1
|
Roberts BM, Geddis AV, Sczuroski CE, Reynoso M, Hughes JM, Gwin JA, Staab JS. A single, maximal dose of celecoxib, ibuprofen, or flurbiprofen does not reduce the muscle signalling response to plyometric exercise in young healthy adults. Eur J Appl Physiol 2024; 124:3607-3617. [PMID: 39044030 DOI: 10.1007/s00421-024-05565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) possess analgesic and anti-inflammatory properties by inhibiting cyclooxygenase (COX) enzymes. Conflicting evidence exists on whether NSAIDs influence signaling related to muscle adaptations and exercise with some research finding a reduction in muscle protein synthesis signaling via the AKT-mTOR pathway, changes in satellite cell signaling, reductions in muscle protein degradation, and reductions in cell proliferation. In this study, we determined if a single maximal dose of flurbiprofen (FLU), celecoxib (CEL), ibuprofen (IBU), or a placebo (PLA) affects the short-term muscle signaling responses to plyometric exercise. METHODS This was a block randomized, double-masked, crossover design, where 12 participants performed four plyometric exercise bouts consisting of 10 sets of 10 plyometric jumps at 40% 1RM. Two hours before exercise, participants consumed a single dose of celecoxib (CEL 200 mg), IBU (800 mg), FLU (100 mg) or PLA with food. Muscle biopsy samples were collected before and 3-h after exercise from the vastus lateralis. Data were analyzed using a repeated measures (RM) ANOVA, ANOVA, or a Friedman test. Significance was considered at p < 0.05. RESULTS We found no treatment effects on the mRNA expression of PTSG1, PTSG2, MYC, TBP, RPLOP, MYOD1, Pax7, MYOG, Atrogin-1, or MURF1 (all, p > 0.05). We also found no treatment effects on AKT-mTOR signaling or MAPK signaling measured through the phosphorylation status of mTORS2441, mTORS2448, RPS6 235/236, RPS 240/244, 4EBP1, ERK1/2, p38 T180/182 normalized to their respective total abundance (all, p > 0.05). However, we did find a significant difference between MNK1 T197/202 in PLA compared to FLU (p < .05). CONCLUSION A single, maximal dose of IBU, CEL, or FLU taken prior to exercise did not affect the signaling of muscle protein synthesis, protein degradation, or ribosome biogenesis three hours after a plyometric training bout.
Collapse
Affiliation(s)
- Brandon M Roberts
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA.
| | - Alyssa V Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Cara E Sczuroski
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Marinaliz Reynoso
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Julie M Hughes
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Jess A Gwin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Jeffery S Staab
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| |
Collapse
|
2
|
Roberts BM, Geddis AV, Matheny RW. The dose-response effects of flurbiprofen, indomethacin, ibuprofen, and naproxen on primary skeletal muscle cells. J Int Soc Sports Nutr 2024; 21:2302046. [PMID: 38198469 PMCID: PMC10783825 DOI: 10.1080/15502783.2024.2302046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen, flurbiprofen, naproxen sodium, and indomethacin are commonly employed for their pain-relieving and inflammation-reducing qualities. NSAIDs work by blocking COX-1 and/or COX-2, enzymes which play roles in inflammation, fever, and pain. The main difference among NSAIDs lies in their affinity to these enzymes, which in turn, influences prostaglandin secretion, and skeletal muscle growth and regeneration. The current study investigated the effects of NSAIDs on human skeletal muscle cells, focusing on myoblast proliferation, differentiation, and muscle protein synthesis signaling. METHODS Using human primary muscle cells, we examined the dose-response impact of flurbiprofen (25-200 µM), indomethacin (25-200 µM), ibuprofen (25-200 µM), and naproxen sodium (25-200 µM), on myoblast viability, myotube area, fusion, and prostaglandin production. RESULTS We found that supraphysiological concentrations of indomethacin inhibited myoblast proliferation (-74 ± 2% with 200 µM; -53 ± 3% with 100 µM; both p < 0.05) compared to control cells and impaired protein synthesis signaling pathways in myotubes, but only attenuated myotube fusion at the highest concentrations (-18 ± 2% with 200 µM, p < 0.05) compared to control myotubes. On the other hand, ibuprofen had no such effects. Naproxen sodium only increased cell proliferation at low concentrations (+36 ± 2% with 25 µM, p < 0.05), and flurbiprofen exhibited divergent impacts depending on the concentration whereby low concentrations improved cell proliferation (+17 ± 1% with 25 µM, p < 0.05) but high concentrations inhibited cell proliferation (-32 ± 1% with 200 µM, p < 0.05). CONCLUSION Our findings suggest that indomethacin, at high concentrations, may detrimentally affect myoblast proliferation and differentiation via an AKT-dependent mechanism, and thus provide new understanding of NSAIDs' effects on skeletal muscle cell development.
Collapse
Affiliation(s)
- Brandon M. Roberts
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Alyssa V. Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Ronald W. Matheny
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
- Military Operational Medicine Research Program, Detrick, MD, USA
| |
Collapse
|
3
|
Roberts BM, Geddis AV, Ciuciu A, Reynoso M, Mehta N, Varanoske AN, Kelley AM, Walker RJ, Munoz R, Kolb AL, Staab JS, Naimo MA, Tomlinson RE. Acetaminophen influences musculoskeletal signaling but not adaptations to endurance exercise training. FASEB J 2024; 38:e23586. [PMID: 38568858 DOI: 10.1096/fj.202302642r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Acetaminophen (ACE) is a widely used analgesic and antipyretic drug with various applications, from pain relief to fever reduction. Recent studies have reported equivocal effects of habitual ACE intake on exercise performance, muscle growth, and risks to bone health. Thus, this study aimed to assess the impact of a 6-week, low-dose ACE regimen on muscle and bone adaptations in exercising and non-exercising rats. Nine-week-old Wistar rats (n = 40) were randomized to an exercise or control (no exercise) condition with ACE or without (placebo). For the exercise condition, rats ran 5 days per week for 6 weeks at a 5% incline for 2 min at 15 cm/s, 2 min at 20 cm/s, and 26 min at 25 cm/s. A human equivalent dose of ACE was administered (379 mg/kg body weight) in drinking water and adjusted each week based on body weight. Food, water intake, and body weight were measured daily. At the beginning of week 6, animals in the exercise group completed a maximal treadmill test. At the end of week 6, rats were euthanized, and muscle cross-sectional area (CSA), fiber type, and signaling pathways were measured. Additionally, three-point bending and microcomputer tomography were measured in the femur. Follow-up experiments in human primary muscle cells were used to explore supra-physiological effects of ACE. Data were analyzed using a two-way ANOVA for treatment (ACE or placebo) and condition (exercise or non-exercise) for all animal outcomes. Data for cell culture experiments were analyzed via ANOVA. If omnibus significance was found in either ANOVA, a post hoc analysis was completed, and a Tukey's adjustment was used. ACE did not alter body weight, water intake, food intake, or treadmill performance (p > .05). There was a treatment-by-condition effect for Young's Modulus where placebo exercise was significantly lower than placebo control (p < .05). There was no treatment by condition effects for microCT measures, muscle CSA, fiber type, or mRNA expression. Phosphorylated-AMPK was significantly increased with exercise (p < .05) and this was attenuated with ACE treatment. Furthermore, phospho-4EBP1 was depressed in the exercise group compared to the control (p < .05) and increased in the ACE control and ACE exercise group compared to placebo exercise (p < .05). A low dose of ACE did not influence chronic musculoskeletal adaptations in exercising rodents but acutely attenuated AMPK phosphorylation and 4EBP1 dephosphorylation post-exercise.
