1
|
Yang Z, Teaney NA, Buttermore ED, Sahin M, Afshar-Saber W. Harnessing the potential of human induced pluripotent stem cells, functional assays and machine learning for neurodevelopmental disorders. Front Neurosci 2025; 18:1524577. [PMID: 39844857 PMCID: PMC11750789 DOI: 10.3389/fnins.2024.1524577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Neurodevelopmental disorders (NDDs) affect 4.7% of the global population and are associated with delays in brain development and a spectrum of impairments that can lead to lifelong disability and even mortality. Identification of biomarkers for accurate diagnosis and medications for effective treatment are lacking, in part due to the historical use of preclinical model systems that do not translate well to the clinic for neurological disorders, such as rodents and heterologous cell lines. Human-induced pluripotent stem cells (hiPSCs) are a promising in vitro system for modeling NDDs, providing opportunities to understand mechanisms driving NDDs in human neurons. Functional assays, including patch clamping, multielectrode array, and imaging-based assays, are popular tools employed with hiPSC disease models for disease investigation. Recent progress in machine learning (ML) algorithms also presents unprecedented opportunities to advance the NDD research process. In this review, we compare two-dimensional and three-dimensional hiPSC formats for disease modeling, discuss the applications of functional assays, and offer insights on incorporating ML into hiPSC-based NDD research and drug screening.
Collapse
Affiliation(s)
- Ziqin Yang
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicole A. Teaney
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elizabeth D. Buttermore
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Human Neuron Core, Boston Children’s Hospital, Boston, MA, United States
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Human Neuron Core, Boston Children’s Hospital, Boston, MA, United States
| | - Wardiya Afshar-Saber
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Quintanilla CA, Fitzgerald Z, Kashow O, Radojicic MS, Ulupinar E, Bitlis D, Genc B, Andjus P, van Drongelen W, Ozdinler PH. High-density multielectrode arrays bring cellular resolution to neuronal activity and network analyses of corticospinal motor neurons. Sci Rep 2025; 15:732. [PMID: 39753665 PMCID: PMC11699118 DOI: 10.1038/s41598-024-83883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology. However, a high-spatiotemporal resolution on our understanding of their functional health and connectivity is lacking. Here, we combine optical imaging with high-density microelectrode array (HD-MEA) system enabling single cell resolution and utilize UCHL1-eGFP mice to bring cell-type specificity to our understanding of the electrophysiological features of healthy CSMN, as they mature and form network connections with other cortical neurons, in vitro. This novel approach lays the foundation for future cell-type specific analyses of CSMN that are diseased due to different underlying causes with cellular precision, and it will allow the assessment of their functional response to compound treatment, especially for drug discovery efforts in upper motor neuron diseases.
Collapse
Affiliation(s)
- Christopher A Quintanilla
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Zachary Fitzgerald
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Omar Kashow
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Mihailo S Radojicic
- Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Studentski trg 3, Belgrade, 11000, Serbia
| | - Emel Ulupinar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Dila Bitlis
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Baris Genc
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Pavle Andjus
- Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Studentski trg 3, Belgrade, 11000, Serbia
| | - Wim van Drongelen
- Pediatric Neurology, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - P Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
- Les Turner ALS Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Milicevic KD, Ivanova VO, Lovic DD, Platisa J, Andjus PR, Antic SD. Plateau depolarizations in spontaneously active neurons detected by calcium or voltage imaging. Sci Rep 2024; 14:22787. [PMID: 39367010 PMCID: PMC11452489 DOI: 10.1038/s41598-024-70319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/14/2024] [Indexed: 10/06/2024] Open
Abstract
In calcium imaging studies, Ca2+ transients are commonly interpreted as neuronal action potentials (APs). However, our findings demonstrate that robust optical Ca2+ transients primarily stem from complex "AP-Plateaus", while simple APs lacking underlying depolarization envelopes produce much weaker photonic signatures. Under challenging in vivo conditions, these "AP-Plateaus" are likely to surpass noise levels, thus dominating the Ca2+ recordings. In spontaneously active neuronal culture, optical Ca2+ transients (OGB1-AM, GCaMP6f) exhibited approximately tenfold greater amplitude and twofold longer half-width compared to optical voltage transients (ArcLightD). The amplitude of the ArcLightD signal exhibited a strong correlation with the duration of the underlying membrane depolarization, and a weaker correlation with the presence of a fast sodium AP. Specifically, ArcLightD exhibited robust responsiveness to the slow "foot" but not the fast "trunk" of the neuronal AP. Particularly potent stimulators of optical signals in both Ca2+ and voltage imaging modalities were APs combined with plateau potentials (AP-Plateaus), resembling dendritic Ca2+ spikes or "UP states" in pyramidal neurons. Interestingly, even the spikeless plateaus (amplitude > 10 mV, duration > 200 ms) could generate conspicuous Ca2+ optical signals in neurons. Therefore, in certain circumstances, Ca2+ transients should not be interpreted solely as indicators of neuronal AP firing.
Collapse
Affiliation(s)
- Katarina D Milicevic
- School of Medicine, Institute for Systems Genomics, UConn Health, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Institute of Physiology and Biochemistry 'Jean Giaja', Center for Laser Microscopy, University of Belgrade, Faculty of Biology, 11000, Belgrade, Serbia
| | - Violetta O Ivanova
- School of Medicine, Institute for Systems Genomics, UConn Health, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Darko D Lovic
- School of Medicine, Institute for Systems Genomics, UConn Health, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Institute of Physiology and Biochemistry 'Jean Giaja', Center for Laser Microscopy, University of Belgrade, Faculty of Biology, 11000, Belgrade, Serbia
| | - Jelena Platisa
- The John B. Pierce Laboratory, New Haven, CT, 06519, USA
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, 06519, USA
| | - Pavle R Andjus
- Institute of Physiology and Biochemistry 'Jean Giaja', Center for Laser Microscopy, University of Belgrade, Faculty of Biology, 11000, Belgrade, Serbia
| | - Srdjan D Antic
- School of Medicine, Institute for Systems Genomics, UConn Health, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
4
|
Mandracchia B, Zheng C, Rajendran S, Liu W, Forghani P, Xu C, Jia S. High-speed optical imaging with sCMOS pixel reassignment. Nat Commun 2024; 15:4598. [PMID: 38816394 PMCID: PMC11139943 DOI: 10.1038/s41467-024-48987-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Fluorescence microscopy has undergone rapid advancements, offering unprecedented visualization of biological events and shedding light on the intricate mechanisms governing living organisms. However, the exploration of rapid biological dynamics still poses a significant challenge due to the limitations of current digital camera architectures and the inherent compromise between imaging speed and other capabilities. Here, we introduce sHAPR, a high-speed acquisition technique that leverages the operating principles of sCMOS cameras to capture fast cellular and subcellular processes. sHAPR harnesses custom fiber optics to convert microscopy images into one-dimensional recordings, enabling acquisition at the maximum camera readout rate, typically between 25 and 250 kHz. We have demonstrated the utility of sHAPR with a variety of phantom and dynamic systems, including high-throughput flow cytometry, cardiomyocyte contraction, and neuronal calcium waves, using a standard epi-fluorescence microscope. sHAPR is highly adaptable and can be integrated into existing microscopy systems without requiring extensive platform modifications. This method pushes the boundaries of current fluorescence imaging capabilities, opening up new avenues for investigating high-speed biological phenomena.
Collapse
Affiliation(s)
- Biagio Mandracchia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- E.T.S.I. Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Corey Zheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Suraj Rajendran
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Parvin Forghani
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
5
|
Średniawa W, Borzymowska Z, Kondrakiewicz K, Jurgielewicz P, Mindur B, Hottowy P, Wójcik DK, Kublik E. Local contribution to the somatosensory evoked potentials in rat's thalamus. PLoS One 2024; 19:e0301713. [PMID: 38593141 PMCID: PMC11003638 DOI: 10.1371/journal.pone.0301713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Local Field Potential (LFP), despite its name, often reflects remote activity. Depending on the orientation and synchrony of their sources, both oscillations and more complex waves may passively spread in brain tissue over long distances and be falsely interpreted as local activity at such distant recording sites. Here we show that the whisker-evoked potentials in the thalamic nuclei are of local origin up to around 6 ms post stimulus, but the later (7-15 ms) wave is overshadowed by a negative component reaching from cortex. This component can be analytically removed and local thalamic LFP can be recovered reliably using Current Source Density analysis. We used model-based kernel CSD (kCSD) method which allowed us to study the contribution of local and distant currents to LFP from rat thalamic nuclei and barrel cortex recorded with multiple, non-linear and non-regular multichannel probes. Importantly, we verified that concurrent recordings from the cortex are not essential for reliable thalamic CSD estimation. The proposed framework can be used to analyze LFP from other brain areas and has consequences for general LFP interpretation and analysis.
Collapse
Affiliation(s)
- Władysław Średniawa
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Zuzanna Borzymowska
- Neurobiology of Emotions Laboratory, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kacper Kondrakiewicz
- Neurobiology of Emotions Laboratory, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Jurgielewicz
- AGH University of Science and Technology in Kraków, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Bartosz Mindur
- AGH University of Science and Technology in Kraków, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Paweł Hottowy
- AGH University of Science and Technology in Kraków, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Daniel K. Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Jagiellonian University, Faculty of Management and Social Communication, Jagiellonian University, Krakow, Poland
| | - Ewa Kublik
- Neurobiology of Emotions Laboratory, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Song C, Matlashov ME, Shcherbakova DM, Antic SD, Verkhusha VV, Knöpfel T. Characterization of two near-infrared genetically encoded voltage indicators. NEUROPHOTONICS 2024; 11:024201. [PMID: 38090225 PMCID: PMC10712888 DOI: 10.1117/1.nph.11.2.024201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Significance Efforts starting more than 20 years ago led to increasingly well performing genetically encoded voltage indicators (GEVIs) for optical imaging at wavelengths < 600 nm . Although optical imaging in the > 600 nm wavelength range has many advantages over shorter wavelength approaches for mesoscopic in vivo monitoring of neuronal activity in the mammalian brain, the availability and evaluation of well performing near-infrared GEVIs are still limited. Aim Here, we characterized two recent near-infrared GEVIs, Archon1 and nirButterfly, to support interested tool users in selecting a suitable near-infrared GEVI for their specific research question requirements. Approach We characterized side-by-side the brightness, sensitivity, and kinetics of both near-infrared GEVIs in a setting focused on population imaging. Results We found that nirButterfly shows seven-fold higher brightness than Archon1 under the same conditions and faster kinetics than Archon1 for population imaging without cellular resolution. But Archon1 showed larger signals than nirButterfly. Conclusions Neither GEVI characterized here surpasses in all three key parameters (brightness, kinetics, and sensitivity), so there is no unequivocal preference for one of the two. Our side-by-side characterization presented here provides new information for future in vitro and ex vivo experimental designs.
