1
|
Falkner B, Alexander BT, Nuyt AM, South AM, Ingelfinger J. Cardiovascular Health Starts in the Womb. Hypertension 2024; 81:2016-2026. [PMID: 39069922 PMCID: PMC11410535 DOI: 10.1161/hypertensionaha.124.21359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Hypertension has largely been viewed as a disorder of adulthood. Historically, blood pressure (BP) was not routinely measured in children because hypertension was considered uncommon in childhood. It was not until the 1970s that it was apparent that in childhood BP levels were normally lower compared with those in adults, were related to age and growth, and that abnormal BP in children needed different definitions. Based on the distribution of BP levels in available child cohorts, the 95th percentile of BP levels became the definition of hypertension in children and adolescents-an epidemiological definition. Subsequent clinical and epidemiological research identified associated risk factors in childhood that linked abnormal BP in youth with hypertension in adulthood. In the 1980s, the Barker hypothesis, based on observations that low birth weight could be linked to cardiovascular disease in adulthood, promoted further research spanning epidemiological, clinical, and basic science on the childhood origins of hypertension. This review focuses on recent findings from both longitudinal maternal-child cohorts and experimental models that examine both maternal and offspring conditions associated with risks of subsequent cardiovascular disease.
Collapse
Affiliation(s)
- Bonita Falkner
- Departments of Medicine (B.F.), Sydney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA
- Pediatrics (B.F.), Sydney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Barbara T Alexander
- Department of Physiology, University of Mississippi Medical Center, Jackson (B.T.A.)
| | - Anne-Monique Nuyt
- Department of Pediatrics, CHU Sainte Justine, Faculté de Médecine, Université de Montréal, QC (A.-M.N.)
| | - Andrew M South
- Department of Pediatrics, Section of Nephrology, Wake Forest University School of Medicine, Winston Salem, NC (A.M.S.)
| | - Julie Ingelfinger
- Pediatric Nephrology Unit, MassGeneral Hospital for Children at MassGeneral, Boston, MA (J.I.)
| |
Collapse
|
2
|
Jensen LJ. Functional, Structural and Proteomic Effects of Ageing in Resistance Arteries. Int J Mol Sci 2024; 25:2601. [PMID: 38473847 DOI: 10.3390/ijms25052601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The normal ageing process affects resistance arteries, leading to various functional and structural changes. Systolic hypertension is a common occurrence in human ageing, and it is associated with large artery stiffening, heightened pulsatility, small artery remodeling, and damage to critical microvascular structures. Starting from young adulthood, a progressive elevation in the mean arterial pressure is evidenced by clinical and epidemiological data as well as findings from animal models. The myogenic response, a protective mechanism for the microcirculation, may face disruptions during ageing. The dysregulation of calcium entry channels (L-type, T-type, and TRP channels), dysfunction in intracellular calcium storage and extrusion mechanisms, altered expression of potassium channels, and a change in smooth muscle calcium sensitization may contribute to the age-related dysregulation of myogenic tone. Flow-mediated vasodilation, a hallmark of endothelial function, is compromised in ageing. This endothelial dysfunction is related to increased oxidative stress, lower nitric oxide bioavailability, and a low-grade inflammatory response, further exacerbating vascular dysfunction. Resistance artery remodeling in ageing emerges as a hypertrophic response of the vessel wall that is typically observed in conjunction with outward remodeling (in normotension), or as inward hypertrophic remodeling (in hypertension). The remodeling process involves oxidative stress, inflammation, reorganization of actin cytoskeletal components, and extracellular matrix fiber proteins. Reactive oxygen species (ROS) signaling and chronic low-grade inflammation play substantial roles in age-related vascular dysfunction. Due to its role in the regulation of vascular tone and structural proteins, the RhoA/Rho-kinase pathway is an important target in age-related vascular dysfunction and diseases. Understanding the intricate interplay of these factors is crucial for developing targeted interventions to mitigate the consequences of ageing on resistance arteries and enhance the overall vascular health.
Collapse
Affiliation(s)
- Lars Jørn Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
3
|
Advanced Maternal Age Impairs Uterine Artery Adaptations to Pregnancy in Rats. Int J Mol Sci 2022; 23:ijms23169191. [PMID: 36012456 PMCID: PMC9409016 DOI: 10.3390/ijms23169191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Advanced maternal age (≥35 years) is associated with pregnancy complications. Aging impairs vascular reactivity and increases vascular stiffness. We hypothesized that uterine artery adaptations to pregnancy are impaired with advanced age. Uterine arteries of nonpregnant and pregnant (gestational day 20) young (4 months) and aged (9 months; ~35 years in humans) Sprague-Dawley rats were isolated. Functional (myogenic tone, n = 6−10/group) and mechanical (circumferential stress-strain, n = 10−24/group) properties were assessed using pressure myography and further assessment of elastin and collagen (histology, n = 4−6/group), and matrix metalloproteinase-2 (MMP-2, zymography, n = 6/group). Aged dams had worse pregnancy outcomes, including smaller litters and fetal weights (both p < 0.0001). Only in arteries of pregnant young dams did higher pressures (>100 mmHg) cause forced vasodilation. Across the whole pressure range (4−160 mmHg), myogenic behavior was enhanced in aged vs. young pregnant dams (p = 0.0010). Circumferential stress and strain increased with pregnancy in young and aged dams (p < 0.0001), but strain remained lower in aged vs. young dams (p < 0.05). Arteries from young nonpregnant rats had greater collagen:elastin ratios than the other groups (p < 0.05). In aged rats only, pregnancy increased MMP-2 active capacity. Altered functional and structural vascular adaptations to pregnancy may impair fetal growth and development with advanced maternal age.
Collapse
|
4
|
Intergenerational effects of prenatal hypoxia exposure on uterine artery adaptations to pregnancies in the female offspring. J Dev Orig Health Dis 2022; 13:794-799. [PMID: 35616050 DOI: 10.1017/s2040174422000216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prenatal hypoxia is a common complication of pregnancy and is associated with detrimental health outcomes, such as impaired cardiac and vascular function, in adult offspring. Exposure to prenatal hypoxia reportedly impacts the reproductive system of female offspring. Whether exposure to prenatal hypoxia influences pregnancy adaptations and outcomes in these female offspring is unknown. We hypothesised that prenatal hypoxia impairs uterine artery adaptations in pregnancies of the adult offspring. Pregnancy outcomes and uterine artery function were assessed in 14-16 weeks old non-pregnant and late pregnant (gestational day 20; term = 22 days) adult female offspring born to rats exposed to prenatal normoxia (21% oxygen) or hypoxia (11% oxygen, between days 15-21 of gestation). Compared with normoxia controls, prenatal hypoxia was associated with pregnant adult offspring having reduced placental weights in their litters, and uterine artery circumferential stress that increased with pregnancy. Overall, prenatal hypoxia adversely, albeit mildly, compromised pregnancies of adult offspring.
Collapse
|
5
|
Lakshman R, Spiroski AM, McIver LB, Murphy MP, Giussani DA. Noninvasive Biomarkers for Cardiovascular Dysfunction Programmed in Male Offspring of Adverse Pregnancy. Hypertension 2021; 78:1818-1828. [PMID: 34757774 PMCID: PMC8577293 DOI: 10.1161/hypertensionaha.121.17926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Rama Lakshman
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom
| | - Ana-Mishel Spiroski
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom.,Cambridge BHF Centre of Research Excellence (A.-M.S., M.P.M., D.A.G.), University of Cambridge, United Kingdom
| | - Lauren B McIver
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom
| | - Michael P Murphy
- MRC Mitochondria Biology Unit (M.P.M.), University of Cambridge, United Kingdom.,Cambridge BHF Centre of Research Excellence (A.-M.S., M.P.M., D.A.G.), University of Cambridge, United Kingdom.,Department of Medicine (M.P.M., D.A.G.), University of Cambridge, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience (R.L., A.-M.S., L.B.M., D.A.G.), University of Cambridge, United Kingdom.,Cambridge BHF Centre of Research Excellence (A.-M.S., M.P.M., D.A.G.), University of Cambridge, United Kingdom.,Department of Medicine (M.P.M., D.A.G.), University of Cambridge, United Kingdom.,Cambridge Strategic Research Initiative in Reproduction, United Kingdom (D.A.G.)
| |
Collapse
|
6
|
Developmental programming of cardiovascular function: a translational perspective. Clin Sci (Lond) 2021; 134:3023-3046. [PMID: 33231619 DOI: 10.1042/cs20191210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
The developmental origins of health and disease (DOHaD) is a concept linking pre- and early postnatal exposures to environmental influences with long-term health outcomes and susceptibility to disease. It has provided a new perspective on the etiology and evolution of chronic disease risk, and as such is a classic example of a paradigm shift. What first emerged as the 'fetal origins of disease', the evolution of the DOHaD conceptual framework is a storied one in which preclinical studies played an important role. With its potential clinical applications of DOHaD, there is increasing desire to leverage this growing body of preclinical work to improve health outcomes in populations all over the world. In this review, we provide a perspective on the values and limitations of preclinical research, and the challenges that impede its translation. The review focuses largely on the developmental programming of cardiovascular function and begins with a brief discussion on the emergence of the 'Barker hypothesis', and its subsequent evolution into the more-encompassing DOHaD framework. We then discuss some fundamental pathophysiological processes by which developmental programming may occur, and attempt to define these as 'instigator' and 'effector' mechanisms, according to their role in early adversity. We conclude with a brief discussion of some notable challenges that hinder the translation of this preclinical work.
Collapse
|
7
|
Kumar P, Morton JS, Shah A, Do V, Sergi C, Serrano‐Lomelin J, Davidge ST, Beker D, Levasseur J, Hornberger LK. Intrauterine exposure to chronic hypoxia in the rat leads to progressive diastolic function and increased aortic stiffness from early postnatal developmental stages. Physiol Rep 2020; 8:e14327. [PMID: 31960611 PMCID: PMC6971413 DOI: 10.14814/phy2.14327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIM We sought to explore whether fetal hypoxia exposure, an insult of placental insufficiency, is associated with left ventricular dysfunction and increased aortic stiffness at early postnatal ages. METHODS Pregnant Sprague Dawley rats were exposed to hypoxic conditions (11.5% FiO2 ) from embryonic day E15-21 or normoxic conditions (controls). After delivery, left ventricular function and aortic pulse wave velocity (measure of aortic stiffness) were assessed longitudinally by echocardiography from day 1 through week 8. A mixed ANOVA with repeated measures was performed to compare findings between groups across time. Myocardial hematoxylin and eosin and picro-sirius staining were performed to evaluate myocyte nuclear shape and collagen fiber characteristics, respectively. RESULTS Systolic function parameters transiently increased following hypoxia exposure primarily at week 2 (p < .008). In contrast, diastolic dysfunction progressed following fetal hypoxia exposure beginning weeks 1-2 with lower early inflow Doppler velocities, and less of an increase in early to late inflow velocity ratios and annular and septal E'/A' tissue velocities compared to controls (p < .008). As further evidence of altered diastolic function, isovolumetric relaxation time was significantly shorter relative to the cardiac cycle following hypoxia exposure from week 1 onward (p < .008). Aortic stiffness was greater following hypoxia from day 1 through week 8 (p < .008, except week 4). Hypoxia exposure was also associated with altered nuclear shape at week 2 and increased collagen fiber thickness at week 4. CONCLUSION Chronic fetal hypoxia is associated with progressive LV diastolic dysfunction, which corresponds with changes in nuclear shape and collagen fiber thickness, and increased aortic stiffness from early postnatal stages.