Collapse
Affiliation(s)
- Brandon M Roberts
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Alyssa V Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Alexandra Ciuciu
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Marinaliz Reynoso
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Nikhil Mehta
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alyssa N Varanoske
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
- Oak Ridge Institute for Science and Education, Belcamp, Maryland, USA
| | - Alyssa M Kelley
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Raymond J Walker
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Rigoberto Munoz
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Alexander L Kolb
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Jeffery S Staab
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Marshall A Naimo
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
5
|
Prokopidis K, Giannos P, Reginster JY, Bruyere O, Petrovic M, Cherubini A, Triantafyllidis KK, Kechagias KS, Dionyssiotis Y, Cesari M, Ibrahim K, Scott D, Barbagallo M, Veronese N. Sarcopenia is associated with a greater risk of polypharmacy and number of medications: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2023; 14:671-683. [PMID: 36781175 PMCID: PMC10067503 DOI: 10.1002/jcsm.13190] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Polypharmacy in older adults is associated with multiple negative consequences that may affect muscular function, independently from the presence of medical conditions. The aim of this systematic review and meta-analysis was to investigate the association of sarcopenia with polypharmacy and higher number of medications. A systematic literature search of observational studies using PubMed, Web of Science, Scopus and Cochrane Library databases was conducted from inception until June 2022. To determine if sarcopenia is associated with a higher risk of polypharmacy and increased number of medications, a meta-analysis using a random-effects model was used to calculate the pooled effects (CRD42022337539). Twenty-nine studies were included in the systematic review and meta-analysis. Sarcopenia was associated with a higher prevalence of polypharmacy (odds ratio [OR]: 1.65, 95% confidence interval [CI] [1.23, 2.20], I2 = 84%, P < 0.01) and higher number of medications (mean difference: 1.39, 95% CI [0.59, 2.19], I2 = 95%, P < 0.01) compared with individuals without sarcopenia. Using meta-regression, a high variance was observed due to different populations (i.e., community-dwelling, nursing home residents, inpatients, outpatients) for both outcomes of polypharmacy (r = -0.338, SE = 0.1669, 95% CI [-0.67, -0.01], z = -2.03, P = 0.04) and number of medications (r = 0.589, SE = 0.2615, 95% CI [0.08, 1.10], z = 2.25, P = 0.02). This systematic review and meta-analysis reported a significantly increased risk of polypharmacy and higher number of medications in people with sarcopenia compared with individuals without this condition. Future research should clarify whether the specificity and number of medications is a direct contributor in accelerating the progression of muscle wasting and dysfunction contributing to sarcopenia in older adults.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical SciencesUniversity of LiverpoolLiverpoolUK
- Society of Meta‐research and Biomedical InnovationLondonUK
| | - Panagiotis Giannos
- Society of Meta‐research and Biomedical InnovationLondonUK
- Department of Life Sciences, Faculty of Natural SciencesImperial College LondonLondonUK
| | - Jean Yves Reginster
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and AgingLiègeBelgium
- Division of Public Health, Epidemiology and Health EconomicsUniversity of LiègeLiègeBelgium
| | - Olivier Bruyere
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo‐Skeletal Health and AgeingUniversity of LiègeLiègeBelgium
| | - Mirko Petrovic
- Section of Geriatrics, Department of Internal Medicine and PaediatricsGhent UniversityGhentBelgium
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per l'Invecchiamento, IRCCS INRCAAnconaItaly
| | - Konstantinos K. Triantafyllidis
- Society of Meta‐research and Biomedical InnovationLondonUK
- Department of Nutrition and DieteticsHomerton University Hospital Foundation TrustLondonUK
| | - Konstantinos S. Kechagias
- Society of Meta‐research and Biomedical InnovationLondonUK
- Department of Metabolism, Digestion and Reproduction, Faculty of MedicineImperial College LondonLondonUK
| | - Yannis Dionyssiotis
- Medical School, Spinal Cord Injury Rehabilitation Clinic, General University Hospital PatrasUniversity of PatrasPatrasGreece
| | - Matteo Cesari
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
- Geriatric UnitIRCCS Istituti Clinici Scientifici MaugeriMilanItaly
| | - Kinda Ibrahim
- Academic Geriatric Medicine, Faculty of Medicine, University Hospital SouthamptonUniversity of SouthamptonSouthamptonUK
- Applied Research Collaboration Wessex, The National Institute of Health and Care Research (NIHR)University of SouthamptonSouthamptonUK
| | - David Scott
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition SciencesDeakin UniversityBurwoodVictoriaAustralia
- Department of Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVictoriaAustralia
| | - Mario Barbagallo
- Department of Internal Medicine and GeriatricsUniversity of PalermoPalermoItaly
| | - Nicola Veronese
- Department of Internal Medicine and GeriatricsUniversity of PalermoPalermoItaly
| | | |
Collapse
|
6
|
Fountain WA, Naruse M, Claiborne A, Trappe S, Trappe TA. Controlling Inflammation Improves Aging Skeletal Muscle Health. Exerc Sport Sci Rev 2023; 51:51-56. [PMID: 36722844 PMCID: PMC10033374 DOI: 10.1249/jes.0000000000000313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic inflammation is associated with a decline in aging skeletal muscle health. Inflammation also seems to interfere with the beneficial skeletal muscle adaptations conferred by exercise training in older individuals. We hypothesize that the cyclooxygenase pathway is partially responsible for this negative inflammatory influence on aging skeletal muscle health and plasticity.
Collapse
|
7
|
Lee CJ, Nicoll JX. Time Course Evaluation of Mitogen-Activated Protein Kinase Phosphorylation to Resistance Exercise: A Systematic Review. J Strength Cond Res 2023; 37:710-725. [PMID: 36727997 DOI: 10.1519/jsc.0000000000004409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Lee, CJ and Nicoll, JX. Time course evaluation of mitogen-activated protein kinase phosphorylation to resistance exercise: a systematic review. J Strength Cond Res 37(3): 710-725, 2023-Resistance exercise (RE) can increase the signaling activities of mitogen-activated protein kinases (MAPKs), specifically extracellular signal-regulated kinases 1/2 (ERK1/2), p90 ribosomal S6 kinases (p90RSK), c-Jun NH2-terminal kinases (JNK), and p38-MAPK. These RE-induced responses contribute to various intracellular processes modulating growth and development in skeletal muscles, playing an essential role in resistance training adaptations. The time course of MAPK phosphorylation to different RE conditions, such as training experience and varying loads, remains ambiguous. A systematic review was conducted to determine the effects of different post-RE recovery time points on the MAPK signaling cascade. In addition, the effects of loading and training statuses on MAPK responses were also investigated. The review was performed according to the preferred reporting items for systematic reviews and meta-analyses guidelines with a literature search incorporating 3 electronic databases. A modified version of the Downs and Black checklist was used to evaluate the methodological quality of the studies. The signaling responses were measured within a time range between immediately post-RE and >6 hours post-RE. Forty-four studies met the inclusion criteria, and all were classified as good-to-moderate methodological quality. Mitogen-activated protein kinase phosphorylation increased to different levels after RE, with the highest near the cessation of exercise. Although overall signaling was attenuated among trained individuals likely because of training adaptations, greater MAPK responses can be attributed to moderate loads of 65-85% 1RM regardless of the training experience. However, specific training-induced responses remain equivocal, and further investigations are required to determine the ideal training parameters to optimize anabolic intramuscular signaling, which may likely optimize resistance training adaptations.
Collapse
Affiliation(s)
- Christopher J Lee
- Department of Kinesiology, California State University, Northridge, Northridge, California
| | | |
Collapse
|
8
|
Lilja M, Moberg M, Apró W, Martínez-Aranda LM, Rundqvist H, Langlet B, Gustafsson T, Lundberg TR. Limited effect of over-the-counter doses of ibuprofen on mechanisms regulating muscle hypertrophy during resistance training in young adults. J Appl Physiol (1985) 2023; 134:753-765. [PMID: 36794689 DOI: 10.1152/japplphysiol.00698.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
We have previously shown that maximal over-the-counter doses of ibuprofen, compared with low doses of acetylsalicylic acid, reduce muscle hypertrophy in young individuals after 8 wk of resistance training. Because the mechanism behind this effect has not been fully elucidated, we here investigated skeletal muscle molecular responses and myofiber adaptations in response to acute and chronic resistance training with concomitant drug intake. Thirty-one young (aged 18-35 yr) healthy men (n = 17) and women (n = 14) were randomized to receive either ibuprofen (IBU; 1,200 mg daily; n = 15) or acetylsalicylic acid (ASA; 75 mg daily; n = 16) while undergoing 8 wk of knee extension training. Muscle biopsies from the vastus lateralis were obtained before, at week 4 after an acute exercise session, and after 8 wk of resistance training and analyzed for mRNA markers and mTOR signaling, as well as quantification of total RNA content (marker of ribosome biogenesis) and immunohistochemical analysis of muscle fiber size, satellite cell content, myonuclear accretion, and capillarization. There were only two treatment × time interaction in selected molecular markers after acute exercise (atrogin-1 and MuRF1 mRNA), but several exercise effects. Muscle fiber size, satellite cell and myonuclear accretion, and capillarization were not affected by chronic training or drug intake. RNA content increased comparably (∼14%) in both groups. Collectively, these data suggest that established acute and chronic hypertrophy regulators (including mTOR signaling, ribosome biogenesis, satellite cell content, myonuclear accretion, and angiogenesis) were not differentially affected between groups and therefore do not explain the deleterious effects of ibuprofen on muscle hypertrophy in young adults.NEW & NOTEWORTHY Here we show that mTOR signaling, fiber size, ribosome biogenesis, satellite cell content, myonuclear accretion, and angiogenesis were not differentially affected between groups undergoing 8 wk of resistance training with concomitant anti-inflammatory medication (ibuprofen versus low-dose aspirin). Atrogin-1 and MuRF-1 mRNA were more downregulated after acute exercise in the low-dose aspirin group than in the ibuprofen group. Taken together it appears that these established hypertrophy regulators do not explain the previously reported deleterious effects of high doses of ibuprofen on muscle hypertrophy in young adults.
Collapse
Affiliation(s)
- Mats Lilja
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Luis Manuel Martínez-Aranda
- Movement Analysis Laboratory for Sport and Health (MALab), Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| | - Håkan Rundqvist
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Billy Langlet
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy R Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Matheny RW, Kolb AL, Geddis AV, Roberts BM. Celecoxib impairs primary human myoblast proliferation and differentiation independent of cyclooxygenase 2 inhibition. Physiol Rep 2022; 10:e15481. [PMID: 36325583 PMCID: PMC9630763 DOI: 10.14814/phy2.15481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
The use of non-steroidal anti-inflammatory drugs (NSAIDs) for treatment of musculoskeletal injuries is commonplace in the general, athletic, and military populations. While NSAIDs have been studied in a variety of tissues, the effects of NSAIDs on skeletal muscle have not been fully defined. To address this, we investigated the degree to which the cyclooxygenase (COX)-2-selective NSAID celecoxib affects muscle cell proliferation, differentiation, anabolic signaling, and mitochondrial function in primary human skeletal myoblasts and myotubes. Primary muscle cells were treated with celecoxib or NS-398 (a pharmacological inhibitor of COX-2) as a control. Celecoxib administration significantly reduced myoblast proliferation, viability, fusion, and myotube area in a dose-dependent manner, whereas NS-398 had no effect on any of these outcomes. Celecoxib treatment was also associated with reduced phosphorylation of ribosomal protein S6 in myoblasts, and reduced phosphorylation of AKT, p70S6K, S6, and ERK in myotubes. In contrast, NS-398 did not alter phosphorylation of these molecules in myoblasts or myotubes. In myoblasts, celecoxib significantly reduced mitochondrial membrane potential and respiration, as evidenced by the decreased citric acid cycle (CAC) intermediates cis-aconitic acid, alpha-keto-glutarate acid, succinate acid, and malic acid. Similar results were observed in myotubes, although celecoxib also reduced pyruvic acid, citric acid, and fumaric acid. NS-398 did not affect CAC intermediates in myoblasts or myotubes. Together, these data reveal that celecoxib inhibits proliferation, differentiation, intracellular signaling, and mitochondrial function in primary human myoblasts and myotubes independent of its function as a COX-2 inhibitor.
