1
|
Sundaram S, Shao X, Chung RS, Martin Del Campo Vera R, Cavaleri J, Parra M, Zhang S, Swarup A, Kammen A, Heck C, Liu CY, Kellis SS, Lee B. Beta-band power modulation in the human amygdala during a delayed reach task. J Clin Neurosci 2025; 135:111151. [PMID: 40020562 DOI: 10.1016/j.jocn.2025.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION The amygdala is mostly known for its roles in emotional processing and social behavior. In recent years, it has been implicated in voluntary motor control due to its structural and functional connectivity with the motor cortex. By investigating whether the amygdala modulates during movement preparation, we can further examine its contributions to motor processing. OBJECTIVE We utilized a delayed reach task to measure beta-band (13-30 Hz) modulation in the amygdala during movement preparation. We hypothesized that we would see decreases in beta-band power during the Delay and Response phases of this task. METHODS Eleven subjects diagnosed with drug-resistant epilepsy (DRE), who were implanted with stereoelectroencephalographic (SEEG) electrodes, were recruited to this study. The beta-band power was recorded through a delayed reach task. We calculated the beta-band Power Spectral Density (PSD) using multi-taper spectral analysis and compared the trial-averaged PSD using a cluster-based permutation test to determine the significance of beta-band power differences between task phases. RESULTS 100 % of participants and 44.8 % of gray matter contacts in the amygdala (n = 58) exhibited significantly decreased beta-band power during the Delay phase. During the Response phase, 90.9 % of participants and 58.6 % of gray matter contacts (n = 58) showed significantly decreased beta-band power. We also found a difference in the proportion of amygdala contacts showing beta-band modulation between those implanted in gray vs. white matter (p = 0.0035) but found no difference between contralateral vs. ipsilateral contacts (p = 0.17) and male vs. female participants (p = 0.34). CONCLUSION This study is the first to demonstrate beta-band power decreases in the amygdala during the Delay and Response phases of a delayed reach task. These findings demonstrate that the amygdala undergoes neural modulation prior to movement initiation and during movement execution.
Collapse
Affiliation(s)
- Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiecheng Shao
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Ryan S Chung
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Roberto Martin Del Campo Vera
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Miguel Parra
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Selena Zhang
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Adith Swarup
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Christi Heck
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Quirmbach F, Limanowski J. Visuomotor prediction during action planning in the human frontoparietal cortex and cerebellum. Cereb Cortex 2024; 34:bhae382. [PMID: 39325000 DOI: 10.1093/cercor/bhae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
The concept of forward models in the brain, classically applied to describing on-line motor control, can in principle be extended to action planning, i.e. assuming forward sensory predictions are issued during the mere preparation of movements. To test this idea, we combined a delayed movement task with a virtual reality based manipulation of visuomotor congruence during functional magnetic resonance imaging. Participants executed simple hand movements after a delay. During the delay, two aspects of the upcoming movement could be cued: the movement type and the visuomotor mapping (i.e. congruence of executed hand movements and visual movement feedback by a glove-controlled virtual hand). Frontoparietal areas showed increased delay period activity when preparing pre-specified movements (cued > uncued). The cerebellum showed increased activity during the preparation for incongruent > congruent visuomotor mappings. The left anterior intraparietal sulcus showed an interaction effect, responding most strongly when a pre-specified (cued) movement was prepared under expected visuomotor incongruence. These results suggest that motor planning entails a forward prediction of visual body movement feedback, which can be adjusted in anticipation of nonstandard visuomotor mappings, and which is likely computed by the cerebellum and integrated with state estimates for (planned) control in the anterior intraparietal sulcus.
Collapse
Affiliation(s)
- Felix Quirmbach
- Faculty of Psychology, Technical University of Dresden, Helmholtzstraße 10, 01069 Dresden, Germany
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
| | - Jakub Limanowski
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
- Institute of Psychology, University of Greifswald, Franz-Mehring-Straße 47, 17489 Greifswald, Germany
| |
Collapse
|
3
|
Ghin F, Eggert E, Gholamipourbarogh N, Talebi N, Beste C. Response stopping under conflict: The integrative role of representational dynamics associated with the insular cortex. Hum Brain Mapp 2024; 45:e26643. [PMID: 38664992 PMCID: PMC11046082 DOI: 10.1002/hbm.26643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 04/29/2024] Open
Abstract
Coping with distracting inputs during goal-directed behavior is a common challenge, especially when stopping ongoing responses. The neural basis for this remains debated. Our study explores this using a conflict-modulation Stop Signal task, integrating group independent component analysis (group-ICA), multivariate pattern analysis (MVPA), and EEG source localization analysis. Consistent with previous findings, we show that stopping performance is better in congruent (nonconflicting) trials than in incongruent (conflicting) trials. Conflict effects in incongruent trials compromise stopping more due to the need for the reconfiguration of stimulus-response (S-R) mappings. These cognitive dynamics are reflected by four independent neural activity patterns (ICA), each coding representational content (MVPA). It is shown that each component was equally important in predicting behavioral outcomes. The data support an emerging idea that perception-action integration in action-stopping involves multiple independent neural activity patterns. One pattern relates to the precuneus (BA 7) and is involved in attention and early S-R processes. Of note, three other independent neural activity patterns were associated with the insular cortex (BA13) in distinct time windows. These patterns reflect a role in early attentional selection but also show the reiterated processing of representational content relevant for stopping in different S-R mapping contexts. Moreover, the insular cortex's role in automatic versus complex response selection in relation to stopping processes is shown. Overall, the insular cortex is depicted as a brain hub, crucial for response selection and cancellation across both straightforward (automatic) and complex (conditional) S-R mappings, providing a neural basis for general cognitive accounts on action control.
Collapse
Affiliation(s)
- Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Elena Eggert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Negin Gholamipourbarogh
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| |
Collapse
|
4
|
Pawlowsky C, Thénault F, Bernier PM. Implicit Sensorimotor Adaptation Proceeds in Absence of Movement Execution. eNeuro 2023; 10:ENEURO.0508-22.2023. [PMID: 37463743 PMCID: PMC10405882 DOI: 10.1523/eneuro.0508-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
In implicit sensorimotor adaptation, a mismatch between the predicted and actual sensory feedback results in a sensory prediction error (SPE). Sensory predictions have long been thought to be linked to descending motor commands, implying a necessary contribution of movement execution to adaptation. However, recent work has shown that mere motor imagery (MI) also engages predictive mechanisms, opening up the possibility that MI might be sufficient to drive implicit adaptation. In a within-subject design in humans (n = 30), implicit adaptation was assessed in a center-out reaching task, following a single exposure to a visuomotor rotation. It was hypothesized that performing MI of a reaching movement while being provided with an animation of rotated visual feedback (MI condition) would lead to postrotation biases (PRBs) similar to those observed when the movement is executed (Execution condition). Results revealed that both the MI and Execution conditions led to significant directional biases following rotated trials. Yet the magnitude of these biases was significantly larger in the Execution condition. To further probe the contribution of MI to adaptation, a Control condition was conducted in which participants were presented with the same rotated visual animation as in the MI condition, but in which they were prevented from performing MI. Surprisingly, significant biases were also observed in the Control condition, suggesting that MI per se may not have accounted for adaptation. Overall, these results suggest that implicit adaptation can be partially supported by processes other than those that strictly pertain to generating motor commands, although movement execution does potentiate it.
Collapse
Affiliation(s)
- Constance Pawlowsky
- Département de kinanthropologie, Faculté des Sciences de l'Activité Physique, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - François Thénault
- Département de kinanthropologie, Faculté des Sciences de l'Activité Physique, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Pierre-Michel Bernier
- Département de kinanthropologie, Faculté des Sciences de l'Activité Physique, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| |
Collapse
|
5
|
Klautke J, Foster C, Medendorp WP, Heed T. Dynamic spatial coding in parietal cortex mediates tactile-motor transformation. Nat Commun 2023; 14:4532. [PMID: 37500625 PMCID: PMC10374589 DOI: 10.1038/s41467-023-39959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Movements towards touch on the body require integrating tactile location and body posture information. Tactile processing and movement planning both rely on posterior parietal cortex (PPC) but their interplay is not understood. Here, human participants received tactile stimuli on their crossed and uncrossed feet, dissociating stimulus location relative to anatomy versus external space. Participants pointed to the touch or the equivalent location on the other foot, which dissociates sensory and motor locations. Multi-voxel pattern analysis of concurrently recorded fMRI signals revealed that tactile location was coded anatomically in anterior PPC but spatially in posterior PPC during sensory processing. After movement instructions were specified, PPC exclusively represented the movement goal in space, in regions associated with visuo-motor planning and with regional overlap for sensory, rule-related, and movement coding. Thus, PPC flexibly updates its spatial codes to accommodate rule-based transformation of sensory input to generate movement to environment and own body alike.
Collapse
Affiliation(s)
- Janina Klautke
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Celia Foster
- Biopsychology & Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany
- Center of Excellence in Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - W Pieter Medendorp
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany.
- Center of Excellence in Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany.
- Cognitive Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria.
