1
|
Khadka P, Hejazi M, Hindle M, Schuman T, Longest W, Kaviratna A, Chopski S, Walenga R, Newman B, Golshahi L. Anatomically-detailed segmented representative adult and pediatric nasal models for assessing regional drug delivery and bioequivalence with suspension nasal sprays. Int J Pharm 2024; 666:124743. [PMID: 39343330 DOI: 10.1016/j.ijpharm.2024.124743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
In vitro nasal models can potentially facilitate development and approval of nasal drug products. This study aims to evaluate the potential for using regional deposition measurements from in vitro nasal models to evaluate nasal spray performance across several products. To accomplish this, the posterior regions of six anatomically realistic nasal airway models of adult and pediatric subjects, representing Low (L), Mean (M) and High (H) posterior drug deposition (PD) for each of the two age groups, were segmented with high anatomical precision into five regions of interest. These models were previously developed with the goal of quantifying the range of intersubject variability of PD following administration of inhaled corticosteroids. The in vitro regional drug deposition values were measured for the reference listed drug (RLD) product for triamcinolone acetonide and two corresponding generic (test) nasal spray products, as well as an RLD product for fluticasone furoate nasal spray. In general, the pediatric models mostly demonstrated higher PD compared to the adult models. The majority (>85 %) of PD was confined to the front and the inferior meatus regions. Subsequent population bioequivalence (PBE) analyses of the regional nasal deposition suggested that the anatomical differences among subjects may impact the nasal spray performance across different nasal products.
Collapse
Affiliation(s)
- Prakash Khadka
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammad Hejazi
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Theodore Schuman
- Department of Otolaryngology - Head and Neck Surgery, VCU Health, Richmond, VA, USA
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Anubhav Kaviratna
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Steven Chopski
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Ross Walenga
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Bryan Newman
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Laleh Golshahi
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Mikhel IB, Bakhrushina EO, Petrusevich DA, Nedorubov AA, Appolonova SA, Moskaleva NE, Demina NB, Kosenkova SI, Parshenkov MA, Krasnyuk II, Krasnyuk II. Development of an Intranasal In Situ System for Ribavirin Delivery: In Vitro and In Vivo Evaluation. Pharmaceutics 2024; 16:1125. [PMID: 39339163 PMCID: PMC11435039 DOI: 10.3390/pharmaceutics16091125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Recently, ribavirin has demonstrated effectiveness in treating glioblastoma through intranasal administration utilizing the nose-to-brain delivery route. Enhancing ribavirin's bioavailability can be achieved by utilizing intranasal stimuli-responsive systems that create a gel on the nasal mucosa. The research examined thermosensitive, pH-sensitive, and ion-selective polymers in various combinations and concentrations, chosen in line with the current Quality by Design (QbD) approach in pharmaceutical development. Following a thorough assessment of key parameters, the optimal composition of gellan gum at 0.5%, Poloxamer 124 at 2%, and purified water with ribavirin concentration at 100 mg/mL was formulated and subjected to in vivo testing. Through experiments on male rats, the nose-to-brain penetration mechanism of the active pharmaceutical ingredient (API) was elucidated, showcasing drug accumulation in the olfactory bulbs and brain.
Collapse
Affiliation(s)
- Iosif B. Mikhel
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Elena O. Bakhrushina
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Danila A. Petrusevich
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Andrey A. Nedorubov
- Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia;
| | - Svetlana A. Appolonova
- Centre of Biopharmaceutical Analysis and Metabolomics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (S.A.A.); (N.E.M.)
| | - Natalia E. Moskaleva
- Centre of Biopharmaceutical Analysis and Metabolomics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (S.A.A.); (N.E.M.)
| | - Natalia B. Demina
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Svetlana I. Kosenkova
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Mikhail A. Parshenkov
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Ivan I. Krasnyuk
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| | - Ivan I. Krasnyuk
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (D.A.P.); (N.B.D.); (S.I.K.); (M.A.P.); (I.I.K.J.); (I.I.K.)
| |
Collapse
|
3
|
Nava TS, Nussbaumer M, Tysome JR, Sutcliffe MPF. Sound and Noise Sources in Sonotubometry: An Investigation of Eustachian Tube Assessment. Ann Biomed Eng 2024; 52:2247-2257. [PMID: 38740729 PMCID: PMC11247061 DOI: 10.1007/s10439-024-03526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/20/2024] [Indexed: 05/16/2024]
Abstract
This research aims to enhance the understanding of the acoustic processes occurring during sonotubometry, a method used to assess the Eustachian tube (ET) function. Recent advancements in digital signal processing enable a more comprehensive data analysis. In this project, a silicone model of the ET was developed to systematically study the existing noise and sound sources. These measurements were then compared with recordings from human subjects. Three distinct 'noise sources' were identified, which can influence the assessment of the ET opening using transmission measurements of the imposed signal: sound leakage from the speaker, a clicking noise at the initiation of ET opening, and rumbling/swallowing noise. Through spectral analysis, it was also possible to ascertain the spectral and temporal occurrence of these sound and noise types. The silicone model exhibited remarkable similarity to the healthy human ET, making it a robust experimental model for investigating the acoustics of sonotubometry. The findings underscore the significance of delving deeper into the analysed sound, as the noise occurring during sonotubometry can be easily misconstrued as an actual ET opening. Particularly, careful consideration is warranted when evaluating data involving clicking and swallowing noise.
Collapse
Affiliation(s)
- Tobia Sebastiano Nava
- Department of Engineering, University of Cambridge, Trumpington St, Cambridge, CB2 1PZ, UK.
| | - Maximilian Nussbaumer
- Department of Engineering, University of Cambridge, Trumpington St, Cambridge, CB2 1PZ, UK
| | - James R Tysome
- Department of Otorhinolaryngology, Cambridge University Hospitals, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Michael P F Sutcliffe
- Department of Engineering, University of Cambridge, Trumpington St, Cambridge, CB2 1PZ, UK
| |
Collapse
|
4
|
Jin Z, Guo G, Yu A, Qian H, Tong Z. Comparative Analysis of Micrometer-Sized Particle Deposition in the Olfactory Regions of Adult and Pediatric Nasal Cavities: A Computational Study. Pharmaceutics 2024; 16:722. [PMID: 38931844 PMCID: PMC11206772 DOI: 10.3390/pharmaceutics16060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Direct nose-to-brain drug delivery, a promising approach for treating neurological disorders, faces challenges due to anatomical variations between adults and children. This study aims to investigate the spatial particle deposition of micron-sized particles in the nasal cavity among adult and pediatric subjects. This study focuses on the olfactory region considering the effect of intrasubject parameters and particle properties. Two child and two adult nose models were developed based on computed tomography (CT) images, in which the olfactory region of the four nasal cavity models comprises 7% to 10% of the total nasal cavity area. Computational Fluid Dynamics (CFD) coupled with a discrete phase model (DPM) was implemented to simulate the particle transport and deposition. To study the deposition of micrometer-sized drugs in the human nasal cavity during a seated posture, particles with diameters ranging from 1 to 100 μm were considered under a flow rate of 15 LPM. The nasal cavity area of adults is approximately 1.2 to 2 times larger than that of children. The results show that the regional deposition fraction of the olfactory region in all subjects was meager for 1-100 µm particles, with the highest deposition fraction of 5.7%. The deposition fraction of the whole nasal cavity increased with the increasing particle size. Crucially, we identified a correlation between regional deposition distribution and nasal cavity geometry, offering valuable insights for optimizing intranasal drug delivery.
Collapse
Affiliation(s)
- Ziyu Jin
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (Z.J.); (G.G.)
- Southeast University—Monash University Joint Research Institute, Suzhou 215123, China;
| | - Gang Guo
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (Z.J.); (G.G.)
| | - Aibing Yu
- Southeast University—Monash University Joint Research Institute, Suzhou 215123, China;
- ARC Hub for Computational Particle Technology, Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (Z.J.); (G.G.)
| | - Zhenbo Tong
- School of Energy and Environment, Southeast University, Nanjing 210096, China; (Z.J.); (G.G.)
| |
Collapse
|
5
|
Maaz A, Blagbrough IS, De Bank PA. Gold Nanoparticles: Tunable Characteristics and Potential for Nasal Drug Delivery. Pharmaceutics 2024; 16:669. [PMID: 38794331 PMCID: PMC11125093 DOI: 10.3390/pharmaceutics16050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
A general procedure to prepare gold nanourchins (GNUs) via a seed-mediated method was followed using dopamine hydrochloride as a reducing agent and silver nitrate salt (AgNO3) as a shape-directing agent. The novelty of this study comes from the successful incorporation of the prepared gold urchins as an aqueous suspension in a nasal pressurized metered dose inhaler (pMDI) formulation and the investigation of their potential for olfactory targeting for direct nose-to-brain drug delivery (NTBDD). The developed pMDI formulation was composed of 0.025% w/w GNUs, 2% w/w Milli-Q water, and 2% w/w EtOH, with the balance of the formulation being HFA134a propellant. Particle integrity and aerosolization performance were examined using an aerosol exposure system, whereas the nasal deposition profile was tested in a sectioned anatomical replica of human nasal airways. The compatibility of the gold dispersion with the nasal epithelial cell line RPMI 2650 was also investigated in this study. Colloidal gold was found to be stable following six-month storage at 4 °C and during the lyophilization process utilizing a pectin matrix for complete re-dispersibility in water. The GNUs were intact and discrete following atomization via a pMDI, and 13% of the delivered particles were detected beyond the nasal valve, the narrowest region in the nasal cavity, out of which 5.6% was recovered from the olfactory region. Moreover, the formulation was found to be compatible with the human nasal epithelium cell line RPMI 2650 and excellent cell viability was observed. The formulated GNU-HFA-based pMDI is a promising approach for intranasal drug delivery, including deposition in the olfactory region, which could be employed for NTBDD applications.
Collapse
Affiliation(s)
- Aida Maaz
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | | | - Paul A. De Bank
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
- Centre for Bioengineering & Biomedical Technologies, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
6
|
Lee JH, Kim HS, Park JT. Comparison of Nasal Dimensions According to the Facial and Nasal Indices Using Cone-Beam Computed Tomography. J Pers Med 2024; 14:415. [PMID: 38673042 PMCID: PMC11050927 DOI: 10.3390/jpm14040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The nasal cavity constitutes the foremost portion of the respiratory system, composed of the anterior nasal aperture, nostrils, and choanae. It has an intricate anatomical structure since it has various functions, such as heat exchange, humidification, and filtration. Accordingly, clinical symptoms related to the nose, such as nasal congestion, snoring, and nasal septal deviation, are closely linked to the complex anatomical structure of the nasal cavity. Thus, the nasal cavity stands as a paramount structure in both forensic and clinical contexts. The majority of relevant studies have performed comparisons between sexes, with studies making comparisons according to the FI and NI only and examining relative percentages. Furthermore, the nasal cavity was measured in 2D, and not 3D, in most cases. In this study, we conducted a 3D modeling and anthropometric assessment of the nasal cavity using a 3D analysis software. Furthermore, we aimed to investigate whether the size of the nasal cavity differs according to sex, facial index (FI), and nasal index (NI). We retrospectively reviewed the cone-beam computed tomography (CBCT) data of 100 participants (50 males, 50 females) aged 20-29 years who visited the dental hospital of Dankook University (IRB approval no. DKUDH IRB 2020-01-007). Our findings showed that nasal cavity sizes generally differed according to sex, FI, and NI. These findings provide implications for performing patient-tailored surgeries in clinical practice and conducting further research on the nasal cavity. Therefore, we believe that our study makes a significant contribution to the literature.