Collapse
Affiliation(s)
- Chenchen Song
- Imperial College, Laboratory for Neuronal Circuit Dynamics, London, United Kingdom
- Nanyang Technological University, Singapore
| | - Mikhail E. Matlashov
- Albert Einstein College of Medicine, Gruss-Lipper Biophotonics Center, Department of Genetics, Bronx, New York, United States
| | - Daria M. Shcherbakova
- Albert Einstein College of Medicine, Gruss-Lipper Biophotonics Center, Department of Genetics, Bronx, New York, United States
| | - Srdjan D. Antic
- Institute for Systems Genomics, UConn Health, Department of Neuroscience, Farmington, Connecticut, United States
| | - Vladislav V. Verkhusha
- Albert Einstein College of Medicine, Gruss-Lipper Biophotonics Center, Department of Genetics, Bronx, New York, United States
- University of Helsinki, Medicum, Faculty of Medicine, Helsinki, Finland
| | - Thomas Knöpfel
- Imperial College, Laboratory for Neuronal Circuit Dynamics, London, United Kingdom
- Hong Kong Baptist University, Laboratory for Neuronal Circuit Dynamics, Hong Kong, China
| |
Collapse
|
7
|
Milicevic KD, Barbeau BL, Lovic DD, Patel AA, Ivanova VO, Antic SD. Physiological features of parvalbumin-expressing GABAergic interneurons contributing to high-frequency oscillations in the cerebral cortex. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 6:100121. [PMID: 38616956 PMCID: PMC11015061 DOI: 10.1016/j.crneur.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 04/16/2024] Open
Abstract
Parvalbumin-expressing (PV+) inhibitory interneurons drive gamma oscillations (30-80 Hz), which underlie higher cognitive functions. In this review, we discuss two groups/aspects of fundamental properties of PV+ interneurons. In the first group (dubbed Before Axon), we list properties representing optimal synaptic integration in PV+ interneurons designed to support fast oscillations. For example: [i] Information can neither enter nor leave the neocortex without the engagement of fast PV+ -mediated inhibition; [ii] Voltage responses in PV+ interneuron dendrites integrate linearly to reduce impact of the fluctuations in the afferent drive; and [iii] Reversed somatodendritic Rm gradient accelerates the time courses of synaptic potentials arriving at the soma. In the second group (dubbed After Axon), we list morphological and biophysical properties responsible for (a) short synaptic delays, and (b) efficient postsynaptic outcomes. For example: [i] Fast-spiking ability that allows PV+ interneurons to outpace other cortical neurons (pyramidal neurons). [ii] Myelinated axon (which is only found in the PV+ subclass of interneurons) to secure fast-spiking at the initial axon segment; and [iii] Inhibitory autapses - autoinhibition, which assures brief biphasic voltage transients and supports postinhibitory rebounds. Recent advent of scientific tools, such as viral strategies to target PV cells and the ability to monitor PV cells via in vivo imaging during behavior, will aid in defining the role of PV cells in the CNS. Given the link between PV+ interneurons and cognition, in the future, it would be useful to carry out physiological recordings in the PV+ cell type selectively and characterize if and how psychiatric and neurological diseases affect initiation and propagation of electrical signals in this cortical sub-circuit. Voltage imaging may allow fast recordings of electrical signals from many PV+ interneurons simultaneously.
Collapse
Affiliation(s)
- Katarina D. Milicevic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
- University of Belgrade, Faculty of Biology, Center for Laser Microscopy, Belgrade, 11000, Serbia
| | - Brianna L. Barbeau
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Darko D. Lovic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
- University of Belgrade, Faculty of Biology, Center for Laser Microscopy, Belgrade, 11000, Serbia
| | - Aayushi A. Patel
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Violetta O. Ivanova
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Srdjan D. Antic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| |
Collapse
|
8
|
Evans SW, Shi DQ, Chavarha M, Plitt MH, Taxidis J, Madruga B, Fan JL, Hwang FJ, van Keulen SC, Suomivuori CM, Pang MM, Su S, Lee S, Hao YA, Zhang G, Jiang D, Pradhan L, Roth RH, Liu Y, Dorian CC, Reese AL, Negrean A, Losonczy A, Makinson CD, Wang S, Clandinin TR, Dror RO, Ding JB, Ji N, Golshani P, Giocomo LM, Bi GQ, Lin MZ. A positively tuned voltage indicator for extended electrical recordings in the brain. Nat Methods 2023; 20:1104-1113. [PMID: 37429962 PMCID: PMC10627146 DOI: 10.1038/s41592-023-01913-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
Genetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not yet been demonstrated. Here, we report engineering of ASAP family GEVIs to enhance photostability by inversion of the fluorescence-voltage relationship. Two of the resulting GEVIs, ASAP4b and ASAP4e, respond to 100-mV depolarizations with ≥180% fluorescence increases, compared with the 50% fluorescence decrease of the parental ASAP3. With standard microscopy equipment, ASAP4e enables single-trial detection of spikes in mice over the course of minutes. Unlike GEVIs previously used for one-photon voltage recordings, ASAP4b and ASAP4e also perform well under two-photon illumination. By imaging voltage and calcium simultaneously, we show that ASAP4b and ASAP4e can identify place cells and detect voltage spikes with better temporal resolution than commonly used calcium indicators. Thus, ASAP4b and ASAP4e extend the capabilities of voltage imaging to standard one- and two-photon microscopes while improving the duration of voltage recordings.
Collapse
Affiliation(s)
- S Wenceslao Evans
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Dong-Qing Shi
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mariya Chavarha
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Mark H Plitt
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Jiannis Taxidis
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Blake Madruga
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jiang Lan Fan
- UC Berkeley/UCSF Joint Program in Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
| | - Siri C van Keulen
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Michelle M Pang
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Sharon Su
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Sungmoo Lee
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Yukun A Hao
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Dongyun Jiang
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Lagnajeet Pradhan
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Richard H Roth
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
| | - Yu Liu
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
- Department of Ophthalmology, Stanford University Medical Center, Stanford, CA, USA
| | - Conor C Dorian
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Austin L Reese
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Kavli Institute for Brain Science, New York, NY, USA
| | - Christopher D Makinson
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Sui Wang
- Department of Ophthalmology, Stanford University Medical Center, Stanford, CA, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, USA
| | - Na Ji
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Physics, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peyman Golshani
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Guo-Qiang Bi
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Michael Z Lin
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University, Stanford, USA.
| |
Collapse
|
9
|
Abdelfattah AS, Zheng J, Singh A, Huang YC, Reep D, Tsegaye G, Tsang A, Arthur BJ, Rehorova M, Olson CVL, Shuai Y, Zhang L, Fu TM, Milkie DE, Moya MV, Weber TD, Lemire AL, Baker CA, Falco N, Zheng Q, Grimm JB, Yip MC, Walpita D, Chase M, Campagnola L, Murphy GJ, Wong AM, Forest CR, Mertz J, Economo MN, Turner GC, Koyama M, Lin BJ, Betzig E, Novak O, Lavis LD, Svoboda K, Korff W, Chen TW, Schreiter ER, Hasseman JP, Kolb I. Sensitivity optimization of a rhodopsin-based fluorescent voltage indicator. Neuron 2023; 111:1547-1563.e9. [PMID: 37015225 PMCID: PMC10280807 DOI: 10.1016/j.neuron.2023.03.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.
Collapse
Affiliation(s)
| | - Jihong Zheng
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Amrita Singh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yi-Chieh Huang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Daniel Reep
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Getahun Tsegaye
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Arthur Tsang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Benjamin J Arthur
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Monika Rehorova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Carl V L Olson
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Yichun Shuai
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lixia Zhang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tian-Ming Fu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Daniel E Milkie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Maria V Moya
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Timothy D Weber
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Natalie Falco
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Qinsi Zheng
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Mighten C Yip
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Deepika Walpita
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | | | | | - Allan M Wong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Craig R Forest
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Bei-Jung Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Departments of Molecular and Cell Biology and Physics, Howard Hughes Medical Institute, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ondrej Novak
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tsai-Wen Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Jeremy P Hasseman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Ilya Kolb
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
10
|
Al Abed A, Wei Y, Almasri RM, Lei X, Wang H, Firth J, Chen Y, Gouailhardou N, Silvestri L, Lehmann T, Ladouceur F, Lovell NH. Liquid crystal electro-optical transducers for electrophysiology sensing applications. J Neural Eng 2022; 19. [DOI: 10.1088/1741-2552/ac8ed6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Objective. Biomedical instrumentation and clinical systems for electrophysiology rely on electrodes and wires for sensing and transmission of bioelectric signals. However, this electronic approach constrains bandwidth, signal conditioning circuit designs, and the number of channels in invasive or miniature devices. This paper demonstrates an alternative approach using light to sense and transmit the electrophysiological signals. Approach. We develop a sensing, passive, fluorophore-free optrode based on the birefringence property of liquid crystals (LCs) operating at the microscale. Main results. We show that these optrodes can have the appropriate linearity (µ ± s.d.: 99.4 ± 0.5%, n = 11 devices), relative responsivity (µ ± s.d.: 57 ± 12%V−1, n = 5 devices), and bandwidth (µ ± s.d.: 11.1 ± 0.7 kHz, n = 7 devices) for transducing electrophysiology signals into the optical domain. We report capture of rabbit cardiac sinoatrial electrograms and stimulus-evoked compound action potentials from the rabbit sciatic nerve. We also demonstrate miniaturisation potential by fabricating multi-optrode arrays, by developing a process that automatically matches each transducer element area with that of its corresponding biological interface. Significance. Our method of employing LCs to convert bioelectric signals into the optical domain will pave the way for the deployment of high-bandwidth optical telecommunications techniques in ultra-miniature clinical diagnostic and research laboratory neural and cardiac interfaces.
Collapse
|
11
|
Meyer-Baese L, Watters H, Keilholz S. Spatiotemporal patterns of spontaneous brain activity: a mini-review. NEUROPHOTONICS 2022; 9:032209. [PMID: 35434180 PMCID: PMC9005199 DOI: 10.1117/1.nph.9.3.032209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The brain exists in a state of constant activity in the absence of any external sensory input. The spatiotemporal patterns of this spontaneous brain activity have been studied using various recording and imaging techniques. This has enabled considerable progress to be made in elucidating the cellular and network mechanisms that are involved in the observed spatiotemporal dynamics. This mini-review outlines different spatiotemporal dynamic patterns that have been identified in four commonly used modalities: electrophysiological recordings, optical imaging, functional magnetic resonance imaging, and electroencephalography. Signal sources for each modality, possible sources of the observed dynamics, and future directions are also discussed.