Collapse
Affiliation(s)
- Praveen Kumar
- Division of CardiologyDepartment of PediatricsUniversity of AlbertaEdmontonABCanada
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
| | - Jude S. Morton
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
- Department of Obstetrics/GynecologyUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| | - Amin Shah
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
- Department of Obstetrics/GynecologyUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| | - Victor Do
- Division of CardiologyDepartment of PediatricsUniversity of AlbertaEdmontonABCanada
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
| | - Consolato Sergi
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonABCanada
| | - Jesus Serrano‐Lomelin
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
- Department of Obstetrics/GynecologyUniversity of AlbertaEdmontonABCanada
| | - Sandra T. Davidge
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
- Department of Obstetrics/GynecologyUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| | - Donna Beker
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| | - Jody Levasseur
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| | - Lisa K. Hornberger
- Division of CardiologyDepartment of PediatricsUniversity of AlbertaEdmontonABCanada
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
- Department of Obstetrics/GynecologyUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
8
|
Venkata Surekha M, Singh S, Sarada K, Sailaja G, Balakrishna N, Srinivas M, Uday Kumar P. Study on the Effect of Severity of Maternal Iron Deficiency Anemia on Regulators of Angiogenesis in Placenta. Fetal Pediatr Pathol 2019; 38:361-375. [PMID: 31130046 DOI: 10.1080/15513815.2019.1587120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aims: In this study, we hypothesized that maternal anemia leads to altered expression of angiogenic proteins vascular endothelial growth factor (VEGF), placental growth factor (PLGF), nitrotyrosine (NT) residues, and endothelial nitric oxide synthase (e-NOS) in the placenta. Hence, we study the expression of the abovementioned proteins in the placentas of mothers with different grades of anemia. Materials and methods: Our study was conducted in 48 pregnant women (36-40 weeks of gestation), who were divided into four groups-normal, mild, moderate, and severe anemia. After delivery, the expression of the angiogenic proteins was studied in their placentas by immunohistochemistry. Results: In our study, 58.3% of the pregnant women were anemic, among which 20.83% had mild anemia, 18.75% had moderate anemia, and 18.75% had severe anemia. Immunohistochemical staining intensity for VEGF, PLGF, NT residues, and e-NOS proteins was observed to be higher in the placentas of anemic women when compared with the non-anemic women. Conclusion: Our study showed that there is an increased expression of angiogenic proteins in the placentas of anemic mothers, which probably is an adaptive response leading to changes in placental vessels.
Collapse
Affiliation(s)
| | - Sapna Singh
- National Institute of Nutrition, Pathology Division , Tarnaka , Hyderabad, Telangana , India
| | - Krishnakumar Sarada
- National Institute of Nutrition, Pathology Division , Tarnaka , Hyderabad, Telangana , India
| | - Gummadi Sailaja
- National Institute of Nutrition, Pathology Division , Tarnaka , Hyderabad, Telangana , India
| | - Nagalla Balakrishna
- National Institute of Nutrition, Biostatistics , Tarnaka , Hyderabad, Telangana , India
| | - Myadara Srinivas
- National Institute of Nutrition, NCLAS , Tarnaka , Hyderabad, Telangana , India
| | - Putcha Uday Kumar
- National Institute of Nutrition, Pathology and Microbiology , Tarnaka , Hyderabad, Telangana , India
| |
Collapse
|
9
|
Woodman AG, Noble RMN, Panahi S, Gragasin FS, Bourque SL. Perinatal iron deficiency combined with a high salt diet in adulthood causes sex-dependent vascular dysfunction in rats. J Physiol 2019; 597:4715-4728. [PMID: 31368136 DOI: 10.1113/jp278223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/30/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Perinatal iron deficiency causes changes in offspring mesenteric artery function in adulthood, particularly in males, which can be exacerbated by chronic intake of a high salt diet. Perinatal iron deficient male offspring exhibit enhanced conversion of big endothelin-1 to active endothelin-1, coinciding with decreased nitric oxide levels. Perinatal iron deficient male offspring have reduced nitric oxide-mediated endothelial-dependent vasodilatation coincident with increased vascular superoxide levels following consumption of a high salt diet. Perinatal iron deficiency has no apparent effects on vascular function in female offspring, even when fed a high salt diet. These results help us better understand underlying vascular mechanisms contributing to increased cardiovascular risk from perinatal stressors such as iron deficiency. ABSTRACT Pre- and immediate postnatal stressors, such as iron deficiency, can alter developmental trajectories and predispose offspring to long-term cardiovascular dysfunction. Here, we investigated the impact of perinatal iron deficiency on vascular function in the adult offspring, and whether these long-term effects were exacerbated by prolonged consumption of a high salt diet in adulthood. Female Sprague Dawley rats were fed either an iron-restricted or -replete diet prior to and throughout pregnancy. Six weeks prior to experimentation at 6 months of age, adult offspring were fed either a normal or high salt diet. Mesenteric artery responses to vasodilators and vasoconstrictors were assessed ex vivo by wire myography. Male perinatal iron deficient offspring exhibited decreased reliance on nitric oxide with methacholine-induced vasodilatation (interaction P = 0.03), coincident with increased superoxide levels when fed the high salt diet (P = 0.01). Male perinatal iron deficient offspring exhibit enhanced big endothelin-1 conversion to active endothelin-1 (P = 0.02) concomitant with decreased nitric oxide levels (P = 0.005). Female offspring vascular function was unaffected by perinatal iron deficiency, albeit the high salt diet was associated with impaired vasodilation and decreased nitric oxide production (P = 0.02), particularly in the perinatal iron deficient offspring. These findings implicate vascular dysfunction in the sex-specific programming of cardiovascular dysfunction in the offspring by perinatal iron deficiency.
Collapse
Affiliation(s)
- Andrew G Woodman
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Ronan M N Noble
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Sareh Panahi
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| | - Ferrante S Gragasin
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| | - Stephane L Bourque
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
10
|
Paz AA, Arenas GA, Castillo-Galán S, Peñaloza E, Cáceres-Rojas G, Suazo J, Herrera EA, Krause BJ. Premature Vascular Aging in Guinea Pigs Affected by Fetal Growth Restriction. Int J Mol Sci 2019; 20:ijms20143474. [PMID: 31311132 PMCID: PMC6678381 DOI: 10.3390/ijms20143474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular risk associated with fetal growth restriction (FGR) could result from an early impaired vascular function. However, whether this effect results in premature vascular aging has not been addressed. We studied the ex vivo reactivity of carotid and femoral arteries in fetal (near term), adults (eight months-old) and aged (16 months-old) guinea pigs in normal (control) and FGR offspring. Additionally, an epigenetic marker of vascular aging (i.e., LINE-1 DNA methylation) was evaluated in human umbilical artery endothelial cells (HUAEC) from control and FGR subjects. Control guinea pig arteries showed an increased contractile response (KCl-induced) and a progressive impairment of NO-mediated relaxing responses as animals get older. FGR was associated with an initial preserved carotid artery reactivity as well as a later significant impairment in NO-mediated responses. Femoral arteries from FGR fetuses showed an increased contractility but a decreased relaxing response compared with control fetuses, and both responses were impaired in FGR-adults. Finally, FGR-HUAEC showed decreased LINE-1 DNA methylation compared with control-HUAEC. These data suggest that the aging of vascular function occurs by changes in NO-mediated responses, with limited alterations in contractile capacity. Further, these effects are accelerated and imposed at early stages of development in subjects exposed to a suboptimal intrauterine environment.
Collapse
Affiliation(s)
- Adolfo A Paz
- Department of Neonatology, Division of Paediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Santiago, Chile
| | - German A Arenas
- Department of Neonatology, Division of Paediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Santiago, Chile
- Programa de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8330024, Santiago, Chile
| | - Sebastián Castillo-Galán
- Department of Neonatology, Division of Paediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Santiago, Chile
- Programa de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8330024, Santiago, Chile
| | - Estefanía Peñaloza
- Department of Neonatology, Division of Paediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Santiago, Chile
| | - Gabriela Cáceres-Rojas
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Sergio Livingstone 943, Independencia 8380492, Santiago, Chile
| | - José Suazo
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Sergio Livingstone 943, Independencia 8380492, Santiago, Chile
| | - Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Salvador 486, Providencia 7500922, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano s/n, Putre, Chile
| | - Bernardo J Krause
- Department of Neonatology, Division of Paediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Santiago, Chile.
| |
Collapse
|
11
|
Morton JS, Levasseur J, Ganguly E, Quon A, Kirschenman R, Dyck JRB, Fraser GM, Davidge ST. Characterisation of the Selective Reduced Uteroplacental Perfusion (sRUPP) Model of Preeclampsia. Sci Rep 2019; 9:9565. [PMID: 31266978 PMCID: PMC6606748 DOI: 10.1038/s41598-019-45959-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/20/2019] [Indexed: 12/03/2022] Open
Abstract
Preeclampsia is a complication of pregnancy characterised by gestational hypertension, proteinuria and/or end organ disease. The reduced uteroplacental perfusion (RUPP) model, via partial occlusion of the lower abdominal aorta, mimics insufficient placental perfusion as a primary causal characteristic of preeclampsia. However, a major limitation of the RUPP model is that perfusion is reduced to the entire hindquarters of the rat resulting in hindlimb ischemia. We hypothesised that clipping the uterine and ovarian arteries in the selective (s)RUPP model would provoke signs of preeclampsia while avoiding systemic ischemia. Sham, RUPP or sRUPP procedures were performed in pregnant Sprague Dawley rats on gestational day (GD)14. On GD21 uterine blood flow was significantly reduced in both the RUPP and sRUPP models while aortic flow was reduced only in RUPP. Both models resulted in increased MAP, increased vascular oxidative stress (superoxide generation), increased pro-inflammatory (RANTES) and reduced pro-angiogenic (endoglin) mediators. Vascular compliance and constriction were unaltered in either RUPP or sRUPP groups. In summary, refinements to the RUPP model simultaneously maintain the characteristic phenotype of preeclampsia and avoid peripheral ischemia; providing a useful tool which may be used to increase our knowledge and bring us closer to a solution for women affected by preeclampsia.