Collapse
Affiliation(s)
- Jeong-Hyun Lee
- Department of Oral Anatomy, Dankook Institute for Future Science and Emerging Convergence, Dental College, Dan-Kook University, Cheonan 31116, Republic of Korea;
| | - Hey-Suk Kim
- Department of Crime Scene Investigation Unit, Forensic Science Division, Daejeon Metropolitan Police, Daejeon 35403, Republic of Korea;
| | - Jong-Tae Park
- Department of Oral Anatomy, Dankook Institute for Future Science and Emerging Convergence, Dental College, Dan-Kook University, Cheonan 31116, Republic of Korea;
- Department of Bio Health Convergency Open Sharing System, Dan-Kook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
7
|
Chen J, Finlay WH, Vehring R, Martin AR. Characterizing regional drug delivery within the nasal airways. Expert Opin Drug Deliv 2024; 21:537-551. [PMID: 38568159 DOI: 10.1080/17425247.2024.2336494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/26/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The nose has been receiving increased attention as a route for drug delivery. As the site of deposition constitutes the first point of contact of the body with the drug, characterization of the regional deposition of intranasally delivered droplets or particles is paramount to formulation and device design of new products. AREAS COVERED This review article summarizes the recent literature on intranasal regional drug deposition evaluated in vivo, in vitro and in silico, with the aim of correlating parameters measured in vitro with formulation and device performance. We also highlight the relevance of regional deposition to two emerging applications: nose-to-brain drug delivery and intranasal vaccines. EXPERT OPINION As in vivo studies of deposition can be costly and time-consuming, researchers have often turned to predictive in vitro and in silico models. Variability in deposition is high due in part to individual differences in nasal geometry, and a complete predictive model of deposition based on spray characteristics remains elusive. Carefully selected or idealized geometries capturing population average deposition can be useful surrogates to in vivo measurements. Continued development of in vitro and in silico models may pave the way for development of less variable and more effective intranasal drug products.
Collapse
Affiliation(s)
- John Chen
- Access to Advanced Health Institute, Seattle, WA, USA
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Reinhard Vehring
- Access to Advanced Health Institute, Seattle, WA, USA
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Maaz A, Blagbrough IS, De Bank PA. A Cell-Based Nasal Model for Screening the Deposition, Biocompatibility, and Transport of Aerosolized PLGA Nanoparticles. Mol Pharm 2024; 21:1108-1124. [PMID: 38333983 PMCID: PMC10915796 DOI: 10.1021/acs.molpharmaceut.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/07/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The olfactory region of the nasal cavity directly links the brain to the external environment, presenting a potential direct route to the central nervous system (CNS). However, targeting drugs to the olfactory region is challenging and relies on a combination of drug formulation, delivery device, and administration technique to navigate human nasal anatomy. In addition, in vitro and in vivo models utilized to evaluate the performance of nasal formulations do not accurately reflect deposition and uptake in the human nasal cavity. The current study describes the development of a respirable poly(lactic-co-glycolic acid) nanoparticle (PLGA NP) formulation, delivered via a pressurized metered dose inhaler (pMDI), and a cell-containing three-dimensional (3D) human nasal cast model for deposition assessment of nasal formulations in the olfactory region. Fluorescent PLGA NPs (193 ± 3 nm by dynamic light scattering) were successfully formulated in an HFA134a-based pMDI and were collected intact following aerosolization. RPMI 2650 cells, widely employed as a nasal epithelial model, were grown at the air-liquid interface (ALI) for 14 days to develop a suitable barrier function prior to exposure to the aerosolized PLGA NPs in a glass deposition apparatus. Direct aerosol exposure was shown to have little effect on cell viability. Compared to an aqueous NP suspension, the transport rate of the aerosolized NPs across the RPMI 2650 barrier was higher at all time points indicating the potential advantages of delivery via aerosolization and the importance of employing ALI cellular models for testing respirable formulations. The PLGA NPs were then aerosolized into a 3D-printed human nasal cavity model with an insert of ALI RPMI 2650 cells positioned in the olfactory region. Cells remained highly viable, and there was significant deposition of the fluorescent NPs on the ALI cultures. This study is a proof of concept that pMDI delivery of NPs is a viable means of targeting the olfactory region for nose-to-brain drug delivery (NTBDD). The cell-based model allows not only maintenance under ALI culture conditions but also sampling from the basal chamber compartment; hence, this model could be adapted to assess drug deposition, uptake, and transport kinetics in parallel under real-life settings.
Collapse
Affiliation(s)
- Aida Maaz
- Department
of Life Sciences, Centre for Therapeutic Innovation, and Centre for Bioengineering
& Biomedical Technologies, University
of Bath, Bath BA2 7AY, U.K.
| | - Ian S. Blagbrough
- Department
of Life Sciences, Centre for Therapeutic Innovation, and Centre for Bioengineering
& Biomedical Technologies, University
of Bath, Bath BA2 7AY, U.K.
| | - Paul A. De Bank
- Department
of Life Sciences, Centre for Therapeutic Innovation, and Centre for Bioengineering
& Biomedical Technologies, University
of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
9
|
Glauser N, Lim-Hitchings YC, Schaufelbühl S, Hess S, Lunstroot K, Massonnet G. Fibres in the nasal cavity: A pilot study of the recovery, background, and transfer in smothering scenarios. Forensic Sci Int 2024; 354:111890. [PMID: 38101176 DOI: 10.1016/j.forsciint.2023.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
In cases where the suspected cause of death is smothering, fibre traces recovered from the nasal cavity are hypothesised to refute or support this proposition. In order to carry out such evaluations, an efficient recovery method must first be established. This pilot study tested five different recovery methods on 3D printed models of nasal cavities. Among which, the use of the transparent AccuTrans® polyvinyl Siloxane casts demonstrated the best recovery efficiency with a median of 90% of deposited fibres recovered. The efficacy of this method was then verified on cadavers. Apart from a reliable recovery method, an understanding of the background population of fibres in nasal cavities, as well as the mechanisms of the transfer from the purported smothering textile to the nasal cavity is essential to evaluate the findings in these cases of suspected smothering. Samplings of the nasal cavities of 20 cadavers were thus carried out to gather data on the background population of fibres. Results showed that nasal cavities are not void of fibres, but the quantities are expected to be low, with a mean of 3.8 fibres per cavity recovered. Information on generic fibre class, colour, and length of these background fibres were also obtained with the use of low and high-power microscopy. The frequencies found in this population of fibres closely align with data from other population studies where black cotton was the most common. Finally, transfer experiments using the 3D printed models fitted with a respiratory pump to simulate breathing were carried out, along with testing on live volunteers in-vivo. The results demonstrated a verifiable transfer of fibres into the nasal cavity in smothering scenarios. Textiles of various shedding capacities were used in these tests and the findings suggest an influence of this variable on the quantities of fibres transferred.
Collapse
Affiliation(s)
- Nick Glauser
- University of Lausanne, Ecole des sciences criminelles, Batochime, 1015 Lausanne, Switzerland.
| | - Yu Chen Lim-Hitchings
- University of Lausanne, Ecole des sciences criminelles, Batochime, 1015 Lausanne, Switzerland.
| | - Stefan Schaufelbühl
- University of Lausanne, Ecole des sciences criminelles, Batochime, 1015 Lausanne, Switzerland.
| | - Sabine Hess
- Forensisches Institut Zürich, Güterstrasse 33, 8010 Zurich, Switzerland.
| | - Kyra Lunstroot
- Nationaal Instituut voor Criminalistiek en Criminologie, Vilvoordsesteenweg 100, 1120 Brussel, Belgium.
| | - Geneviève Massonnet
- University of Lausanne, Ecole des sciences criminelles, Batochime, 1015 Lausanne, Switzerland.
| |
Collapse
|
10
|
Rigaut C, Deruyver L, Niesen M, Vander Ghinst M, Goole J, Lambert P, Haut B. What Are the Key Anatomical Features for the Success of Nose-to-Brain Delivery? A Study of Powder Deposition in 3D-Printed Nasal Casts. Pharmaceutics 2023; 15:2661. [PMID: 38140002 PMCID: PMC10747338 DOI: 10.3390/pharmaceutics15122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Nose-to-brain delivery is a promising way to improve the treatment of central nervous system disorders, as it allows the bypassing of the blood-brain barrier. However, it is still largely unknown how the anatomy of the nose can influence the treatment outcome. In this work, we used 3D printing to produce nasal replicas based on 11 different CT scans presenting various anatomical features. Then, for each anatomy and using the Design of Experiments methodology, we characterised the amount of a powder deposited in the olfactory region of the replica as a function of multiple parameters (choice of the nostril, device, orientation angle, and the presence or not of a concomitant inspiration flow). We found that, for each anatomy, the maximum amount of powder that can be deposited in the olfactory region is directly proportional to the total area of this region. More precisely, the results show that, whatever the instillation strategy, if the total area of the olfactory region is below 1500 mm2, no more than 25% of an instilled powder can reach this region. On the other hand, if the total area of the olfactory region is above 3000 mm2, the deposition efficiency reaches 50% with the optimal choice of parameters, whatever the other anatomical characteristics of the nasal cavity. Finally, if the relative difference between the areas of the two sides of the internal nasal valve is larger than 20%, it becomes important to carefully choose the side of instillation. This work, by predicting the amount of powder reaching the olfactory region, provides a tool to evaluate the adequacy of nose-to-brain treatment for a given patient. While the conclusions should be confirmed via in vivo studies, it is a first step towards personalised treatment of neurological pathologies.
Collapse
Affiliation(s)
- Clément Rigaut
- Transfers Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium; (P.L.); (B.H.)
| | - Laura Deruyver
- Laboratoire de Pharmacie Galénique et Biopharmacie, Faculté de Pharmacie, Université Libre de Bruxelles, 1050 Brussels, Belgium; (L.D.); (J.G.)
| | - Maxime Niesen
- Department of Ear, Nose and Throat and Cervico-Facial Surgery, CUB Hôpital Erasme, Hôpital de Bruxelles (HUB), 1070 Brussels, Belgium; (M.N.); (M.V.G.)
| | - Marc Vander Ghinst
- Department of Ear, Nose and Throat and Cervico-Facial Surgery, CUB Hôpital Erasme, Hôpital de Bruxelles (HUB), 1070 Brussels, Belgium; (M.N.); (M.V.G.)