Collapse
Affiliation(s)
- Lisa Meyer-Baese
- Emory University, Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | | | - Shella Keilholz
- Emory University, Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| |
Collapse
|
12
|
Srinivasan P, Griffin NM, Thakur D, Joshi P, Nguyen-Le A, McCotter S, Jain A, Saeidi M, Kulkarni P, Eisdorfer JT, Rothman J, Montell C, Theogarajan L. An Autonomous Molecular Bioluminescent Reporter (AMBER) for Voltage Imaging in Freely Moving Animals. Adv Biol (Weinh) 2021; 5:e2100842. [PMID: 34761564 PMCID: PMC8858017 DOI: 10.1002/adbi.202100842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/08/2021] [Indexed: 11/12/2022]
Abstract
Genetically encoded reporters have greatly increased our understanding of biology. While fluorescent reporters have been widely used, photostability and phototoxicity have hindered their use in long-term experiments. Bioluminescence overcomes some of these challenges but requires the addition of an exogenous luciferin limiting its use. Using a modular approach, Autonomous Molecular BioluminEscent Reporter (AMBER), an indicator of membrane potential is engineered. Unlike other bioluminescent systems, AMBER is a voltage-gated luciferase coupling the functionalities of the Ciona voltage-sensing domain (VSD) and bacterial luciferase, luxAB. When co-expressed with the luciferin-producing genes, AMBER reversibly switches the bioluminescent intensity as a function of membrane potential. Using biophysical and biochemical methods, it is shown that AMBER switches its enzymatic activity from an OFF to an ON state as a function of the membrane potential. Upon depolarization, AMBER switches from a low to a high enzymatic activity state, showing a several-fold increase in the bioluminescence output (ΔL/L). AMBER in the pharyngeal muscles and mechanosensory touch neurons of Caenorhabditis elegans is expressed. Using the compressed sensing approach, the electropharingeogram of the C. elegans pharynx is reconstructed, validating the sensor in vivo. Thus, AMBER represents the first fully genetically encoded bioluminescent reporter without requiring exogenous luciferin addition.
Collapse
Affiliation(s)
- Prasanna Srinivasan
- Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
- Center for Bioengineering, Institute for Collaborative Biotechnologies, University of California Santa Barbara, CA 93106
| | - Nicole M Griffin
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, 93106, USA
- Center for Bioengineering, Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Dhananjay Thakur
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, CA 93106
- The Neuroscience Research Institute, University of California Santa Barbara, CA 93106
| | - Pradeep Joshi
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, CA 93106
| | - Alex Nguyen-Le
- Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
- Current address: Department of Electrical Engineering, University of Pennsylvania, Philadelphia, PA
| | - Sean McCotter
- Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
| | - Akshar Jain
- Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
| | - Mitra Saeidi
- Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
| | - Prajakta Kulkarni
- Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
| | - Jaclyn T. Eisdorfer
- College of Creative Studies,University of California Santa Barbara, CA 93106 Current address: Dept. of Bioengineering, Temple University, Philadelphia, PA 19122
| | - Joel Rothman
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, CA 93106
| | - Craig Montell
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, CA 93106
- The Neuroscience Research Institute, University of California Santa Barbara, CA 93106
| | - Luke Theogarajan
- Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
- Center for Bioengineering, Institute for Collaborative Biotechnologies, University of California Santa Barbara, CA 93106
| |
Collapse
|
13
|
Chien MP, Brinks D, Testa-Silva G, Tian H, Phil Brooks F, Adam Y, Bloxham B, Gmeiner B, Kheifets S, Cohen AE. Photoactivated voltage imaging in tissue with an archaerhodopsin-derived reporter. SCIENCE ADVANCES 2021; 7:eabe3216. [PMID: 33952514 PMCID: PMC8099184 DOI: 10.1126/sciadv.abe3216] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/15/2021] [Indexed: 05/19/2023]
Abstract
Photoactivated genetically encoded voltage indicators (GEVIs) have the potential to enable optically sectioned voltage imaging at the intersection of a photoactivation beam and an imaging beam. We developed a pooled high-throughput screen to identify archaerhodopsin mutants with enhanced photoactivation. After screening ~105 cells, we identified a novel GEVI, NovArch, whose one-photon near-infrared fluorescence is reversibly enhanced by weak one-photon blue or two-photon near-infrared excitation. Because the photoactivation leads to fluorescent signals catalytically rather than stoichiometrically, high fluorescence signals, optical sectioning, and high time resolution are achieved simultaneously at modest blue or two-photon laser power. We demonstrate applications of the combined molecular and optical tools to optical mapping of membrane voltage in distal dendrites in acute mouse brain slices and in spontaneously active neurons in vivo.
Collapse
Affiliation(s)
- Miao-Ping Chien
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Daan Brinks
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
| | - Guilherme Testa-Silva
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | - He Tian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - F Phil Brooks
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yoav Adam
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Blox Bloxham
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Benjamin Gmeiner
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Simon Kheifets
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
- Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Daria VR, Castañares ML, Bachor HA. Spatio-temporal parameters for optical probing of neuronal activity. Biophys Rev 2021; 13:13-33. [PMID: 33747244 PMCID: PMC7930150 DOI: 10.1007/s12551-021-00780-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/01/2021] [Indexed: 12/28/2022] Open
Abstract
The challenge to understand the complex neuronal circuit functions in the mammalian brain has brought about a revolution in light-based neurotechnologies and optogenetic tools. However, while recent seminal works have shown excellent insights on the processing of basic functions such as sensory perception, memory, and navigation, understanding more complex brain functions is still unattainable with current technologies. We are just scratching the surface, both literally and figuratively. Yet, the path towards fully understanding the brain is not totally uncertain. Recent rapid technological advancements have allowed us to analyze the processing of signals within dendritic arborizations of single neurons and within neuronal circuits. Understanding the circuit dynamics in the brain requires a good appreciation of the spatial and temporal properties of neuronal activity. Here, we assess the spatio-temporal parameters of neuronal responses and match them with suitable light-based neurotechnologies as well as photochemical and optogenetic tools. We focus on the spatial range that includes dendrites and certain brain regions (e.g., cortex and hippocampus) that constitute neuronal circuits. We also review some temporal characteristics of some proteins and ion channels responsible for certain neuronal functions. With the aid of the photochemical and optogenetic markers, we can use light to visualize the circuit dynamics of a functioning brain. The challenge to understand how the brain works continue to excite scientists as research questions begin to link macroscopic and microscopic units of brain circuits.
Collapse
Affiliation(s)
- Vincent R. Daria
- Research School of Physics, The Australian National University, Canberra, Australia
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | - Hans-A. Bachor
- Research School of Physics, The Australian National University, Canberra, Australia
| |
Collapse
|
15
|
Forro C, Caron D, Angotzi GN, Gallo V, Berdondini L, Santoro F, Palazzolo G, Panuccio G. Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology. MICROMACHINES 2021; 12:124. [PMID: 33498905 PMCID: PMC7912435 DOI: 10.3390/mi12020124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Brain-on-Chip (BoC) biotechnology is emerging as a promising tool for biomedical and pharmaceutical research applied to the neurosciences. At the convergence between lab-on-chip and cell biology, BoC couples in vitro three-dimensional brain-like systems to an engineered microfluidics platform designed to provide an in vivo-like extrinsic microenvironment with the aim of replicating tissue- or organ-level physiological functions. BoC therefore offers the advantage of an in vitro reproduction of brain structures that is more faithful to the native correlate than what is obtained with conventional cell culture techniques. As brain function ultimately results in the generation of electrical signals, electrophysiology techniques are paramount for studying brain activity in health and disease. However, as BoC is still in its infancy, the availability of combined BoC-electrophysiology platforms is still limited. Here, we summarize the available biological substrates for BoC, starting with a historical perspective. We then describe the available tools enabling BoC electrophysiology studies, detailing their fabrication process and technical features, along with their advantages and limitations. We discuss the current and future applications of BoC electrophysiology, also expanding to complementary approaches. We conclude with an evaluation of the potential translational applications and prospective technology developments.
Collapse
Affiliation(s)
- Csaba Forro
- Tissue Electronics, Fondazione Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53-80125 Naples, Italy; (C.F.); (F.S.)
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Davide Caron
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Gian Nicola Angotzi
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (G.N.A.); (L.B.)
| | - Vincenzo Gallo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Luca Berdondini
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (G.N.A.); (L.B.)
| | - Francesca Santoro
- Tissue Electronics, Fondazione Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53-80125 Naples, Italy; (C.F.); (F.S.)
| | - Gemma Palazzolo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| |
Collapse
|
16
|
Mollinedo-Gajate I, Song C, Knöpfel T. Genetically Encoded Voltage Indicators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:209-224. [PMID: 33398815 DOI: 10.1007/978-981-15-8763-4_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Optogenetic approaches combine the power to allocate optogenetic tools (proteins) to specific cell populations (defined genetically or functionally) and the use of light-based interfaces between biological wetware (cells and tissues) and hardware (controllers and recorders). The optogenetic toolbox contains two main compartments: tools to interfere with cellular processes and tools to monitor cellular events. Among the latter are genetically encoded voltage indicators (GEVIs). This chapter outlines the development, current state of the art and prospects of emerging optical GEVI imaging technologies.
Collapse
Affiliation(s)
| | - Chenchen Song
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London, UK
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London, UK.
| |
Collapse
|
17
|
Conte D, Borisyuk R, Hull M, Roberts A. A simple method defines 3D morphology and axon projections of filled neurons in a small CNS volume: Steps toward understanding functional network circuitry. J Neurosci Methods 2020; 351:109062. [PMID: 33383055 DOI: 10.1016/j.jneumeth.2020.109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Fundamental to understanding neuronal network function is defining neuron morphology, location, properties, and synaptic connectivity in the nervous system. A significant challenge is to reconstruct individual neuron morphology and connections at a whole CNS scale and bring together functional and anatomical data to understand the whole network. NEW METHOD We used a PC controlled micropositioner to hold a fixed whole mount of Xenopus tadpole CNS and replace the stage on a standard microscope. This allowed direct recording in 3D coordinates of features and axon projections of one or two neurons dye-filled during whole-cell recording to study synaptic connections. Neuron reconstructions were normalised relative to the ventral longitudinal axis of the nervous system. Coordinate data were stored as simple text files. RESULTS Reconstructions were at 1 μm resolution, capturing axon lengths in mm. The output files were converted to SWC format and visualised in 3D reconstruction software NeuRomantic. Coordinate data are tractable, allowing correction for histological artefacts. Through normalisation across multiple specimens we could infer features of network connectivity of mapped neurons of different types. COMPARISON WITH EXISTING METHODS Unlike other methods using fluorescent markers and utilising large-scale imaging, our method allows direct acquisition of 3D data on neurons whose properties and synaptic connections have been studied using whole-cell recording. CONCLUSIONS This method can be used to reconstruct neuron 3D morphology and follow axon projections in the CNS. After normalisation to a common CNS framework, inferences on network connectivity at a whole nervous system scale contribute to network modelling to understand CNS function.
Collapse
Affiliation(s)
- Deborah Conte
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom.
| | - Roman Borisyuk
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, North Park Road, Exeter, EX4 4QF, United Kingdom; Institute of Mathematical Problems of Biology, the Branch of Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, 142290, Russia; School of Computing, Engineering and Mathematics, University of Plymouth, PL4 8AA, United Kingdom.
| | - Mike Hull
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom; Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom.
| | - Alan Roberts
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom.
| |
Collapse
|
18
|
Monakhov MV, Matlashov ME, Colavita M, Song C, Shcherbakova DM, Antic SD, Verkhusha VV, Knöpfel T. Screening and Cellular Characterization of Genetically Encoded Voltage Indicators Based on Near-Infrared Fluorescent Proteins. ACS Chem Neurosci 2020; 11:3523-3531. [PMID: 33063984 DOI: 10.1021/acschemneuro.0c00046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We developed genetically encoded voltage indicators using a transmembrane voltage-sensing domain and bright near-infrared fluorescent proteins derived from bacterial phytochromes. These new voltage indicators are excited by 640 nm light and emission is measured at 670 nm, allowing imaging in the near-infrared tissue transparency window. The spectral properties of our new indicators permit seamless voltage imaging with simultaneous blue-green light optogenetic actuator activation as well as simultaneous voltage-calcium imaging when paired with green calcium indicators. Iterative optimizations led to a fluorescent probe, here termed nirButterfly, which reliably reports neuronal activities including subthreshold membrane potential depolarization and hyperpolarization as well as spontaneous spiking or electrically- and optogenetically evoked action potentials. This enables largely improved all-optical causal interrogations of physiology.
