1
|
Cairns SP, Renaud JM. The potassium-glycogen interaction on force and excitability in mouse skeletal muscle: implications for fatigue. J Physiol 2023; 601:5669-5687. [PMID: 37934587 DOI: 10.1113/jp285129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
A reduced muscle glycogen content and potassium (K+ ) disturbances across muscle membranes occur concomitantly during repeated intense exercise and together may contribute to skeletal muscle fatigue. Therefore, we examined whether raised extracellular K+ concentration ([K+ ]o ) (4 to 11 mM) interacts with lowered glycogen to reduce force production. Isometric contractions were evoked in isolated mouse soleus muscles (37°C) using direct supramaximal field stimulation. (1) Glycogen declined markedly in non-fatigued muscle with >2 h exposure in glucose-free physiological saline compared with control solutions (11 mM glucose), i.e. to <45% control. (2) Severe glycogen depletion was associated with increased 5'-AMP-activated protein kinase activity, indicative of metabolic stress. (3) The decline of peak tetanic force at 11 mM [K+ ]o was exacerbated from 67% initial at normal glycogen to 22% initial at lowered glycogen. This was due to a higher percentage of inexcitable fibres (71% vs. 43%), yet without greater sarcolemmal depolarisation or smaller amplitude action potentials. (4) Returning glucose while at 11 mM [K+ ]o increased both glycogen and force. (5) Exposure to 4 mM [K+ ]o glucose-free solutions (15 min) did not increase fatiguability during repeated tetani; however, after recovery there was a greater force decline at 11 mM [K+ ]o at lower than normal glycogen. (6) An important exponential relationship was established between relative peak tetanic force at 11 mM [K+ ]o and muscle glycogen content. These findings provide direct evidence of a synergistic interaction between raised [K+ ]o and lowered muscle glycogen as the latter shifts the peak tetanic force-resting EM relationship towards more negative resting EM due to lowered sarcolemmal excitability, which hence may contribute to muscle fatigue. KEY POINTS: Diminished muscle glycogen levels and raised extracellular potassium concentrations ([K+ ]o ) occur simultaneously during intense exercise and together may contribute to muscle fatigue. Prolonged exposure of isolated non-fatigued soleus muscles of mice to glucose-free physiological saline solutions markedly lowered muscle glycogen levels, as does fatigue then recovery in glucose-free solutions. For both approaches, the subsequent decline of maximal force at 11 mM [K+ ]o , which mimics interstitial [K+ ] levels during intense exercise, was exacerbated at lowered compared with normal glycogen. This was mainly due to many more muscle fibres becoming inexcitable. We established an important relationship that provides evidence of a synergistic interaction between raised [K+ ]o and lowered glycogen content to reduce force production. This paper indicates that partially lowered muscle glycogen (and/or metabolic stress) together with elevated interstitial [K+ ] interactively lowers muscle force, and hence may diminish performance especially during repeated high-intensity exercise.
Collapse
Affiliation(s)
- Simeon P Cairns
- SPRINZ, School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Neuromuscular Research Center, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Hunter KD, Crozier RWE, Braun JL, Fajardo VA, MacNeil AJ. Acute activation of SERCA with CDN1163 attenuates IgE-mediated mast cell activation through selective impairment of ROS and p38 signaling. FASEB J 2023; 37:e22748. [PMID: 36624659 DOI: 10.1096/fj.202201272r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
Mast cells are granulocytic immune sentinels present in vascularized tissues that drive chronic inflammatory mechanisms characteristic of allergic pathologies. IgE-mediated mast cell activation leads to a rapid mobilization of Ca2+ from intracellular stores, which is essential for the release of preformed mediators via degranulation and de novo synthesized proinflammatory cytokines and chemokines. Given its potent signaling capacity, the dynamics of Ca2+ localization are highly regulated by various pumps and channels controlling cytosolic Ca2+ concentrations. Among these is sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA), which functions to maintain low cytosolic Ca2+ concentrations by actively transporting cytosolic Ca2+ ions into the endoplasmic reticulum. In this study, we characterized the role of SERCA in allergen-activated mast cells using IgE-sensitized bone marrow-derived mast cells (BMMCs) treated with the SERCA activating compound, CDN1163, and simultaneously stimulated with allergen through FcεRI under stem cell factor (SCF) potentiation. Acute treatment with CDN1163 was found to attenuate early phase mast cell degranulation along with reactive oxygen species (ROS) production. Additionally, treatment with CDN1163 significantly reduced secretion of IL-6, IL-13, and CCL3, suggesting a role for SERCA in the late phase mast cell response. The protective effects of SERCA activation via CDN1163 treatment on the early and late phase mast cell response may be driven by the selective suppression of p38 MAPK signaling. Together, these findings implicate SERCA as an important regulator of the mast cell response to allergen and suggest SERCA activity may offer therapeutic potential targeting allergic pathologies, warranting further investigation.
Collapse
Affiliation(s)
- Katie D Hunter
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Robert W E Crozier
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Jessica L Braun
- Department of Kinesiology, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Val A Fajardo
- Department of Kinesiology, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| |
Collapse
|
3
|
Vigh-Larsen JF, Ørtenblad N, Nielsen J, Emil Andersen O, Overgaard K, Mohr M. The Role of Muscle Glycogen Content and Localization in High-Intensity Exercise Performance: A Placebo-Controlled Trial. Med Sci Sports Exerc 2022; 54:2073-2086. [PMID: 35868015 DOI: 10.1249/mss.0000000000003002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE We investigated the coupling between muscle glycogen content and localization and high-intensity exercise performance using a randomized, placebo-controlled, parallel-group design with emphasis on single-fiber subcellular glycogen concentrations and sarcoplasmic reticulum Ca 2+ kinetics. METHODS Eighteen well-trained participants performed high-intensity intermittent glycogen-depleting exercise, followed by randomization to a high- (CHO; ~1 g CHO·kg -1 ·h -1 ; n = 9) or low-carbohydrate placebo diet (PLA, <0.1 g CHO·kg -1 ·h -1 ; n = 9) for a 5-h recovery period. At baseline, after exercise, and after the carbohydrate manipulation assessments of repeated sprint ability (5 × 6-s maximal cycling sprints with 24 s of rest), neuromuscular function and ratings of perceived exertion during standardized high-intensity cycling (~90% Wmax ) were performed, while muscle and blood samples were collected. RESULTS The exercise and carbohydrate manipulations led to distinct muscle glycogen concentrations in CHO and PLA at the whole-muscle (291 ± 78 vs 175 ± 100 mmol·kg -1 dry weight (dw), P = 0.020) and subcellular level in each of three local regions ( P = 0.001-0.046). This was coupled with near-depleted glycogen concentrations in single fibers of both main fiber types in PLA, especially in the intramyofibrillar region (within the myofibrils). Furthermore, increased ratings of perceived exertion and impaired repeated sprint ability (~8% loss, P < 0.001) were present in PLA, with the latter correlating moderately to very strongly ( r = 0.47-0.71, P = 0.001-0.049) with whole-muscle glycogen and subcellular glycogen fractions. Finally, sarcoplasmic reticulum Ca 2+ uptake, but not release, was superior in CHO, whereas neuromuscular function, including prolonged low-frequency force depression, was unaffected by dietary manipulation. CONCLUSIONS Together, these results support an important role of muscle glycogen availability for high-intensity exercise performance, which may be mediated by reductions in single-fiber levels, particularly in distinct subcellular regions, despite only moderately lowered whole-muscle glycogen concentrations.
Collapse
Affiliation(s)
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, DENMARK
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, DENMARK
| | | | | | | |
Collapse
|
4
|
Heemstra LA, Koch LG, Britton SL, Novak CM. Altered skeletal muscle sarco-endoplasmic reticulum Ca 2+-ATPase calcium transport efficiency after a thermogenic stimulus. Am J Physiol Regul Integr Comp Physiol 2022; 323:R628-R637. [PMID: 36094445 PMCID: PMC9602703 DOI: 10.1152/ajpregu.00173.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 01/22/2023]
Abstract
Exposure to predator threat induces a rapid and robust increase in skeletal muscle thermogenesis in rats. The central nervous system relays threat information to skeletal muscle through activation of the sympathetic nervous system, but muscle mechanisms mediating this thermogenesis remain unidentified. Given the relevance of sarcolipin-mediated futile calcium cycling through the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) pump to mammalian muscle nonshivering thermogenesis, we hypothesized that this plays a role in contextually induced muscle thermogenesis as well. This was assessed by measuring enzymatic activity of SERCA and sarcoplasmic reticulum Ca2+ transport, where the apparent coupling ratio (Ca2+ uptake rate divided by ATPase activity rate at a standard Ca2+ concentration) was predicted to decrease in association with muscle thermogenesis. Sprague-Dawley rats exposed to predator (ferret) odor (PO) showed a rapid decrease in the apparent coupling ratio in the soleus muscle, indicating SERCA uncoupling compared with control-odor-exposed rats. A rat model of high aerobic fitness and elevated muscle thermogenesis also demonstrated soleus muscle SERCA uncoupling relative to their obesity-prone, low-fitness counterparts. Both the high- and low-aerobic fitness rats showed soleus SERCA uncoupling with exposure to PO. Finally, no increase in sarcolipin expression in soleus muscle was detected with PO exposure. This dataset implicates muscle uncoupling of SERCA Ca2+ transport and ATP hydrolysis, likely through altered SERCA or sarcolipin function outside of translational regulation, as one contributor to the muscle thermogenesis provoked by exposure to predator threat. These data support the involvement of SERCA uncoupling in both muscle thermogenic induction and enhanced aerobic capacity.