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et Biopharmacie, Faculté de Pharmacie, Université Libre de Bruxelles, 1050 Brussels, Belgium; (L.D.); (J.G.)
| | - Pierre Lambert
- Transfers Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium; (P.L.); (B.H.)
| | - Benoit Haut
- Transfers Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium; (P.L.); (B.H.)
| |
Collapse
|
11
|
Kesavan JS, Kuypers K, Sommerville DR, Sedberry K, Laube BL. Effect of Age and Head Position on Total and Regional Aerosol Deposition in Three-Dimensional Models of Human Intranasal Airways Using a Mucosal Atomization Device. J Aerosol Med Pulm Drug Deliv 2023. [PMID: 37062763 DOI: 10.1089/jamp.2022.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Background: This study examined the effect of age and head position on total and regional deposition of aerosol delivered by a mucosal atomization device (MAD™) in three-dimensional (3D) models of the intranasal airways of an 18-, 5-, and 2-year-old human. Models consisted of four pieces: anterior nose and nasal cavity that was divided horizontally into upper, middle, and lower thirds. Methods: Models were tested six times at supine, supine with head backward at 45° (supine45), and sitting with head backward at 45° (sitting45). The MAD delivered saline/fluorescein aerosol into model nostrils, during static airflow. Model pieces were tested for fluorescence using a fluorometer, and deposition calculated as percent fluorescence per piece relative to its reference. Total deposition (four pieces combined) and regional deposition (four pieces separately) were calculated. Results: Age and head position had little effect on total deposition. In contrast, deposition in the upper and middle third supine45 and in the lower third sitting45 was significantly different in the 2-year-old model, compared with the two older models. In addition, some head positions significantly increased deposition in the upper, middle, and lower thirds within each model, compared with other positions. Upper deposition was significantly greater at supine45, compared with sitting45 (18-year-old) and supine45, compared with supine and sitting45 (5-year-old). Middle deposition was significantly greater at supine and supine45, compared with sitting45 (2-year-old). Lower deposition was significantly greater at sitting45, compared with supine45 (18-year-old); supine and sitting45, compared with supine45 (5-year-old); and sitting45, compared with supine45 and supine (2-year-old). Conclusions: Age and head position significantly affected regional deposition of aerosol delivered by the MAD in these 3D models. Such models might be used to study other methods for targeting intranasal regions with aerosolized medications in children and adults.
Collapse
Affiliation(s)
- Jana S Kesavan
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| | - Kristina Kuypers
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| | - Douglas R Sommerville
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| | | | - Beth L Laube
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Ishii K, Kubota K, Nakao T, Koyama Y, Fujita Y, Akaba K, Matsuhashi N, Nakajima A. A single‐sided trans‐nasal catheter for smooth and efficient oxygen delivery can improve the safety in patients undergoing pancreato‐biliary endoscopy under intravenous sedation: A randomized trial. DEN OPEN 2023; 3:e130. [PMID: 35898841 PMCID: PMC9307738 DOI: 10.1002/deo2.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 11/11/2022]
Abstract
Background Pancreato‐biliary endoscopic procedures often need to be performed under deep intravenous sedation. The patients are at an increased risk of respiratory depression influenced by the anatomical dead space of the upper respiratory system. We aimed to evaluate the benefit of oxygen delivery through a single‐sided trans‐nasal catheter (TC) for patients undergoing pancreato‐biliary endoscopy. Methods Oxygen supplementation during the procedure was provided either by insertion of a single‐sided TC or insertion of a conventional nasal catheter (NC). A prospective, single‐blind, randomized controlled study was conducted in two groups. Results The number of patients who indicated a decrease in the peripheral transcutaneous oxygen saturation (SpO2; desaturation) was significantly lower in the TC group than in the counterpart (8/58; 13.8% vs. 26/58; 44.8% p < 0.001). The efficient oxygen delivery in the safe range was better conserved in the TC group than in the NC one. There was no adverse effect on both groups. The maximum SpO2 while the endoscopic procedure was significantly higher in the TC group (99.7% vs. 99.3% p = 0.016) and the minimum SpO2 was also significantly higher in the same group (97.7% vs. 94.1% p < 0.0001), which meant that the efficient oxygen delivery was better maintained in TC group than the NC group. Conclusions A single‐sided TC placed in the pharynx in patients undergoing pancreato‐biliary endoscopy prepares a superior condition of the patients for venous sedation, maintained hyper‐oxygen saturation and a relatively higher SpO2 level to be maintained in limited conditions to reduce the dead space with acceptable tolerance, as compared to the placement of a conventional NC.
Collapse
Affiliation(s)
- Ken Ishii
- Department of Gastroenterology National Hospital Organization Yokohama Medical Center Kanagawa Japan
| | - Kensuke Kubota
- Department of Gastroenterology and Hepatology Yokohama City University, Graduate School of Medicine Kanagawa Japan
| | - Tomomi Nakao
- Department of Gastroenterology Kanto Rosai Hospital Kanagawa Japan
| | - Yuji Koyama
- Department of Hepato Biliary Pancreatic Medicine NTT Medical Center Tokyo Tokyo Japan
| | - Yuji Fujita
- Department of Hepato Biliary Pancreatic Medicine NTT Medical Center Tokyo Tokyo Japan
| | - Kuniaki Akaba
- St. Marianna University School of Medicine Otolaryngology Kanagawa Japan
| | | | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology Yokohama City University, Graduate School of Medicine Kanagawa Japan
| |
Collapse
|
13
|
Utomo E, Domínguez-Robles J, Moreno-Castellanos N, Stewart SA, Picco CJ, Anjani QK, Simón JA, Peñuelas I, Donnelly RF, Larrañeta E. Development of intranasal implantable devices for schizophrenia treatment. Int J Pharm 2022; 624:122061. [PMID: 35908633 DOI: 10.1016/j.ijpharm.2022.122061] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022]
Abstract
In this work the preparation and characterisation of intranasal implants for the delivery of risperidone (RIS) is described. The aim of this work is to develop better therapies to treat chronic conditions affecting the brain such as schizophrenia. This type of systems combines the advantages of intranasal drug delivery with sustained drug release. The resulting implants were prepared using biodegradable materials, including poly(caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA). These polymers were combined with water-soluble compounds, such as poly(ethylene glycol) (PEG) 600, PEG 3000, and Tween® 80 using a solvent-casting method. The resulting implants contained RIS loadings ranging between 25 and 50%. The obtained implants were characterised using a range of techniques including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM). Moreover, in vitro RIS release was evaluated showing that the addition of water-soluble compounds exhibited significant faster release profiles compared to pristine PCL and PLGA-based implants. Interestingly, PCL-based implants containing 25% of RIS and PLGA-based implants loaded with 50% of RIS showed sustained drug release profiles up to 90 days. The former showed faster release rates over the first 28 days but after this period PLGA implants presented higher release rates. The permeability of RIS released from the implants through a model membrane simulating nasal mucosa was subsequently evaluated showing desirable permeation rate of around 2 mg/day. Finally, following in vitro biocompatibility studies, PCL and PLGA-based implants showed acceptable biocompatibility. These results suggested that the resulting implants displayed potential of providing prolonged drug release for brain-targeting drugs.
Collapse
Affiliation(s)
- Emilia Utomo
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Natalia Moreno-Castellanos
- CICTA, Department of Basic Sciences, Medicine School, Health Faculty, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia
| | - Sarah A Stewart
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya, No. 43, Makassar 90234, Indonesia
| | - Jon Ander Simón
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Iván Peñuelas
- Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
14
|
Anatomically realistic nasal replicas capturing the range of nasal spray drug delivery in adults. Int J Pharm 2022; 622:121858. [PMID: 35643344 DOI: 10.1016/j.ijpharm.2022.121858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022]
Abstract
To improve the relationships between commonly conducted in vitro studies for locally-acting nasal spray drug products with in vivo regional deposition, this study developed a set of in vitro adult nasal geometries that captured the range of nasal drug delivery to the region posterior to internal nasal valve (INV), also known as posterior delivery (PD), and evaluated their performance with existing in vivo data. The PD of fluticasone propionate (FP) and fluticasone furoate (FF) in 40 nasal cavities was statistically analyzed to identify three airway models representing the low, mean, and high PD in adults. The models were also externally validated by comparing the in vitro nasal deposition from a different drug product (mometasone furoate (MF)) with the relevant in vivo data. The three selected geometries represented the low, mean, and high PD with multiple nasal sprays. They were verified in terms of reproducibility of in vitro data and validated by showing a reasonable agreement with preexisting in vivo MF PD despite differences in administration and defining the regions. The three models are envisioned to potentially facilitate the development of locally-acting nasal sprays and provide a better understanding of how in vitro metrics relate to in vivo regional nasal deposition.
Collapse
|
15
|
Eldaly AS, Avila FR, Torres-Guzman RA, Maita K, Garcia JP, Palmieri Serrano L, Forte AJ. Simulation and Artificial Intelligence in Rhinoplasty: A Systematic Review. Aesthetic Plast Surg 2022; 46:2368-2377. [PMID: 35437664 DOI: 10.1007/s00266-022-02883-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rhinoplasty is one of the most popular cosmetic procedures. The complexity of the nasal structure and the substantial aesthetic and functional impact of the operation make rhinoplasty very challenging. The past few years have witnessed an increasing implementation of artificial intelligence (AI) and simulation systems into plastic surgery practice. This review explores the potential uses of AI and simulation models in rhinoplasty. METHODS Five electronic databases were searched: PubMed, CINAHL, EMBASE, Scopus, and Web of Science. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis as our basis of organization. RESULTS Several simulation models were described to predict the nasal shape that aesthetically matches the patient's face, indicate the implant size in augmentation rhinoplasty and construct three-dimensional (3D) facial images from two-dimensional images. Machine learning was used to learn surgeons' rhinoplasty styles and accurately simulate the outcomes. Deep learning was used to predict rhinoplasty status accurately and analyze the factors associated with increased facial attractiveness after rhinoplasty. Finally, a deep learning model was used to predict patients' age before and after rhinoplasty proving that the procedure made the patients look younger. CONCLUSION 3D simulation models and AI models can revolutionalize the practice of functional and aesthetic rhinoplasty. Simulation systems can be beneficial in preoperative planning, intra-operative decision making, and postoperative evaluation. In addition, AI models can be trained to carry out tasks that are either challenging or time-consuming for surgeons. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Abdullah S Eldaly
- Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Francisco R Avila
- Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | | | - Karla Maita
- Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - John P Garcia
- Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Luiza Palmieri Serrano
- Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Antonio J Forte
- Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
| |
Collapse
|
16
|
Hartigan D, Adelfio M, Shutt ME, Jones SM, Patel S, Marchand JT, McGuinness PD, Buchholz BO, Ghezzi CE. In Vitro Nasal Tissue Model for the Validation of Nasopharyngeal and Midturbinate Swabs for SARS-CoV-2 Testing. ACS OMEGA 2022; 7:12193-12201. [PMID: 35449955 PMCID: PMC9016850 DOI: 10.1021/acsomega.2c00587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 05/21/2023]
Abstract
Large-scale population testing is a key tool to mitigate the spread of respiratory pathogens, such as the current COVID-19 pandemic, where swabs are used to collect samples in the upper airways (e.g., nasopharyngeal and midturbinate nasal cavities) for diagnostics. However, the high volume of supplies required to achieve large-scale population testing has posed unprecedented challenges for swab manufacturing and distribution, resulting in a global shortage that has heavily impacted testing capacity worldwide and prompted the development of new swabs suitable for large-scale production. Newly designed swabs require rigorous preclinical and clinical validation studies that are costly and time-consuming (i.e., months to years long); reducing the risks associated with swab validation is therefore paramount for their rapid deployment. To address these shortages, we developed a 3D-printed tissue model that mimics the nasopharyngeal and midturbinate nasal cavities, and we validated its use as a new tool to rapidly test swab performance. In addition to the nasal architecture, the tissue model mimics the soft nasal tissue with a silk-based sponge lining, and the physiological nasal fluid with asymptomatic and symptomatic viscosities of synthetic mucus. We performed several assays comparing standard flocked and injection-molded swabs. We quantified the swab pickup and release and determined the effect of viral load and mucus viscosity on swab efficacy by spiking the synthetic mucus with heat-inactivated SARS-CoV-2 virus. By molecular assay, we found that injected molded swabs performed similarly or superiorly in comparison to standard flocked swabs, and we underscored a viscosity-dependent difference in cycle threshold values between the asymptomatic and symptomatic mucuses for both swabs. To conclude, we developed an in vitro nasal tissue model that corroborated previous swab performance data from clinical studies; this model will provide to researchers a clinically relevant, reproducible, safe, and cost-effective validation tool for the rapid development of newly designed swabs.