Collapse
Affiliation(s)
- Mikhail V Monakhov
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, Connecticut 06030, United States
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Mikhail E Matlashov
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Michelangelo Colavita
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London W12 0NN, U.K
| | - Chenchen Song
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London W12 0NN, U.K
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Srdjan D Antic
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, Connecticut 06030, United States
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London W12 0NN, U.K
| |
Collapse
|
19
|
Milosevic MM, Jang J, McKimm EJ, Zhu MH, Antic SD. In Vitro Testing of Voltage Indicators: Archon1, ArcLightD, ASAP1, ASAP2s, ASAP3b, Bongwoori-Pos6, BeRST1, FlicR1, and Chi-VSFP-Butterfly. eNeuro 2020; 7:ENEURO.0060-20.2020. [PMID: 32817120 PMCID: PMC7540930 DOI: 10.1523/eneuro.0060-20.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 01/04/2023] Open
Abstract
Genetically encoded voltage indicators (GEVIs) could potentially be used for mapping neural circuits at the plane of synaptic potentials and plateau potentials-two blind spots of GCaMP-based imaging. In the last year alone, several laboratories reported significant breakthroughs in the quality of GEVIs and the efficacy of the voltage imaging equipment. One major obstacle of using well performing GEVIs in the pursuit of interesting biological data is the process of transferring GEVIs between laboratories, as their reported qualities (e.g., membrane targeting, brightness, sensitivity, optical signal quality) are often difficult to reproduce outside of the laboratory of the GEVI origin. We have tested eight available GEVIs (Archon1, ArcLightD, ASAP1, ASAP2s, ASAP3b, Bongwoori-Pos6, FlicR1, and chi-VSFP-Butterfly) and two voltage-sensitive dyes (BeRST1 and di-4-ANEPPS). We used the same microscope, lens, and optical detector, while the light sources were interchanged. GEVI voltage imaging was attempted in the following three preparations: (1) cultured neurons, (2) HEK293 cells, and (3) mouse brain slices. Systematic measurements were successful only in HEK293 cells and brain slices. Despite the significant differences in brightness and dynamic response (ON rate), all tested indicators produced reasonable optical signals in brain slices and solid in vitro quality properties, in the range initially reported by the creator laboratories. Side-by-side comparisons between GEVIs and organic dyes obtained in HEK293 cells and brain slices by a "third party" (current data) will be useful for determining the right voltage indicator for a given research application.
Collapse
Affiliation(s)
- Milena M Milosevic
- Institute for Systems Genomics, Department of Neuroscience, UConn School of Medicine, Farmington, Connecticut 06030
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Jinyoung Jang
- Institute for Systems Genomics, Department of Neuroscience, UConn School of Medicine, Farmington, Connecticut 06030
| | - Eric J McKimm
- Institute for Systems Genomics, Department of Neuroscience, UConn School of Medicine, Farmington, Connecticut 06030
| | - Mei Hong Zhu
- Institute for Systems Genomics, Department of Neuroscience, UConn School of Medicine, Farmington, Connecticut 06030
| | - Srdjan D Antic
- Institute for Systems Genomics, Department of Neuroscience, UConn School of Medicine, Farmington, Connecticut 06030
| |
Collapse
|
20
|
Oltmanns S, Abben FS, Ender A, Aimon S, Kovacs R, Sigrist SJ, Storace DA, Geiger JRP, Raccuglia D. NOSA, an Analytical Toolbox for Multicellular Optical Electrophysiology. Front Neurosci 2020; 14:712. [PMID: 32765213 PMCID: PMC7381214 DOI: 10.3389/fnins.2020.00712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/12/2020] [Indexed: 11/23/2022] Open
Abstract
Understanding how neural networks generate activity patterns and communicate with each other requires monitoring the electrical activity from many neurons simultaneously. Perfectly suited tools for addressing this challenge are genetically encoded voltage indicators (GEVIs) because they can be targeted to specific cell types and optically report the electrical activity of individual, or populations of neurons. However, analyzing and interpreting the data from voltage imaging experiments is challenging because high recording speeds and properties of current GEVIs yield only low signal-to-noise ratios, making it necessary to apply specific analytical tools. Here, we present NOSA (Neuro-Optical Signal Analysis), a novel open source software designed for analyzing voltage imaging data and identifying temporal interactions between electrical activity patterns of different origin. In this work, we explain the challenges that arise during voltage imaging experiments and provide hands-on analytical solutions. We demonstrate how NOSA's baseline fitting, filtering algorithms and movement correction can compensate for shifts in baseline fluorescence and extract electrical patterns from low signal-to-noise recordings. NOSA allows to efficiently identify oscillatory frequencies in electrical patterns, quantify neuronal response parameters and moreover provides an option for analyzing simultaneously recorded optical and electrical data derived from patch-clamp or other electrode-based recordings. To identify temporal relations between electrical activity patterns we implemented different options to perform cross correlation analysis, demonstrating their utility during voltage imaging in Drosophila and mice. All features combined, NOSA will facilitate the first steps into using GEVIs and help to realize their full potential for revealing cell-type specific connectivity and functional interactions.
Collapse
Affiliation(s)
- Sebastian Oltmanns
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frauke Sophie Abben
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anatoli Ender
- German Center for Neurodegenerative Diseases, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Aimon
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Richard Kovacs
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stephan J. Sigrist
- German Center for Neurodegenerative Diseases, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Douglas A. Storace
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Jörg R. P. Geiger
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Davide Raccuglia
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
21
|
Quicke P, Howe CL, Song P, Jadan HV, Song C, Knöpfel T, Neil M, Dragotti PL, Schultz SR, Foust AJ. Subcellular resolution three-dimensional light-field imaging with genetically encoded voltage indicators. NEUROPHOTONICS 2020; 7:035006. [PMID: 32904628 PMCID: PMC7456658 DOI: 10.1117/1.nph.7.3.035006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/07/2020] [Indexed: 05/13/2023]
Abstract
Significance: Light-field microscopy (LFM) enables high signal-to-noise ratio (SNR) and light efficient volume imaging at fast frame rates. Voltage imaging with genetically encoded voltage indicators (GEVIs) stands to particularly benefit from LFM's volumetric imaging capability due to high required sampling rates and limited probe brightness and functional sensitivity. Aim: We demonstrate subcellular resolution GEVI light-field imaging in acute mouse brain slices resolving dendritic voltage signals in three spatial dimensions. Approach: We imaged action potential-induced fluorescence transients in mouse brain slices sparsely expressing the GEVI VSFP-Butterfly 1.2 in wide-field microscopy (WFM) and LFM modes. We compared functional signal SNR and localization between different LFM reconstruction approaches and between LFM and WFM. Results: LFM enabled three-dimensional (3-D) localization of action potential-induced fluorescence transients in neuronal somata and dendrites. Nonregularized deconvolution decreased SNR with increased iteration number compared to synthetic refocusing but increased axial and lateral signal localization. SNR was unaffected for LFM compared to WFM. Conclusions: LFM enables 3-D localization of fluorescence transients, therefore eliminating the need for structures to lie in a single focal plane. These results demonstrate LFM's potential for studying dendritic integration and action potential propagation in three spatial dimensions.
Collapse
Affiliation(s)
- Peter Quicke
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
| | - Carmel L. Howe
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
| | - Pingfan Song
- Imperial College London, Department of Electrical and Electronic Engineering, London, United Kingdom
| | - Herman V. Jadan
- Imperial College London, Department of Electrical and Electronic Engineering, London, United Kingdom
| | - Chenchen Song
- Imperial College London, Department of Brain Sciences, London, United Kingdom
| | - Thomas Knöpfel
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Imperial College London, Department of Brain Sciences, London, United Kingdom
| | - Mark Neil
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Imperial College London, Department of Physics, London, United Kingdom
| | - Pier L. Dragotti
- Imperial College London, Department of Electrical and Electronic Engineering, London, United Kingdom
| | - Simon R. Schultz
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Address all correspondence to Simon R. Schultz, E-mail: ; Amanda J. Foust, E-mail:
| | - Amanda J. Foust
- Imperial College London, Department of Bioengineering, London, United Kingdom
- Imperial College London, Centre for Neurotechnology, London, United Kingdom
- Address all correspondence to Simon R. Schultz, E-mail: ; Amanda J. Foust, E-mail:
| |
Collapse
|
22
|
Sensing Senses: Optical Biosensors to Study Gustation. SENSORS 2020; 20:s20071811. [PMID: 32218129 PMCID: PMC7180777 DOI: 10.3390/s20071811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
The five basic taste modalities, sweet, bitter, umami, salty and sour induce changes of Ca2+ levels, pH and/or membrane potential in taste cells of the tongue and/or in neurons that convey and decode gustatory signals to the brain. Optical biosensors, which can be either synthetic dyes or genetically encoded proteins whose fluorescence spectra depend on levels of Ca2+, pH or membrane potential, have been used in primary cells/tissues or in recombinant systems to study taste-related intra- and intercellular signaling mechanisms or to discover new ligands. Taste-evoked responses were measured by microscopy achieving high spatial and temporal resolution, while plate readers were employed for higher throughput screening. Here, these approaches making use of fluorescent optical biosensors to investigate specific taste-related questions or to screen new agonists/antagonists for the different taste modalities were reviewed systematically. Furthermore, in the context of recent developments in genetically encoded sensors, 3D cultures and imaging technologies, we propose new feasible approaches for studying taste physiology and for compound screening.
Collapse
|
23
|
Obaid A, Hanna ME, Wu YW, Kollo M, Racz R, Angle MR, Müller J, Brackbill N, Wray W, Franke F, Chichilnisky EJ, Hierlemann A, Ding JB, Schaefer AT, Melosh NA. Massively parallel microwire arrays integrated with CMOS chips for neural recording. SCIENCE ADVANCES 2020; 6:eaay2789. [PMID: 32219158 PMCID: PMC7083623 DOI: 10.1126/sciadv.aay2789] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/26/2019] [Indexed: 05/21/2023]
Abstract
Multi-channel electrical recordings of neural activity in the brain is an increasingly powerful method revealing new aspects of neural communication, computation, and prosthetics. However, while planar silicon-based CMOS devices in conventional electronics scale rapidly, neural interface devices have not kept pace. Here, we present a new strategy to interface silicon-based chips with three-dimensional microwire arrays, providing the link between rapidly-developing electronics and high density neural interfaces. The system consists of a bundle of microwires mated to large-scale microelectrode arrays, such as camera chips. This system has excellent recording performance, demonstrated via single unit and local-field potential recordings in isolated retina and in the motor cortex or striatum of awake moving mice. The modular design enables a variety of microwire types and sizes to be integrated with different types of pixel arrays, connecting the rapid progress of commercial multiplexing, digitisation and data acquisition hardware together with a three-dimensional neural interface.