Collapse
Affiliation(s)
- Lydia A Heemstra
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Colleen M Novak
- Department of Biological Sciences, Kent State University, Kent, Ohio
- School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
5
|
Braun JL, Ryoo J, Goodwin K, Copeland EN, Geromella MS, Baranowski RW, MacPherson REK, Fajardo VA. The effects of neurogranin knockdown on SERCA pump efficiency in soleus muscles of female mice fed a high fat diet. Front Endocrinol (Lausanne) 2022; 13:957182. [PMID: 36072929 PMCID: PMC9441848 DOI: 10.3389/fendo.2022.957182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022] Open
Abstract
The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump is responsible for the transport of Ca2+ from the cytosol into the sarcoplasmic reticulum at the expense of ATP, making it a regulator of both muscle relaxation and muscle-based energy expenditure. Neurogranin (Ng) is a small protein that negatively regulates calcineurin signaling. Calcineurin is Ca2+/calmodulin dependent phosphatase that promotes the oxidative fibre type in skeletal muscle and regulates muscle-based energy expenditure. A recent study has shown that calcineurin activation reduces SERCA Ca2+ transport efficiency, ultimately raising energy expenditure. Since the biomedical view of obesity states that it arises as an imbalance between energy intake and expenditure which favors the former, we questioned whether heterozygous Ng deletion (Ng+/- ) would reduce SERCA efficiency and increase energy expenditure in female mice fed a high-fat diet (HFD). Young (3-4-month-old) female wild type (WT) and Ng+/- mice were fed a HFD for 12 weeks with their metabolic profile being analyzed using metabolic cages and DXA scanning, while soleus SERCA efficiency was measured using SERCA specific Ca2+ uptake and ATPase activity assays. Ng+/- mice showed significantly less cage ambulation compared to WT mice but this did not lead to any added weight gain nor changes in daily energy expenditure, glucose or insulin tolerance despite a similar level of food intake. Furthermore, we observed significant reductions in SERCA's apparent coupling ratio which were associated with significant reductions in SERCA1 and phospholamban content. Thus, our results show that Ng regulates SERCA pump efficiency, and future studies should further investigate the potential cellular mechanisms.
Collapse
Affiliation(s)
- Jessica L. Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| | - Jisook Ryoo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Kyle Goodwin
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Emily N. Copeland
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| | - Mia S. Geromella
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Ryan W. Baranowski
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Rebecca E. K. MacPherson
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Val A. Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
- *Correspondence: Val A. Fajardo,
| |
Collapse
|
6
|
Bourdas DI, Souglis A, Zacharakis ED, Geladas ND, Travlos AK. Meta-Analysis of Carbohydrate Solution Intake during Prolonged Exercise in Adults: From the Last 45+ Years' Perspective. Nutrients 2021; 13:4223. [PMID: 34959776 PMCID: PMC8704222 DOI: 10.3390/nu13124223] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Carbohydrate (CHO) supplementation during prolonged exercise postpones fatigue. However, the optimum administration timing, dosage, type of CHO intake, and possible interaction of the ergogenic effect with athletes' cardiorespiratory fitness (CRF) are not clear. Ninety-six studies (from relevant databases based on predefined eligibility criteria) were selected for meta-analysis to investigate the acute effect of ≤20% CHO solutions on prolonged exercise performance. The between-subject standardized mean difference [SMD = ([mean post-value treatment group-mean post-value control group]/pooled variance)] was assessed. Overall, SMD [95% CI] of 0.43 [0.35, 0.51] was significant (p < 0.001). Subgroup analysis showed that SMD was reduced as the subjects' CRF level increased, with a 6-8% CHO solution composed of GL:FRU improving performance (exercise: 1-4 h); administration during the event led to a superior performance compared to administration before the exercise, with a 6-8% single-source CHO solution increasing performance in intermittent and 'stop and start' sports and an ~6% CHO solution appearing beneficial for 45-60 min exercises, but there were no significant differences between subjects' gender and age groups, varied CHO concentrations, doses, or types in the effect measurement. The evidence found was sound enough to support the hypothesis that CHO solutions, when ingested during endurance exercise, have ergogenic action and a possible crossover interaction with the subject's CRF.
Collapse
Affiliation(s)
- Dimitrios I. Bourdas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece;
| | - Athanasios Souglis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece; (A.S.); (E.D.Z.)
| | - Emmanouil D. Zacharakis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece; (A.S.); (E.D.Z.)
| | - Nickos D. Geladas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Athens, Greece;
| | - Antonios K. Travlos
- Department of Sports Organization and Management, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Efstathiou and Stamatikis Valioti & Plataion Avenue, 23100 Tripoli, Greece;
| |
Collapse
|
7
|
Paris HL, Sinai EC, Shei RJ, Keller AM, Mickleborough TD. The influence of carbohydrate ingestion on peripheral and central fatigue during exercise in hypoxia: A narrative review. Eur J Sport Sci 2021; 21:1423-1435. [PMID: 33106121 PMCID: PMC8140067 DOI: 10.1080/17461391.2020.1842512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hypoxia impairs aerobic performance by accelerating fatiguing processes. These processes may originate from sites either distal (peripheral) or proximal (central) to the neuromuscular junction, though these are not mutually exclusive. Peripheral mechanisms include decrements in muscle glycogen or fluctuations in intramuscular metabolites, whereas central responses commonly refer to reductions in central motor drive elicited by alterations in blood glucose and neurotransmitter concentrations as well as arterial hypoxemia. Hypoxia may accelerate both peripheral and central pathways of fatigue, with the level of hypoxia strongly dictating the degree and primary locus of impairment. As more people journey to hypoxic settings for work and recreation, developing strategies to improve work capacity in these environments becomes increasingly relevant. Given that sea level performance improves with nutritional interventions such as carbohydrate (CHO) ingestion, a similar strategy may prove effective in delaying fatigue in hypoxia, particularly considering how the metabolic pathways enhanced with CHO supplementation overlap the fatiguing pathways upregulated in hypoxia. Many questions regarding the relationship between CHO, hypoxia, and fatigue remain unanswered, including specifics on when to ingest, what to ingest, and how varying altitudes influence supplementation effectiveness. Therefore, the purpose of this narrative review is to examine the peripheral and central mechanisms contributing to fatigue during aerobic exercise at varying degrees of hypoxia and to assess the role of CHO ingestion in attenuating fatigue onset.
Collapse
Affiliation(s)
- Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, USA
| | - Erin C Sinai
- Department of Sports Medicine, Pepperdine University, Malibu, CA, USA
| | - Ren-Jay Shei
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
| |
Collapse
|
8
|
Oldfield CJ, Moffatt TL, O'Hara KA, Xiang B, Dolinsky VW, Duhamel TA. Muscle-specific sirtuin 3 overexpression does not attenuate the pathological effects of high-fat/high-sucrose feeding but does enhance cardiac SERCA2a activity. Physiol Rep 2021; 9:e14961. [PMID: 34405591 PMCID: PMC8371348 DOI: 10.14814/phy2.14961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 01/14/2023] Open
Abstract
Obesity, type 2 diabetes, and heart disease are linked to an unhealthy diet. Sarco(endo)plasmic reticulum calcium (Ca2+ ) ATPase 2a (SERCA2a) controls cardiac function by transporting Ca2+ in cardiomyocytes. SERCA2a is altered by diet and acetylation, independently; however, it is unknown if diet alters cardiac SERCA2a acetylation. Sirtuin (SIRT) 3 is an enzyme that might preserve health under conditions of macronutrient excess by modulating metabolism via regulating deacetylation of target proteins. Our objectives were to determine if muscle-specific SIRT3 overexpression attenuates the pathological effects of high fat-high sucrose (HFHS) feeding and if HFHS feeding alters cardiac SERCA2a acetylation. We also determined if SIRT3 alters cardiac SERCA2a acetylation and regulates cardiac SERCA2a activity. C57BL/6J wild-type (WT) mice and MCK-mSIRT3-M1-Flag transgenic (SIRT3TG ) mice, overexpressing SIRT3 in cardiac and skeletal muscle, were fed a standard-diet or a HFHS-diet for 4 months. SIRT3TG and WT mice developed obesity, glucose intolerance, cardiac dysfunction, and pathological cardiac remodeling after 4 months of HFHS feeding, indicating muscle-specific SIRT3 overexpression does not attenuate the pathological effects of HFHS-feeding. Overall cardiac lysine acetylation was increased by 63% in HFHS-fed mice (p = 0.022), though HFHS feeding did not alter cardiac SERCA2a acetylation. Cardiac SERCA2a acetylation was not altered by SIRT3 overexpression, whereas SERCA2a Vmax was 21% higher in SIRT3TG (p = 0.039) than WT mice. This suggests that SIRT3 overexpression enhanced cardiac SERCA2a activity without direct SERCA2a deacetylation. Muscle-specific SIRT3 overexpression may not prevent the complications associated with an unhealthy diet in mice, but it appears to enhance SERCA2a activity in the mouse heart.
Collapse
Affiliation(s)
- Christopher J. Oldfield
- Faculty of Kinesiology and Recreation ManagementUniversity of ManitobaWinnipegMBCanada
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreWinnipegMBCanada
| | - Teri L. Moffatt
- Faculty of Kinesiology and Recreation ManagementUniversity of ManitobaWinnipegMBCanada
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreWinnipegMBCanada
| | - Kimberley A. O'Hara
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreWinnipegMBCanada
| | - Bo Xiang
- Department of Pharmacology and TherapeuticsMax Rady College of MedicineRady Faculty of Health SciencesUniversity of ManitobaWinnipegMBCanada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of ManitobaWinnipegMBCanada
| | - Vernon W. Dolinsky
- Department of Pharmacology and TherapeuticsMax Rady College of MedicineRady Faculty of Health SciencesUniversity of ManitobaWinnipegMBCanada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of ManitobaWinnipegMBCanada
| | - Todd A. Duhamel
- Faculty of Kinesiology and Recreation ManagementUniversity of ManitobaWinnipegMBCanada
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreWinnipegMBCanada
| |
Collapse
|
9
|
Watanabe D, Wada M. Orthograde signal of dihydropyridine receptor increases Ca 2+ leakage after repeated contractions in rat fast-twitch muscles in vivo. Am J Physiol Cell Physiol 2021; 320:C806-C821. [PMID: 33596151 DOI: 10.1152/ajpcell.00364.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/10/2021] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the mechanism underlying sarcoplasmic reticulum (SR) Ca2+ leakage after in vivo contractions. Rat gastrocnemius muscles were electrically stimulated in vivo, and then mechanically skinned fibers and SR microsomes were prepared from the muscles excised 30 min after repeated high-intensity contractions. The mechanically skinned fibers maintained the interaction between dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs), whereas the SR microsomes did not. Interestingly, skinned fibers from the stimulated muscles showed increased SR Ca2+ leakage, whereas Ca2+ leakage decreased in SR microsomes from the stimulated muscles. To enhance the orthograde signal of DHPRs, SR Ca2+ leakage in the skinned fiber was measured 1) under a continuously depolarized condition and 2) in the presence of nifedipine. As a result, in either of the two conditions, SR Ca2+ leakage in the rested fibers reached a level similar to that in the stimulated fibers. Furthermore, the increased SR Ca2+ leakage from the stimulated fibers was alleviated by treatment with 1 mM tetracaine (Tet) but not by treatment with 3 mM free Mg2+ (3 Mg). Tet exerted a greater inhibitory effect on the DHPR signal to RyR than 3 Mg, although their inhibitory effects on RyR were almost similar. These results suggest that the increased Ca2+ leakage after muscle contractions is mainly caused by the orthograde signal of DHPRs to RyRs.