Collapse
Affiliation(s)
- Devon
R. Hartigan
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Miryam Adelfio
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Molly E. Shutt
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Stephanie M. Jones
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Shreya Patel
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Joshua T. Marchand
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Pamela D. McGuinness
- Massachusetts
Medical Device Development Center (M2D2), University of Massachusetts—Lowell, 110 Canal St. Lowell, Massachusetts 01852, United States
| | - Bryan O. Buchholz
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Chiara E. Ghezzi
- Department
of Biomedical Engineering, University of
Massachusetts—Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
- E-mail:
| |
Collapse
|
17
|
Pandey M, Jain N, Kanoujia J, Hussain Z, Gorain B. Advances and Challenges in Intranasal Delivery of Antipsychotic Agents Targeting the Central Nervous System. Front Pharmacol 2022; 13:865590. [PMID: 35401164 PMCID: PMC8988043 DOI: 10.3389/fphar.2022.865590] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Treatment of central nervous system (CNS) disorders is challenging using conventional delivery strategies and routes of administration because of the presence of the blood–brain barrier (BBB). This BBB restricts the permeation of most of the therapeutics targeting the brain because of its impervious characteristics. Thus, the challenges of delivering the therapeutic agents across the BBB to the brain overcoming the issue of insufficient entry of neurotherapeutics require immediate attention for recovering from the issues by the use of modern platforms of drug delivery and novel routes of administration. Therefore, the advancement of drug delivery tools and delivering these tools using the intranasal route of drug administration have shown the potential of circumventing the BBB, thereby delivering the therapeutics to the brain at a significant concentration with minimal exposure to systemic circulation. These novel strategies could lead to improved efficacy of antipsychotic agents using several advanced drug delivery tools while delivered via the intranasal route. This review emphasized the present challenges of delivering the neurotherapeutics to the brain using conventional routes of administration and overcoming the issues by exploring the intranasal route of drug administration to deliver the therapeutics circumventing the biological barrier of the brain. An overview of different problems with corresponding solutions in administering therapeutics via the intranasal route with special emphasis on advanced drug delivery systems targeting to deliver CNS therapeutics has been focused. Furthermore, preclinical and clinical advancements on the delivery of antipsychotics using this intranasal route have also been emphasized.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Manisha Pandey, ; Bapi Gorain,
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University, Gwalior, India
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, India
- *Correspondence: Manisha Pandey, ; Bapi Gorain,
| |
Collapse
|
18
|
Nof E, Zidan H, Artzy-Schnirman A, Mouhadeb O, Beckerman M, Bhardwaj S, Elias-Kirma S, Gur D, Beth-Din A, Levenberg S, Korin N, Ordentlich A, Sznitman J. Human Multi-Compartment Airways-on-Chip Platform for Emulating Respiratory Airborne Transmission: From Nose to Pulmonary Acini. Front Physiol 2022; 13:853317. [PMID: 35350687 PMCID: PMC8957966 DOI: 10.3389/fphys.2022.853317] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
The past decade has witnessed tremendous endeavors to deliver novel preclinical in vitro lung models for pulmonary research endpoints, including foremost with the advent of organ- and lung-on-chips. With growing interest in aerosol transmission and infection of respiratory viruses within a host, most notably the SARS-CoV-2 virus amidst the global COVID-19 pandemic, the importance of crosstalk between the different lung regions (i.e., extra-thoracic, conductive and respiratory), with distinct cellular makeups and physiology, are acknowledged to play an important role in the progression of the disease from the initial onset of infection. In the present Methods article, we designed and fabricated to the best of our knowledge the first multi-compartment human airway-on-chip platform to serve as a preclinical in vitro benchmark underlining regional lung crosstalk for viral infection pathways. Combining microfabrication and 3D printing techniques, our platform mimics key elements of the respiratory system spanning (i) nasal passages that serve as the alleged origin of infections, (ii) the mid-bronchial airway region and (iii) the deep acinar region, distinct with alveolated airways. Crosstalk between the three components was exemplified in various assays. First, viral-load (including SARS-CoV-2) injected into the apical partition of the nasal compartment was detected in distal bronchial and acinar components upon applying physiological airflow across the connected compartment models. Secondly, nebulized viral-like dsRNA, poly I:C aerosols were administered to the nasal apical compartment, transmitted to downstream compartments via respiratory airflows and leading to an elevation in inflammatory cytokine levels secreted by distinct epithelial cells in each respective compartment. Overall, our assays establish an in vitro methodology that supports the hypothesis for viral-laden airflow mediated transmission through the respiratory system cellular landscape. With a keen eye for broader end user applications, we share detailed methodologies for fabricating, assembling, calibrating, and using our multi-compartment platform, including open-source fabrication files. Our platform serves as an early proof-of-concept that can be readily designed and adapted to specific preclinical pulmonary research endpoints.
Collapse
Affiliation(s)
- Eliram Nof
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Hikaia Zidan
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Arbel Artzy-Schnirman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Odelia Mouhadeb
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Margarita Beckerman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Saurabh Bhardwaj
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Shani Elias-Kirma
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Didi Gur
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Beth-Din
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Netanel Korin
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Arie Ordentlich
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
19
|
Detailed Assessment of Nasal Inter-Chamber Anatomical Variations and Its Effect on Flow Apportionment and Inhalation Exposure Patterns. FLUIDS 2022. [DOI: 10.3390/fluids7030089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although many parametric studies have been conducted in developing standardized nasal geometry and analysing associated airflow dynamics, most of them are based on symmetrical nasal chambers assumption, while the inter-chamber variations due to the morphological asymmetry of the two nasal chambers are much less investigated. To address this issue, this paper presents an inter-chamber anatomical variability study by developing a shape comparison method to quantify inter-chamber anatomical differences. Then the anatomical deviation is correlated with the flow apportionment and the associated nanoparticle deposition patterns using CFD method. Results show that noticeable inter-chamber difference is observed especially in the inferior and middle passages where most inhaled flow is distributed to. Additionally, the shape of vestibule notch and septum deviation contributes to the discrepancy flow behaviour between two chambers. Consequently, these differences lead to variations in regional nanoparticle deposition, especially for 1 nm particles in the olfactory region, where the inter-chamber differences can reach up to 400%. Our results suggest that the inter-chamber anatomical variation should be considered when developing standardized nasal models.
Collapse
|
20
|
In Vitro Nasal Tissue Model for the Validation of Nasopharyngeal and Mid-turbinate Swabs for SARS-CoV-2 Testing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34845461 DOI: 10.1101/2021.11.22.21266713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Large-scale population testing is a key tool to mitigate the spread of respiratory pathogens, as in the current COVID-19 pandemic, where swabs are used to collect samples in the upper airways (e.g. nasopharyngeal and mid-turbinate nasal cavities) for diagnostics. However, the high volume of supplies required to achieve large-scale population testing has posed unprecedented challenges for swab manufacturing and distribution, resulting in a global shortage that has heavily impacted testing capacity world-wide and prompted the development of new swabs suitable for large-scale production. Newly designed swabs require rigorous pre-clinical and clinical validation studies that are costly and time consuming ( i . e . months to years long); reducing the risks associated with swab validation is therefore paramount for their rapid deployment. To address these shortages, we developed a 3D-printed tissue model that mimics the nasopharyngeal and mid-turbinate nasal cavities, and we validated its use as a new tool to rapidly test swab performance. In addition to the nasal architecture, the tissue model mimics the soft nasal tissue with a silk-based sponge lining, and the physiological nasal fluid with asymptomatic and symptomatic viscosities of synthetic mucus. We performed several assays comparing standard flocked and injection-molded swabs. We quantified the swab pick-up and release, and determined the effect of viral load and mucus viscosity on swab efficacy by spiking the synthetic mucus with heat-inactivated SARS-CoV-2 virus. By molecular assays, we found that injected molded swabs performed similarly or superiorly in comparison to standard flocked swabs and we underscored a viscosity-dependent difference in cycle threshold values between the asymptomatic and symptomatic mucus for both swabs. To conclude, we developed an in vitro nasal tissue model, that corroborated previous swab performance data from clinical studies, with the potential of providing researchers with a clinically relevant, reproducible, safe, and cost-effective validation tool for the rapid development of newly designed swabs.
Collapse
|
21
|
Deruyver L, Rigaut C, Lambert P, Haut B, Goole J. The importance of pre-formulation studies and of 3D-printed nasal casts in the success of a pharmaceutical product intended for nose-to-brain delivery. Adv Drug Deliv Rev 2021; 175:113826. [PMID: 34119575 DOI: 10.1016/j.addr.2021.113826] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
This review aims to cement three hot topics in drug delivery: (a) the pre-formulation of new products intended for nose-to-brain delivery; (b) the development of nasal casts for studying the efficacy of potential new nose-to-brain delivery systems at the early of their development (pre-formulation); (c) the use of 3D printing based on a wide variety of materials (transparent, biocompatible, flexible) providing an unprecedented fabrication tool towards personalized medicine by printing nasal cast on-demand based on CT scans of patients. This review intends to show the links between these three subjects. Indeed, the pathway selected to administrate the drug to the brain not only influence the formulation strategies to implement but also the design of the cast, to get the most convincing measures from it. Moreover, the design of the cast himself influences the choice of the 3D-printing technology, which, in its turn, bring more constraints to the nasal replica design. Consequently, the formulation of the drug, the cast preparation and its realisation should be thought of as a whole and not separately.
