaired samples. P value < 0.05 were considered significant. RESULTS The A. colubrina extract did not show a significant increase in the number of MNPCE (p > 0.05), demonstrating low genotoxicity. No changes were observed in the PCE/NCE ratio of treated animals, compared with the vehicle, suggesting low cytotoxic potential of the extract. A significant reduction (p < 0.05) in neutrophilic inflammation was observed in the lungs of rats treated with the extract, evidenced by presence of these cells in both the tissue and BAL. The extract also demonstrated pulmonary antioxidant activity, with a significant decrease (p < 0.05) in myeloperoxidase, malondialdehyde, and nitrite levels. TNFα, IL-1β, and IL-6 levels, as well as alveolar damage, were significantly reduced in animals treated with A. colubrina extract. Phytochemical analyses identified the presence of phenolic compounds and hydrolysable tannins in the A. colubrina extract. CONCLUSIONS The findings of this study highlights the safety of the hydroethanolic extract of Anadenanthera colubrina, and demonstrates its potential as a therapeutic approach in the treatment of emphysema. The observed properties of this medicinal plant provide an optimistic outlook in the development of therapies for the treatment of pulmonary emphysema.
Collapse
Affiliation(s)
- Vinicius Duarte Pimentel
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil.
| | - Boris Timah Acha
- Laboratory of Functional and Molecular Studies in Physiopharmacology (LAFMOL), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Gabriel Felicio Gomes
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - João Luiz Macedo de Sousa Cardoso
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Charllyton Luis Sena da Costa
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Nelson Jorge Carvalho Batista
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Daniel Dias Rufino Arcanjo
- Laboratory of Functional and Molecular Studies in Physiopharmacology (LAFMOL), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Wellington Dos Santos Alves
- Laboratory of Natural Products and Bioprospection (LabPNBio), State University of Piauí, Teresina, Piauí, Brazil
| | - Francisco de Assis Oliveira
- Laboratory of Inflammation Pharmacology (LAFIN), Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
2
|
Thompson RB, Darquenne C. Magnetic Resonance Imaging of Aerosol Deposition. J Aerosol Med Pulm Drug Deliv 2023; 36:228-234. [PMID: 37523222 DOI: 10.1089/jamp.2023.29087.rbt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Nuclear magnetic resonance imaging (MRI) uses non-ionizing radiation and offers a host of contrast mechanisms with the potential to quantify aerosol deposition. This chapter introduces the physics of MRI, its use in lung imaging, and more specifically, the methods that are used for the detection of regional distributions of inhaled particles. The most common implementation of MRI is based on imaging of hydrogen atoms (1H) in water. The regional deposition of aerosol particles can be measured by the perturbation of the acquired 1H signals via labeling of the aerosol with contrast agents. Existing in vitro human and in vivo animal model measurements of regional aerosol deposition in the respiratory tract are described, demonstrating the capability of MRI to assess aerosol deposition in the lung.
Collapse
Affiliation(s)
- Richard B Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Chantal Darquenne
- Department of Medicine, University of California San Diego, San Diego, California, USA
| |
Collapse
|
3
|
Kubovcikova M, Sobotova R, Zavisova V, Antal I, Khmara I, Lisnichuk M, Bednarikova Z, Jurikova A, Strbak O, Vojtova J, Mikolka P, Gombos J, Lokajova A, Gazova Z, Koneracka M. N-Acetylcysteine-Loaded Magnetic Nanoparticles for Magnetic Resonance Imaging. Int J Mol Sci 2023; 24:11414. [PMID: 37511170 PMCID: PMC10380599 DOI: 10.3390/ijms241411414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterized by the rapid onset of lung inflammation Therefore, monitoring the spatial distribution of the drug directly administered to heterogeneously damaged lungs is desirable. In this work, we focus on optimizing the drug N-acetylcysteine (NAC) adsorption on poly-l-lysine-modified magnetic nanoparticles (PLLMNPs) to monitor the drug spatial distribution in the lungs using magnetic resonance imaging (MRI) techniques. The physicochemical characterizations of the samples were conducted in terms of morphology, particle size distributions, surface charge, and magnetic properties followed by the thermogravimetric quantification of NAC coating and cytotoxicity experiments. The sample with the theoretical NAC loading concentration of 0.25 mg/mL was selected as an optimum due to the hydrodynamic nanoparticle size of 154 nm, the surface charge of +32 mV, good stability, and no cytotoxicity. Finally, MRI relaxometry confirmed the suitability of the sample to study the spatial distribution of the drug in vivo using MRI protocols. We showed the prevailing transverse relaxation with high transverse relaxivity values and a high r2(*)/r1 ratio, causing visible hypointensity in the final MRI signal. Furthermore, NAC adsorption significantly affects the relaxation properties of PLLMNPs, which can help monitor drug release in vitro/in vivo.