Collapse
Affiliation(s)
- Abdulmalik Obaid
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Mina-Elraheb Hanna
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Paradromics Inc., Austin, TX, USA
| | - Yu-Wei Wu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mihaly Kollo
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Romeo Racz
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London, UK
| | | | - Jan Müller
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nora Brackbill
- Department of Physics, Stanford University, Stanford, CA, USA
| | - William Wray
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London, UK
| | - Felix Franke
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - E. J. Chichilnisky
- Departments of Neurosurgery and Ophthalmology, Stanford University, Stanford, CA, USA
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jun B. Ding
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Andreas T. Schaefer
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Nicholas A. Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
24
|
Kirkels LAMH, Zhang W, Duijnhouwer J, van Wezel RJA. Opto-locomotor reflexes of mice to reverse-phi stimuli. J Vis 2020; 20:7. [PMID: 32097483 PMCID: PMC7343431 DOI: 10.1167/jov.20.2.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In a reverse-phi stimulus, the contrast luminance of moving dots is reversed each displacement step. Under those conditions, the direction of the moving dots is perceived in the direction opposite of the displacement direction of the dots. In this study, we investigate if mice respond oppositely to phi and reverse-phi stimuli. Mice ran head-fixed on a Styrofoam ball floating on pressurized air at the center of a large dome. We projected random dot patterns that were displaced rightward or leftward, using either a phi or a reverse-phi stimulus. For phi stimuli, changes in direction caused the mice to reflexively compensate and adjust their running direction in the direction of the displaced pattern. We show that for reverse-phi stimuli mice compensate in the direction opposite to the displacement direction of the dots, in accordance with the perceived direction of displacement in humans for reverse-phi stimuli.
Collapse
|
25
|
Zhang W, Rezvani Z, van Wezel RJA, Kirkels LAMH. Monocular and binocular opto-locomotor reflex biases for random dot motion in mice. J Vis 2020; 20:6. [PMID: 32097484 PMCID: PMC7343429 DOI: 10.1167/jov.20.2.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated the relationship between eyes receiving visual input of large field translating random dot motion and subsequent reflexive changes in running direction in mice. The animals were head-fixed running on a Styrofoam ball and the opto-locomotor reflex (OLR) was measured in response to 2 s of dots patterns moving horizontally to the left or right. We measured the OLR in conditions with both eyes open (binocular) and one eye closed (monocular). When we covered the right or left eye in the monocular condition, we found reflexive behavior to be delayed for a few hundred milliseconds to leftward or rightward motion, respectively. After this delay, the bias disappeared and reflexive behavior was similar to responses to motion under binocular conditions. These results might be explained by different contributions of subcortical and cortical visual motion processing pathways to the OLR. Furthermore, we found no evidence for nonlinear interactions between the two eyes, because the sum of the OLR of the two monocular conditions was equal in amplitude and temporal characteristics to the OLR under binocular conditions.
Collapse
|
26
|
Optical voltage imaging in neurons: moving from technology development to practical tool. Nat Rev Neurosci 2019; 20:719-727. [PMID: 31705060 DOI: 10.1038/s41583-019-0231-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
A central goal in neuroscience is to determine how the brain's neuronal circuits generate perception, cognition and emotions and how these lead to appropriate behavioural actions. A methodological platform based on genetically encoded voltage indicators (GEVIs) that enables the monitoring of large-scale circuit dynamics has brought us closer to this ambitious goal. This Review provides an update on the current state of the art and the prospects of emerging optical GEVI imaging technologies.
Collapse
|
27
|
Antic SD, Baker BJ, Canepari M. Editorial: New Insights on Neuron and Astrocyte Function From Cutting-Edge Optical Techniques. Front Cell Neurosci 2019; 13:463. [PMID: 31680872 PMCID: PMC6803618 DOI: 10.3389/fncel.2019.00463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Srdjan D Antic
- Department of Neuroscience, Institute for Systems Genomics, Stem Cell Institute, UConn Health, Farmington, CT, United States
| | - Bradley James Baker
- The Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, South Korea
| | - Marco Canepari
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea.,Laboratories of Excellence, Ion Channel Science and Therapeutics, Valbonne, France.,Institut National de la Santé et Recherche Médicale, Paris, France
| |
Collapse
|
28
|
Jung K, Kang J, Chung S, Park HJ. Dynamic causal modeling for calcium imaging: Exploration of differential effective connectivity for sensory processing in a barrel cortical column. Neuroimage 2019; 201:116008. [DOI: 10.1016/j.neuroimage.2019.116008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023] Open
|
29
|
Penzkofer A, Silapetere A, Hegemann P. Absorption and Emission Spectroscopic Investigation of the Thermal Dynamics of the Archaerhodopsin 3 Based Fluorescent Voltage Sensor QuasAr1. Int J Mol Sci 2019; 20:E4086. [PMID: 31438573 PMCID: PMC6747118 DOI: 10.3390/ijms20174086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
QuasAr1 is a fluorescent voltage sensor derived from Archaerhodopsin 3 (Arch) of Halorubrum sodomense by directed evolution. Here we report absorption and emission spectroscopic studies of QuasAr1 in Tris buffer at pH 8. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation spectra were determined. The thermal stability of QuasAr1 was studied by long-time attenuation coefficient measurements at room temperature (23 ± 2 °C) and at 2.5 ± 0.5 °C. The apparent melting temperature was determined by stepwise sample heating up and cooling down (obtained apparent melting temperature: 65 ± 3 °C). In the protein melting process the originally present protonated retinal Schiff base (PRSB) with absorption maximum at 580 nm converted to de-protonated retinal Schiff base (RSB) with absorption maximum at 380 nm. Long-time storage of QuasAr1 at temperatures around 2.5 °C and around 23 °C caused gradual protonated retinal Schiff base isomer changes to other isomer conformations, de-protonation to retinal Schiff base isomers, and apoprotein structure changes showing up in ultraviolet absorption increase. Reaction coordinate schemes are presented for the thermal protonated retinal Schiff base isomerizations and deprotonations in parallel with the dynamic apoprotein restructurings.
Collapse
Affiliation(s)
- Alfons Penzkofer
- Fakultät für Physik, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Arita Silapetere
- Experimentelle Biophysik, Institut für Biologie, Humboldt Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Peter Hegemann
- Experimentelle Biophysik, Institut für Biologie, Humboldt Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, Germany
| |
Collapse
|
30
|
Rhodopsin-based voltage imaging tools for use in muscles and neurons of Caenorhabditis elegans. Proc Natl Acad Sci U S A 2019; 116:17051-17060. [PMID: 31371514 PMCID: PMC6708366 DOI: 10.1073/pnas.1902443116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuronal and other excitable cell activity is characterized by alteration in membrane voltage, while intracellular Ca2+ levels and transmitter release are affected downstream of electrical activity. Thus, the most direct way of monitoring neuronal activity is by membrane voltage. Electrophysiology is demanding for multiple cells or cell ensembles and difficult to use in live animals, thus imaging methods are desirable. Yet, genetically encoded voltage indicators fell behind Ca2+ indicators until recently, when microbial rhodopsins and derivatives were introduced as genetically encoded voltage indicators. We evaluated rhodopsin tools for voltage imaging in muscles and neurons of Caenorhabditis elegans, a prime animal model in neuro- and cell biology, showing robust performance and the ability to characterize genetic mutants. Genetically encoded voltage indicators (GEVIs) based on microbial rhodopsins utilize the voltage-sensitive fluorescence of all-trans retinal (ATR), while in electrochromic FRET (eFRET) sensors, donor fluorescence drops when the rhodopsin acts as depolarization-sensitive acceptor. In recent years, such tools have become widely used in mammalian cells but are less commonly used in invertebrate systems, mostly due to low fluorescence yields. We systematically assessed Arch(D95N), Archon, QuasAr, and the eFRET sensors MacQ-mCitrine and QuasAr-mOrange, in the nematode Caenorhabditis elegans. ATR-bearing rhodopsins reported on voltage changes in body wall muscles (BWMs), in the pharynx, the feeding organ [where Arch(D95N) showed approximately 128% ΔF/F increase per 100 mV], and in neurons, integrating circuit activity. ATR fluorescence is very dim, yet, using the retinal analog dimethylaminoretinal, it was boosted 250-fold. eFRET sensors provided sensitivities of 45 to 78% ΔF/F per 100 mV, induced by BWM action potentials, and in pharyngeal muscle, measured in simultaneous optical and sharp electrode recordings, MacQ-mCitrine showed approximately 20% ΔF/F per 100 mV. All sensors reported differences in muscle depolarization induced by a voltage-gated Ca2+-channel mutant. Optogenetically evoked de- or hyperpolarization of motor neurons increased or eliminated action potential activity and caused a rise or drop in BWM sensor fluorescence. Finally, we analyzed voltage dynamics across the entire pharynx, showing uniform depolarization but compartmentalized repolarization of anterior and posterior parts. Our work establishes all-optical, noninvasive electrophysiology in live, intact C. elegans.
Collapse
|
31
|
Havenith MN, Zijderveld PM, van Heukelum S, Abghari S, Tiesinga P, Glennon JC. The Virtual-Environment-Foraging Task enables rapid training and single-trial metrics of rule acquisition and reversal in head-fixed mice. Sci Rep 2019; 9:4790. [PMID: 30886236 PMCID: PMC6423024 DOI: 10.1038/s41598-019-41250-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/27/2019] [Indexed: 01/02/2023] Open
Abstract
Behavioural flexibility is an essential survival skill, yet our understanding of its neuronal substrates is still limited. While mouse research offers unique tools to dissect the neuronal circuits involved, the measurement of flexible behaviour in mice often suffers from long training times, poor experimental control, and temporally imprecise binary (hit/miss) performance readouts. Here we present a virtual-environment task for mice that tackles these limitations. It offers fast training of vision-based rule reversals (~100 trials per reversal) with full stimulus control and continuous behavioural readouts. By generating multiple non-binary performance metrics per trial, it provides single-trial estimates not only of response accuracy and speed, but also of underlying processes like choice certainty and alertness (discussed in detail in a companion paper). Based on these metrics, we show that mice can predict new task rules long before they are able to execute them, and that this delay varies across animals. We also provide and validate single-trial estimates of whether an error was committed with or without awareness of the task rule. By tracking in unprecedented detail the cognitive dynamics underlying flexible behaviour, this task enables new investigations into the neuronal interactions that shape behavioural flexibility moment by moment.