Collapse
Affiliation(s)
- J S Morton
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - J Levasseur
- Faculty of Medicine and Dentistry, Dept. of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - E Ganguly
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Faculty of Medicine and Dentistry, Dept. of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - A Quon
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - R Kirschenman
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - J R B Dyck
- Faculty of Medicine and Dentistry, Dept. of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - G M Fraser
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - S T Davidge
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada. .,Faculty of Medicine and Dentistry, Dept. of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada. .,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
12
|
Zhong Y, Feng X, Xu T, Yang C, Zhang W, Chen X, Fan X, Lu L, Zhang M, Li L, Xu Z. Inherited risk plus prenatal insult caused malignant dysfunction in mesenteric arteries in adolescent SHR offspring. PLoS One 2019; 14:e0215994. [PMID: 31017969 PMCID: PMC6481862 DOI: 10.1371/journal.pone.0215994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/11/2019] [Indexed: 11/19/2022] Open
Abstract
Prenatal hypoxia can induce cardiovascular diseases in the offspring. This study determined whether and how prenatal hypoxia may cause malignant hypertension and impaired vascular functions in spontaneous hypertension rat (SHR) offspring at adolescent stage. Pregnant SHR were placed in a hypoxic chamber (11% O2) or normal environment (21% O2) from gestational day 6 until birth. Body weight and blood pressure (BP) of SHR offspring were measured every week from 5 weeks old. Mesenteric arteries were tested. Gestational hypoxia resulted in growth restriction during 6-12 weeks and a significant elevation in systolic pressure in adolescent offspring at 12 weeks old. Notably, endothelial vasodilatation of mesenteric arteries was impaired in SHR adolescent offspring exposed to prenatal hypoxia, vascular responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were reduced, as well as plasma nitric oxide levels and expression of endothelial nitric oxide synthase (eNOS) in vessels were decreased. Moreover, mesenteric arteries in SHR offspring following prenatal hypoxia showed enhanced constriction responses to phenylephrine (PE), associated with up-regulated activities of L-type calcium channel (Ca2+-dependent), RhoA/Rock pathway signaling (Ca2+-sensitization), and intracellular Ca2+ flow. Pressurized myograph demonstrated altered mechanical properties with aggravated stiffness in vessels, while histological analysis revealed vascular structural disorganization in prenatal hypoxia offspring. The results demonstrated that blood pressure and vascular function in young SHR offspring were affected by prenatal hypoxia, providing new information on development of hypertension in adolescent offspring with inherited hypertensive backgrounds.
Collapse
Affiliation(s)
- Yuan Zhong
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
- Obstetrics and Gynecology, Municipal Hospital, Suzhou, Jiangsu, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ting Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chunli Yang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenna Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xueyi Chen
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaorong Fan
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Likui Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Meng Zhang
- Obstetrics and Gynecology, Tengzhou Central People’s Hospital, Zaozhuang, Shandong, China
| | - Lingjun Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
- * E-mail: (ZX); (LL)
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
- Center for Prenatal Biology, Loma Linda University, Loma Linda, CA, United States of America
- * E-mail: (ZX); (LL)
| |
Collapse
|
13
|
Shah A, Cooke CLM, Kirschenman RD, Quon AL, Morton JS, Care AS, Davidge ST. Sex-specific effects of advanced maternal age on cardiovascular function in aged adult rat offspring. Am J Physiol Heart Circ Physiol 2018; 315:H1724-H1734. [DOI: 10.1152/ajpheart.00375.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pregnancy at an advanced maternal age has an increased risk of complications for both the mothers and their offspring. We have previously shown that advanced maternal age in a rat model leads to poor fetal outcomes, maternal vascular dysfunction, and hypertension, concordant with findings in humans. Moreover, offspring from aged dams had sex-specific cardiovascular dysfunction in young adulthood. However, the detrimental impact of aging on the cardiovascular system of the offspring in this model is unknown. We hypothesized that offspring born to aged dams (9.5–10 mo old) would have impaired cardiovascular function at 12 mo of age. Echocardiographic data revealed signs of mild left ventricular diastolic dysfunction in only male offspring from aged dams [isovolumetric relaxation time: 34.27 ± 2.04 in the young dam group vs. 27.61 ± 0.99 ms in the aged dam group, P < 0.01; mitral annular velocity ratio ( E′/ A′): 1.08 ± 0.04 in the young dam group vs. 0.96 ± 0.02 in the aged dam group, P < 0.05]. We have previously shown that in young adulthood (4 mo of age), male, but not female, offspring born to aged dams had impaired recovery from ischemia-reperfusion injury. Aging did not alter the susceptibility of female offspring to ischemia-reperfusion injury. Interestingly, wire myography data revealed that male offspring from aged dams had enhanced vascular sensitivity to methacholine (negative log of EC50: 7.4 ± 0.08 in young dams vs. 7.9 ± 0.11 in aged dams, P = 0.007) due, in part, to increased prostaglandin-mediated vasodilation. Despite intact endothelium-dependent relaxation, female offspring from aged dams had elevated systolic blood pressure (125.3 ± 4.2 mmHg in young dams vs. 144.0 ± 6.9 mmHg in aged dams, P = 0.03). These data highlight sex-specific mechanisms underlying cardiovascular programming in offspring born to dams of advanced age. NEW & NOTEWORTHY Our study demonstrated that adult male and female offspring (12 mo old) born to aged dams had impaired cardiac diastolic function and increased blood pressure, respectively, signifying sex-specific differential cardiovascular effects of advanced maternal age.
Collapse
Affiliation(s)
- Amin Shah
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Christy-Lynn M. Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Lois Hole Hospital for Women, Edmonton, Alberta, Canada
| | - Raven D. Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Anita L. Quon
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jude S. Morton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Alison S. Care
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Sandra T. Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Brennan LJ, Goulopoulou S, Bourque SL. Prenatal therapeutics and programming of cardiovascular function. Pharmacol Res 2018; 139:261-272. [PMID: 30458216 DOI: 10.1016/j.phrs.2018.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases (CVD) are a leading cause of mortality worldwide. Despite recognizing the importance of risk factors in dictating CVD susceptibility and onset, patient treatment remains a challenging endeavor. Increasingly, the benefits of prevention and mitigation of risk factors earlier in life are being acknowledged. The developmental origins of health and disease posits that insults during specific periods of development can influence long-term health outcomes; this occurs because the developing organism is highly plastic, and hence vulnerable to environmental perturbations. By extension, targeted therapeutics instituted during critical periods of development may confer long-term protection, and thus reduce the risk of CVD in later life. This review provides a brief overview of models of developmental programming, and then discusses the impact of perinatal therapeutic interventions on long-term cardiovascular function in the offspring. The discussion focuses on bioactive food components, as well as pharmacological agents currently approved for use in pregnancy; in short, those agents most likely to be used in pregnancy and early childhood.
Collapse
Affiliation(s)
- Lesley J Brennan
- Department of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Canada.
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, United States.
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Canada.
| |
Collapse
|
15
|
Piešová M, Koprdová R, Ujházy E, Mach M. Behavioral assessment of rat offspring after late gestational hypoxia. PATHOPHYSIOLOGY 2018. [DOI: 10.1016/j.pathophys.2018.07.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
17
|
Cooke CLM, Shah A, Kirschenman RD, Quon AL, Morton JS, Care AS, Davidge ST. Increased susceptibility to cardiovascular disease in offspring born from dams of advanced maternal age. J Physiol 2018; 596:5807-5821. [PMID: 29882308 DOI: 10.1113/jp275472] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Advanced maternal age increases the risk of pregnancy complications such as fetal growth restriction, hypertension and premature birth. Offspring born from compromised pregnancies are at increased risk of cardiovascular disease as adults. However, the effect of advanced maternal age on later-onset disease in offspring has not been investigated. In adulthood, male but not female offspring born to dams of advanced maternal age showed impaired recovery from cardiac ischaemia/reperfusion injury. Endothelium-dependent relaxation was also impaired in male but not female offspring born from aged dams. Oxidative stress may play a role in the developmental programming of cardiovascular disease in this model. Given the increasing trend toward delayed parenthood, these findings have significant population and health care implications and warrant further investigation. ABSTRACT Exposure to prenatal stressors, including hypoxia, micro- and macronutrient deficiency, and maternal stress, increases the risk of cardiovascular disease in adulthood. It is unclear whether being born from a mother of advanced maternal age (≥35 years old) may also constitute a prenatal stress with cardiovascular consequences in adulthood. We previously demonstrated growth restriction in fetuses from a rat model of advanced maternal age, suggesting exposure to a compromised in utero environment. Thus, we hypothesized that male and female offspring from aged dams would exhibit impaired cardiovascular function as adults. In 4-month-old offspring, we observed impaired endothelium-dependent relaxation in male (P < 0.05) but not female offspring born from aged dams. The anti-oxidant polyethylene glycol superoxide dismutase improved relaxation only in arteries from male offspring of aged dams (ΔEmax : young dam -1.63 ± 0.80 vs. aged dam 11.75 ± 4.23, P < 0.05). Furthermore, endothelium-derived hyperpolarization-dependent relaxation was reduced in male but not female offspring of aged dams (P < 0.05). Interestingly, there was a significant increase in nitric oxide contribution to relaxation in females born from aged dams (ΔEmax : young dam -24.8 ± 12.1 vs. aged dam -68.7 ± 7.7, P < 0.05), which was not observed in males. Recovery of cardiac function following an ischaemia-reperfusion insult in male offspring born from aged dams was reduced by ∼57% (P < 0.001), an effect that was not evident in female offspring. These data indicate that offspring born from aged dams have an altered cardiovascular risk profile that is sex-specific. Given the increasing trend toward delaying pregnancy, these findings may have significant population and health care implications and warrant further investigation.