Collapse
Affiliation(s)
- Martina Kubovcikova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Radka Sobotova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Vlasta Zavisova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Iryna Antal
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Iryna Khmara
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Maksym Lisnichuk
- Faculty of Science, Pavol Jozef Safarik University, Park Angelinum 9, 04001 Kosice, Slovakia
| | - Zuzana Bednarikova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Alena Jurikova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Oliver Strbak
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovakia
| | - Jana Vojtova
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovakia
| | - Pavol Mikolka
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovakia
| | - Jan Gombos
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovakia
| | - Alica Lokajova
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 03601 Martin, Slovakia
| | - Zuzana Gazova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Martina Koneracka
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| |
Collapse
|
4
|
Man F, Tang J, Swedrowska M, Forbes B, T M de Rosales R. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv Drug Deliv Rev 2023; 192:114641. [PMID: 36509173 PMCID: PMC10227194 DOI: 10.1016/j.addr.2022.114641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Direct delivery to the lung via inhalation is arguably one of the most logical approaches to treat lung cancer using drugs. However, despite significant efforts and investment in this area, this strategy has not progressed in clinical trials. Imaging drug delivery is a powerful tool to understand and develop novel drug delivery strategies. In this review we focus on imaging studies of drug delivery by the inhalation route, to provide a broad overview of the field to date and attempt to better understand the complexities of this route of administration and the significant barriers that it faces, as well as its advantages. We start with a discussion of the specific challenges for drug delivery to the lung via inhalation. We focus on the barriers that have prevented progress of this approach in oncology, as well as the most recent developments in this area. This is followed by a comprehensive overview of the different imaging modalities that are relevant to lung drug delivery, including nuclear imaging, X-ray imaging, magnetic resonance imaging, optical imaging and mass spectrometry imaging. For each of these modalities, examples from the literature where these techniques have been explored are provided. Finally the different applications of these technologies in oncology are discussed, focusing separately on small molecules and nanomedicines. We hope that this comprehensive review will be informative to the field and will guide the future preclinical and clinical development of this promising drug delivery strategy to maximise its therapeutic potential.
Collapse
Affiliation(s)
- Francis Man
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Jie Tang
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Magda Swedrowska
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Ben Forbes
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
5
|
Tay ZW, Chandrasekharan P, Fellows BD, Arrizabalaga IR, Yu E, Olivo M, Conolly SM. Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer. Cancers (Basel) 2021; 13:5285. [PMID: 34771448 PMCID: PMC8582440 DOI: 10.3390/cancers13215285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Magnetic Particle Imaging (MPI) is an emerging imaging modality for quantitative direct imaging of superparamagnetic iron oxide nanoparticles (SPION or SPIO). With different physics from MRI, MPI benefits from ideal image contrast with zero background tissue signal. This enables clear visualization of cancer with image characteristics similar to PET or SPECT, but using radiation-free magnetic nanoparticles instead, with infinite-duration reporter persistence in vivo. MPI for cancer imaging: demonstrated months of quantitative imaging of the cancer-related immune response with in situ SPION-labelling of immune cells (e.g., neutrophils, CAR T-cells). Because MPI suffers absolutely no susceptibility artifacts in the lung, immuno-MPI could soon provide completely noninvasive early-stage diagnosis and treatment monitoring of lung cancers. MPI for magnetic steering: MPI gradients are ~150 × stronger than MRI, enabling remote magnetic steering of magneto-aerosol, nanoparticles, and catheter tips, enhancing therapeutic delivery by magnetic means. MPI for precision therapy: gradients enable focusing of magnetic hyperthermia and magnetic-actuated drug release with up to 2 mm precision. The extent of drug release from the magnetic nanocarrier can be quantitatively monitored by MPI of SPION's MPS spectral changes within the nanocarrier. CONCLUSION MPI is a promising new magnetic modality spanning cancer imaging to guided-therapy.
Collapse
Affiliation(s)
- Zhi Wei Tay
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Prashant Chandrasekharan
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Benjamin D. Fellows
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Irati Rodrigo Arrizabalaga
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Elaine Yu
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Malini Olivo
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Steven M. Conolly
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| |
Collapse
|
6
|
Lim SH, Park S, Lee CC, Ho PCL, Kwok PCL, Kang L. A 3D printed human upper respiratory tract model for particulate deposition profiling. Int J Pharm 2021; 597:120307. [PMID: 33540019 DOI: 10.1016/j.ijpharm.2021.120307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Pulmonary route is the main route of drug delivery for patients with asthma and chronic obstructive pulmonary diseases, offering several advantages over the oral route. Determining the amount of drug deposited onto various parts of the respiratory tract allows for a good correlation to clinical efficacy of inhalation drug devices. However, current in vitro cascade impactors measure only the aerodynamic particle size distribution, which does not truly represent the in vivo deposition pattern in human respiratory tract. In this study, a human upper respiratory tract model was fabricated using a 3D printer and subsequently characterized for its dimensional accuracy, surface finishing and air leaking. The effects of using a spacer and/or various airflow rates were also investigated. To assess this in vitro model, the deposition pattern of a model drug, namely, salbutamol sulphate, was tested. The resultant deposition pattern of salbutamol sulphate from a metered dose inhaler at 15 L per minute with the spacer, showed no significant difference from that of a published radiological in vivo study performed in adult humans. In addition, it was also found that the deposition pattern of salbutamol at 35 L per minute was comparable to the results of another published study in human. This in vitro model, showing reasonable in vitro-in vivo correlation, may provide opportunities for personalized medicine in special populations or disease states.