Collapse
Affiliation(s)
- Martha N Havenith
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands.
| | - Peter M Zijderveld
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Sabrina van Heukelum
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Shaghayegh Abghari
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Paul Tiesinga
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Jeffrey C Glennon
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Sundukova M, Prifti E, Bucci A, Kirillova K, Serrao J, Reymond L, Umebayashi M, Hovius R, Riezman H, Johnsson K, Heppenstall PA. A Chemogenetic Approach for the Optical Monitoring of Voltage in Neurons. Angew Chem Int Ed Engl 2019; 58:2341-2344. [PMID: 30569539 PMCID: PMC6391943 DOI: 10.1002/anie.201812967] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/16/2018] [Indexed: 01/11/2023]
Abstract
Optical monitoring of neuronal voltage using fluorescent indicators is a powerful approach for the interrogation of the cellular and molecular logic of the nervous system. Herein, a semisynthetic tethered voltage indicator (STeVI1) based upon nile red is described that displays voltage sensitivity when genetically targeted to neuronal membranes. This environmentally sensitive probe allows for wash-free imaging and faithfully detects supra- and sub-threshold activity in neurons.
Collapse
Affiliation(s)
- Mayya Sundukova
- Molecular Medicine Partnership Unit (MMPU)69117HeidelbergGermany
- Epigenetics and Neurobiology UnitEMBL Romevia Ramarini 32MonterotondoItaly
| | - Efthymia Prifti
- Molecular Medicine Partnership Unit (MMPU)69117HeidelbergGermany
- Epigenetics and Neurobiology UnitEMBL Romevia Ramarini 32MonterotondoItaly
| | - Annalisa Bucci
- Molecular Medicine Partnership Unit (MMPU)69117HeidelbergGermany
- Epigenetics and Neurobiology UnitEMBL Romevia Ramarini 32MonterotondoItaly
| | - Kseniia Kirillova
- Molecular Medicine Partnership Unit (MMPU)69117HeidelbergGermany
- Epigenetics and Neurobiology UnitEMBL Romevia Ramarini 32MonterotondoItaly
| | - Joana Serrao
- Molecular Medicine Partnership Unit (MMPU)69117HeidelbergGermany
- Epigenetics and Neurobiology UnitEMBL Romevia Ramarini 32MonterotondoItaly
| | - Luc Reymond
- Ecole Polytechnique Federale de LausanneISICNational Centre for Competence in Research (NCCR) in Chemical Biology1015LausanneSwitzerland
| | - Miwa Umebayashi
- University of GenevaDepartment of Biochemistry, National Centre for Competence in Research (NCCR) in Chemical Biology1211GenevaSwitzerland
| | - Ruud Hovius
- Ecole Polytechnique Federale de LausanneISICNational Centre for Competence in Research (NCCR) in Chemical Biology1015LausanneSwitzerland
| | - Howard Riezman
- University of GenevaDepartment of Biochemistry, National Centre for Competence in Research (NCCR) in Chemical Biology1211GenevaSwitzerland
| | - Kai Johnsson
- Department of Chemical BiologyMax Planck Institute for Medical Research69120HeidelbergGermany
- Ecole Polytechnique Federale de LausanneISICNational Centre for Competence in Research (NCCR) in Chemical Biology1015LausanneSwitzerland
| | - Paul A. Heppenstall
- Molecular Medicine Partnership Unit (MMPU)69117HeidelbergGermany
- Epigenetics and Neurobiology UnitEMBL Romevia Ramarini 32MonterotondoItaly
| |
Collapse
|
33
|
Quicke P, Song C, McKimm EJ, Milosevic MM, Howe CL, Neil M, Schultz SR, Antic SD, Foust AJ, Knöpfel T. Single-Neuron Level One-Photon Voltage Imaging With Sparsely Targeted Genetically Encoded Voltage Indicators. Front Cell Neurosci 2019; 13:39. [PMID: 30890919 PMCID: PMC6413708 DOI: 10.3389/fncel.2019.00039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Voltage imaging of many neurons simultaneously at single-cell resolution is hampered by the difficulty of detecting small voltage signals from overlapping neuronal processes in neural tissue. Recent advances in genetically encoded voltage indicator (GEVI) imaging have shown single-cell resolution optical voltage recordings in intact tissue through imaging naturally sparse cell classes, sparse viral expression, soma restricted expression, advanced optical systems, or a combination of these. Widespread sparse and strong transgenic GEVI expression would enable straightforward optical access to a densely occurring cell type, such as cortical pyramidal cells. Here we demonstrate that a recently described sparse transgenic expression strategy can enable single-cell resolution voltage imaging of cortical pyramidal cells in intact brain tissue without restricting expression to the soma. We also quantify the functional crosstalk in brain tissue and discuss optimal imaging rates to inform future GEVI experimental design.
Collapse
Affiliation(s)
- Peter Quicke
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
- Centre for Neurotechnology, Imperial College London, London, United Kingdom
| | - Chenchen Song
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Eric J. McKimm
- Institute for Systems Genomics, Stem Cell Institute, UConn Health, Farmington, CT, United States
| | - Milena M. Milosevic
- Institute for Systems Genomics, Stem Cell Institute, UConn Health, Farmington, CT, United States
| | - Carmel L. Howe
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Neurotechnology, Imperial College London, London, United Kingdom
| | - Mark Neil
- Centre for Neurotechnology, Imperial College London, London, United Kingdom
- Department of Physics, Imperial College London, London, United Kingdom
| | - Simon R. Schultz
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Neurotechnology, Imperial College London, London, United Kingdom
| | - Srdjan D. Antic
- Institute for Systems Genomics, Stem Cell Institute, UConn Health, Farmington, CT, United States
| | - Amanda J. Foust
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Neurotechnology, Imperial College London, London, United Kingdom
| | - Thomas Knöpfel
- Department of Medicine, Imperial College London, London, United Kingdom
- Centre for Neurotechnology, Imperial College London, London, United Kingdom
| |
Collapse
|
34
|
Okamura Y, Kawanabe A, Kawai T. Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering. Physiol Rev 2019; 98:2097-2131. [PMID: 30067160 DOI: 10.1152/physrev.00056.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-sensing phosphatase (VSP) contains a voltage sensor domain (VSD) similar to that in voltage-gated ion channels, and a phosphoinositide phosphatase region similar to phosphatase and tensin homolog deleted on chromosome 10 (PTEN). The VSP gene is conserved from unicellular organisms to higher vertebrates. Membrane depolarization induces electrical driven conformational rearrangement in the VSD, which is translated into catalytic enzyme activity. Biophysical and structural characterization has revealed details of the mechanisms underlying the molecular functions of VSP. Coupling between the VSD and the enzyme is tight, such that enzyme activity is tuned in a graded fashion to the membrane voltage. Upon VSP activation, multiple species of phosphoinositides are simultaneously altered, and the profile of enzyme activity depends on the history of the membrane potential. VSPs have been the obvious candidate link between membrane potential and phosphoinositide regulation. However, patterns of voltage change regulating VSP in native cells remain largely unknown. This review addresses the current understanding of the biophysical biochemical properties of VSP and provides new insight into the proposed functions of VSP.
Collapse
Affiliation(s)
- Yasushi Okamura
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Akira Kawanabe
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Takafumi Kawai
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| |
Collapse
|
35
|
Koizumi K, Inoue M, Chowdhury S, Bito H, Yamanaka A, Ishizuka T, Yawo H. Functional emergence of a column-like architecture in layer 5 of mouse somatosensory cortex in vivo. J Physiol Sci 2019; 69:65-77. [PMID: 29761270 PMCID: PMC10716991 DOI: 10.1007/s12576-018-0618-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/30/2018] [Indexed: 01/04/2023]
Abstract
To investigate how the functional architecture is organized in layer 5 (L5) of the somatosensory cortex of a mouse in vivo, the input-output relationship was investigated using an all-optical approach. The neural activity in L5 was optically recorded using a Ca2+ sensor, R-CaMP2, through a microprism inserted in the cortex under two-photon microscopy, while the L5 was regionally excited using optogenetics. The excitability was spread around the blue-light irradiated region, but the horizontal propagation was limited to within a certain distance (λ < 130 μm from the center of the illumination spot). When two regions were photostimulated with a short interval, the excitability of each cluster was reduced. Therefore, a column-like architecture had functionally emerged with reciprocal inhibition through a minimal number of synaptic relays. This could generate a synchronous output from a region of L5 with simultaneous enhancement of the signal-to-noise ratio by silencing of the neighboring regions.
Collapse
Affiliation(s)
- Kyo Koizumi
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Masatoshi Inoue
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Srikanta Chowdhury
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Akihiro Yamanaka
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
- Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
36
|
Nakajima R, Baker BJ. Mapping of excitatory and inhibitory postsynaptic potentials of neuronal populations in hippocampal slices using the GEVI, ArcLight. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:504003. [PMID: 30739956 PMCID: PMC6366634 DOI: 10.1088/1361-6463/aae2e3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To understand the circuitry of the brain, it is essential to clarify the functional connectivity among distinct neuronal populations. For this purpose, neuronal activity imaging using genetically-encoded calcium sensors such as GCaMP has been a powerful approach due to its cell-type specificity. However, calcium (Ca2+) is an indirect measure of neuronal activity. A more direct approach would be to use genetically encoded voltage indicators (GEVIs) to observe subthreshold, synaptic activities. The GEVI, ArcLight, which exhibits large fluorescence transients in response to voltage, was expressed in excitatory neurons of the mouse CA1 hippocampus. Fluorescent signals in response to the electrical stimulation of the Schaffer collateral axons were observed in brain slice preparations. ArcLight was able to map both excitatory and inhibitory inputs projected to excitatory neurons. In contrast, the Ca2+ signal detected by GCaMP6f, was only associated with excitatory inputs. ArcLight and similar voltage sensing probes are also becoming powerful paradigms for functional connectivity mapping of brain circuitry.
Collapse
Affiliation(s)
- Ryuichi Nakajima
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, 136-791, Republic of Korea
| | - Bradley J. Baker
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, 136-791, Republic of Korea
- Department of Neuroscience, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
37
|
Havenith MN, Zijderveld PM, van Heukelum S, Abghari S, Glennon JC, Tiesinga P. The Virtual-Environment-Foraging Task enables rapid training and single-trial metrics of attention in head-fixed mice. Sci Rep 2018; 8:17371. [PMID: 30478333 PMCID: PMC6255915 DOI: 10.1038/s41598-018-34966-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 10/25/2018] [Indexed: 01/12/2023] Open
Abstract
Attention - the flexible allocation of processing resources based on behavioural demands - is essential to survival. Mouse research offers unique tools to dissect the underlying pathways, but is hampered by the difficulty of accurately measuring attention in mice. Current attention tasks for mice face several limitations: Binary (hit/miss), temporally imprecise metrics, behavioural confounds and overtraining. Thus, despite the increasing scope of neuronal population measurements, insights are limited without equally precise behavioural measures. Here we present a virtual-environment task for head-fixed mice based on 'foraging-like' navigation. The task requires animals to discriminate gratings at orientation differences from 90° to 5°, and can be learned in only 3-5 sessions (<550 trials). It yields single-trial, non-binary metrics of response speed and accuracy, which generate secondary metrics of choice certainty, visual acuity, and most importantly, of sustained and cued attention - two attentional components studied extensively in humans. This allows us to examine single-trial dynamics of attention in mice, independently of confounds like rule learning. With this approach, we show that C57/BL6 mice have better visual acuity than previously measured, that they rhythmically alternate between states of high and low alertness, and that they can be prompted to adopt different performance strategies using minute changes in reward contingencies.