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
6
|
Wilken S, Böttcher A, Adelhöfer N, Raab M, Hoffmann S, Beste C. The neurophysiology of continuous action monitoring. iScience 2023; 26:106939. [PMID: 37332673 PMCID: PMC10275727 DOI: 10.1016/j.isci.2023.106939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Monitoring actions is essential for goal-directed behavior. However, as opposed to short-lasting, and regularly reinstating monitoring functions, the neural processes underlying continuous action monitoring are poorly understood. We investigate this using a pursuit-tracking paradigm. We show that beta band activity likely maintains the sensorimotor program, while theta and alpha bands probably support attentional sampling and information gating, respectively. Alpha and beta band activity are most relevant during the initial tracking period, when sensorimotor calibrations are most intense. Theta band shifts from parietal to frontal cortices throughout tracking, likely reflecting a shift in the functional relevance from attentional sampling to action monitoring. This study shows that resource allocation mechanisms in prefrontal areas and stimulus-response mapping processes in the parietal cortex are crucial for adapting sensorimotor processes. It fills a knowledge gap in understanding the neural processes underlying action monitoring and suggests new directions for examining sensorimotor integration in more naturalistic experiments.
Collapse
Affiliation(s)
- Saskia Wilken
- General Psychology: Judgment, Decision Making, and Action, Institute of Psychology, University of Hagen, Hagen, Germany
| | - Adriana Böttcher
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Markus Raab
- Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
- School of Applied Sciences, London South Bank University, London, UK
| | - Sven Hoffmann
- General Psychology: Judgment, Decision Making, and Action, Institute of Psychology, University of Hagen, Hagen, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
7
|
Böttcher A, Wilken S, Adelhöfer N, Raab M, Hoffmann S, Beste C. A dissociable functional relevance of theta- and beta-band activities during complex sensorimotor integration. Cereb Cortex 2023:7180375. [PMID: 37246154 DOI: 10.1093/cercor/bhad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023] Open
Abstract
Sensorimotor integration processes play a central role in daily life and require that different sources of sensory information become integrated: i.e. the information related to the object being under control of the agent (i.e. indicator) and the information about the goal of acting. Yet, how this is accomplished on a neurophysiological level is contentious. We focus on the role of theta- and beta-band activities and examine which neuroanatomical structures are involved. Healthy participants (n = 41) performed 3 consecutive pursuit-tracking EEG experiments in which the source of visual information available for tracking was varied (i.e. that of the indicator and the goal of acting). The initial specification of indicator dynamics is determined through beta-band activity in parietal cortices. When information about the goal was not accessible, but operating the indicator was required nevertheless, this incurred increased theta-band activity in the superior frontal cortex, signaling a higher need for control. Later, theta- and beta-band activities encode distinct information within the ventral processing stream: Theta-band activity is affected by the indicator information, while beta-band activity is affected by the information about the action goal. Complex sensorimotor integration is realized through a cascade of theta- and beta-band activities in a ventral-stream-parieto-frontal network.
Collapse
Affiliation(s)
- Adriana Böttcher
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden, Germany
| | - Saskia Wilken
- General Psychology: Judgment, Decision Making, & Action, Institute of Psychology, University of Hagen, Hagen, Germany
| | - Nico Adelhöfer
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Markus Raab
- Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
- School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Sven Hoffmann
- General Psychology: Judgment, Decision Making, & Action, Institute of Psychology, University of Hagen, Hagen, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden, Germany
| |
Collapse
|
8
|
Gholamipourbarogh N, Prochnow A, Frings C, Münchau A, Mückschel M, Beste C. Perception-action integration during inhibitory control is reflected in a concomitant multi-region processing of specific codes in the neurophysiological signal. Psychophysiology 2023; 60:e14178. [PMID: 36083256 DOI: 10.1111/psyp.14178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 01/04/2023]
Abstract
The integration of perception and action has long been studied in psychological science using overarching cognitive frameworks. Despite these being very successful in explaining perception-action integration, little is known about its neurophysiological and especially the functional neuroanatomical foundations. It is unknown whether distinct brain structures are simultaneously involved in the processing of perception-action integration codes and also to what extent demands on perception-action integration modulate activities in these structures. We investigate these questions in an EEG study integrating temporal and ICA-based EEG signal decomposition with source localization. For this purpose, we used data from 32 healthy participants who performed a 'TEC Go/Nogo' task. We show that the EEG signal can be decomposed into components carrying different informational aspects or processing codes relevant for perception-action integration. Importantly, these specific codes are processed independently in different brain structures, and their specific roles during the processing of perception-action integration differ. Some regions (i.e., the anterior cingulate and insular cortex) take a 'default role' because these are not modulated in their activity by demands or the complexity of event file coding processes. In contrast, regions in the motor cortex, middle frontal, temporal, and superior parietal cortices were not activated by 'default' but revealed modulations depending on the complexity of perception-action integration (i.e., whether an event file has to be reconfigured). Perception-action integration thus reflects a multi-region processing of specific fractions of information in the neurophysiological signal. This needs to be taken into account when further developing a cognitive science framework detailing perception-action integration.
Collapse
Affiliation(s)
- Negin Gholamipourbarogh
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
9
|
Yu S, Stock AK, Münchau A, Frings C, Beste C. Neurophysiological principles of inhibitory control processes during cognitive flexibility. Cereb Cortex 2023:6969136. [PMID: 36610732 DOI: 10.1093/cercor/bhac532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 01/09/2023] Open
Abstract
Inhibitory control plays an indispensable role in cognitive flexibility. Nevertheless, the neurophysiological principles underlying this are incompletely understood. This owes to the fact that the representational dynamics, as coded in oscillatory neural activity of different frequency bands has not been considered until now-despite being of conceptual relevance. Moreover, it is unclear in how far distinct functional neuroanatomical regions are concomitantly involved in the processing of representational dynamics. We examine these questions using a combination of EEG methods. We show that theta-band activity plays an essential role for inhibitory control processes during cognitive flexibility across informational aspects coded in distinct fractions of the neurophysiological signal. It is shown that posterior parietal structures and the inferior parietal cortex seem to be the most important cortical region for inhibitory control processes during cognitive flexibility. Theta-band activity plays an essential role in processes of retrieving the previously inhibited representations related to the current task during cognitive flexibility. The representational content relevant for inhibitory processes during cognitive flexibility is coded in the theta frequency band. We outline how the observed neural mechanisms inform recent overarching cognitive frameworks on how flexible action control is accomplished.
Collapse
Affiliation(s)
- Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Sachsen 01187, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Sachsen 01187, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck 23562, Germany
| | | | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Sachsen 01187, Germany
| |
Collapse
|
10
|
Wendiggensen P, Adelhöfer N, Jamous R, Mückschel M, Takacs A, Frings C, Münchau A, Beste C. Processing of embedded response plans is modulated by an interplay of fronto-parietal theta and beta activity. J Neurophysiol 2022; 128:543-555. [PMID: 35894437 DOI: 10.1152/jn.00537.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Even simple actions like opening a door require integration/binding and flexible re-activation of different motor elements. Yet, the neural mechanisms underlying the processing of such 'embedded response plans' are largely elusive, despite theoretical frameworks, such as the Theory of Event Coding, describing the involved cognitive processes. In a sample of N = 40 healthy participants we combine time-frequency decomposition and various beamforming methods to examine neurophysiological dynamics of such action plans - with special emphasis on the interplay of theta and beta frequency activity during the processing of these plans. We show that the integration and rule-guided reactivation of embedded response plans is modulated by a complex interplay of theta and beta activity. Pre-trial BBA is related to different functional neuroanatomical structures which are activated in a consecutive fashion. Enhanced preparatory activity is positively associated with higher binding-related BBA in the precuneus/parietal areas, indicating that activity in the precuneus/parietal cortex facilitates the execution of an embedded action sequence. Increased preparation subsequently leads to reduced working memory retrieval demands. A cascading pattern of interactions between pre-trial and within-trial activity indicates the importance of preparatory brain activity. The study shows that there are multiple roles of beta and theta oscillations associated with different functional neuroanatomical structures during the integration and reactivation of motor elements during actions.
Collapse
Affiliation(s)
- Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
11
|
Oostwoud Wijdenes L, Wynn SC, Roesink BS, Schutter DJLG, Selen LPJ, Medendorp WP. Assessing corticospinal excitability and reaching hand choice during whole-body motion. J Neurophysiol 2022; 128:19-27. [PMID: 35647760 DOI: 10.1152/jn.00699.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Behavioral studies have shown that humans account for inertial acceleration in their decisions of hand choice when reaching during body motion. Physiologically, it is unclear at what stage of movement preparation information about body motion is integrated in the process of hand selection. Here, we addressed this question by applying transcranial magnetic stimulation over left motor cortex (M1) of human participants who performed a preferential reach task while they were sinusoidally translated on a linear motion platform. If M1 only represents a read-out of the final hand choice, we expect the body motion not to affect the motor-evoked potential (MEP) amplitude. If body motion biases the hand selection process prior to target onset, we expect corticospinal excitability to be influenced by the phase of the motion, with larger MEP amplitudes for phases that show a bias to using the right hand. Behavioral results replicate our earlier findings of a sinusoidal modulation of hand choice bias with motion phase. MEP amplitudes also show a sinusoidal modulation with motion phase, suggesting that body motion influences corticospinal excitability which may ultimately reflect changes of hand preference. The modulation being present prior to target onset suggests that competition between hands is represented throughout the corticospinal tract. Its phase relationship with the motion profile indicates that other processes after target onset take up time until the hand selection process has been completely resolved, and the reach is initiated.