Collapse
Affiliation(s)
- Ronald W. Matheny
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
- Military Operational Medicine Research ProgramFt. DetrickMarylandUSA
| | - Alexander L. Kolb
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Alyssa V. Geddis
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Brandon M. Roberts
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| |
Collapse
|
10
|
Grgic J. No Pain, No Gain? Examining the Influence of Ibuprofen Consumption on Muscle Hypertrophy. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Sawaguchi S, Suzuki R, Oizumi H, Ohbuchi K, Mizoguchi K, Yamamoto M, Miyamoto Y, Yamauchi J. Hypomyelinating Leukodystrophy 8 (HLD8)-Associated Mutation of POLR3B Leads to Defective Oligodendroglial Morphological Differentiation Whose Effect Is Reversed by Ibuprofen. Neurol Int 2022; 14:212-244. [PMID: 35225888 PMCID: PMC8884015 DOI: 10.3390/neurolint14010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
POLR3B and POLR3A are the major subunits of RNA polymerase III, which synthesizes non-coding RNAs such as tRNAs and rRNAs. Nucleotide mutations of the RNA polymerase 3 subunit b (polr3b) gene are responsible for hypomyelinating leukodystrophy 8 (HLD8), which is an autosomal recessive oligodendroglial cell disease. Despite the important association between POLR3B mutation and HLD8, it remains unclear how mutated POLR3B proteins cause oligodendroglial cell abnormalities. Herein, we show that a severe HLD8-associated nonsense mutation (Arg550-to-Ter (R550X)) primarily localizes POLR3B proteins as protein aggregates into lysosomes in the FBD-102b cell line as an oligodendroglial precursor cell model. Conversely, wild type POLR3B proteins were not localized in lysosomes. Additionally, the expression of proteins with the R550X mutation in cells decreased lysosome-related signaling through the mechanistic target of rapamycin (mTOR). Cells harboring the mutant constructs did not exhibit oligodendroglial cell differentiated phenotypes, which have widespread membranes that extend from their cell body. However, cells harboring the wild type constructs exhibited differentiated phenotypes. Ibuprofen, which is a non-steroidal anti-inflammatory drug (NSAID), improved the defects in their differentiation phenotypes and signaling through mTOR. These results indicate that the HLD8-associated POLR3B proteins with the R550X mutation are localized in lysosomes, decrease mTOR signaling, and inhibit oligodendroglial cell morphological differentiation, and ibuprofen improves these cellular pathological effects. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD8 and their amelioration.
Collapse
Affiliation(s)
- Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
| | - Rimi Suzuki
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya 157-8535, Japan
- Correspondence: ; Tel.: +81-42-676-7164; Fax: +81-42-676-8841
| |
Collapse
|
12
|
Sawaguchi S, Tago K, Oizumi H, Ohbuchi K, Yamamoto M, Mizoguchi K, Miyamoto Y, Yamauchi J. Hypomyelinating Leukodystrophy 7 (HLD7)-Associated Mutation of POLR3A Is Related to Defective Oligodendroglial Cell Differentiation, Which Is Ameliorated by Ibuprofen. Neurol Int 2021; 14:11-33. [PMID: 35076634 PMCID: PMC8788570 DOI: 10.3390/neurolint14010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/13/2023] Open
Abstract
Hypomyelinating leukodystrophy 7 (HLD7) is an autosomal recessive oligodendroglial cell-related myelin disease, which is associated with some nucleotide mutations of the RNA polymerase 3 subunit a (polr3a) gene. POLR3A is composed of the catalytic core of RNA polymerase III synthesizing non-coding RNAs, such as rRNA and tRNA. Here, we show that an HLD7-associated nonsense mutation of Arg140-to-Ter (R140X) primarily localizes POLR3A proteins as protein aggregates into lysosomes in mouse oligodendroglial FBD-102b cells, whereas the wild type proteins are not localized in lysosomes. Expression of the R140X mutant proteins, but not the wild type proteins, in cells decreased signaling through the mechanistic target of rapamycin (mTOR), controlling signal transduction around lysosomes. While cells harboring the wild type constructs exhibited phenotypes with widespread membranes with myelin marker protein expression following the induction of differentiation, cells harboring the R140X mutant constructs did not exhibit them. Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), which is also known as an mTOR signaling activator, ameliorated defects in differentiation with myelin marker protein expression and the related signaling in cells harboring the R140X mutant constructs. Collectively, HLD7-associated POLR3A mutant proteins are localized in lysosomes where they decrease mTOR signaling, inhibiting cell morphological differentiation. Importantly, ibuprofen reverses undifferentiated phenotypes. These findings may reveal some of the pathological mechanisms underlying HLD7 and their amelioration at the molecular and cellular levels.
Collapse
Affiliation(s)
- Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (S.S.); (Y.M.)
| | - Kenji Tago
- Department of Biochemistry, Jichi Medical University, Shimotsuke 321-0498, Japan;
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (S.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (S.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
- Correspondence: ; Tel.: +81-42-676-7164; Fax: +81-42-676-8841
| |
Collapse
|
13
|
Nahon RL, Lopes JSS, Magalhães Neto AMD, Machado ADS, Cameron LC. ANTI-INFLAMMATORIES FOR DELAYED ONSET MUSCLE SORENESS: SYSTEMATIC REVIEW AND META-ANALYSIS. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127062021_0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Objective: To investigate the effectiveness of pharmacological interventions in the treatment of delayed onset muscle soreness (DOMS). Design: A systematic review and meta-analysis of randomized controlled clinical trials (RCTs). Data sources: The PubMed/MEDLINE, EMBASE, SPORTDiscus, Scielo and Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched for RCTs published prior to August 3, 2020. Eligibility criteria for selecting studies: Studies that 1) used an RCT design; 2) evaluated the effectiveness of steroidal or nonsteroidal anti-inflammatory drugs (NSAIDs) in treating DOMS; and 3) therapeutically used drugs after exercise were included. Results: In total, 26 studies (patients = 934) were eligible for inclusion in the qualitative analysis on the treatment of DOMS. The results of the meta-analysis showed no superiority between the use and non-use of NSAIDs in the improvement of late muscle pain, as no statistically significant differences were verified (21 studies, n= 955; standard mean difference (SMD)= 0.02; 95% confidence interval (CI) −0.58, 0.63; p=0.94; I2=93%). The quality of the synthesized evidence was very low according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria, and there was significant heterogeneity among the included studies. Conclusion: The results demonstrate that NSAIDs are not superior to controls/placebos in treating DOMS. The inclusion of both studies with dose-response protocols and those with exercise protocols may have influenced the results. In addition, the high risk of bias identified reveals that limitations need to be considered when interpreting the results. Level of evidence I; ystematic review of RCT (Randomized and Controlled Clinical Trials).
Collapse
|
14
|
Hodson N, Mazzulla M, Holowaty MNH, Kumbhare D, Moore DR. RPS6 phosphorylation occurs to a greater extent in the periphery of human skeletal muscle fibers, near focal adhesions, after anabolic stimuli. Am J Physiol Cell Physiol 2021; 322:C94-C110. [PMID: 34852208 DOI: 10.1152/ajpcell.00357.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Following anabolic stimuli (mechanical loading and/or amino acid provision) the mechanistic target of rapamycin complex 1 (mTORC1), a master regulator of protein synthesis, translocates toward the cell periphery. However, it is unknown if mTORC1-mediated phosphorylation events occur in these peripheral regions or prior to translocation (i.e. in central regions). We therefore aimed to determine the cellular location of a mTORC1-mediated phosphorylation event, RPS6Ser240/244, in human skeletal muscle following anabolic stimuli. Fourteen young, healthy males either ingested a protein-carbohydrate beverage (0.25g/kg protein, 0.75g/kg carbohydrate) alone (n=7;23±5yrs;76.8±3.6kg;13.6±3.8%BF, FED) or following a whole-body resistance exercise bout (n=7;22±2yrs;78.1±3.6kg;12.2±4.9%BF, EXFED). Vastus lateralis muscle biopsies were obtained at rest (PRE) and 120 and 300min following anabolic stimuli. RPS6Ser240/244 phosphorylation measured by immunofluorescent staining or immunoblot was positively correlated (r=0.76, p<0.001). Peripheral staining intensity of p-RPS6Ser240/244 increased above PRE in both FED and EXFED at 120min (~54% and ~138% respectively, p<0.05) but was greater in EXFED at both post-stimuli time points (p<0.05). The peripheral-central ratio of p-RPS6240/244 staining displayed a similar pattern, even when corrected for total RPS6 distribution, suggesting RPS6 phosphorylation occurs to a greater extent in the periphery of fibers. Moreover, p-RPS6Ser240/244 intensity within paxillin-positive regions, a marker of focal adhesion complexes, was elevated at 120min irrespective of stimulus (p=0.006) before returning to PRE at 300min. These data confirm that RPS6Ser240/244 phosphorylation occurs in the region of human muscle fibers to which mTOR translocates following anabolic stimuli and identifies focal adhesion complexes as a potential site of mTORC1 regulation in vivo.