Collapse
Affiliation(s)
- Christy-Lynn M Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Lois Hole Hospital for Women, Edmonton, Alberta, Canada
| | - Amin Shah
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Raven D Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Anita L Quon
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jude S Morton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Alison S Care
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Aljunaidy MM, Morton JS, Kirschenman R, Phillips T, Case CP, Cooke CLM, Davidge ST. Maternal treatment with a placental-targeted antioxidant (MitoQ) impacts offspring cardiovascular function in a rat model of prenatal hypoxia. Pharmacol Res 2018; 134:332-342. [PMID: 29778808 DOI: 10.1016/j.phrs.2018.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/17/2018] [Accepted: 05/09/2018] [Indexed: 11/29/2022]
Abstract
Intrauterine growth restriction, a common consequence of prenatal hypoxia, is a leading cause of fetal morbidity and mortality with a significant impact on population health. Hypoxia may increase placental oxidative stress and lead to an abnormal release of placental-derived factors, which are emerging as potential contributors to developmental programming. Nanoparticle-linked drugs are emerging as a novel method to deliver therapeutics targeted to the placenta and avoid risking direct exposure to the fetus. We hypothesize that placental treatment with antioxidant MitoQ loaded onto nanoparticles (nMitoQ) will prevent the development of cardiovascular disease in offspring exposed to prenatal hypoxia. Pregnant rats were intravenously injected with saline or nMitoQ (125 μM) on gestational day (GD) 15 and exposed to either normoxia (21% O2) or hypoxia (11% O2) from GD15-21 (term: 22 days). In one set of animals, rats were euthanized on GD 21 to assess fetal body weight, placental weight and placental oxidative stress. In another set of animals, dams were allowed to give birth under normal atmospheric conditions (term: GD 22) and male and female offspring were assessed at 7 and 13 months of age for in vivo cardiac function (echocardiography) and vascular function (wire myography, mesenteric artery). Hypoxia increased oxidative stress in placentas of male and female fetuses, which was prevented by nMitoQ. 7-month-old male and female offspring exposed to prenatal hypoxia demonstrated cardiac diastolic dysfunction, of which nMitoQ improved only in 7-month-old female offspring. Vascular sensitivity to methacholine was reduced in 13-month-old female offspring exposed to prenatal hypoxia, while nMitoQ treatment improved vasorelaxation in both control and hypoxia exposed female offspring. Male 13-month-old offspring exposed to hypoxia showed an age-related decrease in vascular sensitivity to phenylephrine, which was prevented by nMitoQ. In summary, placental-targeted MitoQ treatment in utero has beneficial sex- and age-dependent effects on adult offspring cardiovascular function.
Collapse
Affiliation(s)
- Mais M Aljunaidy
- Department of Physiology, University of Alberta, Edmonton, T6G 2S2, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, T6G 2S2, Canada
| | - Jude S Morton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, T6G 2S2, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, T6G 2S2, Canada
| | - Tom Phillips
- Musculoskeletal Research Unit, University of Bristol, Bristol, BS10 5NB, UK
| | - C Patrick Case
- Musculoskeletal Research Unit, University of Bristol, Bristol, BS10 5NB, UK
| | - Christy-Lynn M Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, T6G 2S2, Canada
| | - Sandra T Davidge
- Department of Physiology, University of Alberta, Edmonton, T6G 2S2, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, T6G 2S2, Canada.
| |
Collapse
|
19
|
Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development. Sci Rep 2017; 7:9079. [PMID: 28831049 PMCID: PMC5567270 DOI: 10.1038/s41598-017-06300-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/09/2017] [Indexed: 01/20/2023] Open
Abstract
Some neuropsychiatric disease, including schizophrenia, may originate during prenatal development, following periods of gestational hypoxia and placental oxidative stress. Here we investigated if gestational hypoxia promotes damaging secretions from the placenta that affect fetal development and whether a mitochondria-targeted antioxidant MitoQ might prevent this. Gestational hypoxia caused low birth-weight and changes in young adult offspring brain, mimicking those in human neuropsychiatric disease. Exposure of cultured neurons to fetal plasma or to secretions from the placenta or from model trophoblast barriers that had been exposed to altered oxygenation caused similar morphological changes. The secretions and plasma contained altered microRNAs whose targets were linked with changes in gene expression in the fetal brain and with human schizophrenia loci. Molecular and morphological changes in vivo and in vitro were prevented by a single dose of MitoQ bound to nanoparticles, which were shown to localise and prevent oxidative stress in the placenta but not in the fetus. We suggest the possibility of developing preventative treatments that target the placenta and not the fetus to reduce risk of psychiatric disease in later life.
Collapse
|
20
|
Paauw ND, van Rijn BB, Lely AT, Joles JA. Pregnancy as a critical window for blood pressure regulation in mother and child: programming and reprogramming. Acta Physiol (Oxf) 2017; 219:241-259. [PMID: 27124608 DOI: 10.1111/apha.12702] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/06/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Pregnancy is a critical time for long-term blood pressure regulation in both mother and child. Pregnancies complicated by placental insufficiency, resulting in pre-eclampsia and intrauterine growth restriction, are associated with a threefold increased risk of the mother to develop hypertension later in life. In addition, these complications create an adverse intrauterine environment, which programmes the foetus and the second generation to develop hypertension in adult life. Female offspring born to a pregnancy complicated by placental insufficiency are at risk for pregnancy complications during their own pregnancies as well, resulting in a vicious circle with programmed risk for hypertension passing from generation to generation. Here, we review the epidemiology and mechanisms leading to the altered programming of blood pressure trajectories after pregnancies complicated by placental insufficiency. Although the underlying mechanisms leading to hypertension remain the subject of investigation, several abnormalities in angiotensin sensitivity, sodium handling, sympathetic activity, endothelial function and metabolic pathways are found in the mother after exposure to placental insufficiency. In the child, epigenetic modifications and disrupted organ development play a crucial role in programming of hypertension. We emphasize that pregnancy can be viewed as a window of opportunity to improve long-term cardiovascular health of both mother and child, and outline potential gains expected of improved preconceptional, perinatal and post-natal care to reduce the development of hypertension and the burden of cardiovascular disease later in life. Perinatal therapies aimed at reprogramming hypertension are a promising strategy to break the vicious circle of intergenerational programming of hypertension.
Collapse
Affiliation(s)
- N. D. Paauw
- Department of Obstetrics; Wilhelmina Children's Hospital Birth Center; University Medical Center Utrecht; Utrecht the Netherlands
| | - B. B. van Rijn
- Department of Obstetrics; Wilhelmina Children's Hospital Birth Center; University Medical Center Utrecht; Utrecht the Netherlands
- Academic Unit of Human Development and Health; University of Southampton; Southampton UK
| | - A. T. Lely
- Department of Obstetrics; Wilhelmina Children's Hospital Birth Center; University Medical Center Utrecht; Utrecht the Netherlands
| | - J. A. Joles
- Department of Nephrology and Hypertension; University Medical Center Utrecht; Utrecht the Netherlands
| |
Collapse
|
21
|
Zhu Z, Tang J, Zhou X, Xiang S, Zhu X, Li N, Shi R, Zhong Y, Zhang L, Sun M, Xu Z. Roles of ion channels in regulation of acetylcholine-mediated vasoconstrictions in umbilical cords of rabbit/rats. Reprod Toxicol 2016; 65:95-103. [PMID: 27421582 DOI: 10.1016/j.reprotox.2016.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/31/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022]
Abstract
We recently demonstrated that acetylcholine (ACh) produced reliable vasoconstrictions in the umbilical cords. This study investigated the possible mechanisms with different antagonists. ACh-mediated vasoconstrictions were decreased by voltage-operated calcium (Ca2+) channels antagonist nifedipine or inositol-1,4,5-trisphosphate-mediated Ca2+ release antagonist 2-aminoethyl diphenylborinate, indicating that both extracellular and intracellular calcium modulated the ACh-stimulated umbilical contraction. Intracellular Ca2+ concentrations were increased simultaneously with vasoconstrictions by ACh in the umbilical vessels. Inhibiting large-conductance calcium-dependent potassium (BK) channels enhanced ACh-mediated contraction, whereas inhibiting voltage dependent potassium (K+), inward rectifier K+ and ATP-sensitive K+ channels had no effects. Incubation with specific K+ channel inhibitors showed that ACh suppressed BK currents rather than 4-aminopyridine-sensitive K+ channels currents. The results suggested that blood vessels in umbilical cords had special characteristics in response to cholinergic signals. ACh-stimulated umbilical vasoconstrictions were mediated via muscarinic receptor subtype 1/3-protein kinase C/cyclooxygenase-BK channel pathways.
Collapse
Affiliation(s)
- Zhoufeng Zhu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaqi Tang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiuwen Zhou
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Sharon Xiang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA
| | - Xiaolin Zhu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Na Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ruixiu Shi
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yuan Zhong
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lubo Zhang
- Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Zhice Xu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
22
|
Morton JS, Cooke CL, Davidge ST. In Utero Origins of Hypertension: Mechanisms and Targets for Therapy. Physiol Rev 2016; 96:549-603. [DOI: 10.1152/physrev.00015.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The developmental origins of health and disease theory is based on evidence that a suboptimal environment during fetal and neonatal development can significantly impact the evolution of adult-onset disease. Abundant evidence exists that a compromised prenatal (and early postnatal) environment leads to an increased risk of hypertension later in life. Hypertension is a silent, chronic, and progressive disease defined by elevated blood pressure (>140/90 mmHg) and is strongly correlated with cardiovascular morbidity/mortality. The pathophysiological mechanisms, however, are complex and poorly understood, and hypertension continues to be one of the most resilient health problems in modern society. Research into the programming of hypertension has proposed pharmacological treatment strategies to reverse and/or prevent disease. In addition, modifications to the lifestyle of pregnant women might impart far-reaching benefits to the health of their children. As more information is discovered, more successful management of hypertension can be expected to follow; however, while pregnancy complications such as fetal growth restriction, preeclampsia, preterm birth, etc., continue to occur, their offspring will be at increased risk for hypertension. This article reviews the current knowledge surrounding the developmental origins of hypertension, with a focus on mechanistic pathways and targets for therapeutic and pharmacologic interventions.
Collapse
Affiliation(s)
- Jude S. Morton
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Christy-Lynn Cooke
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Sandra T. Davidge
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| |
Collapse
|
23
|
Allison BJ, Kaandorp JJ, Kane AD, Camm EJ, Lusby C, Cross CM, Nevin-Dolan R, Thakor AS, Derks JB, Tarry-Adkins JL, Ozanne SE, Giussani DA. Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease. FASEB J 2016; 30:1968-75. [PMID: 26932929 PMCID: PMC5036970 DOI: 10.1096/fj.201500057] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/26/2016] [Indexed: 12/24/2022]
Abstract
Aging and developmental programming are both associated with oxidative stress and endothelial dysfunction, suggesting common mechanistic origins. However, their interrelationship has been little explored. In a rodent model of programmed cardiovascular dysfunction we determined endothelial function and vascular telomere length in young (4 mo) and aged (15 mo) adult offspring of normoxic or hypoxic pregnancy with or without maternal antioxidant treatment. We show loss of endothelial function [maximal arterial relaxation to acetylcholine (71 ± 3 vs. 55 ± 3%) and increased vascular short telomere abundance (4.2–1.3 kb) 43.0 ± 1.5 vs. 55.1 ± 3.8%) in aged vs. young offspring of normoxic pregnancy (P < 0.05). Hypoxic pregnancy in young offspring accelerated endothelial dysfunction (maximal arterial relaxation to acetylcholine: 42 ± 1%, P < 0.05) but this was dissociated from increased vascular short telomere length abundance. Maternal allopurinol rescued maximal arterial relaxation to acetylcholine in aged offspring of normoxic or hypoxic pregnancy but not in young offspring of hypoxic pregnancy. Aged offspring of hypoxic allopurinol pregnancy compared with aged offspring of untreated hypoxic pregnancy had lower levels of short telomeres (vascular short telomere length abundance 35.1 ± 2.5 vs. 48.2 ± 2.6%) and of plasma proinflammatory chemokine (24.6 ± 2.8 vs. 36.8 ± 5.5 pg/ml, P < 0.05). These data provide evidence for divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease, and aging being decelerated by antioxidants even prior to birth.—Allison, B. J., Kaandorp, J. J., Kane, A. D., Camm, E. J., Lusby, C., Cross, C. M., Nevin-Dolan, R., Thakor, A. S., Derks, J. B., Tarry-Adkins, J. L., Ozanne, S. E., Giussani, D. A. Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease.