Collapse
Affiliation(s)
- Seng Han Lim
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, Singapore 117543, Republic of Singapore
| | - Sol Park
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia
| | - Chun Chuan Lee
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, Singapore 117543, Republic of Singapore
| | - Paul Chi Lui Ho
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, Singapore 117543, Republic of Singapore
| | - Philip Chi Lip Kwok
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia.
| |
Collapse
|
7
|
Wyszogrodzka-Gaweł G, Dorożyński P, Giovagnoli S, Strzempek W, Pesta E, Węglarz WP, Gil B, Menaszek E, Kulinowski P. An Inhalable Theranostic System for Local Tuberculosis Treatment Containing an Isoniazid Loaded Metal Organic Framework Fe-MIL-101-NH2-From Raw MOF to Drug Delivery System. Pharmaceutics 2019; 11:pharmaceutics11120687. [PMID: 31861138 PMCID: PMC6969914 DOI: 10.3390/pharmaceutics11120687] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022] Open
Abstract
The theranostic approach to local tuberculosis treatment allows drug delivery and imaging of the lungs for a better control and personalization of antibiotic therapy. Metal-organic framework (MOF) Fe-MIL-101-NH2 nanoparticles were loaded with isoniazid. To optimize their functionality a 23 factorial design of spray-drying with poly(lactide-co-glycolide) and leucine was employed. Powder aerodynamic properties were assessed using a twin stage impinger based on the dose emitted and the fine particle fraction. Magnetic resonance imaging (MRI) contrast capabilities were tested on porous lung tissue phantom and ex vivo rat lungs. Cell viability and uptake studies were conducted on murine macrophages RAW 246.9. The final product showed good aerodynamic properties, modified drug release, easier uptake by macrophages in relation to raw isoniazid-MOF, and MRI contrast capabilities. Starting from raw MOF, a fully functional inhalable theranostic system with a potential application in personalized tuberculosis pulmonary therapy was developed.
Collapse
Affiliation(s)
- Gabriela Wyszogrodzka-Gaweł
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-068 Kraków, Poland; (G.W.-G.); (E.M.)
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland
- Correspondence:
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, via del Liceo 1, University of Perugia, 06123 Perugia, Italy;
| | - Weronika Strzempek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (W.S.); (B.G.)
| | - Edyta Pesta
- Department of Pharmaceutical Analysis, Research Network Łukasiewicz—Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, Poland;
| | - Władysław P. Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
| | - Barbara Gil
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (W.S.); (B.G.)
| | - Elżbieta Menaszek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-068 Kraków, Poland; (G.W.-G.); (E.M.)
| | - Piotr Kulinowski
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Kraków, Poland;
| |
Collapse
|
8
|
Poorbahrami K, Mummy DG, Fain SB, Oakes JM. Patient-specific modeling of aerosol delivery in healthy and asthmatic adults. J Appl Physiol (1985) 2019; 127:1720-1732. [PMID: 31513445 PMCID: PMC6962611 DOI: 10.1152/japplphysiol.00221.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
The magnitude and regional heterogeneity of airway obstructions in severe asthmatics is likely linked to insufficient drug delivery, as evidenced by the inability to mitigate exacerbations with inhaled aerosol medications. To understand the correlation between morphometric features, airflow distribution, and inhaled dosimetry, we perform dynamic computational simulations in two healthy and four asthmatic subjects. Models incorporate computed tomography-based and patient-specific central airway geometries and hyperpolarized 3He MRI-measured segmental ventilation defect percentages (SVDPs), implemented as resistance boundary conditions. Particles [diameters (dp) = 1, 3, and 5 μm] are simulated throughout inhalation, and we record their initial conditions, both spatially and temporally, with their fate in the lung. Predictions highlight that total central airway deposition is the same between the healthy subjects (26.6%, dp = 3 μm) but variable among the asthmatic subjects (ranging from 5.9% to 59.3%, dp = 3 μm). We found that by preferentially releasing the particles during times of fast or slow inhalation rates we enhance either central airway deposition percentages or peripheral particle delivery, respectively. These predictions highlight the potential to identify with simulations patients who may not receive adequate therapeutic dosages with inhaled aerosol medication and therefore identify patients who may benefit from alternative treatment strategies. Furthermore, by improving regional dose levels, we may be able to preferentially deliver drugs to the airways in need, reducing associated adverse side effects.NEW & NOTEWORTHY Although it is evident that exacerbation mitigation is unsuccessful in some asthmatics, it remains unclear whether or not these patients receive adequate dosages of inhaled therapeutics. By coupling MRI and computed tomography data with patient-specific computational models, our predictions highlight the large intersubject variability, specifically in severe asthma.