Collapse
Affiliation(s)
- Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Michael Mazzulla
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Maksym N H Holowaty
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Shahidi B, Schenk S, Raiszadeh K. Analgesic Medication Use During Exercise-Based Rehabilitation in Individuals With Low Back Pain: A Call to Action. Phys Ther 2021; 101:6103016. [PMID: 33454784 PMCID: PMC8005293 DOI: 10.1093/ptj/pzab011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/17/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Bahar Shahidi
- Department of Orthopaedic Surgery, UC San Diego, 9452 Medical Center Drive, La Jolla, CA 92037, USA
- Address all correspondence to Dr Shahidi at:
| | - Simon Schenk
- Department of Orthopaedic Surgery, UC San Diego, San Diego, California, USA
| | | |
Collapse
|
16
|
Dalle S, Poffé C, Hiroux C, Suhr F, Deldicque L, Koppo K. Ibuprofen does not impair skeletal muscle regeneration upon cardiotoxin-induced injury. Physiol Res 2020; 69:847-859. [PMID: 32901495 DOI: 10.33549/physiolres.934482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Muscle regeneration is regulated through interaction between muscle and immune cells. Studies showed that treatment with supra-physiological doses of Non-Steroidal Anti-Inflammatory Drug (NSAID) abolished inflammatory signaling and impaired muscle recovery. The present study examines the effects of pharmacologically-relevant NSAID treatment on muscle regeneration. C57BL/6 mice were injected in the tibialis anterior (TA) with either PBS or cardiotoxin (CTX). CTX-injected mice received ibuprofen (CTX-IBU) or were untreated (CTX-PLAC). After 2 days, Il-1beta and Il-6 expression was upregulated in the TA of CTX-IBU and CTX-PL vs. PBS. However, Cox-2 expression and macrophage infiltration were higher in CTX-PL vs. PBS, but not in CTX-IBU. At the same time, anabolic markers were higher in CTX-IBU vs. PBS, but not in CTX-PL. Nevertheless, ibuprofen did not affect muscle mass or muscle fiber regeneration. In conclusion, mild ibuprofen doses did not worsen muscle regeneration. There were even signs of a transient improvement in anabolic signaling and attenuation of inflammatory signaling.
Collapse
Affiliation(s)
- S Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, Faculty of Movement and Rehabilitation Sciences, Catholic University of Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
17
|
Nieman DC, Pence BD. Exercise immunology: Future directions. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:432-445. [PMID: 32928447 PMCID: PMC7498623 DOI: 10.1016/j.jshs.2019.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 05/07/2023]
Abstract
Several decades of research in the area of exercise immunology have shown that the immune system is highly responsive to acute and chronic exercise training. Moderate exercise bouts enhance immunosurveillance and when repeated over time mediate multiple health benefits. Most of the studies prior to 2010 relied on a few targeted outcomes related to immune function. During the past decade, technologic advances have created opportunities for a multi-omics and systems biology approach to exercise immunology. This article provides an overview of metabolomics, lipidomics, and proteomics as they pertain to exercise immunology, with a focus on immunometabolism. This review also summarizes how the composition and diversity of the gut microbiota can be influenced by exercise, with applications to human health and immunity. Exercise-induced improvements in immune function may play a critical role in countering immunosenescence and the development of chronic diseases, and emerging omics technologies will more clearly define the underlying mechanisms. This review summarizes what is currently known regarding a multi-omics approach to exercise immunology and provides future directions for investigators.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| | - Brandt D Pence
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
18
|
Vella L, Markworth JF, Farnfield MM, Maddipati KR, Russell AP, Cameron-Smith D. Intramuscular inflammatory and resolving lipid profile responses to an acute bout of resistance exercise in men. Physiol Rep 2020; 7:e14108. [PMID: 31257737 PMCID: PMC6599756 DOI: 10.14814/phy2.14108] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 01/23/2023] Open
Abstract
Lipid mediators including classical arachidonic acid‐derived eicosanoids (e.g. prostaglandins and leukotrienes) and more recently identified specialized pro‐resolving‐mediator metabolites of the omega‐3 fatty acids play essential roles in initiation, self‐limitation, and active resolution of acute inflammatory responses. In this study, we examined the bioactive lipid mediator profile of human skeletal muscle at rest and following acute resistance exercise. Twelve male subjects completed a single bout of maximal isokinetic unilateral knee extension exercise and muscle biopsies were taken from the m.vastus lateralis before and at 2, 4, and 24 h of recovery. Muscle tissue lipid mediator profile was analyzed via liquid chromatography–mass spectrometry (LC‐MS)‐based targeted lipidomics. At 2 h postexercise, there was an increased intramuscular abundance of cyclooxygenase (COX)‐derived thromboxanes (TXB2: 3.33 fold) and prostaglandins (PGE2: 2.52 fold and PGF2α: 1.77 fold). Resistance exercise also transiently increased muscle concentrations of lipoxygenase (LOX) pathway‐derived leukotrienes (12‐Oxo LTB4: 1.49 fold and 20‐COOH LTB4: 2.91 fold), monohydroxy‐eicosatetraenoic acids (5‐HETE: 2.66 fold, 12‐HETE: 2.83 fold, and 15‐HETE: 1.69 fold) and monohydroxy‐docosahexaenoic acids (4‐HDoHE: 1.69 fold, 7‐HDoHE: 1.58 fold and 14‐HDoHE: 2.35 fold). Furthermore, the abundance of CYP pathway‐derived epoxy‐ and dihydroxy‐eicosatrienoic acids was increased in 2 h postexercise biopsies (5,6‐EpETrE: 2.48 fold, 11,12‐DiHETrE: 1.66 fold and 14,15‐DiHETrE: 2.23 fold). These data reveal a range of bioactive lipid mediators as present within human skeletal muscle tissue and demonstrate that acute resistance exercise transiently stimulates the local production of both proinflammatory eicosanoids and pathway markers in specialized proresolving mediator biosynthesis circuits.
Collapse
Affiliation(s)
- Luke Vella
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia.,Department of Sports Development and Recreation, University of Bath, Bath, United Kingdom
| | - James F Markworth
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Michelle M Farnfield
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Krishna R Maddipati
- Bioactive Lipids Research Program and Lipidomics Core, Department of Pathology, School of Medicine, Wayne State University, Karmanos Cancer Institute, Detroit, Michigan
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | | |
Collapse
|
19
|
Influence of Hesperidin on Systemic Immunity of Rats Following an Intensive Training and Exhausting Exercise. Nutrients 2020; 12:nu12051291. [PMID: 32369998 PMCID: PMC7282260 DOI: 10.3390/nu12051291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Intensive training and exhausting exercise can disrupt innate and acquired immunity. The flavanone hesperidin has shown immunomodulatory properties in physiological and some pathological conditions, and positive effects on exercise-induced oxidative stress. Nevertheless, it remains uncertain whether it also prevents exhausting exercise-induced immune alterations. The aim of this study was to establish the effect of oral hesperidin supplementation on the systemic immune system in rats following an intensive training and exhausting exercise. For this purpose, female Wistar rats were randomized into an intensive training group or a sedentary group. Intensive training was induced by running in a treadmill 5 days per week (including two exhausting tests) for five weeks. Throughout the training period, 200 mg/kg of hesperidin or vehicle was administered by oral gavage three times per week. At the end, blood, thymus, spleen and macrophages were collected before, immediately after and 24 h after an additional final exhaustion test. Hesperidin supplementation enhanced natural killer cell cytotoxicity and the proportion of phagocytic monocytes, attenuated the secretion of cytokines by stimulated macrophages, prevented the leukocytosis induced by exhaustion and increased the proportion of T helper cells in the thymus, blood and spleen. These results suggest that hesperidin can prevent exhausting exercise-induced immune alterations.
Collapse
|
20
|
Muscle protein breakdown is impaired during immobilization compared to during a subsequent retraining period in older men: no effect of anti-inflammatory medication. Pflugers Arch 2020; 472:281-292. [PMID: 32025814 PMCID: PMC7035225 DOI: 10.1007/s00424-020-02353-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/29/2019] [Accepted: 01/26/2020] [Indexed: 12/25/2022]
Abstract
Muscle inactivity reduces muscle protein synthesis (MPS), whereas a subsequent period of rehabilitation resistance training (retraining) increases MPS. However, less is known regarding muscle protein breakdown (MPB) during such conditions. Furthermore, nonsteroidal anti-inflammatory drugs (NSAIDs) may have a dampening effect on MPB during periods of inactivity in older individuals. Thus, we measured the average MPB, by use of the deuterated water methodology, during an immobilization period and a subsequent retraining period in older individuals with and without NSAID treatment. Eighteen men (60–80 years: range) were randomly assigned to ibuprofen (1200 mg/d, Ibu) or placebo (Plc). One lower limb was immobilized in a cast for 2 weeks and retrained for 2 weeks, and 2 × 20 g of whey protein was ingested daily during both periods. Besides MPB, the protein expression of different muscle degradation signaling molecules was investigated. MPB was lower during immobilization compared to retraining (p < 0.01). NSAID treatment did not affect the MPB rate during immobilization or retraining (p > 0.05). The protein expression of muscle degradation signaling molecules changed during the study intervention but were unaffected by NSAID treatment. The finding that MPB was lower during immobilization than during retraining indicates that an increased MPB may play an important role in the muscle protein remodeling processes taking place within the initial retraining period. Moreover, NSAID treatment did not significantly influence the MPB rate during 2 weeks of lower limb immobilization or during 2 weeks of subsequent retraining in older individuals.
Collapse
|
21
|
Figueiredo VC, Englund DA, Vechetti IJ, Alimov A, Peterson CA, McCarthy JJ. Phosphorylation of eukaryotic initiation factor 4E is dispensable for skeletal muscle hypertrophy. Am J Physiol Cell Physiol 2019; 317:C1247-C1255. [PMID: 31596607 PMCID: PMC6962521 DOI: 10.1152/ajpcell.00380.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 11/22/2022]
Abstract
The eukaryotic initiation factor 4E (eIF4E) is a major mRNA cap-binding protein that has a central role in translation initiation. Ser209 is the single phosphorylation site within eIF4E and modulates its activity in response to MAPK pathway activation. It has been reported that phosphorylation of eIF4E at Ser209 promotes translation of key mRNAs, such as cyclin D1, that regulate ribosome biogenesis. We hypothesized that phosphorylation at Ser209 is required for skeletal muscle growth in response to a hypertrophic stimulus by promoting ribosome biogenesis. To test this hypothesis, wild-type (WT) and eIF4E knocked-in (KI) mice were subjected to synergist ablation to induce muscle hypertrophy of the plantaris muscle as the result of mechanical overload; in the KI mouse, Ser209 of eIF4E was replaced with a nonphosphorylatable alanine. Contrary to our hypothesis, we observed no difference in the magnitude of hypertrophy between WT and KI groups in response to 14 days of mechanical overload induced by synergist ablation. Similarly, the increases in cyclin D1 protein levels, ribosome biogenesis, and translational capacity did not differ between WT and KI groups. Based on these findings, we conclude that phosphorylation of eIF4E at Ser209 is dispensable for skeletal muscle hypertrophy in response to mechanical overload.