Collapse
Affiliation(s)
- Beth J Allison
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Joepe J Kaandorp
- Perinatology, University Medical Center, Utrecht, The Netherlands; and
| | - Andrew D Kane
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Emily J Camm
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ciara Lusby
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Christine M Cross
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Rhianon Nevin-Dolan
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Avnesh S Thakor
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jan B Derks
- Perinatology, University Medical Center, Utrecht, The Netherlands; and
| | - Jane L Tarry-Adkins
- Metabolic Research Laboratories and Medical Reseach Council (MRC) Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Susan E Ozanne
- Metabolic Research Laboratories and Medical Reseach Council (MRC) Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Dino A Giussani
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
24
|
Svitok P, Molcan L, Stebelova K, Vesela A, Sedlackova N, Ujhazy E, Mach M, Zeman M. Prenatal hypoxia in rats increased blood pressure and sympathetic drive of the adult offspring. Hypertens Res 2016; 39:501-5. [DOI: 10.1038/hr.2016.21] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/12/2016] [Accepted: 01/29/2016] [Indexed: 01/04/2023]
|
25
|
Ávila JGO, Echeverri I, de Plata CA, Castillo A. Impact of oxidative stress during pregnancy on fetal epigenetic patterns and early origin of vascular diseases. Nutr Rev 2015; 73:12-21. [PMID: 26024054 DOI: 10.1093/nutrit/nuu001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies have led scientists to postulate the developmental origins of health and disease hypothesis for noncommunicable diseases such as diabetes, cardiovascular diseases, hypertension, and obesity. However, the cellular and molecular mechanisms involved in the development of these diseases are not well understood. In various animal models, it has been observed that oxidative stress during pregnancy is associated with the early development of endothelial dysfunction in offspring. This phenomenon suggests that endothelial dysfunction may initiate in the uterus and could lead to increased risk of cardiovascular disease later in life. Currently, it is known that many of the fetal adaptive responses to environmental factors are mediated by epigenetic changes in the genome, especially by the degree of methylation in cytosines in the promoter regions of genes. These findings suggest that the establishment of a particular epigenetic pattern in the genome may be generated by oxidative stress.
Collapse
Affiliation(s)
- Jose Guillermo Ortega Ávila
- J.G. Ortega Ávila is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, Research Group on Basic and Clinical Health Sciences, School of Medicine, Pontificia Universidad Javeriana, Cali, Colombia. I. Echeverri is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, School of Medicine, Universidad ICESI, Cali, Colombia. C. Aguilar de Plata and A. Castillo are with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia.
| | - Isabella Echeverri
- J.G. Ortega Ávila is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, Research Group on Basic and Clinical Health Sciences, School of Medicine, Pontificia Universidad Javeriana, Cali, Colombia. I. Echeverri is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, School of Medicine, Universidad ICESI, Cali, Colombia. C. Aguilar de Plata and A. Castillo are with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia
| | - Cecilia Aguilar de Plata
- J.G. Ortega Ávila is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, Research Group on Basic and Clinical Health Sciences, School of Medicine, Pontificia Universidad Javeriana, Cali, Colombia. I. Echeverri is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, School of Medicine, Universidad ICESI, Cali, Colombia. C. Aguilar de Plata and A. Castillo are with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia
| | - Andrés Castillo
- J.G. Ortega Ávila is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, Research Group on Basic and Clinical Health Sciences, School of Medicine, Pontificia Universidad Javeriana, Cali, Colombia. I. Echeverri is with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia and the Department of Basic Sciences, School of Medicine, Universidad ICESI, Cali, Colombia. C. Aguilar de Plata and A. Castillo are with the Department of Physiological Sciences, Nutrition Group, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia
| |
Collapse
|
26
|
Walton SL, Singh RR, Tan T, Paravicini TM, Moritz KM. Late gestational hypoxia and a postnatal high salt diet programs endothelial dysfunction and arterial stiffness in adult mouse offspring. J Physiol 2015; 594:1451-63. [PMID: 26456386 DOI: 10.1113/jp271067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/28/2015] [Indexed: 01/21/2023] Open
Abstract
Gestational hypoxia and high dietary salt intake have both been associated with impaired vascular function in adulthood. Using a mouse model of prenatal hypoxia, we examined whether a chronic high salt diet had an additive effect in promoting vascular dysfunction in offspring. Pregnant CD1 dams were placed in a hypoxic chamber (12% O2) or housed under normal conditions (21% O2) from embryonic day 14.5 until birth. Gestational hypoxia resulted in a reduced body weight for both male and female offspring at birth. This restriction in body weight persisted until weaning, after which the animals underwent catch-up growth. At 10 weeks of age, a subset of offspring was placed on a high salt diet (5% NaCl). Pressurized myography of mesenteric resistance arteries at 12 months of age showed that both male and female offspring exposed to maternal hypoxia had significantly impaired endothelial function, as demonstrated by impaired vasodilatation to ACh but not sodium nitroprusside. Endothelial dysfunction caused by prenatal hypoxia was not exacerbated by postnatal consumption of a high salt diet. Prenatal hypoxia increased microvascular stiffness in male offspring. The combination of prenatal hypoxia and a postnatal high salt diet caused a leftward shift in the stress-strain relationship in both sexes. Histopathological analysis of aortic sections revealed a loss of elastin integrity and increased collagen, consistent with increased vascular stiffness. These results demonstrate that prenatal hypoxia programs endothelial dysfunction in both sexes. A chronic high salt diet in postnatal life had an additive deleterious effect on vascular mechanics and structural characteristics in both sexes.
Collapse
Affiliation(s)
- Sarah L Walton
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Reetu R Singh
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Tiffany Tan
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Tamara M Paravicini
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.,School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
27
|
Gaynullina D, Dweep H, Gloe T, Tarasova OS, Sticht C, Gretz N, Schubert R. Alteration of mRNA and microRNA expression profiles in rat muscular type vasculature in early postnatal development. Sci Rep 2015; 5:11106. [PMID: 26073182 PMCID: PMC4466593 DOI: 10.1038/srep11106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 05/15/2015] [Indexed: 12/23/2022] Open
Abstract
The vascular system is characterized by a high degree of plasticity. In particular, functional and structural remodeling of the arterial system takes place during early postnatal development. However, the mechanisms providing such alterations in the rapidly growing organisms are poorly understood, especially for the peripheral vasculature. To explore this, we performed mRNA- and miRNA microarray analysis on muscular type saphenous arteries of young (10-12 days) and adult (2-3 months) rats. Thirty-eight significant pathways (such as oxidative phosphorylation, MAPK signaling, metabolism, cell cycle, DNA replication and focal adhesion) were obtained on differentially regulated genes during postnatal development. Many differentially regulated genes were determined as target- and miRNA-hubs. We also found 92 miRNAs differentially expressed in arteries of young and adult rats. Several significantly regulated pathways were found on these regulated miRNAs. Interestingly, these biological cascades also contain those significantly enriched pathways that were previously identified based on the differently expressed genes. Our data indicate that the expression of many genes involved in the regulation of pathways that are relevant for different functions in arteries may be under the control of miRNAs and these miRNAs regulate the functional, and structural remodeling occurring in the vascular system during early postnatal development.
Collapse
Affiliation(s)
- Dina Gaynullina
- 1] Cardiovascular Physiology, Centre for Biomedicine and Medical Technology Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany [2] Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia [3] Department of Physiology, Russian National Research Medical University, Ostrovityanova str. 1, 117997 Moscow, Russia
| | - Harsh Dweep
- Medical Research Center, University of Heidelberg, D-68167 Mannheim, Germany
| | - Torsten Gloe
- Cardiovascular Physiology, Centre for Biomedicine and Medical Technology Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| | - Olga S Tarasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Carsten Sticht
- Medical Research Center, University of Heidelberg, D-68167 Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, University of Heidelberg, D-68167 Mannheim, Germany
| | - Rudolf Schubert
- Cardiovascular Physiology, Centre for Biomedicine and Medical Technology Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
28
|
Jang EA, Longo LD, Goyal R. Antenatal maternal hypoxia: criterion for fetal growth restriction in rodents. Front Physiol 2015; 6:176. [PMID: 26106333 PMCID: PMC4458570 DOI: 10.3389/fphys.2015.00176] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/25/2015] [Indexed: 12/24/2022] Open
Abstract
Rodents are a useful model for life science research. Accumulating evidence suggests that the offspring of mice and rats suffer from similar disorders as humans when exposed to hypoxia during pregnancy. Importantly, with antenatal hypoxic exposure, human neonates demonstrate low birth weight or growth restriction. Similarly, with antenatal hypoxic exposure rodents also demonstrate the fetal growth restriction (FGR). Surprisingly, there is no consensus on the minimum duration or degree of hypoxic exposure required to cause FGR in rodents. Thus, we have reviewed the available literature in an attempt to answer these questions. Based on studies in rats, birth weight reduction of 31% corresponded to 10th percentile reduction in birth weight curve. With the similar criterion (10th percentile), in mice 3 days or more and in rats 7 days or more of 14% or lower hypoxia administration was required to produce statistically significant FGR.