Collapse
Affiliation(s)
- Laura Deruyver
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Clément Rigaut
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Pierre Lambert
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Benoît Haut
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
22
|
Chen J, Martin AR, Finlay WH. Recent In Vitro and In Silico Advances in the Understanding of Intranasal Drug Delivery. Curr Pharm Des 2021; 27:1482-1497. [PMID: 33183191 DOI: 10.2174/1381612826666201112143230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Due to the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. OBJECTIVE The study aims to perform a summary of advances in the understanding of intranasal drug delivery based on recent in vitro and in silico studies. CONCLUSION The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers can more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for the potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.
Collapse
Affiliation(s)
- John Chen
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Andrew R Martin
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Warren H Finlay
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
23
|
O'Doherty J, Mangini CD, Hamby DM, Boozer D, Singh N, Hippeläinen E. Estimation of absorbed radiation doses to skin and S-values for organs at risk due to nasal administration of PET agents using Monte Carlo simulations. Med Phys 2021; 48:871-880. [PMID: 33330987 DOI: 10.1002/mp.14669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/29/2020] [Accepted: 12/08/2020] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The intranasal (IN) administration of radiopharmaceuticals is of interest in being a viable route for the delivery of radiopharmaceuticals that do not ordinarily cross the blood-brain barrier (BBB). However, to be viable in a patient population, good image quality as well as safety of the administration should be demonstrated. This work provides radiation dosimetry calculations and simulations related to the radiation safety of performing such experiments in a human cohort. METHODS We performed Monte Carlo (MC) simulations to estimate radiation dose to the skin inside a cylindrical model of the nasal cavity assuming a homogenous distribution layer of 11 C and 18 F and calculated a geometry conversion factor (FP-C ) which can be used to convert from a planar geometry to a cylindrical geometry using more widely available software tools. We compared radiation doses from our simulated cylindrical geometry with the planar dose estimates employing our geometry conversion factor from VARSKIN 6.1 software and also from an analytical equation. Furthermore, in order to estimate radiation dosimetry to surrounding organs of interest, we performed a voxelized MC simulation of a fixed radioactivity inside the nasal cavity and calculated S-values to organs such as the eyes, thyroid, and brain. RESULTS MC simulations of contamination scenarios using planar absorbed doses of 15.50 and 8.60 mGy/MBq for 18 F and 11 C, respectively, and 35.70 and 19.80 mGy/MBq per hour for cylindrical geometries, leading to determination of an FP-C of 2.3. Planar absorbed doses (also in units of mGy/MBq) determined by the analytical equation were 16.96 and 8.68 (18 F and 11 C) and using VARSKIN were 16.60 and 9.26 (18 F and 11 C), respectively. Application of FP-C to these results demonstrates values with a maximum difference of 9.41% from the cylindrical geometry MC calculation, demonstrating that when accounting for geometry, more simplistic techniques can be utilized to estimate IN dosimetry. Voxelized MC simulations of radiation dosimetry from a fixed source of 1 MBq of activity confined to the nasal cavity resulted in S-values to the thyroid, eyes, and brain of 1.72 x 10-6 , 1.93 x 10-5 , and 3.51 x 10-6 mGy/MBq·s, respectively, for 18 F and 1.80 × 10-6 , 1.95 × 10-5 , and 3.54 × 10-6 mGy/MBq·s for 11 C. CONCLUSION Dosimetry concerns about IN administrations of PET radiotracers should be considered before clinical use. Values presented in the simulations such as the S-values can be further used for assessment of absorbed doses in cases of IN administration, and can be used to develop and adapt specific study protocols. All three presented methods provided similar results when considering the use of a geometry conversion factor for planar to cylindrical geometry, demonstrating that standard tools rather than dedicate MC simulations may be used to perform dose calculations in nasal administrations.
Collapse
Affiliation(s)
- Jim O'Doherty
- Clinical Imaging Research Centre, Centre for Translational Medicine, National University of Singapore, Singapore
| | | | - David M Hamby
- Renaissance Code Development LLC, Oregon, USA.,Department of Nuclear Science and Engineering, Oregon State University, Corvallis, USA
| | - David Boozer
- Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, Corvallis, USA
| | - Nisha Singh
- Department of Psychiatry, University of Oxford, UK
| | - Eero Hippeläinen
- Department of Physics, University of Helsinki, Helsinki, Finland.,HUS Medical imaging Center, Clinical Physiology and Nuclear Medicine, University of Helsinki and Helsinki University Hospital, Finland
| |
Collapse
|
24
|
Majcher MJ, Babar A, Lofts A, Leung A, Li X, Abu-Hijleh F, Smeets NMB, Mishra RK, Hoare T. In situ-gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. J Control Release 2020; 330:738-752. [PMID: 33383097 DOI: 10.1016/j.jconrel.2020.12.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/04/2020] [Accepted: 12/24/2020] [Indexed: 01/27/2023]
Abstract
Existing oral or injectable antipsychotic drug delivery strategies typically demonstrate low bioavailability to targeted brain regions, incentivizing the development of alternative delivery strategies. Delivery via the nasal cavity circumvents multiple barriers for reaching the brain but requires drug delivery vehicles with very specific properties to be effective. Herein, we report in situ-gelling and degradable bulk nanoparticle network hydrogels consisting of oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) that enable intranasal delivery via spray, high nasal mucosal retention, and functional controlled release of the peptide drug PAOPA, a positive allosteric modulator of dopamine D2 receptor. PAOPA-loaded SNP-CMCh hydrogels can alleviate negative symptoms like behavioural abnormalities associated with schizophrenia (i.e. decreased social interaction time) for up to 72 h in an MK-801-induced pre-clinical rat model of schizophrenia at a low drug dosage (0.5 mg/kg); in comparison, conventional PAOPA administration via the intraperitoneal route requires twice the PAOPA dose to achieve a therapeutic effect that persists for only a few hours. This strategy offers potential for substantially decreasing re-administration frequencies and overall drug doses (and thus side-effects) of a range of potential antipsychotic drugs via a minimally-invasive administration route.
Collapse
Affiliation(s)
- Michael J Majcher
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Ali Babar
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Andrew Lofts
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Ashlyn Leung
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Xiaoyun Li
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Fahed Abu-Hijleh
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Niels M B Smeets
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada
| | - Ram K Mishra
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
25
|
Role of nasal casts for in vitro evaluation of nasal drug delivery and quantitative evaluation of various nasal casts. Ther Deliv 2020; 11:485-495. [PMID: 32727298 DOI: 10.4155/tde-2020-0054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Nasal casts may characterize intranasal drug deposition. Methodology: The Koken cast, described as 'anatomically correct', and the Optinose cast, derived from MRI of a healthy male during velum closure, were dimensionally compared and assessed for deposition assessment suitability. Results: Smallest vertical cross-sectional areas (valve region) for Koken and Optinose right/left: 2.55/2.75 and 1.18/1.18 cm2, respectively, versus a 'normative' mean (range) of 0.85 cm2 (0.2-1.6 cm2). Intranasal volumes differed (computed tomography/water fill): Koken, 35.8/38.6 cm3 and Optinose, 24.1/25.0 cm3, versus a 'normative' mean (range) of 26.4 cm3 (20.9-31.1 cm3). Conclusion: Koken cast dimensions are larger than the normal range and the Optinose cast. The validity of casts for regulatory drug deposition studies is suspect.
Collapse
|
26
|
Chen JZ, Kiaee M, Martin AR, Finlay WH. In vitro assessment of an idealized nose for nasal spray testing: Comparison with regional deposition in realistic nasal replicas. Int J Pharm 2020; 582:119341. [DOI: 10.1016/j.ijpharm.2020.119341] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022]
|
27
|
Characterization of the Airflow within an Average Geometry of the Healthy Human Nasal Cavity. Sci Rep 2020; 10:3755. [PMID: 32111935 PMCID: PMC7048824 DOI: 10.1038/s41598-020-60755-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/17/2020] [Indexed: 11/08/2022] Open
Abstract
This study's objective was the generation of a standardized geometry of the healthy nasal cavity. An average geometry of the healthy nasal cavity was generated using a statistical shape model based on 25 symptom-free subjects. Airflow within the average geometry and these geometries was calculated using fluid simulations. Integral measures of the nasal resistance, wall shear stresses (WSS) and velocities were calculated as well as cross-sectional areas (CSA). Furthermore, individual WSS and static pressure distributions were mapped onto the average geometry. The average geometry featured an overall more regular shape that resulted in less resistance, reduced WSS and velocities compared to the median of the 25 geometries. Spatial distributions of WSS and pressure of the average geometry agreed well compared to the average distributions of all individual geometries. The minimal CSA of the average geometry was larger than the median of all individual geometries (83.4 vs. 74.7 mm²). The airflow observed within the average geometry of the healthy nasal cavity did not equal the average airflow of the individual geometries. While differences observed for integral measures were notable, the calculated values for the average geometry lay within the distributions of the individual parameters. Spatially resolved parameters differed less prominently.
Collapse
|
28
|
Kumar H, Jain R. Review: The role of computational simulation in understanding the postoperative sinonasal environment. Clin Biomech (Bristol, Avon) 2019; 68:212-220. [PMID: 31325767 DOI: 10.1016/j.clinbiomech.2018.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Nasal surgery improves symptoms in a majority of patients for whom medical treatment has failed. In rhinosinusitis patients, endoscopic sinus surgery aims to alleviate obstruction and re-establish mucociliary clearance. Surgery alters the structure-function relationship within the nasal passage, which is difficult to assess clinically. Computational modelling has been used to investigate this relationship by simulating air flow and environmental variables inside realistic three-dimensional models of the human nasal airway but many questions remain unanswered and need further investigation. The application of computational models to improve pre-surgical planning and post-surgical treatment may not be currently possible due to the absence of knowledge correlating the model-predicted parameters to physiological variables. Links between these parameters to patient outcomes are yet to be established. This article reviews the recent application of computational modelling to understand the nasal structure-function relationship following surgery in patients with sinusitis and nasal obstruction.