Collapse
Affiliation(s)
- Leonie Oostwoud Wijdenes
- Donders Institute of Brain, Cognition and Behaviour, grid.5590.9Radboud University Nijmegen, Nijmegen, Netherlands
| | - Syanah C Wynn
- School of Psychology, grid.6572.6University of Birmingham, Birmingham, United Kingdom
| | - Béla Sebastiaan Roesink
- Donders Institute of Brain, Cognition and Behaviour, grid.5590.9Radboud University Nijmegen, Nijmegen, Netherlands
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, grid.5477.1Utrecht University, Utrecht, Netherlands
| | - Luc P J Selen
- Donders Institute for Brain Cognition and Behaviour, grid.5590.9Radboud University Nijmegen, Nijmegen, Netherlands
| | - W Pieter Medendorp
- Donders institute for Brain, Cognition and Behaviour, grid.5590.9Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
12
|
Pfister R, Bogon J, Foerster A, Kunde W, Moeller B. Binding and Retrieval of Response Durations: Subtle Evidence for Episodic Processing of Continuous Movement Features. J Cogn 2022; 5:23. [PMID: 36072101 PMCID: PMC9400643 DOI: 10.5334/joc.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Abstract
Re-encountering a stimulus retrieves nominally relevant, categorical response features related to previous action decisions in response to this stimulus. Whether binding and retrieval extend to nominally irrelevant, metric features relating to an actual body movement is unknown, however. In two experiments, we thus tested whether repeating target or distractor stimuli across trials retrieves the irrelevant duration of spatial responses to these stimuli. We found subtle indication of such retrieval by task-relevant target stimuli, suggesting that binding and retrieval also operate on metric features of a motor response. In contrast, there was no sign of binding and retrieval of metric features for distractor stimuli. We discuss these observations regarding the representation of action episodes during action-related decision making and during actual movement initiation and control.
Collapse
Affiliation(s)
- Roland Pfister
- Department of Psychology, University of Würzburg, Würzburg, DE
| | - Johanna Bogon
- Media Informatics Group, Universität Regensburg, Regensburg, DE
| | - Anna Foerster
- Department of Psychology, University of Würzburg, Würzburg, DE
| | - Wilfried Kunde
- Department of Psychology, University of Würzburg, Würzburg, DE
| | - Birte Moeller
- Cognitive Psychology, University of Trier, Trier, DE
| |
Collapse
|
13
|
Petruo V, Takacs A, Mückschel M, Hommel B, Beste C. Multi-level decoding of task sets in neurophysiological data during cognitive flexibility. iScience 2021; 24:103502. [PMID: 34934921 PMCID: PMC8654636 DOI: 10.1016/j.isci.2021.103502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/27/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Cognitive flexibility is essential to achieve higher level goals. Cognitive theories assume that the activation/deactivation of goals and task rules is central to understand cognitive flexibility. However, how this activation/deactivation dynamic is implemented on a neurophysiological level is unclear. Using EEG-based multivariate pattern analysis (MVPA) methods, we show that activation of relevant information occurs parallel in time at multiple levels in the neurophysiological signal containing aspects of stimulus-related processing, response selection, and motor response execution, and relates to different brain regions. The intensity with which task sets are activated and processed dynamically decreases and increases. The temporal stability of these activations could, however, hardly explain behavioral performance. Instead, task set deactivation processes associated with left orbitofrontal regions and inferior parietal regions selectively acting on motor response task sets are relevant. The study shows how propositions from cognitive theories stressing the importance task set activation/deactivation during cognitive flexibility are implemented on a neurophysiological level. Stimulus-related, motor, and response selection aspects of task set were decoded Activation of task rule information occurs at multiple neurophysiological levels Activation and deactivation of rule sets contributes to cognitive flexibility
Collapse
Affiliation(s)
- Vanessa Petruo
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3620A McClintock Avenue, Los Angeles, CA, USA
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309 Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309 Dresden, Germany
| | - Bernhard Hommel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309 Dresden, Germany.,Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden University, C-2-S LIBC P.O. Box 9600, Leiden, Netherlands.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Qianfoshan Campus, No. 88 East Wenhua Road, Lixia District, Ji'nan 250014, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309 Dresden, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Qianfoshan Campus, No. 88 East Wenhua Road, Lixia District, Ji'nan 250014, China
| |
Collapse
|
14
|
Hamel R, Lepage JF, Bernier PM. Anterograde interference emerges along a gradient as a function of task similarity: A behavioural study. Eur J Neurosci 2021; 55:49-66. [PMID: 34894023 PMCID: PMC9299670 DOI: 10.1111/ejn.15561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Anterograde interference emerges when two opposite (B → A) or identical tasks (A → A) are learned in close temporal succession, suggesting that interference cannot be fully accounted for by competing memories. Informed by neurobiological evidence, this work tested the hypothesis that interference depends upon the degree of overlap between the neural networks involved in the learning of two tasks. In a fully within‐subject and counterbalanced design, participants (n = 24) took part in two learning sessions where the putative overlap between learning‐specific neural networks was behaviourally manipulated across four conditions by modifying reach direction and the effector used during gradual visuomotor adaptation. The results showed that anterograde interference emerged regardless of memory competition—that is, to a similar extent in the B → A and A → A conditions—and along a gradient as a function of the tasks' similarity. Specifically, learning under similar reaching conditions generated more anterograde interference than learning under dissimilar reaching conditions, suggesting that putatively overlapping neural networks are required to generate interference. Overall, these results indicate that competing memories are not the sole contributor to anterograde interference and suggest that overlapping neural networks between two learning sessions are required to trigger interference. One discussed possibility is that initial learning modifies the properties of its neural networks to constrain further plasticity induction and learning capabilities, therefore causing anterograde interference in a network‐dependent manner. One implication is that learning‐specific neural networks must be maximally dissociated to minimize the interfering influences of previous learning on subsequent learning.
Collapse
Affiliation(s)
- Raphaël Hamel
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Lepage
- Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pierre-Michel Bernier
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
15
|
van Helvert MJL, Oostwoud Wijdenes L, Geerligs L, Medendorp WP. Cortical beta-band power modulates with uncertainty in effector selection during motor planning. J Neurophysiol 2021; 126:1891-1902. [PMID: 34731060 DOI: 10.1152/jn.00198.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although beta-band activity during motor planning is known to be modulated by uncertainty about where to act, less is known about its modulations to uncertainty about how to act. To investigate this issue, we recorded oscillatory brain activity with EEG while human participants (n = 17) performed a hand choice reaching task. The reaching hand was either predetermined or of participants' choice, and the target was close to one of the two hands or at about equal distance from both. To measure neural activity in a motion artifact-free time window, the location of the upcoming target was cued 1,000-1,500 ms before the presentation of the target, whereby the cue was valid in 50% of trials. As evidence for motor planning during the cuing phase, behavioral observations showed that the cue affected later hand choice. Furthermore, reaction times were longer in the choice trials than in the predetermined trials, supporting the notion of a competitive process for hand selection. Modulations of beta-band power over central cortical regions, but not alpha-band or theta-band power, were in line with these observations. During the cuing period, reaches in predetermined trials were preceded by larger decreases in beta-band power than reaches in choice trials. Cue direction did not affect reaction times or beta-band power, which may be due to the cue being invalid in 50% of trials, retaining effector uncertainty during motor planning. Our findings suggest that effector uncertainty modulates beta-band power during motor planning.NEW & NOTEWORTHY Although reach-related beta-band power in central cortical areas is known to modulate with the number of potential targets, here we show, using a cuing paradigm, that the power in this frequency band, but not in the alpha or theta band, is also modulated by the uncertainty of which hand to use. This finding supports the notion that multiple possible effector-specific actions can be specified in parallel up to the level of motor preparation.
Collapse
Affiliation(s)
- Milou J L van Helvert
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Leonie Oostwoud Wijdenes
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Linda Geerligs
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Vainio L, Tiippana K, Peromaa T, Kuuramo C, Kurki I. Negative affordance effect: automatic response inhibition triggered by handle orientation of non-target object. PSYCHOLOGICAL RESEARCH 2021; 86:1737-1750. [PMID: 34562104 PMCID: PMC8475350 DOI: 10.1007/s00426-021-01600-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/16/2021] [Indexed: 11/02/2022]
Abstract
Habituated response tendency associated with affordance of an object is automatically inhibited if this affordance cue is extracted from a non-target object. This study presents two go/no-go experiments investigating whether this response control operates in response selection processes and whether it is linked to conflict-monitoring mechanisms. In the first experiment, the participants performed responses with one hand, and in the second experiment, with two hands. In addition, both experiments consisted of two blocks with varying frequency of go conditions (25%-go vs. 75%-go). The non-target-related response inhibition effect was only observed in Experiment 2 when the task required selecting between two hands. Additionally, the results did not reveal patterns typically related to conflict monitoring when go-frequency is manipulated and when a stimulus-response compatibility effect is examined relative to congruency condition of the previous trial. The study shows that the non-target-related response inhibition assists hand selection and is relatively resistant to conflict-monitoring processes.