Collapse
Affiliation(s)
- Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Phospholamban and sarcolipin prevent thermal inactivation of sarco(endo)plasmic reticulum Ca2+-ATPases. Biochem J 2020; 477:4281-4294. [PMID: 33111944 DOI: 10.1042/bcj20200346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Na+-K+-ATPase from mice lacking the γ subunit exhibits decreased thermal stability. Phospholamban (PLN) and sarcolipin (SLN) are small homologous proteins that regulate sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) with properties similar to the γ subunit, through physical interactions with SERCAs. Here, we tested the hypothesis that PLN and SLN may protect against thermal inactivation of SERCAs. HEK-293 cells were co-transfected with different combinations of cDNAs encoding SERCA2a, PLN, a PLN mutant (N34A) that cannot bind to SERCA2a, and SLN. One-half of the cells were heat stressed at 40°C for 1 h (HS), and one-half were maintained at 37°C (CTL) before harvesting the cells and isolating microsomes. Compared with CTL, maximal SERCA activity was reduced by 25-35% following HS in cells that expressed either SERCA2a alone or SERCA2a and mutant PLN (N34A) whereas no change in maximal SERCA2a activity was observed in cells that co-expressed SERCA2a and either PLN or SLN following HS. Increases in SERCA2a carbonyl group content and nitrotyrosine levels that were detected following HS in cells that expressed SERCA2a alone were prevented in cells co-expressing SERCA2a with PLN or SLN, whereas co-expression of SERCA2a with mutant PLN (N34A) only prevented carbonyl group formation. In other experiments using knock-out mice, we found that thermal inactivation of SERCA was increased in cardiac left ventricle samples from Pln-null mice and in diaphragm samples from Sln-null mice, compared with WT littermates. Our results show that both PLN and SLN form a protective interaction with SERCA pumps during HS, preventing nitrosylation and oxidation of SERCA and thus preserving its maximal activity.
Collapse
|
11
|
Braun JL, Hamstra SI, Messner HN, Fajardo VA. SERCA2a tyrosine nitration coincides with impairments in maximal SERCA activity in left ventricles from tafazzin-deficient mice. Physiol Rep 2020; 7:e14215. [PMID: 31444868 PMCID: PMC6708055 DOI: 10.14814/phy2.14215] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
The sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) is imperative for normal cardiac function regulating both muscle relaxation and contractility. SERCA2a is the predominant isoform in cardiac muscles and is inhibited by phospholamban (PLN). Under conditions of oxidative stress, SERCA2a may also be impaired by tyrosine nitration. Tafazzin (Taz) is a mitochondrial‐specific transacylase that regulates mature cardiolipin (CL) formation, and its absence leads to mitochondrial dysfunction and excessive production of reactive oxygen/nitrogen species (ROS/RNS). In the present study, we examined SERCA function, SERCA2a tyrosine nitration, and PLN expression/phosphorylation in left ventricles (LV) obtained from young (3‐5 months) and old (10‐12 months) wild‐type (WT) and Taz knockdown (TazKD) male mice. These mice are a mouse model for Barth syndrome, which is characterized by mitochondrial dysfunction, excessive ROS/RNS production, and dilated cardiomyopathy (DCM). Here, we show that maximal SERCA activity was impaired in both young and old TazKD LV, a result that correlated with elevated SERCA2a tyrosine nitration. In addition PLN protein was decreased, and its phosphorylation was increased in TazKD LV compared with control, which suggests that PLN may not contribute to the impairments in SERCA function. These changes in expression and phosphorylation of PLN may be an adaptive response aimed to improve SERCA function in TazKD mice. Nonetheless, we demonstrate for the first time that SERCA function is impaired in LVs obtained from young and old TazKD mice likely due to elevated ROS/RNS production. Future studies should determine whether improving SERCA function can improve cardiac contractility and pathology in TazKD mice.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Sophie I Hamstra
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Holt N Messner
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
12
|
Morissette MP, Susser SE, Stammers AN, Moffatt TL, Wigle JT, Wigle TJ, Netticadan T, Premecz S, Jassal DS, O’Hara KA, Duhamel TA. Exercise-induced increases in the expression and activity of cardiac sarcoplasmic reticulum calcium ATPase 2 is attenuated in AMPKα2kinase-dead mice. Can J Physiol Pharmacol 2019; 97:786-795. [DOI: 10.1139/cjpp-2018-0737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Exercise enhances cardiac sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) function through unknown mechanisms. The present study tested the hypothesis that the positive effects of exercise on SERCA2a expression and function in the left ventricle is dependent on adenosine-monophosphate-activated protein kinase (AMPK) α2 function. AMPKα2kinase-dead (KD) transgenic mice, which overexpress inactivated AMPKα2subunit, and wild-type C57Bl/6 (WT) mice were randomized into sedentary groups or groups with access to running wheels. After 5 months, exercised KD mice exhibited shortened deceleration time compared with sedentary KD mice. In left ventricular tissue, the ratio of phosphorylated AMPKαThr172:total AMPKα was 65% lower (P < 0.05) in KD mice compared with WT mice. The left ventricle of KD mice had 37% lower levels of SERCA2a compared with WT mice. Although exercise increased SERCA2a protein levels in WT mice by 53%, this response of exercise was abolished in exercised KD mice. Exercise training reduced total phospholamban protein content by 23% in both the WT and KD mice but remained 20% higher overall in KD mice. Collectively, these data suggest that AMPKα influences SERCA2a and phospholamban protein content in the sedentary and exercised heart, and that exercise-induced changes in SERCA2a protein are dependent on AMPKα function.
Collapse
Affiliation(s)
- Marc P. Morissette
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shanel E. Susser
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Andrew N. Stammers
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Teri L. Moffatt
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jeffrey T. Wigle
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2E 3N4, Canada
| | - Theodore J. Wigle
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Thomas Netticadan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Agriculture and Agri-Food Canada, Winnipeg, MB R3C 3G7, Canada
| | - Sheena Premecz
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Davinder S. Jassal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Kimberley A. O’Hara
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Todd A. Duhamel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
13
|
Hakem Zadeh F, Teng ACT, Kuzmanov U, Chambers PJ, Tupling AR, Gramolini AO. AKAP6 and phospholamban colocalize and interact in HEK-293T cells and primary murine cardiomyocytes. Physiol Rep 2019; 7:e14144. [PMID: 31325238 PMCID: PMC6642276 DOI: 10.14814/phy2.14144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/16/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Phospholamban (PLN) is an important Ca2+ modulator at the sarcoplasmic reticulum (SR) of striated muscles. It physically interacts and inhibits sarcoplasmic reticulum Ca2+ATPase (SERCA2) function, whereas a protein kinase A (PKA)‐dependent phosphorylation at its serine 16 reverses the inhibition. The underlying mechanism of this post‐translational modification, however, remains not fully understood. Using publicly available databases, we identified A‐kinase anchoring protein 6 (AKAP6) as a candidate that might play some roles in PLN phosphorylation. Immunofluorescence showed colocalization between GFP‐AKAP6 and PLN in transfected HEK‐293T cells and cultured mouse neonatal cardiomyocytes (CMNCs). Co‐immunoprecipitation confirmed the functional interaction between AKAP6 and PLN in HEK‐293T and isolated adult rat cardiomyocytes in response to isoproterenol stimulation. Functionally, AKAP6 promoted Ca2+ uptake activity of SERCA1 in cotransfected HEK‐293T cells despite the presence of PLN. These results were further confirmed in adult rat cardiomyocytes. Immunofluorescence showed colocalization of both proteins around the perinuclear region, while protein–protein interaction was corroborated by immunoprecipitation of the nucleus‐enriched fraction of rat hearts. Our findings suggest AKAP6 as a novel interacting partner to PLN in HEK‐293T and murine cardiomyocytes.
Collapse
Affiliation(s)
- Farigol Hakem Zadeh
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario.,Translational Biology and Engineering Program (TBEP), Ted Rogers Centre for Heart Research, Toronto, Ontario
| | - Allen C T Teng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario.,Translational Biology and Engineering Program (TBEP), Ted Rogers Centre for Heart Research, Toronto, Ontario
| | - Uros Kuzmanov
- Translational Biology and Engineering Program (TBEP), Ted Rogers Centre for Heart Research, Toronto, Ontario
| | - Paige J Chambers
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario
| | - Allan R Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario
| | - Anthony O Gramolini
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario.,Translational Biology and Engineering Program (TBEP), Ted Rogers Centre for Heart Research, Toronto, Ontario
| |
Collapse
|
14
|
Fajardo VA, Chambers PJ, Juracic ES, Rietze BA, Gamu D, Bellissimo C, Kwon F, Quadrilatero J, Russell Tupling A. Sarcolipin deletion in mdx mice impairs calcineurin signalling and worsens dystrophic pathology. Hum Mol Genet 2019; 27:4094-4102. [PMID: 30137316 DOI: 10.1093/hmg/ddy302] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most severe form of muscular dystrophy affecting 1 in 3500 live male births. Although there is no cure for DMD, therapeutic strategies aimed at enhancing calcineurin signalling and promoting the slow fibre phenotype have shown promise in mdx mice, which is the classical mouse model for DMD. Sarcolipin (SLN) is a small protein that regulates the sarco(endo)plasmic reticulum Ca2+-ATPase pump and its expression is highly upregulated in dystrophic skeletal muscle. We have recently shown that SLN in skeletal muscle amplifies calcineurin signalling thereby increasing myofibre size and the slow fibre phenotype. Therefore, in the present study we sought to determine the physiological impact of genetic Sln deletion in mdx mice, particularly on calcineurin signalling, fibre-type distribution and size and dystrophic pathology. We generated an mdx/Sln-null (mdx/SlnKO) mouse colony and hypothesized that the soleus and diaphragm muscles from these mice would display blunted calcineurin signalling, smaller myofibre sizes, an increased proportion of fast fibres and worsened dystrophic pathology compared with mdx mice. Our results show that calcineurin signalling was impaired in mdx/SlnKO mice as indicated by reductions in utrophin, stabilin-2 and calcineurin expression. In addition, mdx/SlnKO muscles contained smaller myofibres, exhibited a slow-to-fast fibre-type switch that corresponded with reduced expression of mitochondrial proteins and displayed a worsened dystrophic pathology compared with mdx muscles. Altogether, our findings demonstrate a critical role for SLN upregulation in dystrophic muscles and suggest that SLN can be viewed as a potential therapeutic target.