Collapse
Affiliation(s)
- Eeun Amy Jang
- Department of Basic Sciences, Center for Perinatal Biology, School of Medicine, Loma Linda University Loma Linda, CA, USA
| | - Lawrence D Longo
- Department of Basic Sciences, Center for Perinatal Biology, School of Medicine, Loma Linda University Loma Linda, CA, USA ; Epigenuity LLC Loma Linda, CA, USA
| | - Ravi Goyal
- Department of Basic Sciences, Center for Perinatal Biology, School of Medicine, Loma Linda University Loma Linda, CA, USA ; Epigenuity LLC Loma Linda, CA, USA
| |
Collapse
|
29
|
Abstract
Low birth weight serves as a crude proxy for impaired growth during fetal life and indicates a failure for the fetus to achieve its full growth potential. Low birth weight can occur in response to numerous etiologies that include complications during pregnancy, poor prenatal care, parental smoking, maternal alcohol consumption, or stress. Numerous epidemiological and experimental studies demonstrate that birth weight is inversely associated with blood pressure and coronary heart disease. Sex and age impact the developmental programming of hypertension. In addition, impaired growth during fetal life also programs enhanced vulnerability to a secondary insult. Macrosomia, which occurs in response to maternal obesity, diabetes, and excessive weight gain during gestation, is also associated with increased cardiovascular risk. Yet, the exact mechanisms that permanently change the structure, physiology, and endocrine health of an individual across their lifespan following altered growth during fetal life are not entirely clear. Transmission of increased risk from one generation to the next in the absence of an additional prenatal insult indicates an important role for epigenetic processes. Experimental studies also indicate that the sympathetic nervous system, the renin angiotensin system, increased production of oxidative stress, and increased endothelin play an important role in the developmental programming of blood pressure in later life. Thus, this review will highlight how adverse influences during fetal life and early development program an increased risk for cardiovascular disease including high blood pressure and provide an overview of the underlying mechanisms that contribute to the fetal origins of cardiovascular pathology.
Collapse
Affiliation(s)
- Barbara T Alexander
- Department of Physiology and Biophysics, Women's Health Research Center, Center for Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | |
Collapse
|
30
|
Reyes LM, Morton JS, Kirschenman R, DeLorey DS, Davidge ST. Vascular effects of aerobic exercise training in rat adult offspring exposed to hypoxia-induced intrauterine growth restriction. J Physiol 2015; 593:1913-29. [PMID: 25616117 DOI: 10.1113/jphysiol.2014.288449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/20/2015] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Prenatal hypoxia, one of the most common consequences of complicated pregnancies, leads to intrauterine growth restriction (IUGR) and impairs later-life endothelium-dependent vascular function. Early interventions are needed to ultimately reduce later-life risk for cardiovascular disease. Aerobic exercise training has been shown to prevent cardiovascular diseases. Whether exercise can be used as an intervention to reverse the vascular phenotype of this susceptible population is unknown. Aerobic exercise training enhanced endothelium-derived hyperpolarization-mediated vasodilatation in gastrocnemius muscle arteries in male IUGR offspring, and did not improve nitric oxide-mediated vasodilatation in IUGR offspring. Understanding the mechanisms by which exercise impacts the cardiovascular system in a susceptible population and the consideration of sexual dimorphism is essential to define whether exercise could be used as a preventive strategy in this population. ABSTRACT Hypoxia in utero is a critical insult causing intrauterine growth restriction (IUGR). Adult offspring born with hypoxia-induced IUGR have impaired endothelium-dependent vascular function. We tested whether aerobic exercise improves IUGR-induced endothelial dysfunction. Pregnant Sprague-Dawley rats were exposed to control (21% oxygen) or hypoxic (11% oxygen) conditions from gestational day 15 to 21. Male and female offspring from normoxic and hypoxic (IUGR) pregnancies were randomized at 10 weeks of age to either an exercise-trained or sedentary group. Exercise-trained rats ran on a treadmill for 30 min at 20 m min(-1) , 5 deg gradient, 5 days week(-1) , for 6 weeks. Concentration-response curves to phenylephrine and methylcholine were performed in second order mesenteric and gastrocnemius muscle arteries, in the presence or absence of l-NAME (100 μm), MnTBAP (peroxynitrite scavenger; 10 μm), apamin (0.1 μm) and TRAM-34 (an intermediate-conductance calcium-activated potassium channel blocker; 10 μm), or indomethacin (5 μm). In adult male IUGR offspring, prenatal hypoxia had no effect on total vasodilator responses in either vascular bed. Aerobic exercise training in IUGR males, however, improved endothelium-derived hyperpolarization (EDH)-mediated vasodilatation in gastrocnemius muscle arteries. Female IUGR offspring had reduced NO-mediated vasodilatation in both vascular beds, along with decreased total vasodilator responses and increased prostaglandin-mediated vasoconstriction in gastrocnemius muscle arteries. In contrast to males, aerobic exercise training in IUGR female offspring had no effect on either vascular bed. Exercise may not prove to be a beneficial therapy for specific vascular pathways affected by prenatal hypoxia, particularly in female offspring.
Collapse
Affiliation(s)
- Laura M Reyes
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
31
|
Abstract
Epidemiological studies, including those in identical twins, and in individuals in utero during periods of famine have provided robust evidence of strong correlations between low birth-weight and subsequent risk of disease in later life, including type 2 diabetes (T2D), CVD, and metabolic syndrome. These and studies in animal models have suggested that the early environment, especially early nutrition, plays an important role in mediating these associations. The concept of early life programming is therefore widely accepted; however the molecular mechanisms by which early environmental insults can have long-term effects on a cell and consequently the metabolism of an organism in later life, are relatively unclear. So far, these mechanisms include permanent structural changes to the organ caused by suboptimal levels of an important factor during a critical developmental period, changes in gene expression caused by epigenetic modifications (including DNA methylation, histone modification and microRNA) and permanent changes in cellular ageing. Many of the conditions associated with early-life nutrition are also those which have an age-associated aetiology. Recently, a common molecular mechanism in animal models of developmental programming and epidemiological studies has been development of oxidative stress and macromolecule damage, specifically DNA damage and telomere shortening. These are phenotypes common to accelerated cellular ageing. Thus, this review will encompass epidemiological and animal models of developmental programming with specific emphasis on cellular ageing and how these could lead to potential therapeutic interventions and strategies which could combat the burden of common age-associated disease, such as T2D and CVD.
Collapse
|
32
|
Bourque SL, Gragasin FS, Quon AL, Mansour Y, Morton JS, Davidge ST. Prenatal Hypoxia Causes Long-Term Alterations in Vascular Endothelin-1 Function in Aged Male, but Not Female, Offspring. Hypertension 2013; 62:753-8. [DOI: 10.1161/hypertensionaha.113.01516] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prenatal hypoxia can alter the growth trajectory of the fetus and cause lasting health complications including vascular dysfunction. We hypothesized that offspring that were intrauterine growth restricted (IUGR) because of prenatal hypoxia would exhibit altered vascular endothelin-1 (ET-1) signaling in later life. Isolated mesenteric artery responses to big ET-1 (bET-1) and ET-1 were assessed by using wire myography. Male IUGR offspring had 3-fold greater bET-1–induced vasoconstriction compared with controls (n=7 per group;
P
<0.001); NO synthase inhibition with L-N
G
-nitro-arginine-methyl ester potentiated bET-1–induced vasoconstriction, albeit this effect was 2-fold greater (
P
<0.05) in male control compared with IUGR offspring. Vascular responses to bET-1 were similar between female IUGR and control offspring (n=9–11 per group). In the presence of L-N
G
-nitro-arginine-methyl ester, pretreatment with the chymase inhibitor chymostatin, the gelatinase inhibitor GM6001, or the neutral endopeptidase inhibitor thiorphan did not alter responses to bET-1; however, the ET-converting enzyme inhibitor CGS35066 almost completely abolished vascular responses to bET-1 in control and IUGR groups. Systolic blood pressure in IUGR male offspring was more responsive to ET-1 antagonism in vivo compared with controls (−9 versus −4 mm Hg; n=5 per group;
P
=0.02); no such differences were observed in female offspring (n=5–6 per group). These results demonstrate that vascular ET-1 function is programmed by prenatal hypoxia and provide further insights into the sex differences in the long-term vascular effects of developmental stressors.
Collapse
Affiliation(s)
- Stephane L. Bourque
- From the Department of Obstetrics and Gynecology (S.L.B., A.L.Q., Y.M., J.S.M., S.T.D.), Department of Anesthesiology and Pain Medicine (F.S.G.), and Women and Children’s Health Research Institute (S.L.B., F.S.G., Y.M., J.S.M., S.T.D.), University of Alberta, Edmonton, Alberta, Canada
| | - Ferrante S. Gragasin
- From the Department of Obstetrics and Gynecology (S.L.B., A.L.Q., Y.M., J.S.M., S.T.D.), Department of Anesthesiology and Pain Medicine (F.S.G.), and Women and Children’s Health Research Institute (S.L.B., F.S.G., Y.M., J.S.M., S.T.D.), University of Alberta, Edmonton, Alberta, Canada
| | - Anita L. Quon
- From the Department of Obstetrics and Gynecology (S.L.B., A.L.Q., Y.M., J.S.M., S.T.D.), Department of Anesthesiology and Pain Medicine (F.S.G.), and Women and Children’s Health Research Institute (S.L.B., F.S.G., Y.M., J.S.M., S.T.D.), University of Alberta, Edmonton, Alberta, Canada
| | - Yael Mansour
- From the Department of Obstetrics and Gynecology (S.L.B., A.L.Q., Y.M., J.S.M., S.T.D.), Department of Anesthesiology and Pain Medicine (F.S.G.), and Women and Children’s Health Research Institute (S.L.B., F.S.G., Y.M., J.S.M., S.T.D.), University of Alberta, Edmonton, Alberta, Canada
| | - Jude S. Morton
- From the Department of Obstetrics and Gynecology (S.L.B., A.L.Q., Y.M., J.S.M., S.T.D.), Department of Anesthesiology and Pain Medicine (F.S.G.), and Women and Children’s Health Research Institute (S.L.B., F.S.G., Y.M., J.S.M., S.T.D.), University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T. Davidge
- From the Department of Obstetrics and Gynecology (S.L.B., A.L.Q., Y.M., J.S.M., S.T.D.), Department of Anesthesiology and Pain Medicine (F.S.G.), and Women and Children’s Health Research Institute (S.L.B., F.S.G., Y.M., J.S.M., S.T.D.), University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
33
|
Abstract
Pregnancy encompasses substantial changes in vascular function to accommodate dramatic increases in blood volume and uteroplacental blood flow to the growing fetus. Despite increased hemodynamics, decreased peripheral resistance results in a reduction in mean arterial blood pressure. Vascular tone, and hence peripheral resistance, is determined by a delicate balance of constrictor and dilator capacities. In the normal physiological response to pregnancy, endothelial-derived hyperpolarization (EDH) has been shown to be a major contributor; both EDH and nitric oxide (NO) are predominantly involved in providing an increased vascular capacity for vasodilation. The ability of EDH and NO to adequately accommodate increased blood volume is tested in pathological states such as placental insufficiency or diabetes and both EDH and NO-dependent mechanisms seem to be impacted in these situations. Pregnancy complications also have an impact on the cardiovascular health of the offspring. In adult offspring born from complicated pregnancies, the data suggest that EDH mechanisms are largely maintained, whereas NO is commonly reduced. A diversity of EDH mechanisms may be useful in providing many targets for potential therapeutic avenues for compromised pregnancies; however, further research delineating the mechanisms of EDH and the interactions of NO and EDH, in normal and pathological pregnancies is required.
