1
|
Young A, Hunt T, Ericson M. The Slowest Shared Resonance: A Review of Electromagnetic Field Oscillations Between Central and Peripheral Nervous Systems. Front Hum Neurosci 2022; 15:796455. [PMID: 35250508 PMCID: PMC8888685 DOI: 10.3389/fnhum.2021.796455] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Electromagnetic field oscillations produced by the brain are increasingly being viewed as causal drivers of consciousness. Recent research has highlighted the importance of the body's various endogenous rhythms in organizing these brain-generated fields through various types of entrainment. We expand this approach by examining evidence of extracerebral shared oscillations between the brain and other parts of the body, in both humans and animals. We then examine the degree to which these data support one of General Resonance Theory's (GRT) principles: the Slowest Shared Resonance (SSR) principle, which states that the combination of micro- to macro-consciousness in coupled field systems is a function of the slowest common denominator frequency or resonance. This principle may be utilized to develop a spatiotemporal hierarchy of brain-body shared resonance systems. It is predicted that a system's SSR decreases with distance between the brain and various resonating structures in the body. The various resonance relationships examined, including between the brain and gastric neurons, brain and sensory organs, and brain and spinal cord, generally match the predicted SSR relationships, empirically supporting this principle of GRT.
Collapse
Affiliation(s)
- Asa Young
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Tam Hunt
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Marissa Ericson
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Understanding the Significance of the Hypothalamic Nature of the Subthalamic Nucleus. eNeuro 2021; 8:ENEURO.0116-21.2021. [PMID: 34518367 PMCID: PMC8493884 DOI: 10.1523/eneuro.0116-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
The subthalamic nucleus (STN) is an essential component of the basal ganglia and has long been considered to be a part of the ventral thalamus. However, recent neurodevelopmental data indicated that this nucleus is of hypothalamic origin which is now commonly acknowledged. In this work, we aimed to verify whether the inclusion of the STN in the hypothalamus could influence the way we understand and conduct research on the organization of the whole ventral and posterior diencephalon. Developmental and neurochemical data indicate that the STN is part of a larger glutamatergic posterior hypothalamic region that includes the premammillary and mammillary nuclei. The main anatomic characteristic common to this region involves the convergent cortical and pallidal projections that it receives, which is based on the model of the hyperdirect and indirect pathways to the STN. This whole posterior hypothalamic region is then integrated into distinct functional networks that interact with the ventral mesencephalon to adjust behavior depending on external and internal contexts.
Collapse
|
3
|
Shou G, Yuan H, Li C, Chen Y, Chen Y, Ding L. Whole-brain electrophysiological functional connectivity dynamics in resting-state EEG. J Neural Eng 2020; 17:026016. [PMID: 32106106 DOI: 10.1088/1741-2552/ab7ad3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Functional connectivity (FC) dynamics have been studied in functional magnetic resonance imaging (fMRI) data, while it is largely unknown in electrophysiological data, e.g. EEG. APPROACH The present study proposed a novel analytic framework to study spatiotemporal dynamics of FC (dFC) in resting-state human EEG data, including independent component analysis, cortical source imaging, sliding-window correlation analysis, and k-means clustering. MAIN RESULTS Our results confirm that major fMRI intrinsic connectivity networks (ICNs) can be successfully reconstructed from EEG using our analytic framework. Prominent spatial and temporal variability were revealed in these ICNs. The mean dFC spatial patterns of individual ICNs resemble their corresponding static FC (sFC) patterns but show fewer cross-talks among distinct ICNs. Our investigation unveils evidences of time-domain variations in individual ICNs comparable to their mean FC level in terms of magnitude. The major contributors to these variations are from the frequency below 0.0156 Hz, in the similar range of FC dynamics from fMRI data. Among different ICNs, larger temporal variabilities are observed in the frontal attention and auditory/visual ICNs, while sensorimotor, salience, and default model networks showed less. Our analytic framework for the first time revealed quasi-stable states within individual EEG ICNs, with various strengths or spatial patterns that were reliably detected at both group and individual levels. These states all together reveal a more complete picture of EEG ICNs: (1) quasi-stable state spatial patterns as a whole for each EEG ICN are more consistent with the corresponding fMRI ICN in terms of the bilateral distribution and multi-nodes structure; (2) EEG ICNs reveal more transient patterns about within-ICN between-node communications than fMRI ICNs. SIGNIFICANCE The present findings highlight the fact that rich temporal and spatial dynamics exist in ICN that can be detected from EEG data. Future studies might extend investigations towards spectral dynamics of EEG ICNs.