Collapse
Affiliation(s)
- Val A Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Paige J Chambers
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Emma S Juracic
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Bradley A Rietze
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | | | - Frenk Kwon
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
15
|
Komatsu M, Nakada T, Kawagishi H, Kato H, Yamada M. Increase in phospholamban content in mouse skeletal muscle after denervation. J Muscle Res Cell Motil 2019; 39:163-173. [DOI: 10.1007/s10974-019-09504-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
|
16
|
Dufresne SS, Boulanger-Piette A, Bossé S, Argaw A, Hamoudi D, Marcadet L, Gamu D, Fajardo VA, Yagita H, Penninger JM, Russell Tupling A, Frenette J. Genetic deletion of muscle RANK or selective inhibition of RANKL is not as effective as full-length OPG-fc in mitigating muscular dystrophy. Acta Neuropathol Commun 2018; 6:31. [PMID: 29699580 PMCID: PMC5922009 DOI: 10.1186/s40478-018-0533-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 01/13/2023] Open
Abstract
Although there is a strong association between osteoporosis and skeletal muscle atrophy/dysfunction, the functional relevance of a particular biological pathway that regulates synchronously bone and skeletal muscle physiopathology is still elusive. Receptor-activator of nuclear factor κB (RANK), its ligand RANKL and the soluble decoy receptor osteoprotegerin (OPG) are the key regulators of osteoclast differentiation and bone remodelling. We thus hypothesized that RANK/RANKL/OPG, which is a key pathway for bone regulation, is involved in Duchenne muscular dystrophy (DMD) physiopathology. Our results show that muscle-specific RANK deletion (mdx-RANKmko) in dystrophin deficient mdx mice improves significantly specific force [54% gain in force] of EDL muscles with no protective effect against eccentric contraction-induced muscle dysfunction. In contrast, full-length OPG-Fc injections restore the force of dystrophic EDL muscles [162% gain in force], protect against eccentric contraction-induced muscle dysfunction ex vivo and significantly improve functional performance on downhill treadmill and post-exercise physical activity. Since OPG serves a soluble receptor for RANKL and as a decoy receptor for TRAIL, mdx mice were injected with anti-RANKL and anti-TRAIL antibodies to decipher the dual function of OPG. Injections of anti-RANKL and/or anti-TRAIL increase significantly the force of dystrophic EDL muscle [45% and 17% gains in force, respectively]. In agreement, truncated OPG-Fc that contains only RANKL domains produces similar gains, in terms of force production, than anti-RANKL treatments. To corroborate that full-length OPG-Fc also acts independently of RANK/RANKL pathway, dystrophin/RANK double-deficient mice were treated with full-length OPG-Fc for 10 days. Dystrophic EDL muscles exhibited a significant gain in force relative to untreated dystrophin/RANK double-deficient mice, indicating that the effect of full-length OPG-Fc is in part independent of the RANKL/RANK interaction. The sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) activity is significantly depressed in dysfunctional and dystrophic muscles and full-length OPG-Fc treatment increased SERCA activity and SERCA-2a expression. These findings demonstrate the superiority of full-length OPG-Fc treatment relative to truncated OPG-Fc, anti-RANKL, anti-TRAIL or muscle RANK deletion in improving dystrophic muscle function, integrity and protection against eccentric contractions. In conclusion, full-length OPG-Fc represents an efficient alternative in the development of new treatments for muscular dystrophy in which a single therapeutic approach may be foreseeable to maintain both bone and skeletal muscle functions.
Collapse
|
17
|
Fajardo VA, Mikhaeil JS, Leveille CF, Tupling AR, LeBlanc PJ. Elevated whole muscle phosphatidylcholine: phosphatidylethanolamine ratio coincides with reduced SERCA activity in murine overloaded plantaris muscles. Lipids Health Dis 2018. [PMID: 29534725 PMCID: PMC5851149 DOI: 10.1186/s12944-018-0687-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An increase in phosphatidylcholine:phosphatidylethanolamine (PC:PE) and a decrease in fatty acyl chain length, monounsaturated:polyunsaturated (MUFA:PUFA) fatty acyl ratio reduces SERCA activity in liposomes and in mouse models of obesity and muscular dystrophy. We have previously shown that maximal SERCA activity is significantly reduced in mechanically overloaded (OVL) plantaris, however, whether changes in PC:PE ratio or fatty acyl composition may contribute to the alterations in maximal SERCA activity remain unknown. Here, we tested the hypotheses that in OVL plantaris 1) PC:PE ratio would negatively correlate with maximal SERCA activity and 2) PC fatty acyl chain length (ACL) and/or MUFA:PUFA ratio would positively correlate with maximal SERCA activity. METHODS To overload plantaris in mice, we transected the soleus and gastrocnemius tendons from one leg, while the contralateral leg underwent a sham surgery. After two weeks, plantaris muscles were extracted, homogenized and processed for SERCA activity and lipid analyses. Specifically, we performed HPTLC densitometry to examine changes in PC, PE, and the ratio of PC:PE. We also performed gas chromatography to assess any potential changes to fatty acyl composition. RESULTS SERCA activity was significantly reduced in OVL plantaris compared with sham. Coinciding with this, we found a significant increase in PC but not PE in OVL plantaris. In turn, there was an increase in PC:PE but did not reach significance (p = 0.09). However, we found a significant negative correlation between PC:PE and maximal SERCA activity. Fatty acyl composition of PE remained similar between OLV and sham and PC demonstrated higher percent mole fraction of 17:1, 18:1, and ACL compared to sham. In addition, PC ACL, % MUFA, % PUFA, or MUFA:PUFA did not significantly correlate with maximal SERCA activity. CONCLUSIONS Our results indicate that the phospholipid headgroup PC:PE negatively correlated and could potentially contribute to reductions in SERCA activity seen in functionally overloaded plantaris. In contrast, fatty acyl chain (ACL, % MUFA, % PUFA, MUFA:PUFA) did not correlate with maximal SERCA activity. Future studies will determine whether altering PC:PE with genetic and dietary interventions can influence SERCA activity and ultimately change the physiological outcome in response to muscle overloading.
Collapse
Affiliation(s)
- Val A Fajardo
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - John S Mikhaeil
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Cameron F Leveille
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Paul J LeBlanc
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada. .,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
18
|
Sacchi V, Wang BJ, Kubli D, Martinez AS, Jin JK, Alvarez R, Hariharan N, Glembotski C, Uchida T, Malter JS, Yang Y, Gross P, Zhang C, Houser S, Rota M, Sussman MA. Peptidyl-Prolyl Isomerase 1 Regulates Ca 2+ Handling by Modulating Sarco(Endo)Plasmic Reticulum Calcium ATPase and Na 2+/Ca 2+ Exchanger 1 Protein Levels and Function. J Am Heart Assoc 2017; 6:e006837. [PMID: 29018025 PMCID: PMC5721875 DOI: 10.1161/jaha.117.006837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Aberrant Ca2+ handling is a prominent feature of heart failure. Elucidation of the molecular mechanisms responsible for aberrant Ca2+ handling is essential for the development of strategies to blunt pathological changes in calcium dynamics. The peptidyl-prolyl cis-trans isomerase peptidyl-prolyl isomerase 1 (Pin1) is a critical mediator of myocardial hypertrophy development and cardiac progenitor cell cycle. However, the influence of Pin1 on calcium cycling regulation has not been explored. On the basis of these findings, the aim of this study is to define Pin1 as a novel modulator of Ca2+ handling, with implications for improving myocardial contractility and potential for ameliorating development of heart failure. METHODS AND RESULTS Pin1 gene deletion or pharmacological inhibition delays cytosolic Ca2+ decay in isolated cardiomyocytes. Paradoxically, reduced Pin1 activity correlates with increased sarco(endo)plasmic reticulum calcium ATPase (SERCA2a) and Na2+/Ca2+ exchanger 1 protein levels. However, SERCA2a ATPase activity and calcium reuptake were reduced in sarcoplasmic reticulum membranes isolated from Pin1-deficient hearts, suggesting that Pin1 influences SERCA2a function. SERCA2a and Na2+/Ca2+ exchanger 1 associated with Pin1, as revealed by proximity ligation assay in myocardial tissue sections, indicating that regulation of Ca2+ handling within cardiomyocytes is likely influenced through Pin1 interaction with SERCA2a and Na2+/Ca2+ exchanger 1 proteins. CONCLUSIONS Pin1 serves as a modulator of SERCA2a and Na2+/Ca2+ exchanger 1 Ca2+ handling proteins, with loss of function resulting in impaired cardiomyocyte relaxation, setting the stage for subsequent investigations to assess Pin1 dysregulation and modulation in the progression of heart failure.