Collapse
Affiliation(s)
- Haribalan Kumar
- Auckland Bioengineering Institute, The University of Auckland, New Zealand.
| | - Ravi Jain
- Department of surgery, The University of Auckland, New Zealand
| |
Collapse
|
29
|
Abstract
The objective of this study was to investigate the effects of nasal valve area, valve stiffness, and turbinate region cross-sectional area on airflow rate, nasal resistance, flow limitation, and inspiratory "hysteresis" by the use of a mathematical model of nasal airflow. The model of O'Neill and Tolley (Clin Otolaryngol Allied Sci 13: 273-277, 1988) describing the effects of valve area and stiffness on the nasal pressure-flow relationship was improved by the incorporation of additional terms involving 1) airflow through the turbinate region, 2) the dependence of the flow coefficients for the valve and turbinate region on the Reynolds number, and 3) effects of unsteady flow. The model was found to provide a good fit for normal values for nasal resistance and for pressure-flow curves reported in the literature for both congested and decongested states. Also, by showing the relative contribution of the nasal valve and turbinate region to nasal resistance, the model sheds light in explaining the generally poor correlation between nasal resistance measurements and the results from acoustic rhinometry. Furthermore, by proposing different flow conditions for the acceleration and deceleration phases of inspiration, the model produces an inspiratory loop (commonly referred to as hysteresis) consistent with those reported in the literature. With simulation of nasal flaring, the magnitude of the loop, the nasal resistance, and flow limitation all show change similar to that observed in the experimental results.NEW & NOTEWORTHY The present model provides considerable insight into some difficult conundrums in both clinical and technical aspects of nasal airflow. Also, the description of nasal airflow mechanics based on the Hagen-Poiseuille equation and Reynolds laminar-turbulent transition in long straight tubes, which has figured prominently in medical textbooks and journal articles for many years, is shown to be seriously in error at a fundamental level.
Collapse
Affiliation(s)
- Graham O'Neill
- Department of Otolaryngology-Head and Neck Surgery, St Mary's Hospital, London, United Kingdom
| | - Neil Samuel Tolley
- Department of Otolaryngology-Head and Neck Surgery, St Mary's Hospital, London, United Kingdom
| |
Collapse
|
30
|
Borojeni AAT, Garcia GJM, Moghaddam MG, Frank-Ito DO, Kimbell JS, Laud PW, Koenig LJ, Rhee JS. Normative ranges of nasal airflow variables in healthy adults. Int J Comput Assist Radiol Surg 2019; 15:87-98. [PMID: 31267334 DOI: 10.1007/s11548-019-02023-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Virtual surgery planning based on computational fluid dynamics (CFD) simulations of nasal airflow has the potential to improve surgical outcomes for patients with nasal airway obstruction (NAO). Virtual surgery planning requires normative ranges of airflow variables, but few studies to date have quantified inter-individual variability of nasal airflow among healthy subjects. This study reports CFD simulations of nasal airflow in 47 healthy adults. METHODS Anatomically accurate three-dimensional nasal models were reconstructed from cone beam computed tomography scans and used for steady-state inspiratory airflow simulations with a bilateral flowrate of 250 ml/s. Normal subjective sensation of nasal patency was confirmed using the nasal obstruction symptom evaluation and visual analog scale. Healthy ranges for several CFD variables known to correlate with subjective nasal patency were computed, including unilateral airflow, nasal resistance, airspace minimal cross-sectional area (mCSA), heat flux (HF), and surface area stimulated by mucosal cooling (defined as the area where HF > 50 W/m2). The normative ranges were targeted to contain 95% of the healthy population and computed using a nonparametric method based on order statistics. RESULTS A wide range of inter-individual variability in nasal airflow was observed among healthy subjects. Unilateral airflow varied from 60 to 191 ml/s, airflow partitioning ranged from 23.8 to 76.2%, and unilateral mCSA varied from 0.24 to 1.21 cm2. These ranges are in good agreement with rhinomanometry and acoustic rhinometry data from the literature. A key innovation of this study are the normative ranges of flow variables associated with mucosal cooling, which recent research suggests is the primary physiological mechanism of nasal airflow sensation. Unilateral HF ranged from 94 to 281 W/m2, while the surface area stimulated by cooling ranged from 27.4 to 64.3 cm2. CONCLUSIONS These normative ranges may serve as targets in future virtual surgery planning for patients with NAO.
Collapse
Affiliation(s)
- Azadeh A T Borojeni
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Biomedical Engineering, Marquette University & The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Guilherme J M Garcia
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Department of Biomedical Engineering, Marquette University & The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Masoud Gh Moghaddam
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Biomedical Engineering, Marquette University & The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Dennis O Frank-Ito
- Division of Head and Neck Surgery and Communication Sciences, Duke University Medical Center, Durham, NC, USA.,Computational Biology and Bioinformatics Program, Duke University, Durham, NC, USA.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Julia S Kimbell
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Purushottam W Laud
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lisa J Koenig
- Department of Oral Medicine and Oral Radiology, Marquette University School of Dentistry, Milwaukee, WI, USA
| | - John S Rhee
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
31
|
Kumar H, Jain R. Review: The role of computational simulation in understanding the postoperative sinonasal environment. Clin Biomech (Bristol, Avon) 2019; 66:2-10. [PMID: 30195934 DOI: 10.1016/j.clinbiomech.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
Abstract
Nasal surgery improves symptoms in a majority of patients for whom medical treatment has failed. In rhinosinusitis patients, endoscopic sinus surgery aims to alleviate obstruction and re-establish mucociliary clearance. Surgery alters the structure-function relationship within the nasal passage, which is difficult to assess clinically. Computational modelling has been used to investigate this relationship by simulating air flow and environmental variables inside realistic three-dimensional models of the human nasal airway but many questions remain unanswered and need further investigation. The application of computational models to improve pre-surgical planning and post-surgical treatment may not be currently possible due to the absence of knowledge correlating the model-predicted parameters to physiological variables. Links between these parameters to patient outcomes are yet to be established. This article reviews the recent application of computational modelling to understand the nasal structure-function relationship following surgery in patients with sinusitis and nasal obstruction.
Collapse
Affiliation(s)
- Haribalan Kumar
- Auckland Bioengineering Institute, The University of Auckland, New Zealand.
| | - Ravi Jain
- Department of surgery, The University of Auckland, New Zealand
| |
Collapse
|
32
|
Kiaee M, Wachtel H, Noga ML, Martin AR, Finlay WH. An idealized geometry that mimics average nasal spray deposition in adults: A computational study. Comput Biol Med 2019; 107:206-217. [PMID: 30851506 DOI: 10.1016/j.compbiomed.2019.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/05/2019] [Accepted: 02/18/2019] [Indexed: 11/30/2022]
Abstract
This work describes the development of an idealized geometry that mimics average regional deposition of nasal sprays within realistic adult nasal geometries. Previous simulation results in seven realistic nasal airways (Kiaee et al. Int. J. Num. Methods Biomed. Eng. 34: e2968, 2018) were used to establish target values of regional deposition. Characteristic geometric features observed to be common to all the realistic nasal airway geometries studied were extracted and included in the idealized geometry. Additional geometric features and size scaling were explored, in order to enhance deposition in specific regions based on the results of simulations done in preliminary versions of the idealized geometry. In total, more than one hundred thousand simulation cases were conducted across a range of particle parameters and geometric shapes in order to reach the final idealized geometry presented herein. For droplet velocities of 0-20 m/s, droplet sizes of 5-40 μm and at an inhalation flow rate of 15 l/min, regional deposition in the final idealized geometry compares favourably with average deposition in each of the vestibule, valve, olfactory, turbinate, nasopharynx, and outlet regions in the realistic geometries. The proposed idealized nasal geometry has potential for use in the development and testing of nasal drug delivery systems, allowing researchers to estimate in vivo regional nasal deposition patterns using a simple benchtop test apparatus.
Collapse
Affiliation(s)
- Milad Kiaee
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | | | - Michelle L Noga
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada
| | - Andrew R Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.
| |
Collapse
|
33
|
Bickerton R, Nassimizadeh AK, Ahmed S. Three-dimensional endoscopy: The future of nasoendoscopic training. Laryngoscope 2019; 129:1280-1285. [PMID: 30628084 DOI: 10.1002/lary.27812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS Three-dimensional (3D) endoscopy is an emerging tool in surgery that provides real-time depth perception. Its benefits have been investigated in surgical training, but the current literature lacks significant objective outcome data. We aimed to objectively compare the efficacy of two-dimensional (2D) versus 3D high-definition endoscopes in novice users. STUDY DESIGN Prospective, randomized crossover study. METHODS Ninety-two novice medical students who used both 2D and 3D endoscopes to complete two validated tasks in a box trainer participated in the study. Time taken and error rates were measured, and subjective data were collected. RESULTS Wilcoxon tests showed 3D technology was significantly faster than 2D (78 vs. 95 seconds, P = .004), and errors per task were significantly lower (3 vs. 5, P < .001). Sixty-nine percent of participants preferred the 3D endoscope. CONCLUSIONS 3D high-definition endoscopy could be instrumental in training the next generation of endoscopic surgeons. Further research is required in a clinical setting. LEVEL OF EVIDENCE 2b Laryngoscope, 129:1280-1285, 2019.
Collapse
Affiliation(s)
| | - Abdul-Karim Nassimizadeh
- Department of Ear, Nose and Throat (ENT) Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Shahzada Ahmed
- Department of Ear, Nose and Throat (ENT) Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
34
|
Frank-Ito DO, Kimbell JS, Borojeni AAT, Garcia GJM, Rhee JS. A hierarchical stepwise approach to evaluate nasal patency after virtual surgery for nasal airway obstruction. Clin Biomech (Bristol, Avon) 2019; 61:172-180. [PMID: 30594764 PMCID: PMC6813815 DOI: 10.1016/j.clinbiomech.2018.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite advances in medicine and expenditures associated in treatment of nasal airway obstruction, 25-50% of patients undergoing nasal surgeries complain of persistent obstructive symptoms. Our objective is to develop a "stepwise virtual surgery" method that optimizes surgical outcomes for treatment of nasal airway obstruction. METHODS Pre-surgery radiographic images of two subjects with nasal airway obstruction were imported into Mimics imaging software package for three-dimension reconstruction of the airway. A hierarchical stepwise approach was used to create seven virtual surgery nasal models comprising individual (inferior turbinectomy or septoplasty) procedures and combined inferior turbinectomy and septoplasty procedures via digital modifications of each subject's pre-surgery nasal model. To evaluate the effects of these procedures on nasal patency, computational fluid dynamics modeling was used to perform steady-state laminar inspiratory airflow and heat transfer simulations in every model, at resting breathing. Airflow-related variables were calculated for virtual surgery models and compared with dataset containing results of healthy subjects with no symptoms of nasal obstruction. FINDINGS For Subject 1, nasal models with virtual septoplasty only and virtual septoplasty plus inferior turbinectomy on less obstructed side were within the healthy reference thresholds on both sides of the nasal cavity and across all three computed variables. For Subject 2, virtual septoplasty plus inferior turbinectomy on less obstructed side model produced the best result. INTERPRETATION The hierarchical stepwise approach implemented in this preliminary report demonstrates computational fluid dynamics modeling ability to evaluate the efficiency of different surgical procedures for nasal obstruction in restoring nasal patency to normative level.