Collapse
Affiliation(s)
- Kamran Poorbahrami
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts
| | - David G Mummy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean B Fain
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| |
Collapse
|
9
|
In Vivo Evaluation of Magnetic Targeting in Mice Colon Tumors with Ultra-Magnetic Liposomes Monitored by MRI. Mol Imaging Biol 2019; 21:269-278. [PMID: 29942990 DOI: 10.1007/s11307-018-1238-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE The development of theranostic nanocarriers as an innovative therapy against cancer has been improved by targeting properties in order to optimize the drug delivery to safely achieve its desired therapeutic effect. The aim of this paper is to evaluate the magnetic targeting (MT) efficiency of ultra-magnetic liposomes (UML) into CT26 murine colon tumor by magnetic resonance imaging (MRI). PROCEDURES Dynamic susceptibility contrast MRI was applied to assess the bloodstream circulation time. A novel semi-quantitative method called %I0.25, based on the intensity distribution in T2*-weighted MRI images was developed to compare the accumulation of T2 contrast agent in tumors with or without MT. To evaluate the efficiency of magnetic targeting, the percentage of pixels under the intensity value I0.25 (I0.25 = 0.25(Imax - Imin)) was calculated on the intensity distribution histogram. RESULTS This innovative method of processing MRI images showed the MT efficiency by a %I0.25 that was significantly higher in tumors using MT compared to passive accumulation, from 15.3 to 28.6 %. This methodology was validated by ex vivo methods with an iron concentration that is 3-fold higher in tumors using MT. CONCLUSIONS We have developed a method that allows a semi-quantitative evaluation of targeting efficiency in tumors, which could be applied to different T2 contrast agents.
Collapse
|
10
|
Ostrovski Y, Dorfman S, Mezhericher M, Kassinos S, Sznitman J. Targeted Drug Delivery to Upper Airways Using a Pulsed Aerosol Bolus and Inhaled Volume Tracking Method. FLOW, TURBULENCE AND COMBUSTION 2019; 102:73-87. [PMID: 30956537 PMCID: PMC6445363 DOI: 10.1007/s10494-018-9927-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The pulmonary route presents an attractive delivery pathway for topical treatment of lung diseases. While significant progress has been achieved in understanding the physical underpinnings of aerosol deposition in the lungs, our ability to target or confine the deposition of inhalation aerosols to specific lung regions remains meagre. Here, we present a novel inhalation proof-of-concept in silico for regional targeting in the upper airways, quantitatively supported by computational fluid dynamics (CFD) simulations of inhaled micron-sized particles (i.e. 1-10 μm) using an intubated, anatomically-realistic, multi-generation airway tree model. Our targeting strategy relies on selecting the particle release time, whereby a short-pulsed bolus of aerosols is injected into the airways and the inhaled volume of clean air behind the bolus is tracked to reach a desired inhalation depth (i.e. airway generations). A breath hold maneuver then follows to facilitate deposition, via sedimentation, before exhalation resumes and remaining airborne particles are expelled. Our numerical findings showcase how particles in the range 5-10 μm combined with such inhalation methodology are best suited to deposit in the upper airways, with deposition fractions between 0.68 and unity. In contrast, smaller (< 2 μm) particles are less than optimal due to their slow sedimentation rates. We illustrate further how modulating the volume inhaled behind the pulsed bolus, prior to breath hold, may be leveraged to vary the targeted airway sites. We discuss the feasibility of the proposed inhalation framework and how it may help pave the way for specialized topical lung treatments.
Collapse
Affiliation(s)
- Yan Ostrovski
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Simon Dorfman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Mechanical Engineering, Shamoon College of Engineering, Beer-Sheva, Israel
| | - Maksim Mezhericher
- Department of Mechanical Engineering, Shamoon College of Engineering, Beer-Sheva, Israel
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA
| | - Stavros Kassinos
- Department of Mechanical Engineering, University of Cyprus, Nicosia, Cyprus
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
11
|
Wyszogrodzka G, Dorożyński P, Gil B, Roth WJ, Strzempek M, Marszałek B, Węglarz WP, Menaszek E, Strzempek W, Kulinowski P. Iron-Based Metal-Organic Frameworks as a Theranostic Carrier for Local Tuberculosis Therapy. Pharm Res 2018; 35:144. [PMID: 29777389 PMCID: PMC5960001 DOI: 10.1007/s11095-018-2425-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/03/2018] [Indexed: 11/13/2022]
Abstract
PURPOSE The purpose of the study was initial evaluation of applicability of metal organic framework (MOF) Fe-MIL-101-NH2 as a theranostic carrier of antituberculous drug in terms of its functionality, i.e. drug loading, drug dissolution, magnetic resonance imaging (MRI) contrast and cytotoxic safety. METHODS Fe-MIL-101-NH2 was characterized using X-ray powder diffraction, FTIR spectrometry and scanning electron microscopy. The particle size analysis was determined using laser diffraction. Magnetic resonance relaxometry and MRI were carried out on phantoms of the MOF system suspended in polymer solution. Drug dissolution studies were conducted using Franz cells. For MOF cytotoxicity, commercially available fibroblasts L929 were cultured in Eagle's Minimum Essential Medium supplemented with 10% fetal bovine serum. RESULTS MOF particles were loaded with 12% of isoniazid. The particle size (3.37-6.45 μm) depended on the micronization method used. The proposed drug delivery system can also serve as the MRI contrast agent. The drug dissolution showed extended release of isoniazid. MOF particles accumulated in the L929 fibroblast cytoplasmic area, suggesting MOF release the drug inside the cells. The cytotoxicity confirmed safety of MOF system. CONCLUSIONS The application of MOF for extended release inhalable system proposes the novel strategy for delivery of standard antimycobacterial agents combined with monitoring of their distribution within the lung tissue.