Collapse
Affiliation(s)
- Martha N Havenith
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands.
| | - Peter M Zijderveld
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Sabrina van Heukelum
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Shaghayegh Abghari
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Jeffrey C Glennon
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Paul Tiesinga
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| |
Collapse
|
38
|
Horne JA, Langille C, McLin S, Wiederman M, Lu Z, Xu CS, Plaza SM, Scheffer LK, Hess HF, Meinertzhagen IA. A resource for the Drosophila antennal lobe provided by the connectome of glomerulus VA1v. eLife 2018; 7:e37550. [PMID: 30382940 PMCID: PMC6234030 DOI: 10.7554/elife.37550] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
Using FIB-SEM we report the entire synaptic connectome of glomerulus VA1v of the right antennal lobe in Drosophila melanogaster. Within the glomerulus we densely reconstructed all neurons, including hitherto elusive local interneurons. The fruitless-positive, sexually dimorphic VA1v included >11,140 presynaptic sites with ~38,050 postsynaptic dendrites. These connected input olfactory receptor neurons (ORNs, 51 ipsilateral, 56 contralateral), output projection neurons (18 PNs), and local interneurons (56 of >150 previously reported LNs). ORNs are predominantly presynaptic and PNs predominantly postsynaptic; newly reported LN circuits are largely an equal mixture and confer extensive synaptic reciprocity, except the newly reported LN2V with input from ORNs and outputs mostly to monoglomerular PNs, however. PNs were more numerous than previously reported from genetic screens, suggesting that the latter failed to reach saturation. We report a matrix of 192 bodies each having >50 connections; these form 88% of the glomerulus' pre/postsynaptic sites.
Collapse
Affiliation(s)
- Jane Anne Horne
- Department of Psychology and NeuroscienceLife Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Carlie Langille
- Department of Psychology and NeuroscienceLife Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Sari McLin
- Department of Psychology and NeuroscienceLife Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Meagan Wiederman
- Department of Psychology and NeuroscienceLife Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Zhiyuan Lu
- Department of Psychology and NeuroscienceLife Sciences Centre, Dalhousie UniversityHalifaxCanada
- Janelia Research Campus, Howard Hughes Medical InstituteVirginiaUnited States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical InstituteVirginiaUnited States
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical InstituteVirginiaUnited States
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical InstituteVirginiaUnited States
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical InstituteVirginiaUnited States
| | - Ian A Meinertzhagen
- Department of Psychology and NeuroscienceLife Sciences Centre, Dalhousie UniversityHalifaxCanada
- Janelia Research Campus, Howard Hughes Medical InstituteVirginiaUnited States
| |
Collapse
|
39
|
Platisa J, Pieribone VA. Genetically encoded fluorescent voltage indicators: are we there yet? Curr Opin Neurobiol 2018; 50:146-153. [PMID: 29501950 PMCID: PMC5984684 DOI: 10.1016/j.conb.2018.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/04/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
In order to understand how brain activity produces adaptive behavior we need large-scale, high-resolution recordings of neuronal activity. Fluorescent genetically encoded voltage indicators (GEVIs) offer the potential for these recordings to be performed chronically from targeted cells in a minimally invasive manner. As the number of GEVIs successfully tested for in vivo use grows, so has the number of open questions regarding the improvements that would facilitate broad adoption of this technology that surpasses mere 'proof of principle' studies. Our aim in this review is not to provide a status check of the current state of the field, as excellent publications covering this topic already exist. Here, we discuss specific questions regarding GEVI development and application that we think are crucial in achieving this goal.
Collapse
Affiliation(s)
- Jelena Platisa
- The John B. Pierce Laboratory, Inc., New Haven, CT 06519, United States; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States.
| | - Vincent A Pieribone
- The John B. Pierce Laboratory, Inc., New Haven, CT 06519, United States; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
40
|
Kirkels LAMH, Zhang W, Havenith MN, Tiesinga P, Glennon J, van Wezel RJA, Duijnhouwer J. The opto-locomotor reflex as a tool to measure sensitivity to moving random dot patterns in mice. Sci Rep 2018; 8:7710. [PMID: 29769564 PMCID: PMC5955912 DOI: 10.1038/s41598-018-25844-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/24/2018] [Indexed: 01/17/2023] Open
Abstract
We designed a method to quantify mice visual function by measuring reflexive opto-locomotor responses. Mice were placed on a Styrofoam ball at the center of a large dome on the inside of which we projected moving random dot patterns. Because we fixed the heads of the mice in space and the ball was floating on pressurized air, locomotion of the mice was translated to rotation of the ball, which we registered. Sudden onsets of rightward or leftward moving patterns caused the mice to reflexively change their running direction. We quantified the opto-locomotor responses to different pattern speeds, luminance contrasts, and dot sizes. We show that the method is fast and reliable and the magnitude of the reflex is stable within sessions. We conclude that this opto-locomotor reflex method is suitable to quantify visual function in mice.
Collapse
Affiliation(s)
- L A M H Kirkels
- Department of Biophysics, Donders Institute, Radboud University, Nijmegen, The Netherlands.
| | - W Zhang
- Department of Biophysics, Donders Institute, Radboud University, Nijmegen, The Netherlands
| | - M N Havenith
- Department of Neuroinformatics, Donders Institute, Radboud University, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute, RadboudUMC, Nijmegen, The Netherlands
| | - P Tiesinga
- Department of Neuroinformatics, Donders Institute, Radboud University, Nijmegen, The Netherlands
| | - J Glennon
- Department of Cognitive Neuroscience, Donders Institute, RadboudUMC, Nijmegen, The Netherlands
| | - R J A van Wezel
- Department of Biophysics, Donders Institute, Radboud University, Nijmegen, The Netherlands.,Biomedical Signals and Systems, MIRA, Twente University, Enschede, The Netherlands
| | - J Duijnhouwer
- Department of Biophysics, Donders Institute, Radboud University, Nijmegen, The Netherlands.,Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, USA
| |
Collapse
|
41
|
Anderson RW, Farokhniaee A, Gunalan K, Howell B, McIntyre CC. Action potential initiation, propagation, and cortical invasion in the hyperdirect pathway during subthalamic deep brain stimulation. Brain Stimul 2018; 11:1140-1150. [PMID: 29779963 DOI: 10.1016/j.brs.2018.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/05/2018] [Accepted: 05/10/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND High frequency (∼130 Hz) deep brain stimulation (DBS) of the subthalamic region is an established clinical therapy for the treatment of late stage Parkinson's disease (PD). Direct modulation of the hyperdirect pathway, defined as cortical layer V pyramidal neurons that send an axon collateral to the subthalamic nucleus (STN), has emerged as a possible component of the therapeutic mechanisms. However, numerous questions remain to be addressed on the basic biophysics of hyperdirect pathway stimulation. OBJECTIVE Quantify action potential (AP) initiation, propagation, and cortical invasion in hyperdirect neurons during subthalamic stimulation. METHODS We developed an anatomically and electrically detailed computational model of hyperdirect neuron stimulation with explicit representation of the stimulating electric field, axonal response, AP propagation, and synaptic transmission. RESULTS We found robust AP propagation throughout the complex axonal arbor of the hyperdirect neuron. Even at therapeutic DBS frequencies, stimulation induced APs could reach all of the intracortical axon terminals with ∼100% fidelity. The functional result of this high frequency axonal driving of the thousands of synaptic connections made by each directly stimulated hyperdirect neuron is a profound synaptic suppression that would effectively disconnect the neuron from the cortical circuitry. CONCLUSIONS The synaptic suppression hypothesis integrates the fundamental biophysics of electrical stimulation, axonal transmission, and synaptic physiology to explain a generic mechanism of DBS.
Collapse
Affiliation(s)
- Ross W Anderson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - AmirAli Farokhniaee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kabilar Gunalan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Bryan Howell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
42
|
Antic SD, Hines M, Lytton WW. Embedded ensemble encoding hypothesis: The role of the "Prepared" cell. J Neurosci Res 2018; 96:1543-1559. [PMID: 29633330 DOI: 10.1002/jnr.24240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 01/08/2023]
Abstract
We here reconsider current theories of neural ensembles in the context of recent discoveries about neuronal dendritic physiology. The key physiological observation is that the dendritic plateau potential produces sustained depolarization of the cell body (amplitude 10-20 mV, duration 200-500 ms). Our central hypothesis is that synaptically-evoked dendritic plateau potentials lead to a prepared state of a neuron that favors spike generation. The plateau both depolarizes the cell toward spike threshold, and provides faster response to inputs through a shortened membrane time constant. As a result, the speed of synaptic-to-action potential (AP) transfer is faster during the plateau phase. Our hypothesis relates the changes from "resting" to "depolarized" neuronal state to changes in ensemble dynamics and in network information flow. The plateau provides the Prepared state (sustained depolarization of the cell body) with a time window of 200-500 ms. During this time, a neuron can tune into ongoing network activity and synchronize spiking with other neurons to provide a coordinated Active state (robust firing of somatic APs), which would permit "binding" of signals through coordination of neural activity across a population. The transient Active ensemble of neurons is embedded in the longer-lasting Prepared ensemble of neurons. We hypothesize that "embedded ensemble encoding" may be an important organizing principle in networks of neurons.
Collapse
Affiliation(s)
- Srdjan D Antic
- Department of Neuroscience, Institute for Systems Genomics, Stem Cell Institute, UConn Health, Farmington, Connecticut
| | - Michael Hines
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut
| | - William W Lytton
- Physiology and Pharmacology, Neurology, Biomedical Engineering, SUNY Downstate Medical Center, Brooklyn, New York.,Department of Neurology, Kings County Hospital, Brooklyn, New York
| |
Collapse
|
43
|
Ferro M, Lamanna J, Ripamonti M, Racchetti G, Arena A, Spadini S, Montesano G, Cortese R, Zimarino V, Malgaroli A. Functional mapping of brain synapses by the enriching activity-marker SynaptoZip. Nat Commun 2017; 8:1229. [PMID: 29089485 PMCID: PMC5663910 DOI: 10.1038/s41467-017-01335-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/08/2017] [Indexed: 01/27/2023] Open
Abstract
Ideally, elucidating the role of specific brain circuits in animal behavior would require the ability to measure activity at all involved synapses, possibly with unrestricted field of view, thus even at those boutons deeply located into the brain. Here, we introduce and validate an efficient scheme reporting synaptic vesicle cycling in vivo. This is based on SynaptoZip, a genetically encoded molecule deploying in the vesicular lumen a bait moiety designed to capture upon exocytosis a labeled alien peptide, Synbond. The resulting signal is cumulative and stores the number of cycling events occurring at individual synapses. Since this functional signal is enduring and measurable both online and ex post, SynaptoZip provides a unique method for the analysis of the history of synaptic activity in regions several millimeters below the brain surface. We show its broad applicability by reporting stimulus-evoked and spontaneous circuit activity in wide cortical fields, in anesthetized and freely moving animals. Visualization of synaptic activity in the living brain is challenging. This study devises a simple and efficient scheme that reports synaptic vesicle recycling in vivo using SynaptoZip, a genetically encoded sensor of past synaptic activities.