Collapse
Affiliation(s)
- L Vainio
- Phonetics and Speech Synthesis Research Group, Department of Digital Humanities, University of Helsinki, Unioninkatu 40, Helsinki, Finland. .,Perception, Action and Cognition Research Group, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, Helsinki, Finland.
| | - K Tiippana
- Perception, Action and Cognition Research Group, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, Helsinki, Finland
| | - T Peromaa
- Perception, Action and Cognition Research Group, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, Helsinki, Finland
| | - C Kuuramo
- Perception, Action and Cognition Research Group, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, Helsinki, Finland
| | - I Kurki
- Perception, Action and Cognition Research Group, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, Helsinki, Finland
| |
Collapse
|
17
|
Lega C, Chelazzi L, Cattaneo L. Two Distinct Systems Represent Contralateral and Ipsilateral Sensorimotor Processes in the Human Premotor Cortex: A Dense TMS Mapping Study. Cereb Cortex 2021; 30:2250-2266. [PMID: 31828296 DOI: 10.1093/cercor/bhz237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/19/2019] [Accepted: 09/13/2019] [Indexed: 11/12/2022] Open
Abstract
Animal brains contain behaviorally committed representations of the surrounding world, which integrate sensory and motor information. In primates, sensorimotor mechanisms reside in part in the premotor cortex (PM), where sensorimotor neurons are topographically clustered according to functional specialization. Detailed functional cartography of the human PM is still under investigation. We explored the topographic distribution of spatially dependent sensorimotor functions in healthy volunteers performing left or right, hand or foot, responses to visual cues presented in the left or right hemispace, thus combining independently stimulus side, effector side, and effector type. Event-related transcranial magnetic stimulation was applied to single spots of a dense grid of 10 points on the participants' left hemiscalp, covering the whole PM. Results showed: (1) spatially segregated hand and foot representations, (2) focal representations of contralateral cues and movements in the dorsal PM, and (3) distributed representations of ipsilateral cues and movements in the ventral and dorso-medial PM. The present novel causal information indicates that (1) the human PM is somatotopically organized and (2) the left PM contains sensory-motor representations of both hemispaces and of both hemibodies, but the hemispace and hemibody contralateral to the PM are mapped on a distinct, nonoverlapping cortical region compared to the ipsilateral ones.
Collapse
Affiliation(s)
- Carlotta Lega
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Leonardo Chelazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.,Italian Institute of Neuroscience, Section of Verona, Verona, Italy
| | - Luigi Cattaneo
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.,Italian Institute of Neuroscience, Section of Verona, Verona, Italy
| |
Collapse
|
18
|
Dilcher R, Beste C, Takacs A, Bluschke A, Tóth-Fáber E, Kleimaker M, Münchau A, Li SC. Perception-action integration in young age-A cross-sectional EEG study. Dev Cogn Neurosci 2021; 50:100977. [PMID: 34147987 PMCID: PMC8225655 DOI: 10.1016/j.dcn.2021.100977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
Humans differ in their capacity for integrating perceived events and related actions. The "Theory of event coding" (TEC) conceptualizes how stimuli and actions are cognitively bound into a common functional representation (or "code"), known as the "event file". To date, however, the neural processes underlying the development of event file coding mechanisms across age are largely unclear. We investigated age-related neural changes of event file coding from late childhood to early adulthood, using EEG signal decompositions methods. We included a group of healthy participants (n = 91) between 10 and 30 years, performing an event file paradigm. Results of this study revealed age-related effects on event file coding processes both at the behavioural and the neurophysiological level. Performance accuracy data showed that event file unbinding und rebinding processes become more efficient from late childhood to early adulthood. These behavioural effects are reflected by age-related effects in two neurophysiological subprocesses associated with the superior parietal cortex (BA7) as revealed in the analyses using EEG signal decomposition. The first process entails mapping and association processes between stimulus and response; whereas, the second comprises inhibitory control subprocesses subserving the selection of the relevant motor programme amongst competing response options.
Collapse
Affiliation(s)
- Roxane Dilcher
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | | | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Germany; Centre for Tactile Internet With Human-in-the-Loop, TU Dresden, Germany.
| |
Collapse
|
19
|
Giller F, Aggensteiner PM, Banaschewski T, Döpfner M, Brandeis D, Roessner V, Beste C. Affective Dysregulation in Children Is Associated With Difficulties in Response Control in Emotional Ambiguous Situations. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:66-75. [PMID: 33857639 DOI: 10.1016/j.bpsc.2021.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Affective dysregulation (AD), or synonymously "irritability," is a transdiagnostic construct that serves as a diagnostic criterion in various childhood mental disorders. It is characterized by severe or persistent outbursts of anger and aggression. Emotional self-regulation is highly dependent on the ability to process relevant and ignore conflicting emotional information. Understanding neurophysiological mechanisms underlying impairment in AD may provide a starting point for research on pharmacological treatment options and evaluation of psychotherapeutic intervention. METHODS A total of 120 children 8 to 12 years of age (63 with AD and 57 typically developing) were examined using an emotional Stroop task. Signal-decomposed electroencephalographic recordings providing information about the affected sensory-perceptual, response selection, or motor information processing stage were combined with source localization. RESULTS Behavioral performance revealed dysfunctional cognitive-emotional conflict monitoring in children with AD, suggesting difficulties in differentiating between conflicting and nonconflicting cognitive-emotional information. This was confirmed by the electroencephalographic data showing that they cannot intensify response selection processes during conflicting cognitive-emotional situations. Typically developing children were able to do so and activated a functional-neuroanatomical network comprising the left inferior parietal cortex (Brodmann area 40), right middle frontal (Brodmann area 10), and right inferior/orbitofrontal (Brodmann area 47) regions. Purely sensory-perceptual selection and motor execution processes were not modulated in AD, as evidenced by Bayesian analyses. CONCLUSIONS Behavioral and electroencephalogram data suggest that children with AD cannot adequately modulate controlled response selection processes given emotionally ambiguous information. Which neurotransmitter systems underlie these deficits and how they can be improved are important questions for future research.
Collapse
Affiliation(s)
- Franziska Giller
- Department of Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Pascal-M Aggensteiner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Manfred Döpfner
- Department of Child and Adolescent Psychiatry, Department of Psychosomatics and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany; School for Child and Adolescent Cognitive Behavior Therapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zürich, Zürich, Switzerland; Neuroscience Center Zürich, University and Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Veit Roessner
- Department of Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christian Beste
- Department of Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
20
|
The Potential Role of Dopamine in Mediating Motor Function and Interpersonal Synchrony. Biomedicines 2021; 9:biomedicines9040382. [PMID: 33916451 PMCID: PMC8066519 DOI: 10.3390/biomedicines9040382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/28/2022] Open
Abstract
Motor functions in general and motor planning in particular are crucial for our ability to synchronize our movements with those of others. To date, these co-occurring functions have been studied separately, and as yet it is unclear whether they share a common biological mechanism. Here, we synthesize disparate recent findings on motor functioning and interpersonal synchrony and propose that these two functions share a common neurobiological mechanism and adhere to the same principles of predictive coding. Critically, we describe the pivotal role of the dopaminergic system in modulating these two distinct functions. We present attention deficit hyperactivity disorder (ADHD) as an example of a disorder that involves the dopaminergic system and describe deficits in motor and interpersonal synchrony. Finally, we suggest possible directions for future studies emphasizing the role of dopamine modulation as a link between social and motor functioning.
Collapse
|
21
|
Petruo VA, Beste C. Task Switching and the Role of Motor Reprogramming in Parietal Structures. Neuroscience 2021; 461:23-35. [PMID: 33675917 DOI: 10.1016/j.neuroscience.2021.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
Human behaviour amazes with extraordinary flexibility and the underlying neural mechanisms have often been studied using task switching. Despite extensive research, the relative importance of "cognitive" and "motor" aspects during switching is unclear. In the current study we examine this question combining EEG analysis techniques and source localization to examine whether the selection of the response, or processes during the execution of the response, contribute most to switching effects. A clear dissociation was observed in the signal decomposition, since codes relating to motor aspects play a significant role in task switching and the scope of the switching costs. This was not the case for signals that denote reaction selection or decision processes that respond to selection or basic stimulus processing codes. On a functional neuroanatomical level, these modulations in motor processes showed a clear temporal sequence in that motor codes are processed primarily in superior parietal regions (Brodman area 7) and only then in premotor regions (Brodman area 6). The observed modulations may reflect motor reprogramming processes. The study shows how EEG signal analysis in combination with brain mapping methods can inform debates on theories of human cognitive flexibility.
Collapse
Affiliation(s)
- Vanessa A Petruo
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3620A McClintock Avenue Bldg. #292, Los Angeles, CA 90089 United States
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
22
|
Low and high stimulation frequencies differentially affect automated response selection in the superior parietal cortex - implications for somatosensory area processes. Sci Rep 2020; 10:3954. [PMID: 32127632 PMCID: PMC7054528 DOI: 10.1038/s41598-020-61025-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/19/2020] [Indexed: 01/09/2023] Open
Abstract
Response inhibition as a central facet of executive functioning is no homogeneous construct. Interference inhibition constitutes a subcomponent of response inhibition and refers to inhibitory control over responses that are automatically triggered by irrelevant stimulus dimensions as measured by the Simon task. While there is evidence that the area-specific modulation of tactile information affects the act of action withholding, effects in the context of interference inhibition remain elusive. We conducted a tactile version of the Simon task with stimuli designed to be predominantly processed in the primary (40 Hz) or secondary (150 Hz) somatosensory cortex. On the basis of EEG recordings, we performed signal decomposition and source localization. Behavioral results reveal that response execution is more efficient when sensory information is mainly processed via SII, compared to SI sensory areas during non-conflicting trials. When accounting for intermingled coding levels by temporally decomposing EEG data, the results show that experimental variations depending on sensory area-specific processing differences specifically affect motor and not sensory processes. Modulations of motor-related processes are linked to activation differences in the superior parietal cortex (BA7). It is concluded that the SII cortical area supporting cognitive preprocessing of tactile input fosters automatic tactile information processing by facilitating stimulus-response mapping in posterior parietal regions.