Collapse
Affiliation(s)
- Dennis O. Frank-Ito
- Division of Head and Neck Surgery & Communication Sciences, Durham, NC, U.S.A,Computational Biology & Bioinformatics Program, Duke University, Durham, NC, U.S.A,Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, U.S.A
| | - Julia S. Kimbell
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, U.S.A
| | - Azadeh A. T. Borojeni
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, U.S.A,Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Guilherme J. M. Garcia
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, U.S.A,Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - John S. Rhee
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| |
Collapse
|
35
|
Keustermans W, Huysmans T, Danckaers F, Zarowski A, Schmelzer B, Sijbers J, Dirckx JJJ. High quality statistical shape modelling of the human nasal cavity and applications. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181558. [PMID: 30662757 PMCID: PMC6304114 DOI: 10.1098/rsos.181558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/19/2018] [Indexed: 05/07/2023]
Abstract
The human nose is a complex organ that shows large morphological variations and has many important functions. However, the relation between shape and function is not yet fully understood. In this work, we present a high quality statistical shape model of the human nose based on clinical CT data of 46 patients. A technique based on cylindrical parametrization was used to create a correspondence between the nasal shapes of the population. Applying principal component analysis on these corresponded nasal cavities resulted in an average nasal geometry and geometrical variations, known as principal components, present in the population with a high precision. The analysis led to 46 principal components, which account for 95% of the total geometrical variation captured. These variations are first discussed qualitatively, and the effect on the average nasal shape of the first five principal components is visualized. Hereafter, by using this statistical shape model, two application examples that lead to quantitative data are shown: nasal shape in function of age and gender, and a morphometric analysis of different anatomical regions. Shape models, as the one presented here, can help to get a better understanding of nasal shape and variation, and their relationship with demographic data.
Collapse
Affiliation(s)
- William Keustermans
- Physics Department, University of Antwerp, Laboratory of Biophysics and Biomedical Physics, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Toon Huysmans
- Faculty of Industrial Design Engineering, TU Delft, Landbergstraat 15, 2628 CE Delft, The Netherlands
- Physics Department, University of Antwerp, Imec-Vision Lab, Edegemsesteenweg 200-240, 2610 Antwerp, Belgium
| | - Femke Danckaers
- Physics Department, University of Antwerp, Imec-Vision Lab, Edegemsesteenweg 200-240, 2610 Antwerp, Belgium
| | - Andrzej Zarowski
- ENT Department, GZA Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Antwerp, Belgium
| | - Bert Schmelzer
- ENT Department, ZNA Middelheim Hospital, Lindendreef 1, 2020 Antwerp, Belgium
| | - Jan Sijbers
- Physics Department, University of Antwerp, Imec-Vision Lab, Edegemsesteenweg 200-240, 2610 Antwerp, Belgium
| | - Joris J. J. Dirckx
- Physics Department, University of Antwerp, Laboratory of Biophysics and Biomedical Physics, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
36
|
Zwicker D, Yang K, Melchionna S, Brenner MP, Liu B, Lindsay RW. Validated reconstructions of geometries of nasal cavities from CT scans. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aac6af] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Warnken ZN, Smyth HDC, Davis DA, Weitman S, Kuhn JG, Williams RO. Personalized Medicine in Nasal Delivery: The Use of Patient-Specific Administration Parameters To Improve Nasal Drug Targeting Using 3D-Printed Nasal Replica Casts. Mol Pharm 2018; 15:1392-1402. [PMID: 29485888 DOI: 10.1021/acs.molpharmaceut.7b00702] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Effective targeting of nasal spray deposition could improve local, systemic, and CNS drug delivery; however, this has proven to be difficult due to the anatomical features of the nasal cavity, including the nasal valve and turbinate structures. Furthermore, nasal cavity geometries and dimensions vary between individuals based on differences in their age, gender, and ethnicity. The effect of patient-specific administration parameters was evaluated for their ability to overcome the barriers of targeted nasal drug delivery. The nasal spray deposition was evaluated in 10 3D-printed nasal cavity replicas developed based on the CT-scans of five pediatric and five adult subjects. Cromolyn sodium nasal solution, USP, modified with varying concentrations of hypromellose was utilized as a model nasal spray to evaluate the deposition pattern from formulations producing a variety of plume angles. A central composite design of experiments was implemented using the formulation with the narrowest plume angle to determine the patient-specific angle for targeting the turbinate region in each individual. The use of the patient-specific angle with this formulation significantly increased the turbinate deposition efficiency compared to that found for all subjects using an administration angle of 30°, around 90% compared to about 73%. Generally, we found turbinate deposition increased with decreases in the administration angle. Deposition to the upper regions of the replica was poor with any formulation or administration angle tested. Effective turbinate targeting of nasal sprays can be accomplished with the use of patient-specific administration parameters in individuals. Further research is required to see if these parameters can be device-controlled for patients and if other regions can be effectively targeted with other nasal devices.
Collapse
Affiliation(s)
- Zachary N Warnken
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Daniel A Davis
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Steve Weitman
- Institute for Drug Development, Cancer Therapy and Research Center (CTRC), University of Texas Health San Antonio , 7979 Wurzbach Dr. , San Antonio , Texas 78229 , United States
| | - John G Kuhn
- Division of Pharmacotherapy, College of Pharmacy, University of Texas at Austin , Austin , Texas 78712 , United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
38
|
Physical and geometric constraints shape the labyrinth-like nasal cavity. Proc Natl Acad Sci U S A 2018; 115:2936-2941. [PMID: 29507204 DOI: 10.1073/pnas.1714795115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nasal cavity is a vital component of the respiratory system that heats and humidifies inhaled air in all vertebrates. Despite this common function, the shapes of nasal cavities vary widely across animals. To understand this variability, we here connect nasal geometry to its function by theoretically studying the airflow and the associated scalar exchange that describes heating and humidification. We find that optimal geometries, which have minimal resistance for a given exchange efficiency, have a constant gap width between their side walls, while their overall shape can adhere to the geometric constraints imposed by the head. Our theory explains the geometric variations of natural nasal cavities quantitatively, and we hypothesize that the trade-off between high exchange efficiency and low resistance to airflow is the main driving force shaping the nasal cavity. Our model further explains why humans, whose nasal cavities evolved to be smaller than expected for their size, become obligate oral breathers in aerobically challenging situations.
Collapse
|
39
|
Abstract
The nasal route is commonly used for local delivery of drugs to treat inflammatory conditions. It is also an attractive route for systemic delivery of some drugs. Irrespective of intended use, administered drugs must permeate the epithelial or olfactory membrane to be effective. The enthusiasm for potential use of the nasal route for systemic drug delivery has not been met by comparable success. In this paper, the anatomical and physiological attributes of the nasal cavity and paranasal sinuses important for drug delivery and challenges limiting drug absorption are discussed. Efforts made so far in improving nasal drug absorption such as overcoming restrictive nasal geometry and paranasal sinuses accessibility, mucociliary clearance, absorption barriers, metabolism and drug physicochemical challenges are discussed. Highlights on future prospects of nasal drug delivery/absorption were discussed.
Collapse
|
40
|
Pawar SS, Garcia GJM, Rhee JS. Advances in Technology for Functional Rhinoplasty: The Next Frontier. Facial Plast Surg Clin North Am 2017; 25:263-270. [PMID: 28340656 DOI: 10.1016/j.fsc.2016.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Advances in computer modeling and simulation technologies have the potential to provide facial plastic surgeons with information and tools that can aid in patient-specific surgical planning for rhinoplasty. Finite element modeling and computational fluid dynamics are modeling technologies that have been applied to the nose to study structural biomechanics and nasal airflow. Combining these technologies with patient-specific imaging data and symptom measures has the potential to alter the future landscape of nasal surgery.
Collapse
Affiliation(s)
- Sachin S Pawar
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.
| | - Guilherme J M Garcia
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA; Department of Biomedical Engineering, Marquette University & the Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - John S Rhee
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| |
Collapse
|
41
|
Nejati A, Kabaliuk N, Jermy MC, Cater JE. A deformable template method for describing and averaging the anatomical variation of the human nasal cavity. BMC Med Imaging 2016; 16:55. [PMID: 27716092 PMCID: PMC5045586 DOI: 10.1186/s12880-016-0154-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 08/11/2016] [Indexed: 11/24/2022] Open
Abstract
Background Understanding airflow through human airways is of importance in drug delivery and development of assisted breathing methods. In this work, we focus on development of a new method to obtain an averaged upper airway geometry from computed tomography (CT) scans of many individuals. This geometry can be used for air flow simulation. We examine the geometry resulting from a data set consisting of 26 airway scans. The methods used to achieve this include nasal cavity segmentation and a deformable template matching procedure. Methods The method uses CT scans of the nasal cavity of individuals to obtain a segmented mesh, and coronal cross-sections of this segmented mesh are taken. The cross-sections are processed to extract the nasal cavity, and then thinned (‘skeletonized’) representations of the airways are computed. A reference template is then deformed such that it lies on this thinned representation. The average of these deformations is used to obtain the average geometry. Our procedure tolerates a wider variety of nasal cavity geometries than earlier methods. Results To assess the averaging method, key landmark points on each of the input scans as well as the output average geometry are located and compared with one another, showing good agreement. In addition, the cross-sectional area (CSA) profile of the nasal cavities of the input scans and average geometry are also computed, showing that the CSA of the average model falls within the variation of the population. Conclusions The use of a deformable template method for aligning and averaging the nasal cavity provides an improved, detailed geometry that is unavailable without using deformation. Electronic supplementary material The online version of this article (doi:10.1186/s12880-016-0154-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alireza Nejati
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Natalia Kabaliuk
- Department of Mechanical Engineering, the University of Canterbury, Christchurch, New Zealand
| | - Mark C Jermy
- Department of Mechanical Engineering, the University of Canterbury, Christchurch, New Zealand
| | - John E Cater
- Department of Engineering Science, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
42
|
Engelhardt L, Röhm M, Mavoungou C, Schindowski K, Schafmeister A, Simon U. First Steps to Develop and Validate a CFPD Model in Order to Support the Design of Nose-to-Brain Delivered Biopharmaceuticals. Pharm Res 2016; 33:1337-50. [PMID: 26887679 DOI: 10.1007/s11095-016-1875-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/08/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE Aerosol particle deposition in the human nasal cavity is of high interest in particular for intranasal central nervous system (CNS) drug delivery via the olfactory cleft. The objective of this study was the development and comparison of a numerical and experimental model to investigate various parameters for olfactory particle deposition within the complex anatomical nasal geometry. METHODS Based on a standardized nasal cavity, a computational fluid and particle dynamics (CFPD) model was developed that enables the variation and optimization of different parameters, which were validated by in vitro experiments using a constructed rapid-prototyped human nose model. RESULTS For various flow rates (5 to 40 l/min) and particle sizes (1 to 10 μm), the airflow velocities, the calculated particle airflow patterns and the particle deposition correlated very well with the experiment. Particle deposition was investigated numerically by varying particle sizes at constant flow rate and vice versa assuming the particle size distribution of the used nebulizer. CONCLUSIONS The developed CFPD model could be directly translated to the in vitro results. Hence, it can be applied for parameter screening and will contribute to the improvement of aerosol particle deposition at the olfactory cleft for CNS drug delivery in particular for biopharmaceuticals.