Collapse
Affiliation(s)
- Vandre C Figueiredo
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Davis A Englund
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Ivan J Vechetti
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Alexander Alimov
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
22
|
Nutritional and Pharmacological Interventions to Expedite Recovery Following Muscle-Damaging Exercise in Older Adults: A Narrative Review of the Literature. J Aging Phys Act 2019; 27:914-928. [PMID: 30859892 DOI: 10.1123/japa.2018-0351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exercise-induced muscle damage (EIMD) manifests as muscle soreness, inflammation, and reductions in force generating capacity that can last for several days after exercise. The ability to recover and repair damaged tissues following EIMD is impaired with age, with older adults (≥50 years old) experiencing a slower rate of recovery than their younger counterparts do for the equivalent exercise bout. This narrative review discusses the literature examining the effect of nutritional or pharmacological supplements taken to counter the potentially debilitating effects of EIMD in older adults. Studies have assessed the effects of nonsteroidal anti-inflammatory drugs, vitamin C and/or E, or higher protein diets on recovery in older adults. Each intervention showed some promise for attenuating EIMD, but, overall, there is a paucity of available data in this population, and more studies are required to determine the influence of nutrition or pharmacological interventions on EIMD in older adults.
Collapse
|
23
|
Figueiredo VC. Revisiting the roles of protein synthesis during skeletal muscle hypertrophy induced by exercise. Am J Physiol Regul Integr Comp Physiol 2019; 317:R709-R718. [PMID: 31508978 DOI: 10.1152/ajpregu.00162.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein synthesis is deemed the underpinning mechanism enhancing protein balance required for skeletal muscle hypertrophy in response to resistance exercise. The current model of skeletal muscle hypertrophy induced by resistance training states that the acute increase in the rates of protein synthesis after each bout of resistance exercise is the basis for muscle growth. Within this paradigm, each resistance exercise session would add a specific amount of muscle mass; therefore, muscle hypertrophy could be defined as the result of intermittent and short-lived increases in muscle protein synthesis rates following each resistance exercise session. Although a substantial amount of data has accumulated in the last decades regarding the acute changes in protein synthesis (or translational efficiency) following resistance exercise, considerable gaps on the mechanism of muscle growth still exist. Ribosome biogenesis and translational capacity have emerged as important mediators of skeletal muscle hypertrophy. Recent advances in the field have demonstrated that skeletal muscle hypertrophy is associated with markers of translational capacity and long-term changes in protein synthesis under resting conditions. This review will discuss the caveats of the current model of skeletal muscle hypertrophy induced by resistance training while proposing a working model that takes into consideration the novel data generated by independent laboratories utilizing different methodologies. It is argued, herein, that the role of protein synthesis in the current model of muscle hypertrophy warrants revisiting.
Collapse
Affiliation(s)
- Vandré Casagrande Figueiredo
- College of Health Sciences, Department of Rehabilitation Sciences, the Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
24
|
Hodson N, West DWD, Philp A, Burd NA, Moore DR. Molecular regulation of human skeletal muscle protein synthesis in response to exercise and nutrients: a compass for overcoming age-related anabolic resistance. Am J Physiol Cell Physiol 2019; 317:C1061-C1078. [PMID: 31461340 DOI: 10.1152/ajpcell.00209.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle mass, a strong predictor of longevity and health in humans, is determined by the balance of two cellular processes, muscle protein synthesis (MPS) and muscle protein breakdown. MPS seems to be particularly sensitive to changes in mechanical load and/or nutritional status; therefore, much research has focused on understanding the molecular mechanisms that underpin this cellular process. Furthermore, older individuals display an attenuated MPS response to anabolic stimuli, termed anabolic resistance, which has a negative impact on muscle mass and function, as well as quality of life. Therefore, an understanding of which, if any, molecular mechanisms contribute to anabolic resistance of MPS is of vital importance in formulation of therapeutic interventions for such populations. This review summarizes the current knowledge of the mechanisms that underpin MPS, which are broadly divided into mechanistic target of rapamycin complex 1 (mTORC1)-dependent, mTORC1-independent, and ribosomal biogenesis-related, and describes the evidence that shows how they are regulated by anabolic stimuli (exercise and/or nutrition) in healthy human skeletal muscle. This review also summarizes evidence regarding which of these mechanisms may be implicated in age-related skeletal muscle anabolic resistance and provides recommendations for future avenues of research that can expand our knowledge of this area.
Collapse
Affiliation(s)
- Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Philp
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Naproxen’s Effect on Performance Within Neuromuscular Parameters. Asian J Sports Med 2019. [DOI: 10.5812/asjsm.80256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Nieman DC, Gillitt ND, Chen GY, Zhang Q, Sakaguchi CA, Stephan EH. Carbohydrate intake attenuates post-exercise plasma levels of cytochrome P450-generated oxylipins. PLoS One 2019; 14:e0213676. [PMID: 30883596 PMCID: PMC6422332 DOI: 10.1371/journal.pone.0213676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction Oxylipins are bioactive oxidation products derived from n-6 and n-3 polyunsaturated fatty acids (PUFAs) in the linoleic acid and α-linolenic desaturation pathways. Purpose This study determined if carbohydrate intake during prolonged and intensive cycling countered post-exercise increases in n-6 and n-3 PUFA-derived oxylipins. Methods The research design utilized a randomized, crossover, counterbalanced approach with cyclists (N = 20, overnight fasted state, 7:00 am start) who engaged in four 75-km time trials while ingesting two types of bananas (Cavendish, Mini-yellow), a 6% sugar beverage, and water only. Carbohydrate intake was set at 0.2 g/kg every 15 minutes, and blood samples were collected pre-exercise and 0 h-, 0.75 h-,1.5 h-, 3 h-, 4.5 h-, 21 h-, 45 h-post-exercise. Oxylipins were measured with a targeted liquid chromatography-multiple reaction monitoring mass spectrometric method. Results Significant time effects and substantial fold-increases (immediately post-exercise/pre-exercise) were measured for plasma levels of arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and 43 of 45 oxylipins. Significant interaction effects (4 trials x 8 time points) were found for plasma ARA (P<0.001) and DHA (P<0.001), but not EPA (P = 0.255), with higher post-exercise values found in the water trial compared to the carbohydrate trials. Significant interaction effects were also measured for 12 of 45 oxylipins. The data supported a strong exercise-induced increase in plasma levels of these oxylipins during the water trial, with carbohydrate ingestion (both bananas types and the sugar beverage) attenuating oxylipin increases, especially those (9 of 12) generated from the cytochrome P-450 (CYP) enzyme system. These trials differences were especially apparent within the first three hours of recovery from the 75-km cycling bout. Conclusions Prolonged and intensive exercise evoked a transient but robust increase in plasma levels of oxylipins, with a significant attenuation effect linked to acute carbohydrate ingestion for 28% of these, especially those generated through the CYP enzyme system. Trial registration ClinicalTrials.gov, U.S. National Institutes of Health, NCT02994628
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
- * E-mail:
| | - Nicholas D. Gillitt
- Dole Nutrition Research Laboratory, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Guan-Yuan Chen
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Camila A. Sakaguchi
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Ella H. Stephan
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina-Chapel Hill, NC, United States of America
| |
Collapse
|
27
|
Nieman DC, Lila MA, Gillitt ND. Immunometabolism: A Multi-Omics Approach to Interpreting the Influence of Exercise and Diet on the Immune System. Annu Rev Food Sci Technol 2019; 10:341-363. [PMID: 30633566 DOI: 10.1146/annurev-food-032818-121316] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunometabolism is an evolving field of scientific endeavor that merges immunology and metabolism and has provided valuable context when evaluating the influence of dietary interventions on exercise-induced immune dysfunction. Metabolomics, lipidomics, and proteomics provide a system-wide view of the metabolic response to exercise by simultaneously measuring and identifying a large number of small-molecule metabolites, lipids, and proteins. Many of these are involved with immune function and regulation and are sensitive to dietary influences, especially acute carbohydrate ingestion from either sugar beverages or fruits such as bananas. Emerging evidence using large multi-omics data sets supports the combined intake of fruit sugars and phytochemicals by athletes during heavy exertion as an effective strategy to improve metabolic recovery, augment viral defense, and counter postexercise inflammation and immune dysfunction at the cell level. Multi-omics methodologies have given investigators new outcome targets to assess the efficacy of various dietary interventions for physiologically stressed athletes.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Department of Health and Exercise Science, Appalachian State University, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA;
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | - Nicholas D Gillitt
- Dole Nutrition Research Laboratory, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
28
|
Figueiredo VC, McCarthy JJ. Regulation of Ribosome Biogenesis in Skeletal Muscle Hypertrophy. Physiology (Bethesda) 2019; 34:30-42. [PMID: 30540235 PMCID: PMC6383632 DOI: 10.1152/physiol.00034.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 01/22/2023] Open
Abstract
The ribosome is the enzymatic macromolecular machine responsible for protein synthesis. The rates of protein synthesis are primarily dependent on translational efficiency and capacity. Ribosome biogenesis has emerged as an important regulator of skeletal muscle growth and maintenance by altering the translational capacity of the cell. Here, we provide evidence to support a central role for ribosome biogenesis in skeletal muscle growth during postnatal development and in response to resistance exercise training. Furthermore, we discuss the cellular signaling pathways regulating ribosome biogenesis, discuss how myonuclear accretion affects translational capacity, and explore future areas of investigation within the field.