Collapse
|
23
|
Blohm G, Alikhanian H, Gaetz W, Goltz H, DeSouza J, Cheyne D, Crawford J. Neuromagnetic signatures of the spatiotemporal transformation for manual pointing. Neuroimage 2019; 197:306-319. [DOI: 10.1016/j.neuroimage.2019.04.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/28/2019] [Accepted: 04/27/2019] [Indexed: 11/29/2022] Open
|
24
|
Bakker RS, Selen LPJ, Medendorp WP. Transformation of vestibular signals for the decisions of hand choice during whole body motion. J Neurophysiol 2019; 121:2392-2400. [PMID: 31017838 DOI: 10.1152/jn.00470.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In daily life, we frequently reach toward objects while our body is in motion. We have recently shown that body accelerations influence the decision of which hand to use for the reach, possibly by modulating the body-centered computations of the expected reach costs. However, head orientation relative to the body was not manipulated, and hence it remains unclear whether vestibular signals contribute in their head-based sensory frame or in a transformed body-centered reference frame to these cost calculations. To test this, subjects performed a preferential reaching task to targets at various directions while they were sinusoidally translated along the lateral body axis, with their head either aligned with the body (straight ahead) or rotated 18° to the left. As a measure of hand preference, we determined the target direction that resulted in equiprobable right/left-hand choices. Results show that head orientation affects this balanced target angle when the body is stationary but does not further modulate hand preference when the body is in motion. Furthermore, reaction and movement times were larger for reaches to the balanced target angle, resembling a competitive selection process, and were modulated by head orientation when the body was stationary. During body translation, reaction and movement times depended on the phase of the motion, but this phase-dependent modulation had no interaction with head orientation. We conclude that the brain transforms vestibular signals to body-centered coordinates at the early stage of reach planning, when the decision of hand choice is computed. NEW & NOTEWORTHY The brain takes inertial acceleration into account in computing the anticipated biomechanical costs that guide hand selection during whole body motion. Whereas these costs are defined in a body-centered, muscle-based reference frame, the otoliths detect the inertial acceleration in head-centered coordinates. By systematically manipulating head position relative to the body, we show that the brain transforms otolith signals into body-centered coordinates at an early stage of reach planning, i.e., before the decision of hand choice is computed.
Collapse
Affiliation(s)
- Romy S Bakker
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen , The Netherlands
| | - Luc P J Selen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen , The Netherlands
| | - W Pieter Medendorp
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen , The Netherlands
| |
Collapse
|
25
|
Hamel-Thibault A, Thénault F, Whittingstall K, Bernier PM. Delta-Band Oscillations in Motor Regions Predict Hand Selection for Reaching. Cereb Cortex 2019; 28:574-584. [PMID: 27999125 DOI: 10.1093/cercor/bhw392] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/01/2016] [Indexed: 11/13/2022] Open
Abstract
Current models hold that action selection is achieved by competitive interactions between co-existing motor representations associated with each potential action. Critically, selection via competition requires biasing signals to enable one of these alternatives to be selected. This study tested the hypothesis that selection is related to the prestimulus excitability of neuronal ensembles in which movements are encoded, as assessed through the phase of delta-band oscillations (2-4 Hz). Electroencephalography was recorded while participants performed speeded reaches toward appearing visual targets using the hand of their choice. The target locations were controlled such that only targets for which the left and right hands were selected equally often were used for analysis. Results revealed that hand selection as well as reach reaction times strongly depended upon the instantaneous phase of delta at the moment of target onset. This effect was maximal over contralateral motor regions, and occurred in the absence of prestimulus alpha- (8-12 Hz) and beta-band (15-30 Hz) amplitude modulations. These findings demonstrate that the excitability of motor regions acts as a modulatory factor for hand choice during reaching. They extend current models by showing that action selection is related to the underlying brain state independently of previously known decision variables.
Collapse
Affiliation(s)
- Audrey Hamel-Thibault
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - François Thénault
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Kevin Whittingstall
- Département de médecine nucléaire et de radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.,Département de radiologie diagnostique, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Pierre-Michel Bernier
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
26
|
Chmielewski WX, Beste C. Stimulus Feature Conflicts Enhance Motor Inhibitory Control Processes in the Lateral Prefrontal Cortex. J Cogn Neurosci 2019; 31:1430-1442. [PMID: 31059349 DOI: 10.1162/jocn_a_01424] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The ability to inhibit prepotent responses is a central facet of cognitive control. However, the role of perceptual factors in response inhibition processes is still poorly understood and an underrepresented field of research. In the current study, we focus on the role of conflicts between perceptual stimulus features (so-called S-S conflicts) for response inhibition. We introduce a novel semantic Stroop Condition task and analyze EEG data using source localization and temporal EEG signal decomposition methods to delineate the neural mechanisms how semantic S-S conflicts modulate response inhibition. We show that semantic conflicts enhance response inhibition performance by modulating neural processes relating to conflict resolution mechanisms in the middle and inferior frontal cortex, as well as the ACC. Opposed to that, Stroop-like (S-S) conflicts compromise response execution by affecting decision processes in inferior parietal cortices. The data suggest that when action control processes and their neurophysiological correlates depend on regions specialized in the processing of semantic conflicts, there is an improvement in response inhibition. The results show that Stroop-like semantic conflicts have opposite effects depending on whether a response has to be executed or inhibited. These opposing effects are then also associated with different functional-neuroanatomical structures. The results of the study show mechanisms by which stimulus-related processes influence mechanisms of response control.
Collapse
|
27
|
Chmielewski W, Bluschke A, Bodmer B, Wolff N, Roessner V, Beste C. Evidence for an altered architecture and a hierarchical modulation of inhibitory control processes in ADHD. Dev Cogn Neurosci 2019; 36:100623. [PMID: 30738306 PMCID: PMC6969218 DOI: 10.1016/j.dcn.2019.100623] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 01/23/2023] Open
Abstract
Inhibitory control deficits are a hallmark in ADHD. Yet, inhibitory control includes a multitude of entities (e.g. ‘inhibition of interferences’ and ‘action inhibition’). Examining the interplay between these kinds of inhibitory control provides insights into the architecture of inhibitory control in ADHD. Combining a Simon task and a Go/Nogo task, we assessed the interplay of ‘inhibition of interferences’ and ‘action inhibition’. This was combined with EEG recordings, EEG data decomposition and source localization. Simon interference effects in Go trials were larger in ADHD. At the neurophysiological level, this insufficient inhibition of interferences in ADHD related to the superior parietal cortex. Simon interference effects were absent in action inhibition (Nogo) trials in ADHD, compared to controls. This was supported by bayesian statistics. The power of effects was higher than 95%. The differential effects between the groups were associated with modulations of neurophysiological response selection processes in the superior frontal gyrus. ADHD is not only associated with deficits in inhibitory control. Rather, the organization and architecture of the inhibitory control system is different in ADHD. Distinguishable inhibitory control processes operate on a hierarchical ‘first come, first serve’ basis and are not integrated in ADHD. This is a new facet of ADHD.
Collapse
Affiliation(s)
- Witold Chmielewski
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Benjamin Bodmer
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Nicole Wolff
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| |
Collapse
|
28
|
Decoding Brain States for Planning Functional Grasps of Tools: A Functional Magnetic Resonance Imaging Multivoxel Pattern Analysis Study. J Int Neuropsychol Soc 2018; 24:1013-1025. [PMID: 30196800 DOI: 10.1017/s1355617718000590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES We used multivoxel pattern analysis (MVPA) to investigate neural selectivity for grasp planning within the left-lateralized temporo-parieto-frontal network of areas (praxis representation network, PRN) typically associated with tool-related actions, as studied with traditional neuroimaging contrasts. METHODS We used data from 20 participants whose task was to plan functional grasps of tools, with either right or left hands. Region of interest and whole-brain searchlight analyses were performed to show task-related neural patterns. RESULTS MVPA revealed significant contributions to functional grasp planning from the anterior intraparietal sulcus (aIPS) and its immediate vicinities, supplemented by inputs from posterior subdivisions of IPS, and the ventral lateral occipital complex (vLOC). Moreover, greater local selectivity was demonstrated in areas near the superior parieto-occipital cortex and dorsal premotor cortex, putatively forming the dorso-dorsal stream. CONCLUSIONS A contribution from aIPS, consistent with its role in prospective grasp formation and/or encoding of relevant tool properties (e.g., potential graspable parts), is likely to accompany the retrieval of manipulation and/or mechanical knowledge subserved by the supramarginal gyrus for achieving action goals. An involvement of vLOC indicates that MVPA is particularly sensitive to coding of object properties, their identities and even functions, for a support of grip formation. Finally, the engagement of the superior parieto-frontal regions as revealed by MVPA is consistent with their selectivity for transient features of tools (i.e., variable affordances) for anticipatory hand postures. These outcomes support the notion that, compared to traditional approaches, MVPA can reveal more fine-grained patterns of neural activity. (JINS, 2018, 24, 1013-1025).