Collapse
|
34
|
D'Orléans-Juste P, Houde M, Semaan W. Are sildenafil derivatives useful even in unborn males? Hypertension 2013; 62:685-6. [PMID: 23940200 DOI: 10.1161/hypertensionaha.113.01870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Basu R, Lee J, Morton JS, Takawale A, Fan D, Kandalam V, Wang X, Davidge ST, Kassiri Z. TIMP3 is the primary TIMP to regulate agonist-induced vascular remodelling and hypertension. Cardiovasc Res 2013; 98:360-71. [PMID: 23524300 DOI: 10.1093/cvr/cvt067] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS Hypertension is accompanied by structural remodelling of vascular extracellular matrix (ECM). Tissue inhibitor of metalloproteinases (TIMPs) inhibits matrix metalloproteinases (MMPs) that degrade the matrix structural proteins. In response to a hypertensive stimulus, the balance between MMPs and TIMPs is altered. We examined the role of TIMPs in agonist-induced hypertension. METHODS AND RESULTS We subjected TIMP-knockout mice to angiotensin II (Ang II) infusion, and found that Ang-II-induced hypertension in TIMP1(-/-), TIMP2(-/-), and TIMP4(-/-) mice was comparable to wild-type (WT) mice, but significantly suppressed in TIMP3(-/-) mice. Ex vivo pressure myography analyses on carotid and mesenteric arteries revealed that Ang-II-infused TIMP3(-/-) arteries were more distensible with impaired elastic recoil compared with the WT group. The acute response to vasoconstriction and vasodilation was intact in TIMP3(-/-) mesenteric and carotid arteries. Mesenteric arteries from TIMP3(-/-)-Ang II mice exhibited a reduced media-to-lumen ratio, suppressed collagen and elastin levels, elevated elastase and gelatinase proteolytic activities compared with WT-Ang II. TIMP3(-/-)-Ang II carotid arteries also showed adverse structural remodelling. Treatment of mice with doxycycline, a matrix metalloproteinase inhibitor, improved matrix integrity in mesenteric and carotid arteries in TIMP3(-/-)-Ang II and differentially regulated elastin and collagen levels in WT-Ang II vs. TIMP3(-/-)-Ang II. CONCLUSION Our study demonstrates a critical role for TIMP3, among all TIMPs, is preserving arterial ECM in response to Ang II. It is critical to acknowledge that the suppressed Ang-II-induced hypertension in TIMP3(-/-) mice is not a protective mechanism but owing to adverse remodelling in arterial matrix.
Collapse
Affiliation(s)
- Ratnadeep Basu
- Department of Physiology, University of Alberta, 474 HMRC, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
It is now recognized that the quality of the fetal environment during early development is important in programming cardiovascular health and disease in later life. Fetal hypoxia is one of the most common consequences of complicated pregnancies worldwide. However, in contrast to the extensive research effort on pregnancy affected by maternal nutrition or maternal stress, the contribution of pregnancy affected by fetal chronic hypoxia to developmental programming is only recently becoming delineated and established. This review discusses the increasing body of evidence supporting the programming of cardiac susceptibility to ischaemia and reperfusion (I/R) injury, of endothelial dysfunction in peripheral resistance circulations, and of indices of the metabolic syndrome in adult offspring of hypoxic pregnancy. An additional focus of the review is the identification of plausible mechanisms and the implementation of maternal and early life interventions to protect against adverse programming.
Collapse
|
37
|
Abstract
Adverse environments during the fetal and neonatal development period may permanently program physiology and metabolism, and lead to increased risk of diseases in later life. Programming of the hypothalamic-pituitary-adrenal (HPA) axis is one of the key mechanisms that contribute to altered metabolism and response to stress. Programming of the HPA axis often involves epigenetic modification of the glucocorticoid receptor (GR) gene promoter, which influences tissue-specific GR expression patterns and response to stimuli. This review summarizes the current state of research on the HPA axis and programming of health and disease in the adult, focusing on the epigenetic regulation of GR gene expression patterns in response to fetal and neonatal stress. Aberrant GR gene expression patterns in the developing brain may have a significant negative impact on protection of the immature brain against hypoxic-ischemic encephalopathy in the critical period of development during and immediately after birth.
Collapse
|
38
|
Pisaneschi S, Strigini FAL, Sanchez AM, Begliuomini S, Casarosa E, Ripoli A, Ghirri P, Boldrini A, Fink B, Genazzani AR, Coceani F, Simoncini T. Compensatory feto-placental upregulation of the nitric oxide system during fetal growth restriction. PLoS One 2012; 7:e45294. [PMID: 23028913 PMCID: PMC3459972 DOI: 10.1371/journal.pone.0045294] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/14/2012] [Indexed: 01/20/2023] Open
Abstract
Background Fetal Growth Restriction is often associated with a feto-placental vascular dysfunction conceivably involving endothelial cells. Our study aimed to verify this pathogenic role for feto-placental endothelial cells and, coincidentally, demonstrate any abnormality in the nitric oxide system. Methods Prenatal assessment of feto-placental vascular function was combined with measurement of nitric oxide (in the form of S-nitrosohemoglobin) and its nitrite byproduct, and of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine. Umbilical vein endothelial cells were also harvested to determine their gene profile. The study comprised term pregnancies with normal (n = 40) or small-for-gestational-age (n = 20) newborns, small-for-gestational-age preterm pregnancies (n = 15), and bi-chorial, bi-amniotic twin pregnancies with discordant fetal growth (n = 12). Results Umbilical blood nitrite (p<0.001) and S-nitrosohemoglobin (p = 0.02) rose with fetal growth restriction while asymmetric dimethylarginine decreased (p = 0.003). Nitrite rise coincided with an abnormal Doppler profile from umbilical arteries. Fetal growth restriction umbilical vein endothelial cells produced more nitrite and also exhibited reciprocal changes in vasodilator (upwards) and vasoconstrictor (downwards) transcripts. Elevation in blood nitrite and S-nitrosohemoglobin persisted postnatally in the fetal growth restriction offspring. Conclusion Fetal growth restriction is typified by increased nitric oxide production during pregnancy and after birth. This response is viewed as an adaptative event to sustain placental blood flow. However, its occurrence may modify the endothelial phenotype and may ultimately represent an element of risk for cardiovascular disease in adult life.
Collapse
Affiliation(s)
- Silvia Pisaneschi
- Division of Obstetrics and Gynecology, Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Francesca A. L. Strigini
- Division of Obstetrics and Gynecology, Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Angel M. Sanchez
- Division of Obstetrics and Gynecology, Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Silvia Begliuomini
- Division of Obstetrics and Gynecology, Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Elena Casarosa
- Division of Obstetrics and Gynecology, Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Andrea Ripoli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Paolo Ghirri
- Division of Neonatology, Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Antonio Boldrini
- Division of Neonatology, Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Bruno Fink
- Noxygen Science Transfer and Diagnostics, Elzach, Germany
| | - Andrea R. Genazzani
- Division of Obstetrics and Gynecology, Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Flavio Coceani
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Tommaso Simoncini
- Division of Obstetrics and Gynecology, Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
39
|
Abstract
Although it is accepted that impaired placental perfusion in complicated pregnancy can slow fetal growth and programme an increased risk of cardiovascular dysfunction at adulthood, the relative contribution of reductions in fetal nutrition and in fetal oxygenation as the triggering stimulus remains unclear. By combining high altitude (HA) with the chick embryo model, we have previously isolated the direct effects of HA hypoxia on embryonic growth and cardiovascular development before hatching. This study isolated the effects of developmental hypoxia on cardiovascular function measured in vivo in conscious adult male and female chickens. Chick embryos were incubated, hatched and raised at sea level (SL, nine males and nine females) or incubated, hatched and raised at HA (seven males and seven females). At 6 months of age, vascular catheters were inserted under general anaesthesia. Five days later, basal blood gas status, basal cardiovascular function and cardiac baroreflex responses were investigated. HA chickens had significantly lower basal arterial PO2 and haemoglobin saturation, and significantly higher haematocrit than SL chickens, independent of the sex of the animal. HA chickens had significantly lower arterial blood pressure than SL chickens, independent of the sex of the animal. Although the gain of the arterial baroreflex was decreased in HA relative to SL male chickens, it was increased in HA relative to SL female chickens. We show that development at HA lowers basal arterial blood pressure and alters baroreflex sensitivity in a sex-dependent manner at adulthood.
Collapse
|
40
|
Zhang X, Li L, Zhang X, Xie W, Li L, Yang D, Heng X, Du Y, Doody RS, Le W. Prenatal hypoxia may aggravate the cognitive impairment and Alzheimer's disease neuropathology in APPSwe/PS1A246E transgenic mice. Neurobiol Aging 2012; 34:663-78. [PMID: 22795785 DOI: 10.1016/j.neurobiolaging.2012.06.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 01/06/2023]
Abstract
Most cases of Alzheimer's disease (AD) arise through interactions between genetic and environmental factors. It is believed that hypoxia is an important environmental factor influencing the development of AD. Our group has previously demonstrated that hypoxia increased β-amyloid (Aβ) generation in aged AD mice. Here, we further investigate the pathological role of prenatal hypoxia in AD. We exposed the pregnant APP(Swe)/PS1(A246E) transgenic mice to high-altitude hypoxia in a hypobaric chamber during days 7-20 of gestation. We found that prenatal hypoxic mice exhibited a remarkable deficit in spatial learning and memory and a significant decrease in synapses. We also documented a significantly higher level of amyloid precursor protein, lower level of the Aβ-degrading enzyme neprilysin, and increased Aβ accumulation in the brain of prenatal hypoxic mice. Finally, we demonstrated striking neuropathologic changes in prenatal hypoxic AD mice, showing increased phosphorylation of tau, decreased hypoxia-induced factor, and enhanced activation of astrocytes and microglia. These data suggest that although the characteristic features of AD appear later in life, hypoxemia in the prenatal stage may contribute to the pathogenesis of the disease, supporting the notion that environmental factors can trigger or aggravate AD.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Thompson LP, Al-Hasan Y. Impact of oxidative stress in fetal programming. J Pregnancy 2012; 2012:582748. [PMID: 22848830 PMCID: PMC3403156 DOI: 10.1155/2012/582748] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/07/2012] [Accepted: 06/21/2012] [Indexed: 01/23/2023] Open
Abstract
Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that protect against organ dysfunction in the programmed offspring.