Collapse
Affiliation(s)
- Mattia Ferro
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Jacopo Lamanna
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Maddalena Ripamonti
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Gabriella Racchetti
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Alessandro Arena
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy.,Department of Physiology, Institute of Basal Medical Sciences, University of Oslo, Oslo, 0315, Norway
| | - Sara Spadini
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Giovanni Montesano
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy.,Dipartimento Testa-Collo, San Paolo Hospital, University of Milan, Milan, 20122, Italy
| | | | - Vincenzo Zimarino
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Antonio Malgaroli
- Università Vita-Salute San Raffaele, Milan, 20132, Italy. .,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy.
| |
Collapse
|
44
|
A stepwise neuron model fitting procedure designed for recordings with high spatial resolution: Application to layer 5 pyramidal cells. J Neurosci Methods 2017; 293:264-283. [PMID: 28993204 DOI: 10.1016/j.jneumeth.2017.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/07/2017] [Accepted: 10/05/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Recent progress in electrophysiological and optical methods for neuronal recordings provides vast amounts of high-resolution data. In parallel, the development of computer technology has allowed simulation of ever-larger neuronal circuits. A challenge in taking advantage of these developments is the construction of single-cell and network models in a way that faithfully reproduces neuronal biophysics with subcellular level of details while keeping the simulation costs at an acceptable level. NEW METHOD In this work, we develop and apply an automated, stepwise method for fitting a neuron model to data with fine spatial resolution, such as that achievable with voltage sensitive dyes (VSDs) and Ca2+ imaging. RESULT We apply our method to simulated data from layer 5 pyramidal cells (L5PCs) and construct a model with reduced neuronal morphology. We connect the reduced-morphology neurons into a network and validate against simulated data from a high-resolution L5PC network model. COMPARISON WITH EXISTING METHODS Our approach combines features from several previously applied model-fitting strategies. The reduced-morphology neuron model obtained using our approach reliably reproduces the membrane-potential dynamics across the dendrites as predicted by the full-morphology model. CONCLUSIONS The network models produced using our method are cost-efficient and predict that interconnected L5PCs are able to amplify delta-range oscillatory inputs across a large range of network sizes and topologies, largely due to the medium after hyperpolarization mediated by the Ca2+-activated SK current.
Collapse
|
45
|
Greenbaum A, Jang MJ, Challis C, Gradinaru V. Q&A: How can advances in tissue clearing and optogenetics contribute to our understanding of normal and diseased biology? BMC Biol 2017; 15:87. [PMID: 28946882 PMCID: PMC5613628 DOI: 10.1186/s12915-017-0421-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mammalian organs comprise a variety of cells that interact with each other and have distinct biological roles. Access to evaluate and perturb intact biological systems at the cellular and molecular levels is essential to fully understand their functioning in normal and diseased conditions, yet technical limitations have constrained most research to small pieces of tissue. Tissue clearing and optogenetics can help overcome this hurdle: tissue clearing affords optical interrogation of whole organs at the molecular level, and optogenetics enables the scalable control and measurement of cellular activity with light. In this Q&A, we delineate recent advances and practical challenges associated with these two techniques when applied body-wide.
Collapse
Affiliation(s)
- Alon Greenbaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Min J Jang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Collin Challis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
46
|
Koopman CD, Zimmermann WH, Knöpfel T, de Boer TP. Cardiac optogenetics: using light to monitor cardiac physiology. Basic Res Cardiol 2017; 112:56. [PMID: 28861604 PMCID: PMC5579185 DOI: 10.1007/s00395-017-0645-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Abstract
Our current understanding of cardiac excitation and its coupling to contraction is largely based on ex vivo studies utilising fluorescent organic dyes to assess cardiac action potentials and signal transduction. Recent advances in optogenetic sensors open exciting new possibilities for cardiac research and allow us to answer research questions that cannot be addressed using the classic organic dyes. Especially thrilling is the possibility to use optogenetic sensors to record parameters of cardiac excitation and contraction in vivo. In addition, optogenetics provide a high spatial resolution, as sensors can be coupled to motifs and targeted to specific cell types and subcellular domains of the heart. In this review, we will give a comprehensive overview of relevant optogenetic sensors, how they can be utilised in cardiac research and how they have been applied in cardiac research up to now.
Collapse
Affiliation(s)
- Charlotte D Koopman
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584CM, Utrecht, The Netherlands.,Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht, 3584CT, Utrecht, The Netherlands
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DHZK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London, UK.,Centre for Neurotechnology, Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Teun P de Boer
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584CM, Utrecht, The Netherlands.
| |
Collapse
|
47
|
Friedrich J, Yang W, Soudry D, Mu Y, Ahrens MB, Yuste R, Peterka DS, Paninski L. Multi-scale approaches for high-speed imaging and analysis of large neural populations. PLoS Comput Biol 2017; 13:e1005685. [PMID: 28771570 PMCID: PMC5557609 DOI: 10.1371/journal.pcbi.1005685] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 08/15/2017] [Accepted: 07/14/2017] [Indexed: 11/19/2022] Open
Abstract
Progress in modern neuroscience critically depends on our ability to observe the activity of large neuronal populations with cellular spatial and high temporal resolution. However, two bottlenecks constrain efforts towards fast imaging of large populations. First, the resulting large video data is challenging to analyze. Second, there is an explicit tradeoff between imaging speed, signal-to-noise, and field of view: with current recording technology we cannot image very large neuronal populations with simultaneously high spatial and temporal resolution. Here we describe multi-scale approaches for alleviating both of these bottlenecks. First, we show that spatial and temporal decimation techniques based on simple local averaging provide order-of-magnitude speedups in spatiotemporally demixing calcium video data into estimates of single-cell neural activity. Second, once the shapes of individual neurons have been identified at fine scale (e.g., after an initial phase of conventional imaging with standard temporal and spatial resolution), we find that the spatial/temporal resolution tradeoff shifts dramatically: after demixing we can accurately recover denoised fluorescence traces and deconvolved neural activity of each individual neuron from coarse scale data that has been spatially decimated by an order of magnitude. This offers a cheap method for compressing this large video data, and also implies that it is possible to either speed up imaging significantly, or to "zoom out" by a corresponding factor to image order-of-magnitude larger neuronal populations with minimal loss in accuracy or temporal resolution.
Collapse
Affiliation(s)
- Johannes Friedrich
- Department of Statistics, Grossman Center for the Statistics of Mind, and Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- * E-mail: (JF); (LP)
| | - Weijian Yang
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Daniel Soudry
- Department of Statistics, Grossman Center for the Statistics of Mind, and Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
| | - Yu Mu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Kavli Institute of Brain Science, Columbia University, New York, New York, United States of America
| | - Darcy S. Peterka
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| | - Liam Paninski
- Department of Statistics, Grossman Center for the Statistics of Mind, and Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Kavli Institute of Brain Science, Columbia University, New York, New York, United States of America
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- * E-mail: (JF); (LP)
| |
Collapse
|
48
|
Neuronal cell-type classification: challenges, opportunities and the path forward. Nat Rev Neurosci 2017; 18:530-546. [PMID: 28775344 DOI: 10.1038/nrn.2017.85] [Citation(s) in RCA: 500] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurons have diverse molecular, morphological, connectional and functional properties. We believe that the only realistic way to manage this complexity - and thereby pave the way for understanding the structure, function and development of brain circuits - is to group neurons into types, which can then be analysed systematically and reproducibly. However, neuronal classification has been challenging both technically and conceptually. New high-throughput methods have created opportunities to address the technical challenges associated with neuronal classification by collecting comprehensive information about individual cells. Nonetheless, conceptual difficulties persist. Borrowing from the field of species taxonomy, we propose principles to be followed in the cell-type classification effort, including the incorporation of multiple, quantitative features as criteria, the use of discontinuous variation to define types and the creation of a hierarchical system to represent relationships between cells. We review the progress of classifying cell types in the retina and cerebral cortex and propose a staged approach for moving forward with a systematic cell-type classification in the nervous system.
Collapse
|
49
|
Xu Y, Zou P, Cohen AE. Voltage imaging with genetically encoded indicators. Curr Opin Chem Biol 2017; 39:1-10. [PMID: 28460291 PMCID: PMC5581692 DOI: 10.1016/j.cbpa.2017.04.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023]
Abstract
Membrane voltages are ubiquitous throughout cell biology. Voltage is most commonly associated with excitable cells such as neurons and cardiomyocytes, although many other cell types and organelles also support electrical signaling. Voltage imaging in vivo would offer unique capabilities in reporting the spatial pattern and temporal dynamics of electrical signaling at the cellular and circuit levels. Voltage is not directly visible, and so a longstanding challenge has been to develop genetically encoded fluorescent voltage indicator proteins. Recent advances have led to a profusion of new voltage indicators, based on different scaffolds and with different tradeoffs between voltage sensitivity, speed, brightness, and spectrum. In this review, we describe recent advances in design and applications of genetically-encoded voltage indicators (GEVIs). We also highlight the protein engineering strategies employed to improve the dynamic range and kinetics of GEVIs and opportunities for future advances.
Collapse
Affiliation(s)
- Yongxian Xu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Peng Zou
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Adam E Cohen
- Departments of Chemistry and Chemical Biology and of Physics, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute.
| |
Collapse
|
50
|
Song C, Do QB, Antic SD, Knöpfel T. Transgenic Strategies for Sparse but Strong Expression of Genetically Encoded Voltage and Calcium Indicators. Int J Mol Sci 2017; 18:ijms18071461. [PMID: 28686207 PMCID: PMC5535952 DOI: 10.3390/ijms18071461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023] Open
Abstract
Rapidly progressing development of optogenetic tools, particularly genetically encoded optical indicators, enables monitoring activities of neuronal circuits of identified cell populations in longitudinal in vivo studies. Recently developed advanced transgenic approaches achieve high levels of indicator expression. However, targeting non-sparse cell populations leads to dense expression patterns such that optical signals from neuronal processes cannot be allocated to individual neurons. This issue is particularly pertinent for the use of genetically encoded voltage indicators whose membrane-delimited signals arise largely from the neuropil where dendritic and axonal membranes of many cells intermingle. Here we address this need for sparse but strong expression of genetically encoded optical indicators using a titratable recombination-activated transgene transcription to achieve a Golgi staining-type indicator expression pattern in vivo. Using different transgenic strategies, we also illustrate that co-expression of genetically encoded voltage and calcium indicators can be achieved in vivo for studying neuronal circuit input–output relationships.
Collapse
Affiliation(s)
- Chenchen Song
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London W12 0NN, UK.
| | - Quyen B Do
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London W12 0NN, UK.
| | - Srdjan D Antic
- Institute for Systems Genomics, Stem Cell Institute, UConn Health, Farmington, CT 06030-3401, USA.
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London W12 0NN, UK.
- Centre for Neurotechnology, Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|