Collapse
|
29
|
Theta-band EEG Activity over Sensorimotor Regions is Modulated by Expected Visual Reafferent Feedback During Reach Planning. Neuroscience 2018; 385:47-58. [DOI: 10.1016/j.neuroscience.2018.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 01/22/2023]
|
30
|
Added value of money on motor performance feedback: Increased left central beta-band power for rewards and fronto-central theta-band power for punishments. Neuroimage 2018; 179:63-78. [PMID: 29894825 DOI: 10.1016/j.neuroimage.2018.06.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/31/2018] [Accepted: 06/08/2018] [Indexed: 12/14/2022] Open
Abstract
Monetary rewards and punishments have been shown to respectively enhance retention of motor memories and short-term motor performance, but their underlying neural bases in the context of motor control tasks remain unclear. Using electroencephalography (EEG), the present study tested the hypothesis that monetary rewards and punishments are respectively reflected in post-feedback beta-band (20-30 Hz) and theta-band (3-8 Hz) oscillatory power. While participants performed upper limb reaching movements toward visual targets using their right hand, the delivery of monetary rewards and punishments was manipulated as well as their probability (i.e., by changing target size). Compared to unrewarded and unpunished trials, monetary rewards and the successful avoidance of punishments both entailed greater beta-band power at left central electrodes overlaying contralateral motor areas. In contrast, monetary punishments and reward omissions both entailed increased theta-band power at fronto-central scalp sites. Additional analyses revealed that beta-band power was further increased when rewards were lowly probable. In light of previous work demonstrating similar beta-band modulations in basal ganglia during reward processing, the present results may reflect functional communication of reward-related information between the basal ganglia and motor cortical regions. In turn, the increase in fronto-central theta-band power after monetary punishments may reflect an emphasized cognitive need for behavioral adjustments. Globally, the present work identifies possible neural substrates for the growing behavioral evidence showing beneficial effects of monetary feedback on motor learning and performance.
Collapse
|
31
|
Neromyliotis E, Moschovakis AK. Response properties of saccade-related neurons of the post-arcuate premotor cortex. J Neurophysiol 2018. [DOI: 10.1152/jn.00669.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the phasic saccade-related discharges of single neurons (S neurons) of the premotor cortex of female rhesus monkeys, mostly in the caudal bank of the arcuate sulcus. As described in previous work from our laboratory (Neromyliotis E, Moschovakis AK. Front Behav Neurosci 11: 1–21, 2017), some of these cells emitted phasic discharges for coordinated movements of the eyes and hand as well as for movements of either effector executed in isolation (motor equivalence, Meq). Other cells (S) did not emit phasic discharges for hand movements unaccompanied by saccades. In contrast to frontal eye field (FEF) neurons, but similar to forelimb-related neurons (H neurons) and Meq cells, the discharges of S cells did not display contralateral bias; their on-directions were as likely to be ipsiversive as contraversive. Because the onset of their discharge preceded that of FEF neurons, S cells are unlikely to convey to their targets corollary discharges of the FEF. We also encountered a small number of neurons that could function as logic gates: cells that discharged for saccades if they were not accompanied by hand movements, cells that discharged for saccades or movements of the hand but not for coordinated movements of both effectors, and cells that discharged only for coordinated movements of the eyes and the hand but not when one of the effectors moved unaccompanied by the other. Our findings are discussed in terms of sequences of decision processes stitching effector-specific motor plans onto effector-invariant movement primitives. NEW & NOTEWORTHY The premotor cortex, traditionally associated with skeletomotor control, is shown to contain cells that emit strong discharges time-linked to saccades but not for hand movements unaccompanied by saccades (S cells). Unlike frontal eye field (FEF) neurons, the S cells of the premotor cortex did not display contralateral bias, and because their presaccadic discharges preceded those of FEF neurons, they are unlikely to serve as conveyors of FEF efferent discharges.
Collapse
Affiliation(s)
- E. Neromyliotis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology–Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - A. K. Moschovakis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology–Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
32
|
Bakker RS, Selen LPJ, Medendorp WP. Reference frames in the decisions of hand choice. J Neurophysiol 2018; 119:1809-1817. [DOI: 10.1152/jn.00738.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For the brain to decide on a reaching movement, it needs to select which hand to use. A number of body-centered factors affect this decision, such as the anticipated movement costs of each arm, recent choice success, handedness, and task demands. While the position of each hand relative to the target is also known to be an important spatial factor, it is unclear which reference frames coordinate the spatial aspects in the decisions of hand choice. Here we tested the role of gaze- and head-centered reference frames in a hand selection task. With their head and gaze oriented in different directions, we measured hand choice of 19 right-handed subjects instructed to make unimanual reaching movements to targets at various directions relative to their body. Using an adaptive procedure, we determined the target angle that led to equiprobable right/left hand choices. When gaze remained fixed relative to the body this balanced target angle shifted systematically with head orientation, and when head orientation remained fixed this choice measure shifted with gaze. These results suggest that a mixture of head- and gaze-centered reference frames is involved in the spatially guided decisions of hand choice, perhaps to flexibly bind this process to the mechanisms of target selection. NEW & NOTEWORTHY Decisions of target and hand choice are fundamental aspects of human reaching movements. While the reference frames involved in target choice have been identified, it is unclear which reference frames are involved in hand selection. We tested the role of gaze- and head-centered reference frames in a hand selection task. Findings emphasize the role of both spatial reference frames in the decisions of hand choice, in addition to known body-centered computations such anticipated movement costs and handedness.
Collapse
Affiliation(s)
- Romy S. Bakker
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Luc P. J. Selen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - W. Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Michaels JA, Scherberger H. Population coding of grasp and laterality-related information in the macaque fronto-parietal network. Sci Rep 2018; 8:1710. [PMID: 29374242 PMCID: PMC5786043 DOI: 10.1038/s41598-018-20051-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/11/2018] [Indexed: 01/04/2023] Open
Abstract
Preparing and executing grasping movements demands the coordination of sensory information across multiple scales. The position of an object, required hand shape, and which of our hands to extend must all be coordinated in parallel. The network formed by the macaque anterior intraparietal area (AIP) and hand area (F5) of the ventral premotor cortex is essential in the generation of grasping movements. Yet, the role of this circuit in hand selection is unclear. We recorded from 1342 single- and multi-units in AIP and F5 of two macaque monkeys (Macaca mulatta) during a delayed grasping task in which monkeys were instructed by a visual cue to perform power or precision grips on a handle presented in five different orientations with either the left or right hand, as instructed by an auditory tone. In AIP, intended hand use (left vs. right) was only weakly represented during preparation, while hand use was robustly present in F5 during preparation. Interestingly, visual-centric handle orientation information dominated AIP, while F5 contained an additional body-centric frame during preparation and movement. Together, our results implicate F5 as a site of visuo-motor transformation and advocate a strong transition between hand-independent and hand-dependent representations in this parieto-frontal circuit.
Collapse
Affiliation(s)
- Jonathan A Michaels
- German Primate Center, Kellnerweg 4, 37077, Goettingen, Germany.,Electrical Engineering Department, Stanford University, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Hansjörg Scherberger
- German Primate Center, Kellnerweg 4, 37077, Goettingen, Germany. .,Faculty of Biology and Psychology, University of Goettingen, 37073, Goettingen, Germany.
| |
Collapse
|
34
|
Marigold DS, Drew T. Posterior parietal cortex estimates the relationship between object and body location during locomotion. eLife 2017; 6. [PMID: 29053442 PMCID: PMC5650472 DOI: 10.7554/elife.28143] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/14/2017] [Indexed: 12/04/2022] Open
Abstract
We test the hypothesis that the posterior parietal cortex (PPC) contributes to the control of visually guided locomotor gait modifications by constructing an estimation of object location relative to body state, and in particular the changing gap between them. To test this hypothesis, we recorded neuronal activity from areas 5b and 7 of the PPC of cats walking on a treadmill and stepping over a moving obstacle whose speed of advance was varied (slowed or accelerated with respect to the speed of the cat). We found distinct populations of neurons in the PPC, primarily in area 5b, that signaled distance- or time-to-contact with the obstacle, regardless of which limb was the first to step over the obstacle. We propose that these cells are involved in a sensorimotor transformation whereby information on the location of an obstacle with respect to the body is used to initiate the gait modification. Imagine crossing the street and having to step up onto a sidewalk, or running up to kick a moving soccer ball. How does the brain allow you to accomplish these deceptively simple tasks? You might say that you look at the target and then adjust where you place your feet in order to achieve your goal. That would be correct, but to make that adjustment you have to determine where you are with respect to the curb or the soccer ball. A key aspect of both of these activities is the ability to determine where your target is with respect to your current location, even if that target is moving. One way to do that is to determine the distance or the time required to reach that target. The brain can then use this information to adjust your foot placement and limb movement to fulfill your goal. Despite the fact that we constantly use vision to examine our environment as we walk, we have little understanding as to how the brain uses vision to plan where to step next. Marigold and Drew have now determined whether one specific part of the brain called the posterior parietal cortex, which is known to be involved in integrating vision and movement, is involved in this planning. Specifically, can it estimate the relative location of a moving object with respect to the body? Marigold and Drew recorded from neurons in the posterior parietal cortex of cats while they walked on a treadmill and stepped over an obstacle that moved towards them. On some tests, the obstacle was either slowed or accelerated quickly as it approached the cat. Regardless of these manipulations, some neurons always became active when the obstacle was at a specific distance from the cat. By contrast, other neurons always became active at a specific time before the cat met the obstacle. Animals use this information to adjust their gait to step over an obstacle without hitting it. Overall, the results presented by Marigold and Drew provide new insights into how animals use vision to modify their stepping pattern. This information could potentially be used to devise rehabilitation techniques, perhaps using virtual reality, to aid patients with damage to the posterior parietal cortex. Equally, the results from this research could help to design brain-controlled devices that help patients to walk – or even intelligent walking robots.