Collapse
Affiliation(s)
- Vandré Casagrande Figueiredo
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky , Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Medicine, University of Kentucky , Lexington, Kentucky
| | - John J McCarthy
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky , Lexington, Kentucky
- Department of Physiology, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
29
|
Lundberg TR, Howatson G. Analgesic and anti-inflammatory drugs in sports: Implications for exercise performance and training adaptations. Scand J Med Sci Sports 2018; 28:2252-2262. [PMID: 30102811 DOI: 10.1111/sms.13275] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022]
Abstract
Over-the-counter analgesics, such as anti-inflammatory drugs (NSAIDs) and paracetamol, are widely consumed by athletes worldwide to increase pain tolerance, or dampen pain and reduce inflammation from injuries. Given that these drugs also can modulate tissue protein turnover, it is important to scrutinize the implications of acute and chronic use of these drugs in relation to exercise performance and the development of long-term training adaptations. In this review, we aim to provide an overview of the studies investigating the effects of analgesic drugs on exercise performance and training adaptations relevant for athletic development. There is emerging evidence that paracetamol might acutely improve important endurance parameters as well as aspects of neuromuscular performance, possibly through increased pain tolerance. Both NSAIDs and paracetamol have been demonstrated to inhibit cyclooxygenase (COX) activity, which might explain the reduced anabolic response to acute exercise bouts. Consistent with this, NSAIDs have been reported to interfere with muscle hypertrophy and strength gains in response to chronic resistance training in young individuals. Although it remains to be established whether any of these observations also translate into detriments in sport-specific performance or reduced training adaptations in elite athletes, the extensive use of these drugs certainly raises practical, ethical, and important safety concerns that need to be addressed. Overall, we encourage greater awareness among athletes, coaches, and support staff on the potential adverse effects of these drugs. A risk-benefit analysis and professional guidance are strongly advised before the athlete considers analgesic medicine for training or competition.
Collapse
Affiliation(s)
- Tommy R Lundberg
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| |
Collapse
|
30
|
Mitchell CJ, D'Souza RF, Figueiredo VC, Chan A, Aasen K, Durainayagam B, Mitchell S, Sinclair AJ, Egner IM, Raastad T, Cameron-Smith D, Markworth JF. Effect of dietary arachidonic acid supplementation on acute muscle adaptive responses to resistance exercise in trained men: a randomized controlled trial. J Appl Physiol (1985) 2018; 124:1080-1091. [DOI: 10.1152/japplphysiol.01100.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Arachidonic acid (ARA), a polyunsaturated ω-6 fatty acid, acts as precursor to a number of prostaglandins with potential roles in muscle anabolism. It was hypothesized that ARA supplementation might enhance the early anabolic response to resistance exercise (RE) by increasing muscle protein synthesis (MPS) via mammalian target of rapamycin (mTOR) pathway activation and/or the late anabolic response by modulating ribosome biogenesis and satellite cell expansion. Nineteen men with ≥1 yr of resistance-training experience were randomized to consume either 1.5 g daily ARA or a corn-soy-oil placebo in a double-blind manner for 4 wk. Participants then undertook fasted RE (8 sets each of leg press and extension at 80% 1-repetition maximum), with vastus lateralis biopsies obtained before exercise, immediately postexercise, and at 2, 4, and 48 h of recovery. MPS (measured via stable isotope infusion) was not different between groups ( P = 0.212) over the 4-h recovery period. mTOR pathway members p70 S6 kinase and S6 ribosomal protein were phosphorylated postexercise ( P < 0.05), with no difference between groups. 45S preribosomal RNA increased 48 h after exercise only in ARA ( P = 0.012). Neural cell adhesion molecule-positive satellite cells per fiber increased 48 h after exercise ( P = 0.013), with no difference between groups ( P = 0.331). Prior ARA supplementation did not alter the acute anabolic response to RE in previously resistance-trained men; however, at 48 h of recovery, ribosome biogenesis was stimulated only in the ARA group. The findings do not support a mechanistic link between ARA and short-term anabolism, but ARA supplementation in conjunction with resistance training may stimulate increases in translational capacity. NEW & NOTEWORTHY Four weeks of daily arachidonic acid supplementation in trained men did not alter their acute muscle protein synthetic or anabolic signaling response to resistance exercise. However, 48 h after exercise, men supplemented with arachidonic acid showed greater ribosome biogenesis and a trend toward greater change in satellite cell content. Chronic arachidonic acid supplementation does not appear to regulate the acute anabolic response to resistance exercise but may augment muscle adaptation in the following days of recovery.
Collapse
Affiliation(s)
| | | | - Vandre C. Figueiredo
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Alex Chan
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Kirsten Aasen
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Sarah Mitchell
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand
- Riddet Institute, Palmerston North, New Zealand
| | - James F. Markworth
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
31
|
D’Lugos AC, Patel SH, Ormsby JC, Curtis DP, Fry CS, Carroll CC, Dickinson JM. Prior acetaminophen consumption impacts the early adaptive cellular response of human skeletal muscle to resistance exercise. J Appl Physiol (1985) 2018; 124:1012-1024. [DOI: 10.1152/japplphysiol.00922.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Resistance exercise (RE) is a powerful stimulus for skeletal muscle adaptation. Previous data demonstrate that cyclooxygenase (COX)-inhibiting drugs alter the cellular mechanisms regulating the adaptive response of skeletal muscle. The purpose of this study was to determine whether prior consumption of the COX inhibitor acetaminophen (APAP) alters the immediate adaptive cellular response in human skeletal muscle after RE. In a double-blinded, randomized, crossover design, healthy young men ( n = 8, 25 ± 1 yr) performed two trials of unilateral knee extension RE (8 sets, 10 reps, 65% max strength). Subjects ingested either APAP (1,000 mg/6 h) or placebo (PLA) for 24 h before RE (final dose consumed immediately after RE). Muscle biopsies (vastus lateralis) were collected at rest and 1 h and 3 h after exercise. Mammalian target of rapamycin (mTOR) complex 1 signaling was assessed through immunoblot and immunohistochemistry, and mRNA expression of myogenic genes was examined via RT-qPCR. At 1 h p-rpS6Ser240/244 was increased in both groups but to a greater extent in PLA. At 3 h p-S6K1Thr389 was elevated only in PLA. Furthermore, localization of mTOR to the lysosome (LAMP2) in myosin heavy chain (MHC) II fibers increased 3 h after exercise only in PLA. mTOR-LAMP2 colocalization in MHC I fibers was greater in PLA vs. APAP 1 h after exercise. Myostatin mRNA expression was reduced 1 h after exercise only in PLA. MYF6 mRNA expression was increased 1 h and 3 h after exercise only in APAP. APAP consumption appears to alter the early adaptive cellular response of skeletal muscle to RE. These findings further highlight the mechanisms through which COX-inhibiting drugs impact the adaptive response of skeletal muscle to exercise. NEW & NOTEWORTHY The extent to which the cellular reaction to acetaminophen impacts the mechanisms regulating the adaptive response of human skeletal muscle to resistance exercise is not well understood. Consumption of acetaminophen before resistance exercise appears to suppress the early response of mTORC1 activity to acute resistance exercise. These data also demonstrate, for the first time, that resistance exercise elicits fiber type-specific changes in the intracellular colocalization of mTOR with the lysosome in human skeletal muscle.
Collapse
Affiliation(s)
- Andrew C. D’Lugos
- Healthy Lifestyles Research Center, Exercise Science and Health Promotion, School of Nutrition and Health Promotion, Arizona State University, Phoenix, Arizona
| | - Shivam H. Patel
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
- Midwestern University, Glendale, Arizona
| | - Jordan C. Ormsby
- Healthy Lifestyles Research Center, Exercise Science and Health Promotion, School of Nutrition and Health Promotion, Arizona State University, Phoenix, Arizona
| | | | - Christopher S. Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Chad C. Carroll
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
- Midwestern University, Glendale, Arizona
| | - Jared M. Dickinson
- Healthy Lifestyles Research Center, Exercise Science and Health Promotion, School of Nutrition and Health Promotion, Arizona State University, Phoenix, Arizona
| |
Collapse
|
32
|
Lilja M, Mandić M, Apró W, Melin M, Olsson K, Rosenborg S, Gustafsson T, Lundberg TR. High doses of anti-inflammatory drugs compromise muscle strength and hypertrophic adaptations to resistance training in young adults. Acta Physiol (Oxf) 2018; 222. [PMID: 28834248 DOI: 10.1111/apha.12948] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/20/2017] [Accepted: 08/17/2017] [Indexed: 01/14/2023]
Abstract
AIMS This study tested the hypothesis that high doses of anti-inflammatory drugs would attenuate the adaptive response to resistance training compared with low doses. METHODS Healthy men and women (aged 18-35 years) were randomly assigned to daily consumption of ibuprofen (IBU; 1200 mg; n = 15) or acetylsalicylic acid (ASA; 75 mg; n = 16) for 8 weeks. During this period, subjects completed supervised knee-extensor resistance training where one leg was subjected to training with maximal volitional effort in each repetition using a flywheel ergometer (FW), while the other leg performed conventional (work-matched across groups) weight-stack training (WS). Before and after training, muscle volume (MRI) and strength were assessed, and muscle biopsies were analysed for gene and protein expression of muscle growth regulators. RESULTS The increase in m. quadriceps volume was similar between FW and WS, yet was (averaged across legs) greater in ASA (7.5%) compared with IBU (3.7%, group difference 34 cm3 ; P = 0.029). In the WS leg, muscle strength improved similarly (11-20%) across groups. In the FW leg, increases (10-23%) in muscle strength were evident in both groups yet they were generally greater (interaction effects P < 0.05) for ASA compared with IBU. While our molecular analysis revealed several training effects, the only group interaction (P < 0.0001) arose from a downregulated mRNA expression of IL-6 in IBU. CONCLUSION Maximal over-the-counter doses of ibuprofen attenuate strength and muscle hypertrophic adaptations to 8 weeks of resistance training in young adults. Thus, young individuals using resistance training to maximize muscle growth or strength should avoid excessive intake of anti-inflammatory drugs.