Collapse
Affiliation(s)
- Veronica Sacchi
- The San Diego Heart Research Institute and the Department of Biology, San Diego State University, San Diego, CA
| | - Bingyan J Wang
- The San Diego Heart Research Institute and the Department of Biology, San Diego State University, San Diego, CA
| | - Dieter Kubli
- The San Diego Heart Research Institute and the Department of Biology, San Diego State University, San Diego, CA
| | - Alexander S Martinez
- The San Diego Heart Research Institute and the Department of Biology, San Diego State University, San Diego, CA
| | - Jung-Kang Jin
- The San Diego Heart Research Institute and the Department of Biology, San Diego State University, San Diego, CA
| | - Roberto Alvarez
- The San Diego Heart Research Institute and the Department of Biology, San Diego State University, San Diego, CA
| | | | - Christopher Glembotski
- The San Diego Heart Research Institute and the Department of Biology, San Diego State University, San Diego, CA
| | - Takafumi Uchida
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - James S Malter
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yijun Yang
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Polina Gross
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Chen Zhang
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Steven Houser
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| | - Marcello Rota
- Department of Physiology, Basic Science Building New York Medical College, Valhalla, NY
| | - Mark A Sussman
- The San Diego Heart Research Institute and the Department of Biology, San Diego State University, San Diego, CA
| |
Collapse
|
19
|
Fajardo VA, Rietze BA, Chambers PJ, Bellissimo C, Bombardier E, Quadrilatero J, Tupling AR. Effects of sarcolipin deletion on skeletal muscle adaptive responses to functional overload and unload. Am J Physiol Cell Physiol 2017; 313:C154-C161. [PMID: 28592414 DOI: 10.1152/ajpcell.00291.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022]
Abstract
Overexpression of sarcolipin (SLN), a regulator of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs), stimulates calcineurin signaling to enhance skeletal muscle oxidative capacity. Some studies have shown that calcineurin may also control skeletal muscle mass and remodeling in response to functional overload and unload stimuli by increasing myofiber size and the proportion of slow fibers. To examine whether SLN might mediate these adaptive responses, we performed soleus and gastrocnemius tenotomy in wild-type (WT) and Sln-null (Sln-/-) mice and examined the overloaded plantaris and unloaded/tenotomized soleus muscles. In the WT overloaded plantaris, we observed ectopic expression of SLN, myofiber hypertrophy, increased fiber number, and a fast-to-slow fiber type shift, which were associated with increased calcineurin signaling (NFAT dephosphorylation and increased stabilin-2 protein content) and reduced SERCA activity. In the WT tenotomized soleus, we observed a 14-fold increase in SLN protein, myofiber atrophy, decreased fiber number, and a slow-to-fast fiber type shift, which were also associated with increased calcineurin signaling and reduced SERCA activity. Genetic deletion of Sln altered these physiological outcomes, with the overloaded plantaris myofibers failing to grow in size and number, and transition towards the slow fiber type, while the unloaded soleus muscles exhibited greater reductions in fiber size and number, and an accelerated slow-to-fast fiber type shift. In both the Sln-/- overloaded and unloaded muscles, these findings were associated with elevated SERCA activity and blunted calcineurin signaling. Thus, SLN plays an important role in adaptive muscle remodeling potentially through calcineurin stimulation, which could have important implications for other muscle diseases and conditions.
Collapse
Affiliation(s)
- Val A Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| | - Bradley A Rietze
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| | - Paige J Chambers
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| | | | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo Ontario, Canada
| |
Collapse
|
20
|
Rossi FE, Panissa VLG, Monteiro PA, Gerosa-Neto J, Caperuto ÉC, Cholewa JM, Zagatto AM, Lira FS. Caffeine supplementation affects the immunometabolic response to concurrent training. J Exerc Rehabil 2017; 13:179-184. [PMID: 28503530 PMCID: PMC5412491 DOI: 10.12965/jer.1734938.445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/03/2017] [Indexed: 01/16/2023] Open
Abstract
The aim of the present study was to investigate the effects of caffeine (CAF) and carbohydrate (CHO) intake on strength performance and its metabolic and inflammatory responses during concurrent training. Seven active males ingested a double-placebo (P), CAF (capsule 5 mg/kg) or CHO (20% maltodextrin solution) supplementation before strength exercise. Participants performed three randomized sessions of 5,000-m high-intensity intermittent aerobic exercise at maximal intensity followed by strength exercise, performing after the P, CHO, and CAF intake. The blood samples were collected before (pre) and immediately after concurrent strength exercise (post). We found a similar number of repetitions and total volume in all supplementation groups. There was a main effect of time on glucose, lactate, and interleukin (IL)-6 (P<0.05). When compared the changes between groups (postvalues minus prevalues), there was lower glucose in CAF group when compared to CHO group (CAF= 5.0±10.4 vs. CHO=27.8±20 vs. P=15.1±14, P=0.031) and higher IL-6 levels (CAF=11.9±9.2 vs. CHO=−2.4±1.7 vs. P=4.3± 11.7, P=0.017). There was significant interaction for glucose and lactate (P<0.001). In conclusion, CAF and CHO intake did not improve strength performance during concurrent strength training in active males. However, CAF affected immunometabolic responses.
Collapse
Affiliation(s)
- Fabrício Eduardo Rossi
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, São Paulo, Brazil.,Department of Sport, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Paula Aulves Monteiro
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, São Paulo, Brazil
| | - José Gerosa-Neto
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, São Paulo, Brazil
| | | | | | | | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
21
|
Fajardo VA, Gamu D, Mitchell A, Bloemberg D, Bombardier E, Chambers PJ, Bellissimo C, Quadrilatero J, Tupling AR. Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice. PLoS One 2017; 12:e0173708. [PMID: 28278204 PMCID: PMC5344511 DOI: 10.1371/journal.pone.0173708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/24/2017] [Indexed: 11/18/2022] Open
Abstract
Sarcolipin (SLN) and phospholamban (PLN) are two small proteins that regulate the sarco(endo)plasmic reticulum Ca2+-ATPase pumps. In a recent study, we discovered that Pln overexpression (PlnOE) in slow-twitch type I skeletal muscle fibers drastically impaired SERCA function and caused a centronuclear myopathy-like phenotype, severe muscle atrophy and weakness, and an 8 to 9-fold upregulation of SLN protein in the soleus muscles. Here, we sought to determine the physiological role of SLN upregulation, and based on its role as a SERCA inhibitor, we hypothesized that it would represent a maladaptive response that contributes to the SERCA dysfunction and the overall myopathy observed in the PlnOE mice. To this end, we crossed Sln-null (SlnKO) mice with PlnOE mice to generate a PlnOE/SlnKO mouse colony and assessed SERCA function, CNM pathology, in vitro contractility, muscle mass, calcineurin signaling, daily activity and food intake, and proteolytic enzyme activity. Our results indicate that genetic deletion of Sln did not improve SERCA function nor rescue the CNM phenotype, but did result in exacerbated muscle atrophy and weakness, due to a failure to induce type II fiber compensatory hypertrophy and a reduction in total myofiber count. Mechanistically, our findings suggest that impaired calcineurin activation and resultant decreased expression of stabilin-2, and/or impaired autophagic signaling could be involved. Future studies should examine these possibilities. In conclusion, our study demonstrates the importance of SLN upregulation in combating muscle myopathy in the PlnOE mice, and since SLN is upregulated across several myopathies, our findings may reveal SLN as a novel and universal therapeutic target.
Collapse
Affiliation(s)
- Val A. Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Andrew Mitchell
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Darin Bloemberg
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Paige J. Chambers
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Catherine Bellissimo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - A. Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
- * E-mail:
| |
Collapse
|
22
|
Fajardo VA, Smith IC, Bombardier E, Chambers PJ, Quadrilatero J, Tupling AR. Diaphragm assessment in mice overexpressing phospholamban in slow-twitch type I muscle fibers. Brain Behav 2016; 6:e00470. [PMID: 27134770 PMCID: PMC4842933 DOI: 10.1002/brb3.470] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/30/2022] Open
Abstract
AIMS Phospholamban (PLN) and sarcolipin (SLN) are small inhibitory proteins that regulate the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pump. Previous work from our laboratory revealed that in the soleus and gluteus minimus muscles of mice overexpressing PLN (Pln (OE)), SERCA function was impaired, dynamin 2 (3-5 fold) and SLN (7-9 fold) were upregulated, and features of human centronuclear myopathy (CNM) were observed. Here, we performed structural and functional experiments to evaluate whether the diaphragm muscles of the Pln (OE) mouse would exhibit CNM pathology and muscle weakness. METHODS Diaphragm muscles from Pln (OE) and WT mice were subjected to histological/histochemical/immunofluorescent staining, Ca(2+)-ATPase and Ca(2+) uptake assays, Western blotting, and in vitro electrical stimulation. RESULTS Our results demonstrate that PLN overexpression reduced SERCA's apparent affinity for Ca(2+) but did not reduce maximal SERCA activity or rates of Ca(2+) uptake. SLN was upregulated 2.5-fold, whereas no changes in dynamin 2 expression were found. With respect to CNM, we did not observe type I fiber predominance, central nuclei, or central aggregation of oxidative activity in diaphragm, although type I fiber hypotrophy was present. Furthermore, in vitro contractility assessment of Pln (OE) diaphragm strips revealed no reductions in force-generating capacity, maximal rates of relaxation or force development, but did indicate that ½ relaxation time was prolonged. CONCLUSIONS Therefore, the effects of PLN overexpression on skeletal muscle phenotype differ between diaphragm and the postural soleus and gluteus minimus muscles. Our findings here point to differences in SLN expression and type I fiber distribution as potential contributing factors.
Collapse
Affiliation(s)
| | - Ian Curtis Smith
- Department of Kinesiology University of Waterloo Waterloo ON Canada
| | - Eric Bombardier
- Department of Kinesiology University of Waterloo Waterloo ON Canada
| | - Paige J Chambers
- Department of Kinesiology University of Waterloo Waterloo ON Canada
| | - Joe Quadrilatero
- Department of Kinesiology University of Waterloo Waterloo ON Canada
| | | |
Collapse
|
23
|
Sarcoplasmic Reticulum Phospholipid Fatty Acid Composition and Sarcolipin Content in Rat Skeletal Muscle. J Membr Biol 2015; 248:1089-96. [PMID: 26193810 DOI: 10.1007/s00232-015-9822-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
Abstract
In a previous study, we reported lower sarcoplasmic reticulum (SR) Ca(2+) pump ionophore ratios in rat soleus compared to red and white gastrocnemius (RG, WG) muscles which may be indicative of greater SR Ca(2+) permeability in soleus. Here we assessed the lipid composition of the SR membranes obtained from these muscles to determine if SR docosahexaenoic acid (DHA) content and fatty acid unsaturation could help to explain the previously observed differences in SR Ca(2+) permeability. Since we have shown previously that sarcolipin may also influence SR Ca(2+) permeability, we also examined the levels of sarcolipin in rat muscle. We found that SR membrane DHA content was significantly higher in soleus (5.3 ± 0.2 %) compared to RG (4.2 ± 0.2 %) and WG (3.3 ± 0.2 %). Likewise, total SR membrane unsaturation and unsaturation index (UI) were significantly higher in soleus (% unsaturation: 59.1 ± 2.4; UI: 362.9 ± 0.8) compared to RG (% unsaturation: 55.3 ± 1.0; UI: 320.9 ± 2.5) and WG (% unsaturation: 52.6 ± 1.1; UI: 310. ± 2.2). Sarcolipin protein was 17-fold more abundant in rat soleus compared to RG and was not detected in WG; however, comparisons between soleus, RG, and WG in sarcolipin-null mice revealed that, in the absence of sarcolipin, ionophore ratios are still lowest in soleus and highest in WG. Overall, our results suggest that SR membrane DHA content and unsaturation, and, in part, sarcolipin expression may contribute to SR Ca(2+) permeability and, in turn, may have implications in muscle-based metabolism and diet-induced obesity.