Collapse
Affiliation(s)
- Gabriela Wyszogrodzka
- Faculty of Pharmacy, Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-068, Kraków, Poland
| | | | - Barbara Gil
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387, Kraków, Poland
| | - Wieslaw J Roth
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387, Kraków, Poland
| | - Maciej Strzempek
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387, Kraków, Poland
| | - Bartosz Marszałek
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387, Kraków, Poland
| | - Władysław P Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
| | - Elżbieta Menaszek
- Faculty of Pharmacy, Department of Cytobiology, Jagiellonian University Medical College, Medyczna 9, 30-068, Kraków, Poland
| | - Weronika Strzempek
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387, Kraków, Poland
| | - Piotr Kulinowski
- Faculty of Mathematics, Physics and Technical Science, Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| |
Collapse
|
12
|
Oakes JM, Shadden SC, Grandmont C, Vignon-Clementel IE. Aerosol transport throughout inspiration and expiration in the pulmonary airways. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33. [PMID: 27860424 DOI: 10.1002/cnm.2847] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/22/2016] [Indexed: 06/06/2023]
Abstract
Little is known about transport throughout the respiration cycle in the conducting airways. It is challenging to appropriately describe the time-dependent number of particles entering back into the model during exhalation. Modeling the entire lung is not feasible; therefore, multidomain methods must be used. Here, we present a new framework that is designed to simulate particles throughout the respiration cycle, incorporating realistic airway geometry and respiration. This framework is applied for a healthy rat lung exposed to ∼ 1μm diameter particles, chosen to facilitate parameterization and validation. The flow field is calculated in the conducting airways (3D domain) by solving the incompressible Navier-Stokes equations with experimentally derived boundary conditions. Particles are tracked throughout inspiration by solving a modified Maxey-Riley equation. Next, we pass the time-dependent particle concentrations exiting the 3D model to the 1D volume conservation and advection-diffusion models (1D domain). Once the 1D models are solved, we prescribe the time-dependent number of particles entering back into the 3D airways to again solve for 3D transport. The coupled simulations highlight that about twice as many particles deposit during inhalation compared to exhalation for the entire lung. In contrast to inhalation, where most particles deposit at the bifurcation zones, particles deposit relatively uniformly on the gravitationally dependent side of the 3D airways during exhalation. Strong agreement to previously collected regional experimental data is shown, as the 1D models account for lobe-dependent morphology. This framework may be applied to investigate dosimetry in other species and pathological lungs.
Collapse
Affiliation(s)
- Jessica M Oakes
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, 94709, CA, USA
- Inria Paris, 2 Rue Simone Iff, 75012, Paris, France
- Sorbonne Universités, UPMC Univ. Paris 6, Laboratoire Jacques-Louis Lions, 75252, Paris, France
| | - Shawn C Shadden
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, 94709, CA, USA
| | - Céline Grandmont
- Inria Paris, 2 Rue Simone Iff, 75012, Paris, France
- Sorbonne Universités, UPMC Univ. Paris 6, Laboratoire Jacques-Louis Lions, 75252, Paris, France
| | - Irene E Vignon-Clementel
- Inria Paris, 2 Rue Simone Iff, 75012, Paris, France
- Sorbonne Universités, UPMC Univ. Paris 6, Laboratoire Jacques-Louis Lions, 75252, Paris, France
| |
Collapse
|
13
|
Kim J, Heise RL, Reynolds AM, Pidaparti RM. Aging effects on airflow dynamics and lung function in human bronchioles. PLoS One 2017; 12:e0183654. [PMID: 28846719 PMCID: PMC5573216 DOI: 10.1371/journal.pone.0183654] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 08/08/2017] [Indexed: 01/09/2023] Open
Abstract
Background and objective The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Materials and methods Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. Findings The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Conclusion Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies.
Collapse
Affiliation(s)
- JongWon Kim
- College of Engineering, University of Georgia, Athens, Georgia, United States of America
| | - Rebecca L. Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- The VCU Johnson Center, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
| | - Angela M. Reynolds
- The VCU Johnson Center, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
- Department of Mathematics & Applied Mathematics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ramana M. Pidaparti
- College of Engineering, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
14
|
Das GK, Anderson DS, Wallis CD, Carratt SA, Kennedy IM, Van Winkle LS. Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung. NANOSCALE 2016; 8:11518-30. [PMID: 27198643 PMCID: PMC5025943 DOI: 10.1039/c6nr00897f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m(-3) of ∼30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu(3+)) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution.
Collapse
Affiliation(s)
- Gautom K Das
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA, 95616 USA
| | - Donald S Anderson
- Center for Health and the Environment, University of California, Davis, CA, 95616 USA
| | - Chris D Wallis
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA, 95616 USA
| | - Sarah A Carratt
- Center for Health and the Environment, University of California, Davis, CA, 95616 USA
| | - Ian M Kennedy
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA, 95616 USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, Davis, CA, 95616 USA and Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616 USA.