Collapse
Affiliation(s)
- Loren P Thompson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, 11-029 Bressler Research Building, 655 W. Baltimore Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
42
|
Rueda-Clausen CF, Morton JS, Dolinsky VW, Dyck JRB, Davidge ST. Synergistic effects of prenatal hypoxia and postnatal high-fat diet in the development of cardiovascular pathology in young rats. Am J Physiol Regul Integr Comp Physiol 2012; 303:R418-26. [PMID: 22739349 DOI: 10.1152/ajpregu.00148.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that adult offspring exposed to a prenatal hypoxic insult leading to intrauterine growth restriction (IUGR) are more susceptible to cardiovascular pathologies. Our objectives were to evaluate the interaction between hypoxia-induced IUGR and postnatal diet in the early development of cardiovascular pathologies. Furthermore, we sought to determine whether the postnatal administration of resveratrol could prevent the development of cardiovascular disorders associated with hypoxia-induced IUGR. On day 15 of pregnancy, Sprague-Dawley rats were randomly assigned to hypoxia (11.5% oxygen), to induce IUGR, or normal oxygen (control) groups. For study A, male offspring (3 wk of age) were randomly assigned a low-fat (LF, <10% fat) or a high-fat (HF, 45% fat) diet. For study B, offspring were randomized to either HF or HF+resveratrol diets. After 9 wk, cardiac and vascular functions were evaluated. Prenatal hypoxia and HF diet were associated with an increased myocardial susceptibility to ischemia. Blood pressure, in vivo cardiac function, and ex vivo vascular function were not different among experimental groups; however, hypoxia-induced IUGR offspring had lower resting heart rates. Our results suggest that prenatal insults can enhance the susceptibility to a second hit such as myocardial ischemia, and that this phenomenon is exacerbated, in the early stages of life by nutritional stressors such as a HF diet. Supplementing HF diets with resveratrol improved cardiac tolerance to ischemia in offspring born IUGR but not in controls. Thus we conclude that the additive effect of prenatal (hypoxia-induced IUGR) and postnatal (HF diet) factors can lead to the earlier development of cardiovascular pathology in rats, and postnatal resveratrol supplementation prevented the deleterious cardiovascular effects of HF diet in offspring exposed to prenatal hypoxia.
Collapse
|
43
|
Pre-eclampsia and offspring cardiovascular health: mechanistic insights from experimental studies. Clin Sci (Lond) 2012; 123:53-72. [PMID: 22455350 PMCID: PMC3315178 DOI: 10.1042/cs20110627] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pre-eclampsia is increasingly recognized as more than an isolated disease of pregnancy. Women who have had a pregnancy complicated by pre-eclampsia have a 4-fold increased risk of later cardiovascular disease. Intriguingly, the offspring of affected pregnancies also have an increased risk of higher blood pressure and almost double the risk of stroke in later life. Experimental approaches to identify the key features of pre-eclampsia responsible for this programming of offspring cardiovascular health, or the key biological pathways modified in the offspring, have the potential to highlight novel targets for early primary prevention strategies. As pre-eclampsia occurs in 2–5% of all pregnancies, the findings are relevant to the current healthcare of up to 3 million people in the U.K. and 15 million people in the U.S.A. In the present paper, we review the current literature that concerns potential mechanisms for adverse cardiovascular programming in offspring exposed to pre-eclampsia, considering two major areas of investigation: first, experimental models that mimic features of the in utero environment characteristic of pre-eclampsia, and secondly, how, in humans, offspring cardiovascular phenotype is altered after exposure to pre-eclampsia. We compare and contrast the findings from these two bodies of work to develop insights into the likely key pathways of relevance. The present review and analysis highlights the pivotal role of long-term changes in vascular function and identifies areas of growing interest, specifically, response to hypoxia, immune modification, epigenetics and the anti-angiogenic in utero milieu.
Collapse
|
44
|
The effect of hypoxia-induced intrauterine growth restriction on renal artery function. J Dev Orig Health Dis 2012; 3:333-41. [DOI: 10.1017/s2040174412000268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The risk of developing cardiovascular diseases is known to begin before birth and the impact of the intrauterine environment on subsequent adult health is currently being investigated from many quarters. Following our studies demonstrating the impact of hypoxiain uteroand consequent intrauterine growth restriction (IUGR) on the rat cardiovascular system, we hypothesized that changes extend throughout the vasculature and alter function of the renal artery. In addition, we hypothesized that hypoxia induces renal senescence as a potential mediator of altered vascular function. We demonstrated that IUGR females had decreased responses to the adrenergic agonist phenylephrine (PE; pEC506.50 ± 0.05 controlv. 6.17 ± 0.09 IUGR,P< 0.05) and the endothelium-dependent vasodilator methylcholine (MCh;Emax89.8 ± 7.0% controlv. 41.0 ± 6.5% IUGR,P< 0.001). In IUGR females, this was characterised by increased basal nitric oxide (NO) modulation of vasoconstriction (PE pEC506.17 ± 0.09 IUGRv. 6.42 ± 0.08 in the presence of the NO synthase inhibitorN-nitro-l-arginine methyl ester hydrochloride (l-NAME;P< 0.01) but decreased activated NO modulation (no change in MCh responses in the presence ofl-NAME), respectively. In contrast, IUGR males had no changes in PE or MCh responses but demonstrated increased basal NO (PE pEC506.29 ± 0.06 IUGRv. 6.42 ± 0.12 plusl-NAME,P< 0.01) and activated NO (Emax37.8 ± 9.4% controlv. −0.8 ± 13.0% plusl-NAME,P< 0.05) modulation. No significant changes were found in gross kidney morphology, proteinuria or markers of cellular senescence in either sex. In summary, renal vascular function was altered by hypoxiain uteroin a sex-dependent manner but was unlikely to be mediated by premature renal senescence.
Collapse
|
45
|
Effects of hypoxia-induced intrauterine growth restriction on cardiac siderosis and oxidative stress. J Dev Orig Health Dis 2012; 3:350-7. [DOI: 10.1017/s2040174412000219] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously shown that adult rat offspring born intrauterine growth restricted (IUGR) as a result of a prenatal hypoxic insult exhibit several cardiovascular characteristics that are compatible with common manifestations of chronic iron toxicity. As hypoxia is one of the major regulators of iron absorption and metabolism, we hypothesized that hypoxia-induced IUGR offspring will have long-term changes in their ability to regulate iron metabolism leading to myocardial iron deposition and induction of myocardial oxidative stress. Pregnant Sprague Dawley rats were randomized to control (n = 8) or maternal hypoxia (11.5% oxygen; n = 8) during the last 6 days of pregnancy. At birth, litters were reduced to eight pups (four male and four female). At 4 or 12 months of age, offspring were euthanatized and samples (blood and myocardium) were collected. In only the male offspring, IUGR and aging were associated with an increase in myocardial markers of oxidative stress such as oxidized/reduced glutathione ratio and malondialdehyde. Aged male IUGR offspring also exhibited interstitial myocardial remodeling characterized by myocyte loss and disrupted extracellular matrix.Contrary to our hypothesis, however, neither IUGR nor aging were associated with changes in any systemic or local markers of iron metabolism. Our results suggest that hypoxic insults leading to IUGR produce long-term effects on the levels of oxidative stress and connective tissue distribution in the myocardium of male but not female offspring.
Collapse
|
46
|
Giussani DA, Camm EJ, Niu Y, Richter HG, Blanco CE, Gottschalk R, Blake EZ, Horder KA, Thakor AS, Hansell JA, Kane AD, Wooding FBP, Cross CM, Herrera EA. Developmental programming of cardiovascular dysfunction by prenatal hypoxia and oxidative stress. PLoS One 2012; 7:e31017. [PMID: 22348036 PMCID: PMC3278440 DOI: 10.1371/journal.pone.0031017] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/29/2011] [Indexed: 02/07/2023] Open
Abstract
Fetal hypoxia is a common complication of pregnancy. It has been shown to programme cardiac and endothelial dysfunction in the offspring in adult life. However, the mechanisms via which this occurs remain elusive, precluding the identification of potential therapy. Using an integrative approach at the isolated organ, cellular and molecular levels, we tested the hypothesis that oxidative stress in the fetal heart and vasculature underlies the molecular basis via which prenatal hypoxia programmes cardiovascular dysfunction in later life. In a longitudinal study, the effects of maternal treatment of hypoxic (13% O(2)) pregnancy with an antioxidant on the cardiovascular system of the offspring at the end of gestation and at adulthood were studied. On day 6 of pregnancy, rats (n = 20 per group) were exposed to normoxia or hypoxia ± vitamin C. At gestational day 20, tissues were collected from 1 male fetus per litter per group (n = 10). The remaining 10 litters per group were allowed to deliver. At 4 months, tissues from 1 male adult offspring per litter per group were either perfusion fixed, frozen, or dissected for isolated organ preparations. In the fetus, hypoxic pregnancy promoted aortic thickening with enhanced nitrotyrosine staining and an increase in cardiac HSP70 expression. By adulthood, offspring of hypoxic pregnancy had markedly impaired NO-dependent relaxation in femoral resistance arteries, and increased myocardial contractility with sympathetic dominance. Maternal vitamin C prevented these effects in fetal and adult offspring of hypoxic pregnancy. The data offer insight to mechanism and thereby possible targets for intervention against developmental origins of cardiac and peripheral vascular dysfunction in offspring of risky pregnancy.
Collapse
Affiliation(s)
- Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Xie DP, Yang X, Cao CY, Wang HH, Li YX, Qin Y, Zhang JP, Chang XW. Exogenous oxytocin reverses the decrease of colonic smooth muscle contraction in antenatal maternal hypoxia mice via ganglia. ACTA ACUST UNITED AC 2011; 172:30-4. [PMID: 21889546 DOI: 10.1016/j.regpep.2011.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/11/2011] [Accepted: 08/12/2011] [Indexed: 01/16/2023]
Abstract
Oxytocin (OT) has been reported to have a potential protective effect on stress-induced functional gastrointestinal disorders. This study determined whether colonic contraction in adults was affected by antenatal maternal hypoxia, and whether OT is involved in antenatal maternal hypoxia induced colonic contraction disorder. Isometric spontaneous contractions were recorded in colonic longitudinal muscle strips in order to investigate colonic contractions and the effects of exogenous OT on the contraction in antenatal maternal hypoxia and control mice. Both high potassium and carbachol-induced contractions of proximal colon but not distal colon were reduced in antenatal maternal hypoxia mice. Exogenous OT decreased the contractions of proximal colonic smooth muscle strips in control mice, while it increased contractions in antenatal maternal hypoxia mice. OT increased the contractions of distal colonic smooth muscle strips in both antenatal maternal hypoxia and control mice. Hexamethonium blocked the OT-induced potentiation of proximal colon but not distal colon in antenatal maternal hypoxia mice. These results suggest that exogenous oxytocin reverses the decrease of proximal colonic smooth muscle contraction in antenatal maternal hypoxia mice via ganglia.
Collapse
Affiliation(s)
- Dong-Ping Xie
- Department of Physiology, Tongji University School of Medicine, Shanghai, 200092, PR China.
| | | | | | | | | | | | | | | |
Collapse
|