Collapse
Affiliation(s)
- Lucas Engelhardt
- Scientific Computing Centre Ulm, Ulm University, Helmholtzstraße 20, 89081, Ulm, Germany
| | - Martina Röhm
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany. .,Faculty of Medicine, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Chrystelle Mavoungou
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany
| | - Annette Schafmeister
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany
| | - Ulrich Simon
- Scientific Computing Centre Ulm, Ulm University, Helmholtzstraße 20, 89081, Ulm, Germany
| |
Collapse
|
43
|
|
44
|
Xiong H, Huang X, Li Y, Li J, Xian J, Huang Y. A Method for Accurate Reconstructions of the Upper Airway Using Magnetic Resonance Images. PLoS One 2015; 10:e0130186. [PMID: 26066461 PMCID: PMC4465749 DOI: 10.1371/journal.pone.0130186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/16/2015] [Indexed: 11/20/2022] Open
Abstract
Objective The purpose of this study is to provide an optimized method to reconstruct the structure of the upper airway (UA) based on magnetic resonance imaging (MRI) that can faithfully show the anatomical structure with a smooth surface without artificial modifications. Methods MRI was performed on the head and neck of a healthy young male participant in the axial, coronal and sagittal planes to acquire images of the UA. The level set method was used to segment the boundary of the UA. The boundaries in the three scanning planes were registered according to the positions of crossing points and anatomical characteristics using a Matlab program. Finally, the three-dimensional (3D) NURBS (Non-Uniform Rational B-Splines) surface of the UA was constructed using the registered boundaries in all three different planes. Results A smooth 3D structure of the UA was constructed, which captured the anatomical features from the three anatomical planes, particularly the location of the anterior wall of the nasopharynx. The volume and area of every cross section of the UA can be calculated from the constructed 3D model of UA. Conclusions A complete scheme of reconstruction of the UA was proposed, which can be used to measure and evaluate the 3D upper airway accurately.
Collapse
Affiliation(s)
- Huahui Xiong
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xiaoqing Huang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yong Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Jianhong Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- * E-mail: (YH); (JX)
| | - Yaqi Huang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- * E-mail: (YH); (JX)
| |
Collapse
|
45
|
Walenga RL, Tian G, Hindle M, Yelverton J, Dodson K, Longest PW. Variability in Nose-to-Lung Aerosol Delivery. JOURNAL OF AEROSOL SCIENCE 2014; 78:11-29. [PMID: 25308992 PMCID: PMC4187112 DOI: 10.1016/j.jaerosci.2014.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nasal delivery of lung targeted pharmaceutical aerosols is ideal for drugs that need to be administered during high flow nasal cannula (HFNC) gas delivery, but based on previous studies losses and variability through both the delivery system and nasal cavity are expected to be high. The objective of this study was to assess the variability in aerosol delivery through the nose to the lungs with a nasal cannula interface for conventional and excipient enhanced growth (EEG) delivery techniques. A database of nasal cavity computed tomography (CT) scans was collected and analyzed, from which four models were selected to represent a wide range of adult anatomies, quantified based on the nasal surface area-to-volume ratio (SA/V). Computational fluid dynamics (CFD) methods were validated with existing in vitro data and used to predict aerosol delivery through a streamlined nasal cannula and the four nasal models at a steady state flow rate of 30 L/min. Aerosols considered were solid particles for EEG delivery (initial 0.9 μm and 1.5 μm aerodynamic diameters) and conventional droplets (5 μm) for a control case. Use of the EEG approach was found to reduce depositional losses in the nasal cavity by an order of magnitude and substantially reduce variability. Specifically, for aerosol deposition efficiency in the four geometries, the 95% confidence intervals (CI) for 0.9 and 5 μm aerosols were 2.3-3.1 and 15.5-66.3%, respectively. Simulations showed that the use of EEG as opposed to conventional methods improved delivered dose of aerosols through the nasopharynx, expressed as penetration fraction (PF), by approximately a factor of four. Variability of PF, expressed by the coefficient of variation (CV), was reduced by a factor of four with EEG delivery compared with the control case. Penetration fraction correlated well with SA/V for larger aerosols, but smaller aerosols showed some dependence on nasopharyngeal exit hydraulic diameter. In conclusion, results indicated that the EEG technique not only improved lung aerosol delivery, but largely eliminated variability in both nasal depositional loss and lung PF in a newly developed set of nasal airway models.
Collapse
Affiliation(s)
- Ross L Walenga
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA
| | - Geng Tian
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA
| | - Joshua Yelverton
- Department of Otolaryngology – Head and Neck Surgery, Virginia Commonwealth University, Richmond, VA
| | - Kelley Dodson
- Department of Otolaryngology – Head and Neck Surgery, Virginia Commonwealth University, Richmond, VA
| | - P. Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
46
|
Inthavong K, Shang Y, Tu J. Surface mapping for visualization of wall stresses during inhalation in a human nasal cavity. Respir Physiol Neurobiol 2013; 190:54-61. [PMID: 24051139 DOI: 10.1016/j.resp.2013.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 11/25/2022]
Abstract
Airflow analysis can assist in better understanding the physiology however the human nasal cavity is an extremely complicated geometry that is difficult to visualize in 3D space, let alone in 2D space. In this paper, an anatomically accurate 3D surface of the nasal passages derived from CT data was unwrapped and transformed into a 2D space, into a UV-domain (where u and v are the coordinates) to allow a complete view of the entire wrapped surface. This visualization technique allows surface flow parameters to be analyzed with greater precision. A UV-unwrapping tool is developed and a strategy is presented to allow deeper analysis to be performed. This includes (i) the ability to present instant comparisons of geometry and flow variables between any number of different nasal cavity models through normalization of the 2D unwrapped surface; (ii) visualization of an entire surface in one view and; (iii) a planar surface that allows direct 1D and 2D analytical solutions of diffusion of inhaled vapors and particles through the nasal walls. This work lays a foundation for future investigations that correlates adverse and therapeutic health responses to local inhalation of gases and particles.
Collapse
Affiliation(s)
- Kiao Inthavong
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Australia
| | | | | |
Collapse
|
47
|
Standardization of Malaysian adult female nasal cavity. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:519071. [PMID: 23840279 PMCID: PMC3697144 DOI: 10.1155/2013/519071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 05/31/2013] [Indexed: 11/17/2022]
Abstract
This research focuses on creating a standardized nasal cavity model of adult Malaysian females. The methodology implemented in this research is a new approach compared to other methods used by previous researchers. This study involves 26 females who represent the test subjects for this preliminary study. Computational fluid dynamic (CFD) analysis was carried out to better understand the characteristics of the standardized model and to compare it to the available standardized Caucasian model. This comparison includes cross-sectional areas for both half-models as well as velocity contours along the nasal cavities. The Malaysian female standardized model is larger in cross-sectional area compared to the standardized Caucasian model thus leading to lower average velocity magnitudes. The standardized model was further evaluated with four more Malaysian female test subjects based on its cross-sectional areas and average velocity magnitudes along the nasal cavities. This evaluation shows that the generated model represents an averaged and standardized model of adult Malaysian females.
Collapse
|
48
|
Louis B, Papon JF, Croce C, Caillibotte G, Sbirlea-Apiou G, Coste A, Fodil R, Isabey D. Frictional resistance sheds light on the multicomponent nature of nasal obstruction: a combined in vivo and computational fluid dynamics study. Respir Physiol Neurobiol 2013; 188:133-42. [PMID: 23727227 DOI: 10.1016/j.resp.2013.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 05/19/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
Exploring nasal flow contributes to better understanding of pathophysiological functions of nasal cavities. We combined the rhinomanometry measurements of 11 patients and computational fluid dynamics (CFD) simulations in 3 nasal airway models to dissect the complex mechanisms that determine nasal flow obstruction: spatial complexity and pressure-dependent deformability of nasal airways. We quantified spatial complexity by calculating longitudinal variations of hydraulic diameter, perimeter and area of nasal cavities, and their impact on flow characteristics by examining the longitudinal variations of the kinetic energy coefficient and the kinetic to potential energy ratio. Airway distensibility variably affected in vivo pressure-flow relationships through the appearance of flow-limitation patterns characterized by maximum flow and/or flow plateau. We quantified deformability and spatial complexity effects on nasal airway resistance by normalizing all data with averaged reference parameters. The results show that discrepancies in nasal flow resistances reflect airway deformability and geometrical complexity, and thereby constitute a framework to better characterize nasal obstruction.
Collapse
Affiliation(s)
- Bruno Louis
- Inserm, U955, Equipe 13, Cell and Respiratory Mechanics Department, 8, rue du Général Sarrail, F-94010 Créteil Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim SK, Na Y, Kim JI, Chung SK. Patient specific CFD models of nasal airflow: overview of methods and challenges. J Biomech 2012; 46:299-306. [PMID: 23261244 DOI: 10.1016/j.jbiomech.2012.11.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 11/09/2012] [Indexed: 11/30/2022]
Abstract
Respiratory physiology and pathology are strongly dependent on the airflow inside the nasal cavity. However, the nasal anatomy, which is characterized by complex airway channels and significant individual differences, is difficult to analyze. Thus, commonly adopted diagnostic tools have yielded limited success. Nevertheless, with the rapid advances in computer resources, there have been more elaborate attempts to correlate airflow characteristics in human nasal airways with the symptoms and functions of the nose by computational fluid dynamics study. Furthermore, the computed nasal geometry can be virtually modified to reflect predicted results of the proposed surgical technique. In this article, several computational fluid mechanics (CFD) issues on patient-specific three dimensional (3D) modeling of nasal cavity and clinical applications were reviewed in relation to the cases of deviated nasal septum (decision for surgery), turbinectomy, and maxillary sinus ventilation (simulated- and post-surgery). Clinical relevance of fluid mechanical parameters, such as nasal resistance, flow allocation, wall shear stress, heat/humidity/NO gas distributions, to the symptoms and surgical outcome were discussed. Absolute values of such parameters reported by many research groups were different each other due to individual difference of nasal anatomy, the methodology for 3D modeling and numerical grid, laminar/turbulent flow model in CFD code. But, the correlation of these parameters to symptoms and surgery outcome seems to be obvious in each research group with subject-specific models and its variations (virtual- and post-surgery models). For the more reliable, patient-specific, and objective tools for diagnosis and outcomes of nasal surgery by using CFD, the future challenges will be the standardizations on the methodology for creating 3D airway models and the CFD procedures.
Collapse
Affiliation(s)
- Sung Kyun Kim
- Department of Mechanical Engineering, Konkuk University, Seoul, Republic of Korea.
| | | | | | | |
Collapse
|
50
|
Lewis AL, Jordan F, Illum L. CriticalSorb™: enabling systemic delivery of macromolecules via the nasal route. Drug Deliv Transl Res 2012; 3:26-32. [DOI: 10.1007/s13346-012-0089-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|