| |
Collapse
|
15
|
Katan JT, Hofemeier P, Sznitman J. Computational Models of Inhalation Therapy in Early Childhood: Therapeutic Aerosols in the Developing Acinus. J Aerosol Med Pulm Drug Deliv 2016; 29:288-98. [PMID: 26907858 DOI: 10.1089/jamp.2015.1271] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Inhalation therapy targeted to the deep alveolated regions holds great promise, specifically in pediatric populations. Yet, inhalation devices and medical protocols are overwhelmingly derived from adult guidelines, with very low therapeutic efficiency in young children. During the first years of life, airway remodeling and changing ventilation patterns are anticipated to alter aerosol deposition with underachieving outcomes in infants. As past research is still overwhelmingly focused on adults or limited to models of upper airways, a fundamental understanding of inhaled therapeutic transport and deposition in the acinar regions is needed to shed light on delivering medication to the developing alveoli. METHODS Using computational fluid dynamics (CFD), we simulated inhalation maneuvers in anatomically-inspired models of developing acinar airways, covering the distinct phases of lung development, from underdeveloped, saccular pulmonary architectures in infants, to structural changes in toddlers, ultimately mimicking space-filling morphologies of a young child, representing scaled-down adult lungs. We model aerosols whose diameters span the range of sizes acknowledged to reach the alveolar regions and examine the coupling between morphological changes, varying ventilation patterns and particle characteristics on deposition outcomes. RESULTS Spatial distributions of deposited particles point to noticeable changes in the patterns of aerosol deposition with age, in particular in the youngest age group examined (3 month). Total deposition efficiency, as well as deposition dispersion, vary not only with the phases of lung development but also and critically with aerosol diameter. CONCLUSIONS Given the various challenges when prescribing inhalation therapy to a young infant, our findings underline some mechanistic aspects to consider when targeting medication to the developing alveoli. Not only does the intricate coupling between acinar morphology and ventilation patterns need to be considered, but the physical properties (i.e., aerodynamic size) of therapeutic aerosols also closely affect the anticipated success rates of the inhaled medication.
Collapse
Affiliation(s)
- Janna Tenenbaum Katan
- Department of Biomedical Engineering, Technion-Israel Institute of Technology , Haifa, Israel
| | - Philipp Hofemeier
- Department of Biomedical Engineering, Technion-Israel Institute of Technology , Haifa, Israel
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology , Haifa, Israel
| |
Collapse
|
16
|
Baijnath S, Shobo A, Bester LA, Singh SD, Kruger G, Naicker T, Govender T. Small molecule distribution in rat lung: a comparison of various cryoprotectants as inflation media and their applicability to MSI. J Mol Histol 2016; 47:213-9. [DOI: 10.1007/s10735-016-9658-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/08/2016] [Indexed: 11/25/2022]
|
17
|
Oakes JM, Hofemeier P, Vignon-Clementel IE, Sznitman J. Aerosols in healthy and emphysematous in silico pulmonary acinar rat models. J Biomech 2015; 49:2213-2220. [PMID: 26726781 DOI: 10.1016/j.jbiomech.2015.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/21/2015] [Indexed: 12/24/2022]
Abstract
There has been relatively little attention given on predicting particle deposition in the respiratory zone of the diseased lungs despite the high prevalence of chronic obstructive pulmonary disease (COPD). Increased alveolar volume and deterioration of alveolar septum, characteristic of emphysema, may alter the amount and location of particle deposition compared to healthy lungs, which is particularly important for toxic or therapeutic aerosols. In an attempt to shed new light on aerosol transport and deposition in emphysematous lungs, we performed numerical simulations in models of healthy and emphysematous acini motivated by recent experimental lobar-level data in rats (Oakes et al., 2014a). Compared to healthy acinar structures, models of emphysematous subacini were created by removing inter-septal alveolar walls and enhancing the alveolar volume in either a homogeneous or heterogeneous fashion. Flow waveforms and particle properties were implemented to match the experimental data. The occurrence of flow separation and recirculation within alveolar cavities was found in proximal generations of the healthy zones, in contrast to the radial-like airflows observed in the diseased regions. In agreement with experimental data, simulations point to particle deposition concentrations that are more heterogeneously distributed in the diseased models compared with the healthy one. Yet, simulations predicted less deposition in the emphysematous models in contrast to some experimental studies, a likely consequence due to the shallower penetration depths and modified flow topologies in disease compared to health. These spatial-temporal particle transport simulations provide new insight on deposition in the emphysematous acini and shed light on experimental observations.
Collapse
Affiliation(s)
- Jessica M Oakes
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94709,USA; INRIA Paris-Rocquencourt, 78153 Le Chesnay Cedex, France; Sorbonne Universités, UPMC Univ Paris 6, Laboratoire Jacques-Louis Lions, 75252 Paris, France
| | - Philipp Hofemeier
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Irene E Vignon-Clementel
- INRIA Paris-Rocquencourt, 78153 Le Chesnay Cedex, France; Sorbonne Universités, UPMC Univ Paris 6, Laboratoire Jacques-Louis Lions, 75252 Paris, France
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
18
|
Sato S, Bartolák-Suki E, Parameswaran H, Hamakawa H, Suki B. Scale dependence of structure-function relationship in the emphysematous mouse lung. Front Physiol 2015; 6:146. [PMID: 26029115 PMCID: PMC4428081 DOI: 10.3389/fphys.2015.00146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/25/2015] [Indexed: 01/05/2023] Open
Abstract
The purpose of this study was to determine how the initial distribution of elastase in mouse lungs determines the time course of tissue destruction and how structural heterogeneity at different spatial scales influences lung function. We evaluated lung function and alveolar structure in normal and emphysematous C57BL/6 mice at 2 and 21 days following orotracheal treatment with porcine pancreatic elastase (PPE). Initial distribution of elastase 1 h after treatment was assessed using red fluorescently labeled PPE (f-PPE) by laser scanning confocal microscopy. From measured input impedance of the respiratory system, the global lung compliance, and the variability of regional compliance were obtained. Lungs were fixed and equivalent airspace diameters were measured in four lobes of the right lung and three regions of the left lung. At day 2 and day 21, the mean airspace diameter of each region was significantly enlarged which was accompanied by an increased inter-regional heterogeneity. The deposition of f-PPE on day 0 was much more heterogeneous than the inter-regional diameters at both day 2 and day 21 and, at day 21, this reached statistical significance (p < 0.05). Microscale heterogeneity characterized by the overall variability of airspace diameters correlated significantly better with compliance than macroscale or inter-regional heterogeneity. Furthermore, while the spatial distribution of the inflammatory response does not seem to follow that of the elastase deposition, it correlates with the strongest regional determinant of lung function. These results may help interpret lung function decline in terms of structural deterioration in human patients with emphysema.