Collapse
|
24
|
Gonzalez A, Pagé B, Weber JM. Membranes as a possible pacemaker of metabolism in cypriniform fish: does phylogeny matter? ACTA ACUST UNITED AC 2015; 218:2563-72. [PMID: 26089526 DOI: 10.1242/jeb.117630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 05/28/2015] [Indexed: 01/29/2023]
Abstract
The 'membrane pacemaker theory of metabolism' proposes that membranes set metabolic rate by modulating protein activity, and thus purports to explain membrane fatty acid allometry. This relationship has never been tested across species in ectotherms. After accounting for phylogeny, recent analyses have failed to support this theory based on correlations between muscle membrane composition and body mass across mammals. Therefore, the goal of this study was to seek phylogenetically corrected correlations between membrane composition, body mass and calcium-ATPase activity, using 12 species of closely related cypriniform fish (4-5500 g) covering a much narrower genetic scale than in previous tests. The results show that fish membrane unsaturation decreases with mass, but through different mechanisms from those in endotherms: 16:0 replacing 22:6 in muscle and 18:0 replacing 16:1, 18:1 and 18:2 in liver. This shows that allometric patterns differ between endotherms and ectotherms as well as between tissues. After accounting for phylogeny, however, almost all these relationships lose significance except for overall unsaturation. No relationship between calcium-ATPase activity and mass or phospholipid composition was detected. This study shows that membrane unsaturation of cypriniforms decreases with mass, but that genetic cues unrelated to size account for differences in the relative abundance of individual fatty acids. The membrane pacemaker concept accurately predicts general membrane properties such as unsaturation, but fails to explain finer scale allometric patterns. Future examinations of the membrane pacemaker hypothesis will have to take into account that allometric patterns vary between endotherms and ectotherms and between tissues of the same animal class.
Collapse
Affiliation(s)
- Alex Gonzalez
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Benoît Pagé
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Jean-Michel Weber
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
25
|
Fajardo VA, Bombardier E, McMillan E, Tran K, Wadsworth BJ, Gamu D, Hopf A, Vigna C, Smith IC, Bellissimo C, Michel RN, Tarnopolsky MA, Quadrilatero J, Tupling AR. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype. Dis Model Mech 2015; 8:999-1009. [PMID: 26035394 PMCID: PMC4527296 DOI: 10.1242/dmm.020859] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022] Open
Abstract
Centronuclear myopathy (CNM) is a congenital myopathy that is histopathologically characterized by centrally located nuclei, central aggregation of oxidative activity, and type I fiber predominance and hypotrophy. Here, we obtained commercially available mice overexpressing phospholamban (PlnOE), a well-known inhibitor of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs), in their slow-twitch type I skeletal muscle fibers to determine the effects on SERCA function. As expected with a 6- to 7-fold overexpression of phospholamban, SERCA dysfunction was evident in PlnOE muscles, with marked reductions in rates of Ca2+ uptake, maximal ATPase activity and the apparent affinity of SERCA for Ca2+. However, our most significant discovery was that the soleus and gluteus minimus muscles from the PlnOE mice displayed overt signs of myopathy: they histopathologically resembled human CNM, with centrally located nuclei, central aggregation of oxidative activity, type I fiber predominance and hypotrophy, progressive fibrosis and muscle weakness. This phenotype is associated with significant upregulation of muscle sarcolipin and dynamin 2, increased Ca2+-activated proteolysis, oxidative stress and protein nitrosylation. Moreover, in our assessment of muscle biopsies from three human CNM patients, we found a significant 53% reduction in SERCA activity and increases in both total and monomeric PLN content compared with five healthy subjects, thereby justifying future studies with more CNM patients. Altogether, our results suggest that the commercially available PlnOE mouse phenotypically resembles human CNM and could be used as a model to test potential mechanisms and therapeutic strategies. To date, there is no cure for CNM and our results suggest that targeting SERCA function, which has already been shown to be an effective therapeutic target for murine muscular dystrophy and human cardiomyopathy, might represent a novel therapeutic strategy to combat CNM. Summary: Phospholamban overexpression in mouse slow-twitch muscle impairs SERCA function and causes histopathological features associated with human centronuclear myopathy.
Collapse
Affiliation(s)
- Val A Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Elliott McMillan
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Khanh Tran
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Brennan J Wadsworth
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Andrew Hopf
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Chris Vigna
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ian C Smith
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Catherine Bellissimo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Robin N Michel
- Department of Exercise Science, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Mark A Tarnopolsky
- Departement of Kinesiology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
26
|
Nieman DC, Shanely RA, Zwetsloot KA, Meaney MP, Farris GE. Ultrasonic assessment of exercise-induced change in skeletal muscle glycogen content. BMC Sports Sci Med Rehabil 2015; 7:9. [PMID: 25905021 PMCID: PMC4406335 DOI: 10.1186/s13102-015-0003-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/30/2015] [Indexed: 11/10/2022]
Abstract
Background Ultrasound imaging is a valuable tool in exercise and sport science research, and has been used to visualize and track real-time movement of muscles and tendons, estimate hydration status in body tissues, and most recently, quantify skeletal muscle glycogen content. In this validation study, direct glycogen quantification from pre-and post-exercise muscle biopsy samples was compared with glycogen content estimates made through a portable, diagnostic high-frequency ultrasound and cloud-based software system (MuscleSound®, Denver, CO). Methods Well-trained cyclists (N = 20, age 38.4 ± 6.0 y, 351 ± 57.6 wattsmax) participated in a 75-km cycling time trial on their own bicycles using CompuTrainer Pro Model 8001 trainers (RacerMate, Seattle, WA). Muscle biopsy samples and ultrasound measurements were acquired pre- and post-exercise. Specific locations on the vastus lateralis were marked, and a trained technician used a 12 MHz linear transducer and a standard diagnostic high resolution GE LOGIQ-e ultrasound machine (GE Healthcare, Milwaukee, WI) to make three ultrasound measurements. Ultrasound images were pre-processed to isolate the muscle area under analysis, with the mean pixel intensity averaged from the three scans and scaled (0 to 100 scale) to create the glycogen score. Pre- and post-exercise muscle biopsy samples were acquired at the vastus lateralis location (2 cm apart) using the suction-modified percutaneous needle biopsy procedure, and analyzed for glycogen content. Results The 20 cyclists completed the 75-km cycling time trial in 168 ± 26.0 minutes at a power output of 193 ± 57.8 watts (54.2 ± 9.6% wattsmax). Muscle glycogen decreased 77.2 ± 17.4%, with an absolute change of 71.4 ± 23.1 mmol glycogen per kilogram of muscle. The MuscleSound® change score at the vastus lateralis site correlated highly with change in measured muscle glycogen content (R = 0.92, P < 0.001). Conclusions MuscleSound® change scores acquired from an average of three ultrasound scans at the vastus lateralis site correlated significantly with change in vastus lateralis muscle glycogen content. These data support the use of the MuscleSound® system for accurately and non-invasively estimating exercise-induced decreases in vastus lateralis skeletal muscle glycogen content.
Collapse
Affiliation(s)
- David C Nieman
- Appalachian State University, Human Performance Lab, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081 USA
| | - R Andrew Shanely
- Department of Health and Exercise Science, Appalachian State University, Boone, NC USA
| | - Kevin A Zwetsloot
- Department of Health and Exercise Science, Appalachian State University, Boone, NC USA
| | - Mary Pat Meaney
- Appalachian State University, Human Performance Lab, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081 USA
| | - Gerald E Farris
- Department of Emergency Medicine, Carolinas Medical Center NorthEast, Concord, NC USA
| |
Collapse
|
27
|
Fajardo VA, Bombardier E, Irvine T, Metherel AH, Stark KD, Duhamel T, Rush JWE, Green HJ, Tupling AR. Dietary docosahexaenoic acid supplementation reduces SERCA Ca2+ transport efficiency in rat skeletal muscle. Chem Phys Lipids 2015; 187:56-61. [PMID: 25772907 DOI: 10.1016/j.chemphyslip.2015.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/13/2015] [Accepted: 03/11/2015] [Indexed: 01/08/2023]
Abstract
Docosahexaenoic acid (DHA) can reduce the efficiency and increase the energy consumption of Na(+)/K(+)-ATPase pump and mitochondrial electron transport chain by promoting Na(+) and H(+) membrane permeability, respectively. In skeletal muscle, the sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) pumps are major contributors to resting metabolic rate. Whether DHA can affect SERCA efficiency remains unknown. Here, we examined the hypothesis that dietary supplementation with DHA would reduce Ca(2+) transport efficiency of the SERCA pumps in skeletal muscle. Total lipids were extracted from enriched sarcoplasmic reticulum (SR) membranes that were isolated from red vastus lateralis skeletal muscles of rats that were either fed a standard chow diet supplemented with soybean oil or supplemented with DHA for 8 weeks. The fatty acid composition of total SR membrane lipids and the major phospholipid species were determined using electrospray ionization mass spectrometry (ESI-MS). After 8 weeks of DHA supplementation, total SR DHA content was significantly elevated (control, 4.1 ± 1.0% vs. DHA, 9.9 ± 1.7%; weight percent of total fatty acids) while total arachidonic acid was reduced (control, 13.5 ± 0.4% vs. DHA-fed, 9.4 ± 0.2). Similar changes in these fatty acids were observed in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol, altogether indicating successful incorporation of DHA into the SR membranes post-diet. As hypothesized, DHA supplementation reduced SERCA Ca(2+) transport efficiency (control, 0.018 ± 0.0002 vs. DHA-fed, 0.014 ± 0.0009) possibly through enhanced SR Ca(2+) permeability (ionophore ratio: control, 2.8 ± 0.2 vs. DHA-fed, 2.2 ± 0.3). Collectively, our results suggest that DHA may promote skeletal muscle-based metabolism and thermogenesis through its influence on SERCA.