Collapse
Affiliation(s)
- Daniel S Marigold
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Trevor Drew
- Département de Neurosciences, Université de Montréal, Québec, Canada.,Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Québec, Canada
| |
Collapse
|
35
|
Bernier PM, Whittingstall K, Grafton ST. Differential Recruitment of Parietal Cortex during Spatial and Non-spatial Reach Planning. Front Hum Neurosci 2017; 11:249. [PMID: 28536517 PMCID: PMC5423362 DOI: 10.3389/fnhum.2017.00249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/26/2017] [Indexed: 12/04/2022] Open
Abstract
The planning of goal-directed arm reaching movements is associated with activity in the dorsal parieto-frontal cortex, within which multiple regions subserve the integration of arm- and target-related sensory signals to encode a motor goal. Surprisingly, many of these regions show sustained activity during reach preparation even when target location is not specified, i.e., when a motor goal cannot be unambiguously formed. The functional role of these non-spatial preparatory signals remains unresolved. Here this process was investigated in humans by comparing reach preparatory activity in the presence or absence of information regarding upcoming target location. In order to isolate the processes specific to reaching and to control for visuospatial attentional factors, the reaching task was contrasted to a finger movement task. Functional MRI and electroencephalography (EEG) were used to characterize the spatio-temporal pattern of reach-related activity in the parieto-frontal cortex. Reach planning with advance knowledge of target location induced robust blood oxygenated level dependent and EEG responses across parietal and premotor regions contralateral to the reaching arm. In contrast, reach preparation without knowledge of target location was associated with a significant BOLD response bilaterally in the parietal cortex. Furthermore, EEG alpha- and beta-band activity was restricted to parietal scalp sites, the magnitude of the latter being correlated with reach reaction times. These results suggest an intermediate stage of sensorimotor transformations in bilateral parietal cortex when target location is not specified.
Collapse
Affiliation(s)
| | - Kevin Whittingstall
- Département de Radiologie Diagnostique, Université de Sherbrooke, SherbrookeQC, Canada
| | - Scott T Grafton
- Brain Imaging Center, Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa BarbaraCA, USA
| |
Collapse
|
36
|
Pouget P, Murthy A, Stuphorn V. Cortical control and performance monitoring of interrupting and redirecting movements. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160201. [PMID: 28242735 PMCID: PMC5332860 DOI: 10.1098/rstb.2016.0201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2016] [Indexed: 01/27/2023] Open
Abstract
Voluntary behaviour requires control mechanisms that ensure our ability to act independently of habitual and innate response tendencies. Electrophysiological experiments, using the stop-signal task in humans, monkeys and rats, have uncovered a core network of brain structures that is essential for response inhibition. This network is shared across mammals and seems to be conserved throughout their evolution. Recently, new research building on these earlier findings has started to investigate the interaction between response inhibition and other control mechanisms in the brain. Here we describe recent progress in three different areas: selectivity of movement inhibition across different motor systems, re-orientation of motor actions and action evaluation.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'.
Collapse
Affiliation(s)
- Pierre Pouget
- CNRS UMR 7225, ICM, UMR S975, Université Pierre and Marie Curie-Paris 6, Hôpital de la Salpêtrière, 47 boulevard de l'Hôpital, 75651 Paris, France
| | - Aditya Murthy
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Veit Stuphorn
- Department of Neuroscience and Krieger Mind/Brain Institute, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
37
|
Gertz H, Lingnau A, Fiehler K. Decoding Movement Goals from the Fronto-Parietal Reach Network. Front Hum Neurosci 2017; 11:84. [PMID: 28286476 PMCID: PMC5323385 DOI: 10.3389/fnhum.2017.00084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
During reach planning, fronto-parietal brain areas need to transform sensory information into a motor code. It is debated whether these areas maintain a sensory representation of the visual cue or a motor representation of the upcoming movement goal. Here, we present results from a delayed pro-/anti-reach task which allowed for dissociating the position of the visual cue from the reach goal. In this task, the visual cue was combined with a context rule (pro vs. anti) to infer the movement goal. Different levels of movement goal specification during the delay were obtained by presenting the context rule either before the delay together with the visual cue (specified movement goal) or after the delay (underspecified movement goal). By applying functional magnetic resonance imaging (fMRI) multivoxel pattern analysis (MVPA), we demonstrate movement goal encoding in the left dorsal premotor cortex (PMd) and bilateral superior parietal lobule (SPL) when the reach goal is specified. This suggests that fronto-parietal reach regions (PRRs) maintain a prospective motor code during reach planning. When the reach goal is underspecified, only area PMd but not SPL represents the visual cue position indicating an incomplete state of sensorimotor integration. Moreover, this result suggests a potential role of PMd in movement goal selection.
Collapse
Affiliation(s)
- Hanna Gertz
- Experimental Psychology, Justus-Liebig University Giessen Giessen, Germany
| | - Angelika Lingnau
- Department of Psychology, Royal Holloway University of LondonEgham, UK; Center for Mind/Brain Sciences, University of TrentoMattarello, Italy
| | - Katja Fiehler
- Experimental Psychology, Justus-Liebig University Giessen Giessen, Germany
| |
Collapse
|
38
|
Cappadocia DC, Monaco S, Chen Y, Blohm G, Crawford JD. Temporal Evolution of Target Representation, Movement Direction Planning, and Reach Execution in Occipital–Parietal–Frontal Cortex: An fMRI Study. Cereb Cortex 2016; 27:5242-5260. [DOI: 10.1093/cercor/bhw304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/08/2016] [Indexed: 11/14/2022] Open
|
39
|
Abstract
UNLABELLED During movement planning, brain activity within parietofrontal networks encodes information about upcoming actions that can be driven either externally (e.g., by a sensory cue) or internally (i.e., by a choice/decision). Here we used multivariate pattern analysis (MVPA) of fMRI data to distinguish between areas that represent (1) abstract movement plans that generalize across the way in which these were driven, (2) internally driven movement plans, or (3) externally driven movement plans. In a delayed-movement paradigm, human volunteers were asked to plan and execute three types of nonvisually guided right-handed reaching movements toward a central target object: using a precision grip, a power grip, or touching the object without hand preshaping. On separate blocks of trials, movements were either instructed via color cues (Instructed condition), or chosen by the participant (Free-Choice condition). Using ROI-based and whole-brain searchlight-based MVPA, we found abstract representations of planned movements that generalize across the way these movements are selected (internally vs externally driven) in parietal cortex, dorsal premotor cortex, and primary motor cortex contralateral to the acting hand. In addition, we revealed representations specific for internally driven movement plans in contralateral ventral premotor cortex, dorsolateral prefrontal cortex, supramarginal gyrus, and in ipsilateral posterior parietotemporal regions, suggesting that these regions are recruited during movement selection. Finally, we observed representations of externally driven movement plans in bilateral supplementary motor cortex and a similar trend in presupplementary motor cortex, suggesting a role in stimulus-response mapping. SIGNIFICANCE STATEMENT The way the human brain prepares the body for action constitutes an essential part of our ability to interact with our environment. Previous studies demonstrated that patterns of neuronal activity encode upcoming movements. Here we used multivariate pattern analysis of human fMRI data to distinguish between brain regions containing movement plans for instructed (externally driven) movements, areas involved in movement selection (internally driven), and areas containing abstract movement plans that are invariant to the way these were generated (i.e., that generalize across externally and internally driven movement plans). Our findings extend our understanding of the neural basis of movement planning and have the potential to contribute to the development of brain-controlled neural prosthetic devices.
Collapse
|
40
|
Gertz H, Fiehler K. Human posterior parietal cortex encodes the movement goal in a pro-/anti-reach task. J Neurophysiol 2015; 114:170-83. [PMID: 25904714 DOI: 10.1152/jn.01039.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/22/2015] [Indexed: 11/22/2022] Open
Abstract
Previous research on reach planning in humans has implicated a frontoparietal network, including the precuneus (PCu), a putative human homolog of the monkey parietal reach region (PRR), and the dorsal premotor cortex (PMd). Using a pro-/anti-reach task, electrophysiological studies in monkeys have demonstrated that the movement goal rather than the location of the visual cue is encoded in PRR and PMd. However, if only the effector but not the movement goal is specified (underspecified condition), the PRR and PMd have been shown to represent all potential movement goals. In this functional magnetic resonance imaging study, we investigated whether the human PCu and PMd likewise encode the movement goal, and whether these reach-related areas also engage in situations with underspecified compared with specified movement goals. By using a pro-/anti-reach task, we spatially dissociated the location of the visual cue from the location of the movement goal. In the specified conditions, pro- and anti-reaches activated similar parietal and premotor areas. In the PCu contralateral to the moving arm, we found directionally selective activation fixed to the movement goal. In the underspecified conditions, we observed activation in reach-related areas of the posterior parietal cortex, including PCu. However, the activation was substantially weaker in parietal areas and lacking in PMd. Our results suggest that human PCu encodes the movement goal rather than the location of the visual cue if the movement goal is specified and even engages in situations when only the visual cue but not the movement goal is defined.