Collapse
Affiliation(s)
- Susumu Sato
- Department of Biomedical Engineering, Boston University Boston, MA, USA ; Department of Respiratory Medicine, Kyoto University Hospital Kyoto, Japan
| | | | | | - Hiroshi Hamakawa
- Department of Biomedical Engineering, Boston University Boston, MA, USA
| | - Béla Suki
- Department of Biomedical Engineering, Boston University Boston, MA, USA
| |
Collapse
|
19
|
Jacob RE, Lamm WJ, Einstein DR, Krueger MA, Glenny RW, Corley RA. Comparison of CT-derived ventilation maps with deposition patterns of inhaled microspheres in rats. Exp Lung Res 2015; 41:135-45. [PMID: 25513951 PMCID: PMC4764052 DOI: 10.3109/01902148.2014.984085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Computer models for inhalation toxicology and drug-aerosol delivery studies rely on ventilation pattern inputs for predictions of particle deposition and vapor uptake. However, changes in lung mechanics due to disease can impact airflow dynamics and model results. It has been demonstrated that non-invasive, in vivo, 4DCT imaging (3D imaging at multiple time points in the breathing cycle) can be used to map heterogeneities in ventilation patterns under healthy and disease conditions. The purpose of this study was to validate ventilation patterns measured from CT imaging by exposing the same rats to an aerosol of fluorescent microspheres (FMS) and examining particle deposition patterns using cryomicrotome imaging. MATERIALS AND METHODS Six male Sprague-Dawley rats were intratracheally instilled with elastase to a single lobe to induce a heterogeneous disease. After four weeks, rats were imaged over the breathing cycle by CT then immediately exposed to an aerosol of ∼ 1 μm FMS for ∼ 5 minutes. After the exposure, the lungs were excised and prepared for cryomicrotome imaging, where a 3D image of FMS deposition was acquired using serial sectioning. Cryomicrotome images were spatially registered to match the live CT images to facilitate direct quantitative comparisons of FMS signal intensity with the CT-based ventilation maps. RESULTS Comparisons of fractional ventilation in contiguous, non-overlapping, 3D regions between CT-based ventilation maps and FMS images showed strong correlations in fractional ventilation (r = 0.888, p < 0.0001). CONCLUSION We conclude that ventilation maps derived from CT imaging are predictive of the 1 μm aerosol deposition used in ventilation-perfusion heterogeneity inhalation studies.
Collapse
Affiliation(s)
- Richard E. Jacob
- Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wayne J. Lamm
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Daniel R. Einstein
- Computational Biology, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Melissa A. Krueger
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Robb W. Glenny
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Richard A. Corley
- Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
20
|
Oakes JM, Marsden AL, Grandmont C, Darquenne C, Vignon-Clementel IE. Distribution of aerosolized particles in healthy and emphysematous rat lungs: comparison between experimental and numerical studies. J Biomech 2015; 48:1147-57. [PMID: 25682537 DOI: 10.1016/j.jbiomech.2015.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/17/2014] [Accepted: 01/13/2015] [Indexed: 01/17/2023]
Abstract
In silico models of airflow and particle deposition in the lungs are increasingly used to determine the therapeutic or toxic effects of inhaled aerosols. While computational methods have advanced significantly, relatively few studies have directly compared model predictions to experimental data. Furthermore, few prior studies have examined the influence of emphysema on particle deposition. In this work we performed airflow and particle simulations to compare numerical predictions to data from our previous aerosol exposure experiments. Employing an image-based 3D rat airway geometry, we first compared steady flow simulations to coupled 3D-0D unsteady simulations in the healthy rat lung. Then, in 3D-0D simulations, the influence of emphysema was investigated by matching disease location to the experimental study. In both the healthy unsteady and steady simulations, good agreement was found between numerical predictions of aerosol delivery and experimental deposition data. However, deposition patterns in the 3D geometry differed between the unsteady and steady cases. On the contrary, satisfactory agreement was not found between the numerical predictions and experimental data for the emphysematous lungs. This indicates that the deposition rate downstream of the 3D geometry is likely proportional to airflow delivery in the healthy lungs, but not in the emphysematous lungs. Including small airway collapse, variations in downstream airway size and tissue properties, and tracking particles throughout expiration may result in a more favorable agreement in future studies.