Collapse
Affiliation(s)
- Val Andrew Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Thomas Irvine
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Adam H Metherel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Ken D Stark
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Todd Duhamel
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2 Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, Winnipeg MB R2H 2A6, Canada
| | - James W E Rush
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Howard J Green
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
28
|
Echinochrome A regulates phosphorylation of phospholamban Ser16 and Thr17 suppressing cardiac SERCA2A Ca²⁺ reuptake. Pflugers Arch 2014; 467:2151-63. [PMID: 25410495 DOI: 10.1007/s00424-014-1648-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 02/05/2023]
Abstract
Echinochrome A (Ech A), a marine bio-product isolated from sea urchin eggs, is known to have cardioprotective effects through its strong antioxidant and ATP-sparing capabilities. However, the effects of Ech A on cardiac excitation-contraction (E-C) are not known. In this study, we investigated the effects of Ech A on cardiac contractility and Ca(2+) handling in the rat heart. In ex vivo Langendorff hearts, Ech A (3 μM) decreased left ventricular developing pressure to 77.7 ± 6.5 % of basal level. In isolated ventricular myocytes, Ech A reduced the fractional cell shortening from 3.4 % at baseline to 2.1 %. Ech A increased both diastolic and peak systolic intracellular Ca(2+) ([Ca(2+)]i). However, the ratio of peak [Ca]i to resting [Ca]i was significantly decreased. Ech A did not affect the L-type Ca(2+) current. Inhibiting the Na(+)/Ca(2+) exchanger with either NiCl2 or SEA400 did not affect the Ech A-dependent changes in Ca(2+) handling. Our data demonstrate that treatment with Ech A results in a significant reduction in the phosphorylation of phospholamban at both serine 16 and threonine 17 leading to a significant inhibition of SR Ca(2+)-ATPase 2A (SERCA2A) and subsequent reduced Ca(2+) uptake into the intracellular Ca(2+) store. Taken together, our data show that Ech A negatively regulates cardiac contractility by inhibiting SERCA2A activity, which leads to a reduction in internal Ca(2+) stores.
Collapse
|
29
|
Fajardo VA, Bombardier E, Vigna C, Devji T, Bloemberg D, Gamu D, Gramolini AO, Quadrilatero J, Tupling AR. Co-expression of SERCA isoforms, phospholamban and sarcolipin in human skeletal muscle fibers. PLoS One 2013; 8:e84304. [PMID: 24358354 PMCID: PMC3865254 DOI: 10.1371/journal.pone.0084304] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/13/2013] [Indexed: 01/22/2023] Open
Abstract
Sarcolipin (SLN) and phospholamban (PLN) inhibit the activity of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) by reducing their apparent affinity for Ca2+. A ternary complex between SLN, PLN, and SERCAs results in super-inhibition of SERCA activity. Analysis of skeletal muscle homogenate has limited our current understanding of whether SLN and PLN regulate SERCA1a, SERCA2a, or both in skeletal muscle and whether SLN and PLN are co-expressed in skeletal muscle fibers. Biopsies from human vastus lateralis were analyzed through single fiber Western blotting and immunohisto/fluorescence staining to circumvent this limitation. With a newly generated SLN antibody, we report for the first time that SLN protein is present in human skeletal muscle. Addition of the SLN antibody (50 µg) to vastus lateralis homogenates increased the apparent Ca2+ affinity of SERCA (KCa, pCa units) (-Ab, 5.85 ± 0.02 vs. +Ab, 5.95 ± 0.02) and maximal SERCA activity (μmol/g protein/min) (-Ab, 122 ± 6.4 vs. +Ab, 159 ± 11) demonstrating a functional interaction between SLN and SERCAs in human vastus lateralis. Specifically, our results suggest that although SLN and PLN may preferentially regulate SERCA1a, and SERCA2a, respectively, physiologically they both may regulate either SERCA isoform. Furthermore, we show that SLN and PLN co-immunoprecipitate in human vastus lateralis homogenate and are simultaneously expressed in 81% of the fibers analyzed with Western blotting which implies that super-inhibition of SERCA may exist in human skeletal muscle. Finally, we demonstrate unequivocally that mouse soleus contains PLN protein suggesting that super-inhibition of SERCA may also be important physiologically in rodent skeletal muscle.
Collapse
Affiliation(s)
- Val A. Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Chris Vigna
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Tahira Devji
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Darin Bloemberg
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - A. Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|
30
|
Ablation of sarcolipin decreases the energy requirements for Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases in resting skeletal muscle. FEBS Lett 2013; 587:1687-92. [PMID: 23628781 DOI: 10.1016/j.febslet.2013.04.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/16/2013] [Accepted: 04/16/2013] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to examine the effects of sarcolipin (SLN) on sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA pump) energetics in vivo and resting skeletal muscle metabolic rate. Using SLN knockout (Sln(-/-)) mice we show that SLN ablation increases the transport stoichiometry of SERCA pumps (Ca(2+) uptake/Ca(2+)-ATPase activity) and decreases the relative contribution of SERCA pumps to resting oxygen consumption (VO2) in soleus without affecting soleus or whole body VO2. These data suggest that the lower energy requirements for Ca(2+) cycling in resting skeletal muscle of Sln(-/-) mice do not impact significantly either skeletal muscle or whole body metabolic rate.
Collapse
|
31
|
Abnormalities of calcium handling proteins in skeletal muscle mirror those of the heart in humans with heart failure: a shared mechanism? J Card Fail 2013; 18:724-33. [PMID: 22939042 DOI: 10.1016/j.cardfail.2012.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND In the failing human heart, abnormalities of Ca(2+) cycling have been described, but there is scant knowledge about Ca(2+) handling in the skeletal muscle of humans with heart failure (HF). We tested the hypothesis that in humans with HF, Ca(2+) cycling proteins in skeletal muscle are abnormal. METHODS AND RESULTS Ten advanced HF patients (50.4 ± 3.7 years), and 9 age-matched controls underwent vastus lateralis biopsy. Western blot analysis showed that sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a, which is responsible for Ca(2+) sequestration into the sarcoplasmic reticulum(SR), was lower in HF versus controls (4.8 ± 0.5 vs 7.5 ± 0.8 AU, P = .01). Although phospholamban (PLN), which inhibits SERCA2a, was not different in HF versus controls, phosphorylation (SER16 site) of PLN, which relieves this inhibition, was reduced (0.8 ± 0.1 vs 3.9 ± 0.9 AU, P = .004). Dihydropyridine receptors were reduced in HF, (2.1 ± 0.4 vs 3.6 ± 0.5 AU, P = .04). We tested the hypothesis that these abnormalities of Ca(2+) handling protein content and regulation were due to increased oxidative stress, but oxygen radical scavenger proteins were not elevated in the skeletal muscle of HF patients. CONCLUSION In chronic HF, marked abnormalities of Ca(2+) handling proteins are present in skeletal muscle, which mirror those in failing heart tissue. This suggests a common mechanism, such as chronic augmentation of sympathetic activity and autophosphorylation of Ca(2+)-calmodulin-dependent-protein kinase II.
Collapse
|
32
|
Epp RA, Susser SE, Morissette MP, Kehler DS, Jassal DS, Duhamel TA. Exercise training prevents the development of cardiac dysfunction in the low-dose streptozotocin diabetic rats fed a high-fat diet. Can J Physiol Pharmacol 2012; 91:80-9. [PMID: 23369057 DOI: 10.1139/cjpp-2012-0294] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study tested the hypothesis that exercise training would prevent the development of diabetes-induced cardiac dysfunction and altered expression of sarcoplasmic reticulum Ca(2 +)-transport proteins in the low-dose streptozotocin-induced diabetic rats fed a high-fat diet (HFD+STZ). Male Sprague-Dawley rats (4 weeks old; 125-150 g) were made diabetic using a high-fat diet (40% fat, w/w) and a low-dose of streptozotocin (35 mg·(kg body mass)(-1)) by intravenous injection. Diabetic animals were divided among a sedentary group (Sed+HFD+STZ) or an exercise-trained group (Ex+HFD+STZ) that accumulated 3554 ± 338 m·day(-1) of voluntary wheel running (mean ± SE). Sedentary animals fed a low-fat diet served as the control (Sed+LFD). Oral glucose tolerance was impaired in the sedentary diabetic group (1179 ± 29; area under the curve (a.u.c.)) compared with that in the sedentary control animals (1447 ± 42 a.u.c.). Although left ventricular systolic function was unchanged by diabetes, impaired E/A ratios (i.e., diastolic function) and rates of pressure decay (-dP/dt) indicated the presence of diastolic dysfunction. Diabetes also reduced SERCA2a protein content and maximal SERCA2a activity (V(max)) by 21% and 32%, respectively. In contrast, the change in each parameter was attenuated by exercise training. Based on these data, it appears that exercise training prevented the development of diabetic cardiomyopathy and the dysregulation of sarcoplasmic reticulum protein content in an inducible animal model of type 2 diabetes.
Collapse
Affiliation(s)
- Riley A Epp
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Faculty of Kinesiology and Recreation Management, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Green HJ, Burnett M, Kollias H, Ouyang J, Smith I, Tupling S. Malleability of human skeletal muscle sarcoplasmic reticulum to short-term training. Appl Physiol Nutr Metab 2011; 36:904-12. [DOI: 10.1139/h11-114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the hypothesis that adaptations would occur in the sarcoplasmic reticulum in vastus lateralis soon after the onset of aerobic-based training consistent with reduced Ca2+-cycling potential. Tissue samples were extracted prior to (0 days) and following 3 and 6 days of cycling performed for 2 h at 60%–65% of peak aerobic power (VO2peak) in untrained males (VO2peak = 47 ± 2.3 mL·kg–1·min–1; mean ± SE, n = 6) and assessed for changes (nmol·mg protein–1·min–1) in maximal Ca2+-ATPase activity (Vmax), Ca2+-uptake, and Ca2+-release (phase 1 and phase 2) as well as the sarcoplasmic (endoplasmic) reticulum Ca2+-ATPase (SERCA) isoforms. Training resulted in reductions (p < 0.05) in SERCA1a at 6 days (–14%) but not at 3 days. For SERCA2a, reductions (p < 0.05) were also noted only at 6 days (–7%). For Vmax, depressions (p < 0.05) were found at 6 days (172 ± 11) but not at 3 days (176 ± 13; p < 0.10) compared with 0 days (192 ± 11). These changes were accompanied by a lower (p < 0.05) Ca2+-uptake at both 3 days (–39%) and 6 days (–48%). A similar pattern was found for phase 1 Ca2+-release with reductions (p < 0.05) of 37% observed at 6 days and 23% (p = 0.21) at 3 days of training, respectively. In a related study using the same training protocol and participant characteristics, microphotometric determinations of Vmax indicated reductions (p < 0.05) in type I at 3 days (–27%) and at 6 days (–34%) and in type IIA fibres at 6 days (–17%). It is concluded that in response to aerobic-based training, sarcoplasmic reticulum Ca2+-cycling potential is reduced by adaptations that occur soon after training onset.