Collapse
Affiliation(s)
- Hanna Gertz
- Department of Psychology, Justus-Liebig University Giessen, Giessen, Germany
| | - Katja Fiehler
- Department of Psychology, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
41
|
Christopoulos V, Bonaiuto J, Andersen RA. A biologically plausible computational theory for value integration and action selection in decisions with competing alternatives. PLoS Comput Biol 2015; 11:e1004104. [PMID: 25803729 PMCID: PMC4372613 DOI: 10.1371/journal.pcbi.1004104] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/29/2014] [Indexed: 11/18/2022] Open
Abstract
Decision making is a vital component of human and animal behavior that involves selecting between alternative options and generating actions to implement the choices. Although decisions can be as simple as choosing a goal and then pursuing it, humans and animals usually have to make decisions in dynamic environments where the value and the availability of an option change unpredictably with time and previous actions. A predator chasing multiple prey exemplifies how goals can dynamically change and compete during ongoing actions. Classical psychological theories posit that decision making takes place within frontal areas and is a separate process from perception and action. However, recent findings argue for additional mechanisms and suggest the decisions between actions often emerge through a continuous competition within the same brain regions that plan and guide action execution. According to these findings, the sensorimotor system generates concurrent action-plans for competing goals and uses online information to bias the competition until a single goal is pursued. This information is diverse, relating to both the dynamic value of the goal and the cost of acting, creating a challenging problem in integrating information across these diverse variables in real time. We introduce a computational framework for dynamically integrating value information from disparate sources in decision tasks with competing actions. We evaluated the framework in a series of oculomotor and reaching decision tasks and found that it captures many features of choice/motor behavior, as well as its neural underpinnings that previously have eluded a common explanation. In high-pressure situations, such as driving on a highway or flying a plane, people have limited time to select between competing options while acting. Each option is usually accompanied with reward benefits (e.g., avoid traffic) and action costs (e.g., fuel consumption) that characterize the value of the option. The value and the availability of an option can change dynamically even during ongoing actions which compounds the decision-making challenge. How the brain dynamically integrates value information from disparate sources and selects between competing options is still poorly understood. In the current study, we present a neurodynamical framework to show how a distributed brain network can solve the problem of value integration and action selection in decisions with competing alternatives. It combines dynamic neural field theory with stochastic optimal control theory, and includes circuitry for perception, expected reward, effort cost and decision-making. It provides a principled way to explain both the neural and the behavioral findings from a series of visuomotor decision tasks in human and animal studies. For instance, the model shows how the competitive interactions between populations of neurons within and between sensorimotor regions can result in “spatial-averaging” movements, and how decision-variables influence neural activity and choice behavior.
Collapse
Affiliation(s)
- Vassilios Christopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail:
| | - James Bonaiuto
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, United Kingdom
| | - Richard A. Andersen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
42
|
Chang SWC, Calton JL, Lawrence BM, Dickinson AR, Snyder LH. Region-Specific Summation Patterns Inform the Role of Cortical Areas in Selecting Motor Plans. Cereb Cortex 2015; 26:2154-66. [PMID: 25778345 DOI: 10.1093/cercor/bhv047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Given an instruction regarding which effector to move and what location to move to, simply adding the effector and spatial signals together will not lead to movement selection. For this, a nonlinearity is required. Thresholds, for example, can be used to select a particular response and reject others. Here we consider another useful nonlinearity, a supralinear multiplicative interaction. To help select a motor plan, spatial and effector signals could multiply and thereby amplify each other. Such an amplification could constitute one step within a distributed network involved in response selection, effectively boosting one response while suppressing others. We therefore asked whether effector and spatial signals sum supralinearly for planning eye versus arm movements from the parietal reach region (PRR), the lateral intraparietal area (LIP), the frontal eye field (FEF), and a portion of area 5 (A5) lying just anterior to PRR. Unlike LIP neurons, PRR, FEF, and, to a lesser extent, A5 neurons show a supralinear interaction. Our results suggest that selecting visually guided eye versus arm movements is likely to be mediated by PRR and FEF but not LIP.
Collapse
Affiliation(s)
- Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06511, USA Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jeffrey L Calton
- Department of Psychology, Sacramento State University, Sacramento, CA 95819, USA
| | - Bonnie M Lawrence
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Anthony R Dickinson
- Department of Anatomy and Neurobiology, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Lawrence H Snyder
- Department of Anatomy and Neurobiology, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
43
|
Wheeler ME, Woo SG, Ansel T, Tremel JJ, Collier AL, Velanova K, Ploran EJ, Yang T. The strength of gradually accruing probabilistic evidence modulates brain activity during a categorical decision. J Cogn Neurosci 2014; 27:705-19. [PMID: 25313658 DOI: 10.1162/jocn_a_00739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The evolution of neural activity during a perceptual decision is well characterized by the evidence parameter in sequential sampling models. However, it is not known whether accumulating signals in human neuroimaging are related to the integration of evidence. Our aim was to determine whether activity accumulates in a nonperceptual task by identifying brain regions tracking the strength of probabilistic evidence. fMRI was used to measure whole-brain activity as choices were informed by integrating a series of learned prior probabilities. Participants first learned the predictive relationship between a set of shape stimuli and one of two choices. During scanned testing, they made binary choices informed by the sum of the predictive strengths of individual shapes. Sequences of shapes adhered to three distinct rates of evidence (RoEs): rapid, gradual, and switch. We predicted that activity in regions informing the decision would modulate as a function of RoE prior to the choice. Activity in some regions, including premotor areas, changed as a function of RoE and response hand, indicating a role in forming an intention to respond. Regions in occipital, temporal, and parietal lobes modulated as a function of RoE only, suggesting a preresponse stage of evidence processing. In all of these regions, activity was greatest on rapid trials and least on switch trials, which is consistent with an accumulation-to-boundary account. In contrast, activity in a set of frontal and parietal regions was greatest on switch and least on rapid trials, which is consistent with an effort or time-on-task account.
Collapse
|
44
|
Yttri EA, Wang C, Liu Y, Snyder LH. The parietal reach region is limb specific and not involved in eye-hand coordination. J Neurophysiol 2013; 111:520-32. [PMID: 24198328 DOI: 10.1152/jn.00058.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primates frequently reach toward visual targets. Neurons in early visual areas respond to stimuli in the contralateral visual hemifield and without regard to which limb will be used to reach toward that target. In contrast, neurons in motor areas typically respond when reaches are performed using the contralateral limb and with minimal regard to the visuospatial location of the target. The parietal reach region (PRR) is located early in the visuomotor processing hierarchy. PRR neurons are significantly modulated when targets for either limb or eye movement appear, similar to early sensory areas; however, they respond to targets in either visual field, similar to motor areas. The activity could reflect the subject's attentional locus, movement of a specific effector, or a related function, such as coordinating eye-arm movements. To examine the role of PRR in the visuomotor pathway, we reversibly inactivated PRR. Inactivation effects were specific to contralateral limb movements, leaving ipsilateral limb and saccadic movements intact. Neither visual hemifield bias nor visual attention deficits were observed. Thus our results are consistent with a motoric rather than visual organization in PRR, despite its early location in the visuomotor pathway. We found no effects on the temporal coupling of coordinated saccades and reaches, suggesting that this mechanism lies downstream of PRR. In sum, this study clarifies the role of PRR in the visuomotor hierarchy: despite its early position, it is a limb-specific area influencing reach planning and is positioned upstream from an active eye-hand coordination-coupling mechanism.
Collapse
Affiliation(s)
- Eric A Yttri
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | |
Collapse
|
45
|
Breveglieri R, Galletti C, Dal Bò G, Hadjidimitrakis K, Fattori P. Multiple aspects of neural activity during reaching preparation in the medial posterior parietal area V6A. J Cogn Neurosci 2013; 26:878-95. [PMID: 24168224 DOI: 10.1162/jocn_a_00510] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The posterior parietal cortex is involved in the visuomotor transformations occurring during arm-reaching movements. The medial posterior parietal area V6A has been shown to be implicated in reaching execution, but its role in reaching preparation has not been sufficiently investigated. Here, we addressed this issue exploring the neural correlates of reaching preparation in V6A. Neural activity of single cells during the instructed delay period of a foveated Reaching task was compared with the activity in the same delay period during a Detection task. In this latter task, animals fixated the target but, instead of performing an arm reaching movement, they responded with a button release to the go signal. Targets were allocated in different positions in 3-D space. We found three types of neurons: cells where delay activity was equally spatially tuned in the two tasks (Gaze cells), cells spatially tuned only during reaching preparation (Set cells), and cells influenced by both gaze and reaching preparation signals (Gaze/Set cells). In cells influenced by reaching preparation, the delay activity in the Reaching task could be higher or lower compared with the Detection task. All the Set cells and a minority of Gaze/Set cells were more active during reaching preparation. Most cells modulated by movement preparation were also modulated with a congruent spatial tuning during movement execution. Present results highlight the convergence of visuospatial information, reach planning and reach execution signals on V6A, and indicate that visuospatial processing and movement execution have a larger influence on V6A activity than the encoding of reach plans.
Collapse
|