Collapse
Affiliation(s)
- Jessica M Oakes
- INRIA Paris-Rocquencourt, 78153 Le Chesnay Cedex, France; Sorbonne Universités UPMC Univ. Paris 6, Laboratoire Jacques-Louis Lions, 75005 Paris, France
| | - Alison L Marsden
- Mechanical and Aerospace Engineering Department, University of California San Diego, La Jolla, CA 92093, USA
| | - Céline Grandmont
- INRIA Paris-Rocquencourt, 78153 Le Chesnay Cedex, France; Sorbonne Universités UPMC Univ. Paris 6, Laboratoire Jacques-Louis Lions, 75005 Paris, France
| | - Chantal Darquenne
- Department of Medicine, Division of Physiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Irene E Vignon-Clementel
- INRIA Paris-Rocquencourt, 78153 Le Chesnay Cedex, France; Sorbonne Universités UPMC Univ. Paris 6, Laboratoire Jacques-Louis Lions, 75005 Paris, France.
| |
Collapse
|
21
|
Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release 2014; 194:82-91. [DOI: 10.1016/j.jconrel.2014.07.059] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 01/22/2023]
|
22
|
Darquenne C, Borja MG, Oakes JM, Breen EC, Olfert IM, Scadeng M, Prisk GK. Increase in relative deposition of fine particles in the rat lung periphery in the absence of gravity. J Appl Physiol (1985) 2014; 117:880-6. [PMID: 25170069 PMCID: PMC4199993 DOI: 10.1152/japplphysiol.00298.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/21/2014] [Indexed: 11/22/2022] Open
Abstract
While it is well recognized that pulmonary deposition of inhaled particles is lowered in microgravity (μG) compared with gravity on the ground (1G), the absence of sedimentation causes fine particles to penetrate deeper in the lung in μG. Using quantitative magnetic resonance imaging (MRI), we determined the effect of gravity on peripheral deposition (DEPperipheral) of fine particles. Aerosolized 0.95-μm-diameter ferric oxide particles were delivered to spontaneously breathing rats placed in plethysmographic chambers both in μG aboard the NASA Microgravity Research Aircraft and at 1G. Following exposure, lungs were perfusion fixed, fluid filled, and imaged in a 3T MR scanner. The MR signal decay rate, R2*, was measured in each voxel of the left lung from which particle deposition (DEP) was determined based on a calibration curve. Regional deposition was assessed by comparing DEP between the outer (DEPperipheral) and inner (DEPcentral) areas on each slice, and expressed as the central-to-peripheral ratio. Total lung deposition tended to be lower in μG compared with 1G (1.01 ± 0.52 vs. 1.43 ± 0.52 μg/ml, P = 0.1). In μG, DEPperipheral was larger than DEPcentral (P < 0.03), while, in 1G, DEPperipheral was not significantly different from DEPcentral. Finally, central-to-peripheral ratio was significantly less in μG than in 1G (P ≤ 0.05). These data show a larger fraction of fine particles depositing peripherally in μG than in 1G, likely beyond the large- and medium-sized airways. Although not measured, the difference in the spatial distribution of deposited particles between μG and 1G could also affect particle retention rates, with an increase in retention for particles deposited more peripherally.
Collapse
Affiliation(s)
- Chantal Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, California;
| | - Maria G Borja
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California; and
| | - Jessica M Oakes
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California; and
| | - Ellen C Breen
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - I Mark Olfert
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Miriam Scadeng
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - G Kim Prisk
- Department of Medicine, University of California, San Diego, La Jolla, California; Department of Radiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
23
|
Oakes JM, Marsden AL, Grandmont C, Shadden SC, Darquenne C, Vignon-Clementel IE. Airflow and particle deposition simulations in health and emphysema: from in vivo to in silico animal experiments. Ann Biomed Eng 2014; 42:899-914. [PMID: 24318192 PMCID: PMC4092242 DOI: 10.1007/s10439-013-0954-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/23/2013] [Indexed: 10/25/2022]
Abstract
Image-based in silico modeling tools provide detailed velocity and particle deposition data. However, care must be taken when prescribing boundary conditions to model lung physiology in health or disease, such as in emphysema. In this study, the respiratory resistance and compliance were obtained by solving an inverse problem; a 0D global model based on healthy and emphysematous rat experimental data. Multi-scale CFD simulations were performed by solving the 3D Navier-Stokes equations in an MRI-derived rat geometry coupled to a 0D model. Particles with 0.95 μm diameter were tracked and their distribution in the lung was assessed. Seven 3D-0D simulations were performed: healthy, homogeneous, and five heterogeneous emphysema cases. Compliance (C) was significantly higher (p = 0.04) in the emphysematous rats (C = 0.37 ± 0.14 cm(3)/cmH2O) compared to the healthy rats (C = 0.25 ± 0.04 cm(3)/cmH2O), while the resistance remained unchanged (p = 0.83). There were increases in airflow, particle deposition in the 3D model, and particle delivery to the diseased regions for the heterogeneous cases compared to the homogeneous cases. The results highlight the importance of multi-scale numerical simulations to study airflow and particle distribution in healthy and diseased lungs. The effect of particle size and gravity were studied. Once available, these in silico predictions may be compared to experimental deposition data.
Collapse
Affiliation(s)
- Jessica M Oakes
- Mechanical and Aerospace Engineering Department, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | | | | | | |
Collapse
|