Collapse
Affiliation(s)
- M. Lilja
- Division of Clinical Physiology; Department of Laboratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
- Unit of Clinical Physiology; Karolinska University Hospital; Stockholm Sweden
| | - M. Mandić
- Division of Clinical Physiology; Department of Laboratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
- Unit of Clinical Physiology; Karolinska University Hospital; Stockholm Sweden
| | - W. Apró
- Åstrand Laboratory; Swedish School of Sport and Health Sciences; Stockholm Sweden
| | - M. Melin
- Division of Clinical Physiology; Department of Laboratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
- Unit of Clinical Physiology; Karolinska University Hospital; Stockholm Sweden
- Department of Cardiology; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
| | - K. Olsson
- Division of Clinical Physiology; Department of Laboratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
- Unit of Clinical Physiology; Karolinska University Hospital; Stockholm Sweden
| | - S. Rosenborg
- Division of Clinical Pharmacology; Department of Laboratory Medicine; Karolinska Institutet; Stockholm Sweden
| | - T. Gustafsson
- Division of Clinical Physiology; Department of Laboratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
- Unit of Clinical Physiology; Karolinska University Hospital; Stockholm Sweden
| | - T. R. Lundberg
- Division of Clinical Physiology; Department of Laboratory Medicine; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
- Unit of Clinical Physiology; Karolinska University Hospital; Stockholm Sweden
| |
Collapse
|
33
|
Ibuprofen alters human testicular physiology to produce a state of compensated hypogonadism. Proc Natl Acad Sci U S A 2018; 115:E715-E724. [PMID: 29311296 PMCID: PMC5789927 DOI: 10.1073/pnas.1715035115] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Concern has been raised over increased male reproductive disorders in the Western world, and the disruption of male endocrinology has been suggested to play a central role. Several studies have shown that mild analgesics exposure during fetal life is associated with antiandrogenic effects and congenital malformations, but the effects on the adult man remain largely unknown. Through a clinical trial with young men exposed to ibuprofen, we show that the analgesic resulted in the clinical condition named "compensated hypogonadism," a condition prevalent among elderly men and associated with reproductive and physical disorders. In the men, luteinizing hormone (LH) and ibuprofen plasma levels were positively correlated, and the testosterone/LH ratio decreased. Using adult testis explants exposed or not exposed to ibuprofen, we demonstrate that the endocrine capabilities from testicular Leydig and Sertoli cells, including testosterone production, were suppressed through transcriptional repression. This effect was also observed in a human steroidogenic cell line. Our data demonstrate that ibuprofen alters the endocrine system via selective transcriptional repression in the human testes, thereby inducing compensated hypogonadism.
Collapse
|
34
|
Collier AF, Gumerson J, Lehtimäki K, Puoliväli J, Jones JW, Kane MA, Manne S, O'Neill A, Windish HP, Ahtoniemi T, Williams BA, Albrecht DE, Bloch RJ. Effect of Ibuprofen on Skeletal Muscle of Dysferlin-Null Mice. J Pharmacol Exp Ther 2017; 364:409-419. [PMID: 29284661 DOI: 10.1124/jpet.117.244244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/21/2017] [Indexed: 12/19/2022] Open
Abstract
Ibuprofen, a nonsteroidal anti-inflammatory drug, and nitric oxide (NO) donors have been reported to reduce the severity of muscular dystrophies in mice associated with the absence of dystrophin or α-sarcoglycan, but their effects on mice that are dystrophic due to the absence of dysferlin have not been examined. We have tested ibuprofen, as well as isosorbide dinitrate (ISDN), a NO donor, to learn whether used alone or together they protect dysferlin-null muscle in A/J mice from large strain injury (LSI) induced by a series of high strain lengthening contractions. Mice were maintained on chow containing ibuprofen and ISDN for 4 weeks. They were then subjected to LSI and maintained on the drugs for 3 additional days. We measured loss of torque immediately following injury and at day 3 postinjury, fiber necrosis, and macrophage infiltration at day 3 postinjury, and serum levels of the drugs at the time of euthanasia. Loss of torque immediately after injury was not altered by the drugs. However, the torque on day 3 postinjury significantly decreased as a function of ibuprofen concentration in the serum (range, 0.67-8.2 µg/ml), independent of ISDN. The effects of ISDN on torque loss at day 3 postinjury were not significant. In long-term studies of dysferlinopathic BlAJ mice, lower doses of ibuprofen had no effects on muscle morphology, but reduced treadmill running by 40%. Our results indicate that ibuprofen can have deleterious effects on dysferlin-null muscle and suggest that its use at pharmacological doses should be avoided by individuals with dysferlinopathies.
Collapse
Affiliation(s)
- Alyssa F Collier
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Jessica Gumerson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Kimmo Lehtimäki
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Jukka Puoliväli
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Jace W Jones
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Maureen A Kane
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Sankeerth Manne
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Andrea O'Neill
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Hillarie P Windish
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Toni Ahtoniemi
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Bradley A Williams
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Douglas E Albrecht
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| |
Collapse
|
35
|
Cardinale DA, Lilja M, Mandić M, Gustafsson T, Larsen FJ, Lundberg TR. Resistance Training with Co-ingestion of Anti-inflammatory Drugs Attenuates Mitochondrial Function. Front Physiol 2017; 8:1074. [PMID: 29311990 PMCID: PMC5742251 DOI: 10.3389/fphys.2017.01074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023] Open
Abstract
Aim: The current study aimed to examine the effects of resistance exercise with concomitant consumption of high vs. low daily doses of non-steroidal anti-inflammatory drugs (NSAIDs) on mitochondrial oxidative phosphorylation in skeletal muscle. As a secondary aim, we compared the effects of eccentric overload with conventional training. Methods: Twenty participants were randomized to either a group taking high doses (3 × 400 mg/day) of ibuprofen (IBU; 27 ± 5 year; n = 11) or a group ingesting a low dose (1 × 75 mg/day) of acetylsalicylic acid (ASA; 26 ± 4 year; n = 9) during 8 weeks of supervised knee extensor resistance training. Each of the subject's legs were randomized to complete the training program using either a flywheel (FW) device emphasizing eccentric overload, or a traditional weight stack machine (WS). Maximal mitochondrial oxidative phosphorylation (CI+IIP) from permeabilized skeletal muscle bundles was assessed using high-resolution respirometry. Citrate synthase (CS) activity was assessed using spectrophotometric techniques and mitochondrial protein content using western blotting. Results: After training, CI+IIP decreased (P < 0.05) in both IBU (23%) and ASA (29%) with no difference across medical treatments. Although CI+IIP decreased in both legs, the decrease was greater (interaction p = 0.015) in WS (33%, p = 0.001) compared with FW (19%, p = 0.078). CS activity increased (p = 0.027) with resistance training, with no interactions with medical treatment or training modality. Protein expression of ULK1 increased with training in both groups (p < 0.001). The increase in quadriceps muscle volume was not correlated with changes in CI+IIP (R = 0.16). Conclusion: These results suggest that 8 weeks of resistance training with co-ingestion of anti-inflammatory drugs reduces mitochondrial function but increases mitochondrial content. The observed changes were not affected by higher doses of NSAIDs consumption, suggesting that the resistance training intervention was the prime mediator of the decreased mitochondrial phosphorylation. Finally, we noted that flywheel resistance training, emphasizing eccentric overload, rescued some of the reduction in mitochondrial function seen with conventional resistance training.
Collapse
Affiliation(s)
- Daniele A Cardinale
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Elite Performance Centre, Bosön-Swedish Sports Confederation, Lidingö, Sweden
| | - Mats Lilja
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Mirko Mandić
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Filip J Larsen
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Tommy R Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Barcelos RP, Bresciani G, Cuevas MJ, Martínez-Flórez S, Soares FAA, González-Gallego J. Diclofenac pretreatment modulates exercise-induced inflammation in skeletal muscle of rats through the TLR4/NF-κB pathway. Appl Physiol Nutr Metab 2017; 42:757-764. [DOI: 10.1139/apnm-2016-0593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonsteroidal anti-inflammatory drugs, such as diclofenac, are widely used to treat inflammation and pain in several conditions, including sports injuries. This study analyzes the influence of diclofenac on the toll-like receptor-nuclear factor kappa B (TLR-NF-κB) pathway in skeletal muscle of rats submitted to acute eccentric exercise. Twenty male Wistar rats were divided into 4 groups: control-saline, control-diclofenac, exercise-saline, and exercise-diclofenac. Diclofenac or saline were administered for 7 days prior to an acute eccentric exercise bout. The inflammatory status was evaluated through mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α), and protein content of COX-2, IL-6, and TNF-α in vastus lateralis muscle. Data obtained showed that a single bout of eccentric exercise significantly increased COX-2 gene expression. Similarly, mRNA expression and protein content of other inflammation-related genes also increased after the acute exercise. However, these effects were attenuated in the exercise + diclofenac group. TLR4, myeloid differentiation primary response gene 88 (MyD88), and p65 were also upregulated after the acute eccentric bout and the effect was blunted by the anti-inflammatory drug. These findings suggest that pretreatment with diclofenac may represent an effective tool to ameliorate the pro-inflammatory status induced by acute exercise in rat skeletal muscle possibly through an attenuation of the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Rômulo Pillon Barcelos
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, RS, 99052-900, Brazil
- Institute of Biomedicine, University of León, Campus Universitario, 24071 León, Spain
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900 Brazil
| | - Guilherme Bresciani
- Grupo de Investigación en Rendimiento Físico y Salud Escuela de Educación Física, Pontificia Universidad Católica de Valparaiso, Valparaiso, 2530388 Chile
| | - Maria José Cuevas
- Institute of Biomedicine, University of León, Campus Universitario, 24071 León, Spain
| | | | - Félix Alexandre Antunes Soares
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | |
Collapse
|
37
|
Gomez-Cabrera MC, Viña J, Ji LL. Role of Redox Signaling and Inflammation in Skeletal Muscle Adaptations to Training. Antioxidants (Basel) 2016; 5:E48. [PMID: 27983587 PMCID: PMC5187546 DOI: 10.3390/antiox5040048] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/30/2016] [Accepted: 12/08/2016] [Indexed: 12/22/2022] Open
Abstract
The inflammatory response to exercise-induced muscle damage has been extensively described. Exercise has important modulatory effects on immune function. These effects are mediated by diverse factors including pro-inflammatory cytokines, classical stress hormones, and hemodynamic effects leading to cell redistribution. As has been reported regarding oxidative stress, inflammation can have both detrimental and beneficial effects in skeletal muscle. In this review we will address the role of inflammation on protein metabolism in skeletal muscle. Specifically, we will review studies showing that treatment with cyclooxygenase-inhibiting drugs modulate the protein synthesis response to one bout of resistance exercise and to training. Understanding how these drugs work is important for the millions of individuals worldwide that consume them regularly. We will also discuss the importance of reactive oxygen species and inflammatory cytokines in muscle adaptations to exercise and the Janus faced of the use of antioxidant and anti-inflammatory drugs by athletes for optimizing their performance, especially during the periods in which muscle hypertrophy is expected.