Collapse
Affiliation(s)
- Howard J. Green
- Department of Kinesiology University of Waterloo, Waterloo, ON N2L3G1 Canada
| | - Margaret Burnett
- Department of Kinesiology University of Waterloo, Waterloo, ON N2L3G1 Canada
| | - Helen Kollias
- Department of Kinesiology University of Waterloo, Waterloo, ON N2L3G1 Canada
| | - Jing Ouyang
- Department of Kinesiology University of Waterloo, Waterloo, ON N2L3G1 Canada
| | - Ian Smith
- Department of Kinesiology University of Waterloo, Waterloo, ON N2L3G1 Canada
| | - Susan Tupling
- Department of Kinesiology University of Waterloo, Waterloo, ON N2L3G1 Canada
| |
Collapse
|
34
|
Tupling AR, Bombardier E, Gupta SC, Hussain D, Vigna C, Bloemberg D, Quadrilatero J, Trivieri MG, Babu GJ, Backx PH, Periasamy M, MacLennan DH, Gramolini AO. Enhanced Ca2+ transport and muscle relaxation in skeletal muscle from sarcolipin-null mice. Am J Physiol Cell Physiol 2011; 301:C841-9. [PMID: 21697544 DOI: 10.1152/ajpcell.00409.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sarcolipin (SLN) inhibits sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pumps. To evaluate the physiological significance of SLN in skeletal muscle, we compared muscle contractility and SERCA activity between Sln-null and wild-type mice. SLN protein expression in wild-type mice was abundant in soleus and red gastrocnemius (RG), low in extensor digitorum longus (EDL), and absent from white gastrocnemius (WG). SERCA activity rates were increased in soleus and RG, but not in EDL or WG, from Sln-null muscles, compared with wild type. No differences were seen between wild-type and Sln-null EDL muscles in force-frequency curves or maximum rates of force development (+dF/dt). Maximum relaxation rates (-dF/dt) of EDL were higher in Sln-null than wild type across a range of submaximal stimulation frequencies, but not during a twitch or peak tetanic contraction. For soleus, no differences were seen between wild type and Sln-null in peak tetanic force or +dF/dt; however, force-frequency curves showed that peak force during a twitch and 10-Hz contraction was lower in Sln-null. Changes in the soleus force-frequency curve corresponded with faster rates of force relaxation at nearly all stimulation frequencies in Sln-null compared with wild type. Repeated tetanic stimulation of soleus caused increased (-dF/dt) in wild type, but not in Sln-null. No compensatory responses were detected in analysis of other Ca(2+) regulatory proteins using Western blotting and immunohistochemistry or myosin heavy chain expression using immunofluorescence. These results show that 1) SLN regulates Ca(2+)-ATPase activity thereby regulating contractile kinetics in at least some skeletal muscles, 2) the functional significance of SLN is graded to the endogenous SLN expression level, and 3) SLN inhibitory effects on SERCA function are relieved in response to repeated contractions thus enhancing relaxation rates.
Collapse
|
35
|
Hanke N, Scheibe RJ, Manukjan G, Ewers D, Umeda PK, Chang KC, Kubis HP, Gros G, Meissner JD. Gene regulation mediating fiber-type transformation in skeletal muscle cells is partly glucose- and ChREBP-dependent. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:377-89. [PMID: 21215280 DOI: 10.1016/j.bbamcr.2010.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/21/2010] [Accepted: 12/23/2010] [Indexed: 12/24/2022]
Abstract
Adaptations in the oxidative capacity of skeletal muscle cells can occur under several physiological or pathological conditions. We investigated the effect of increasing extracellular glucose concentration on the expression of markers of energy metabolism in primary skeletal muscle cells and the C2C12 muscle cell line. Growth of myotubes in 25mM glucose (high glucose, HG) compared with 5.55mM led to increases in the expression and activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a marker of glycolytic energy metabolism, while oxidative markers peroxisome proliferator-activated receptor γ coactivator 1α and citrate synthase decreased. HG induced metabolic adaptations as are seen during a slow-to-fast fiber transformation. Furthermore, HG increased fast myosin heavy chain (MHC) IId/x but did not change slow MHCI/β expression. Protein phosphatase 2A (PP2A) was shown to mediate the effects of HG on GAPDH and MHCIId/x. Carbohydrate response element-binding protein (ChREBP), a glucose-dependent transcription factor downstream of PP2A, partially mediated the effects of glucose on metabolic markers. The glucose-induced increase in PP2A activity was associated with an increase in p38 mitogen-activated protein kinase activity, which presumably mediates the increase in MHCIId/x promoter activity. Liver X receptor, another possible mediator of glucose effects, induced only an incomplete metabolic shift, mainly increasing the expression of the glycolytic marker. Taken together, HG induces a partial slow-to-fast transformation comprising metabolic enzymes together with an increased expression of MHCIId/x. This work demonstrates a functional role for ChREBP in determining the metabolic type of muscle fibers and highlights the importance of glucose as a signaling molecule in muscle.
Collapse
Affiliation(s)
- Nina Hanke
- Department of Physiology, Vegetative Physiology 4220, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Karelis AD, Smith JW, Passe DH, Péronnet F. Carbohydrate administration and exercise performance: what are the potential mechanisms involved? Sports Med 2010; 40:747-63. [PMID: 20726621 DOI: 10.2165/11533080-000000000-00000] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is well established that carbohydrate (CHO) administration increases performance during prolonged exercise in humans and animals. The mechanism(s), which could mediate the improvement in exercise performance associated with CHO administration, however, remain(s) unclear. This review focuses on possible underlying mechanisms that could explain the increase in exercise performance observed with the administration of CHO during prolonged muscle contractions in humans and animals. The beneficial effect of CHO ingestion on performance during prolonged exercise could be due to several factors including (i) an attenuation in central fatigue; (ii) a better maintenance of CHO oxidation rates; (iii) muscle glycogen sparing; (iv) changes in muscle metabolite levels; (v) reduced exercise-induced strain; and (vi) a better maintenance of excitation-contraction coupling. In general, the literature indicates that CHO ingestion during exercise does not reduce the utilization of muscle glycogen. In addition, data from a meta-analysis suggest that a dose-dependent relationship was not shown between CHO ingestion during exercise and an increase in performance. This could support the idea that providing enough CHO to maintain CHO oxidation during exercise may not always be associated with an increase in performance. Emerging evidence from the literature shows that increasing neural drive and attenuating central fatigue may play an important role in increasing performance during exercise with CHO supplementation. In addition, CHO administration during exercise appears to provide protection from disrupted cell homeostasis/integrity, which could translate into better muscle function and an increase in performance. Finally, it appears that during prolonged exercise when the ability of metabolism to match energy demand is exceeded, adjustments seem to be made in the activity of the Na+/K+ pump. Therefore, muscle fatigue could be acting as a protective mechanism during prolonged contractions. This could be alleviated when CHO is administered resulting in the better maintenance of the electrical properties of the muscle fibre membrane. The mechanism(s) by which CHO administration increases performance during prolonged exercise is(are) complex, likely involving multiple factors acting at numerous cellular sites. In addition, due to the large variation in types of exercise, durations, intensities, feeding schedules and CHO types it is difficult to assess if the mechanism(s) that could explain the increase in performance with CHO administration during exercise is(are) similar in different situations. Experiments concerning the identification of potential mechanism(s) by which performance is increased with CHO administration during exercise will add to our understanding of the mechanism(s) of muscle/central fatigue. This knowledge could have significant implications for improving exercise performance.
Collapse
Affiliation(s)
- Antony D Karelis
- Department of Kinesiology, Université du Québec à Montréal, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
37
|
Fu MH, Tupling AR. Protective effects of Hsp70 on the structure and function of SERCA2a expressed in HEK-293 cells during heat stress. Am J Physiol Heart Circ Physiol 2009; 296:H1175-83. [PMID: 19252085 DOI: 10.1152/ajpheart.01276.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat shock protein 70 (Hsp70) can physically interact with and prevent thermal inactivation of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) 1a, the SERCA isoform expressed in adult fast-twitch skeletal muscle. This study examined whether Hsp70 could physically interact with and prevent thermal inactivation of SERCA2a, the SERCA isoform expressed in heart. HEK-293 cells were cotransfected with cDNAs encoding human Hsp70 and rabbit SERCA2a (S2a/Hsp70). Cells cotransfected with SERCA2a cDNA and pMT2 (S2a/pMT2) were used as control. One-half of the cells was heat shocked at 40 degrees C for 1 h (HS), and one-half was maintained at 37 degrees C before harvesting the cells and isolating microsomes. Western blot analysis showed that Hsp70 and SERCA2a were colocalized in the microsomal fraction. The levels of Hsp70 were approximately fivefold higher (P < 0.05) in S2a/Hsp70 compared with S2a/pMT2 and approximately twofold higher (P < 0.05) following HS in all cells. Coimmunoprecipitation demonstrated that Hsp70 directly binds to SERCA2a. Following HS, maximal SERCA2a activity was reduced ( approximately 52%, P < 0.05) in S2a/pMT2 but was increased ( approximately 33%, P < 0.05) in S2a/Hsp70. Thermal inactivation of SERCA2a in S2a/pMT2 was associated with decreased ( approximately 49%, P < 0.05) binding capacity for fluorescein isothiocyanate (FITC) and increased carbonyl ( approximately 42%, P < 0.05) and nitrotyrosine ( approximately 40%, P < 0.05) levels in SERCA2a. By contrast, the HS-induced increase in maximal SERCA2a activity observed in S2a/Hsp70 corresponded with no change (P > 0.05) in FITC-binding capacity and reductions in carbonyl ( approximately 40%, P < 0.05) and nitrotyrosine ( approximately 23%, P < 0.05) levels in SERCA2a compared with S2a/pMT2. These results show that Hsp70 forms a protective interaction with SERCA2a during HS actually reducing oxidation and nitrosylation of SERCA2a thus increasing its maximal activity.
Collapse
Affiliation(s)
- M H Fu
- Dept. of Kinesiology, Univ. of Waterloo, Waterloo, ON, Canada N2L 3G1
| | | |
Collapse
|
38
|
Burnley M, Jones AM. Viewpoint: Fatigue mechanisms determining exercise performance: integrative physiology is systems physiology. J Appl Physiol (1985) 2008; 104:1545. [PMID: 18504821 DOI: 10.1152/japplphysiol.90427.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Hargreaves M. Fatigue mechanisms determining exercise performance: integrative physiology is systems biology. J Appl Physiol (1985) 2008; 104:1541-2. [DOI: 10.1152/japplphysiol.00088.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
40
|
|