Collapse
Affiliation(s)
- Maria Carmen Gomez-Cabrera
- Department of Physiology, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, University of Valencia, València 46010, Spain.
| | - Jose Viña
- Department of Physiology, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, University of Valencia, València 46010, Spain.
| | - Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, 1900 University Avenue, Minneapolis, MN 55455, USA.
| |
Collapse
|
38
|
Vella L, Markworth JF, Paulsen G, Raastad T, Peake JM, Snow RJ, Cameron-Smith D, Russell AP. Ibuprofen Ingestion Does Not Affect Markers of Post-exercise Muscle Inflammation. Front Physiol 2016; 7:86. [PMID: 27064890 PMCID: PMC4809889 DOI: 10.3389/fphys.2016.00086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/22/2016] [Indexed: 01/24/2023] Open
Abstract
Purpose: We investigated if oral ingestion of ibuprofen influenced leucocyte recruitment and infiltration following an acute bout of traditional resistance exercise Methods: Sixteen male subjects were divided into two groups that received the maximum over-the-counter dose of ibuprofen (1200mg d−1) or a similarly administered placebo following lower body resistance exercise. Muscle biopsies were taken from m.vastus lateralis and blood serum samples were obtained before and immediately after exercise, and at 3 and 24 h after exercise. Muscle cross-sections were stained with antibodies against neutrophils (CD66b and MPO) and macrophages (CD68). Muscle damage was assessed via creatine kinase and myoglobin in blood serum samples, and muscle soreness was rated on a ten-point pain scale. Results: The resistance exercise protocol stimulated a significant increase in the number of CD66b+ and MPO+ cells when measured 3 h post exercise. Serum creatine kinase, myoglobin and subjective muscle soreness all increased post-exercise. Muscle leucocyte infiltration, creatine kinase, myoglobin and subjective muscle soreness were unaffected by ibuprofen treatment when compared to placebo. There was also no association between increases in inflammatory leucocytes and any other marker of cellular muscle damage. Conclusion: Ibuprofen administration had no effect on the accumulation of neutrophils, markers of muscle damage or muscle soreness during the first 24 h of post-exercise muscle recovery.
Collapse
Affiliation(s)
- Luke Vella
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Science, Deakin University Burwood, VIC, Australia
| | | | - Gøran Paulsen
- Department of Physical Performance, Norwegian School of Sport Science Oslo, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Science Oslo, Norway
| | - Jonathan M Peake
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia
| | - Rod J Snow
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Science, Deakin University Burwood, VIC, Australia
| | | | - Aaron P Russell
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Science, Deakin University Burwood, VIC, Australia
| |
Collapse
|
39
|
Exercise and the Regulation of Inflammatory Responses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:337-54. [PMID: 26477921 DOI: 10.1016/bs.pmbts.2015.07.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exercise initiates a cascade of inflammatory events, which ultimately lead to long-term effects on human health. During and after acute exercise in skeletal muscle, interactions between immune cells, cytokines, and other intracellular components, create an inflammatory milieu responsible for the recovery and adaption from an exercise bout. In the systemic circulation, cytokines released from muscle (myokines) mediate metabolic and inflammatory processes. Moderate exercise training results in improvements in systemic inflammation, evident by reductions in acute phase proteins. The anti-inflammatory effects of regular exercise include actions dependent and independent of changes in adipose tissue mass. Future research should encompass approaches, which attempt to integrate other, less-recognized physiological processes with acute and long-term inflammatory changes. This will include investigation into metabolic, endocrine, and immune components of various tissues and organs.
Collapse
|
40
|
Peake JM, Markworth JF, Nosaka K, Raastad T, Wadley GD, Coffey VG. Modulating exercise-induced hormesis: Does less equal more? J Appl Physiol (1985) 2015; 119:172-89. [PMID: 25977451 DOI: 10.1152/japplphysiol.01055.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/07/2015] [Indexed: 12/21/2022] Open
Abstract
Hormesis encompasses the notion that low levels of stress stimulate or upregulate existing cellular and molecular pathways that improve the capacity of cells and organisms to withstand greater stress. This notion underlies much of what we know about how exercise conditions the body and induces long-term adaptations. During exercise, the body is exposed to various forms of stress, including thermal, metabolic, hypoxic, oxidative, and mechanical stress. These stressors activate biochemical messengers, which in turn activate various signaling pathways that regulate gene expression and adaptive responses. Historically, antioxidant supplements, nonsteroidal anti-inflammatory drugs, and cryotherapy have been favored to attenuate or counteract exercise-induced oxidative stress and inflammation. However, reactive oxygen species and inflammatory mediators are key signaling molecules in muscle, and such strategies may mitigate adaptations to exercise. Conversely, withholding dietary carbohydrate and restricting muscle blood flow during exercise may augment adaptations to exercise. In this review article, we combine, integrate, and apply knowledge about the fundamental mechanisms of exercise adaptation. We also critically evaluate the rationale for using interventions that target these mechanisms under the overarching concept of hormesis. There is currently insufficient evidence to establish whether these treatments exert dose-dependent effects on muscle adaptation. However, there appears to be some dissociation between the biochemical/molecular effects and functional/performance outcomes of some of these treatments. Although several of these treatments influence common kinases, transcription factors, and proteins, it remains to be determined if these interventions complement or negate each other, and whether such effects are strong enough to influence adaptations to exercise.
Collapse
Affiliation(s)
- Jonathan M Peake
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Centre of Excellence for Applied Sports Science Research, Queensland Academy of Sport, Brisbane, Australia;
| | | | - Kazunori Nosaka
- School of Exercise and Health Sciences, Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, Australia
| | | | - Glenn D Wadley
- School of Exercise and Nutrition Sciences, Center for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia
| | - Vernon G Coffey
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; and Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| |
Collapse
|
41
|
Vella L, Markworth JF, Peake JM, Snow RJ, Cameron-Smith D, Russell AP. Ibuprofen supplementation and its effects on NF-κB activation in skeletal muscle following resistance exercise. Physiol Rep 2014; 2:2/10/e12172. [PMID: 25344476 PMCID: PMC4254097 DOI: 10.14814/phy2.12172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Resistance exercise triggers a subclinical inflammatory response that plays a pivotal role in skeletal muscle regeneration. Nuclear factor‐κB (NF‐κB) is a stress signalling transcription factor that regulates acute and chronic states of inflammation. The classical NF‐κB pathway regulates the early activation of post‐exercise inflammation; however there remains scope for this complex transcription factor to play a more detailed role in post‐exercise muscle recovery. Sixteen volunteers completed a bout of lower body resistance exercise with the ingestion of three 400 mg doses of ibuprofen or a placebo control. Muscle biopsy samples were obtained prior to exercise and at 0, 3 and 24 h post‐exercise and analysed for key markers of NF‐κB activity. Phosphorylated p65 protein expression and p65 inflammatory target genes were elevated immediately post‐exercise independent of the two treatments. These changes did not translate to an increase in p65 DNA binding activity. NF‐κB p50 protein expression and NF‐κB p50 binding activity were lower than pre‐exercise at 0 and 3 h post‐exercise, but were elevated at 24 h post‐exercise. These findings provide novel evidence that two distinct NF‐κB pathways are active in skeletal muscle after resistance exercise. The initial wave of activity involving p65 resembles the classical pathway and is associated with the onset of an acute inflammatory response. The second wave of NF‐κB activity comprises the p50 subunit, which has been previously shown to resolve an acute inflammatory program. The current study showed no effect of the ibuprofen treatment on markers of the NF‐κB pathway, however examination of the within group effects of the exercise protocol suggests that this pathway warrants further research. The current study aimed to explore the regulation of the NF‐κB pathway following an acute bout of resistance exercise. Findings demonstrated two distinct phases of NF‐κB activity: an initial wave of activity comprising the p65 subunit, and a delayed second wave involving the p50 subunit.
Collapse
Affiliation(s)
- Luke Vella
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Vic., Australia
| | | | - Jonathan M Peake
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - Rod J Snow
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Vic., Australia
| | | | - Aaron P Russell
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Vic., Australia
| |
Collapse
|