Collapse
Affiliation(s)
- Guofa Shou
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, United States of America
| | | | | | | | | | | |
Collapse
|
4
|
A general method to generate artificial spike train populations matching recorded neurons. J Comput Neurosci 2020; 48:47-63. [PMID: 31974719 DOI: 10.1007/s10827-020-00741-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
We developed a general method to generate populations of artificial spike trains (ASTs) that match the statistics of recorded neurons. The method is based on computing a Gaussian local rate function of the recorded spike trains, which results in rate templates from which ASTs are drawn as gamma distributed processes with a refractory period. Multiple instances of spike trains can be sampled from the same rate templates. Importantly, we can manipulate rate-covariances between spike trains by performing simple algorithmic transformations on the rate templates, such as filtering or amplifying specific frequency bands, and adding behavior related rate modulations. The method was examined for accuracy and limitations using surrogate data such as sine wave rate templates, and was then verified for recorded spike trains from cerebellum and cerebral cortex. We found that ASTs generated with this method can closely follow the firing rate and local as well as global spike time variance and power spectrum. The method is primarily intended to generate well-controlled spike train populations as inputs for dynamic clamp studies or biophysically realistic multicompartmental models. Such inputs are essential to study detailed properties of synaptic integration with well-controlled input patterns that mimic the in vivo situation while allowing manipulation of input rate covariances at different time scales.
Collapse
|
5
|
Global dynamics of selective attention and its lapses in primary auditory cortex. Nat Neurosci 2016; 19:1707-1717. [PMID: 27618311 PMCID: PMC5127770 DOI: 10.1038/nn.4386] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022]
Abstract
Previous research demonstrated that while selectively attending to relevant aspects of the external world, the brain extracts pertinent information by aligning its neuronal oscillations to key time points of stimuli or their sampling by sensory organs. This alignment mechanism is termed oscillatory entrainment. We investigated the global, long-timescale dynamics of this mechanism in the primary auditory cortex of nonhuman primates, and hypothesized that lapses of entrainment would correspond to lapses of attention. By examining electrophysiological and behavioral measures we observed that besides the lack of entrainment by external stimuli, attentional lapses were characterized by high amplitude alpha oscillations, with alpha frequency structuring of neuronal ensemble and single unit operations. Strikingly, entrainment and alpha oscillation dominated periods were strongly anti-correlated and fluctuated rhythmically at an ultra-slow rate. Our results indicate that these two distinct brain states represent externally versus internally oriented computational resources engaged by large-scale task-positive and task-negative functional networks.
Collapse
|
6
|
Liu S, Ching S. Homeostatic dynamics, hysteresis and synchronization in a low-dimensional model of burst suppression. J Math Biol 2016; 74:1011-1035. [PMID: 27549764 DOI: 10.1007/s00285-016-1048-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/03/2016] [Indexed: 01/24/2023]
Abstract
Burst suppression, a pattern of the electroencephalogram characterized by quasi-periodic alternation of high-voltage activity (burst) and isoelectric silence (suppression), is typically associated with states of unconsciousness, such as in deep general anesthesia and certain etiologies of coma. Recent computational models for burst suppression have attributed the slow (up to tens of seconds) time-scale of burst termination and re-initiation to cycling in supportive physiological process, such as cerebral metabolism. That is, activity-dependent substrate ('energy') depletion during bursts, followed by substrate recovery during suppression. Such a model falls into the category of a fast-slow dynamical system, commonly used to describe neuronal bursting more generally. Here, following this basic paradigm, we develop a low dimensional mean field model for burst suppression that adds several new features and capabilities to previous models. Most notably, this new model includes explicit homeostatic interactions wherein the rates of substrate recovery are tied to neuronal activity in a supply demand loop, creating a physiologically consistent, reciprocal interaction between the neural and substrate processes. We develop formal analysis of the model dynamics, showing, in particular, the capability of the model to produce burst-like activity as a consequence of neuronal downregulation only, without any direct perturbation to the substrate dynamics. Further, we use a synchronization analysis to contrast different mechanisms for spatially local versus global bursting. The analysis performed generates characterizations that are consistent with experimental observations of spatiotemporal features such as burst onset, duration, and spatial organization and, moreover, generates predictions regarding the presence of bistability and hysteresis in the underlying system. Thus, the model provides new dynamical insight into the mechanisms of burst suppression and, moreover, a tractable platform for more detailed future characterizations.
Collapse
Affiliation(s)
- Sensen Liu
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - ShiNung Ching
- Department of Electrical and Systems Engineering, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
7
|
Abstract
Ongoing neuronal activity in the CNS waxes and wanes continuously across widespread spatial and temporal scales. In the human brain, these spontaneous fluctuations are salient in blood oxygenation level-dependent (BOLD) signals and correlated within specific brain systems or "intrinsic-connectivity networks." In electrophysiological recordings, both the amplitude dynamics of fast (1-100 Hz) oscillations and the scalp potentials per se exhibit fluctuations in the same infra-slow (0.01-0.1 Hz) frequency range where the BOLD fluctuations are conspicuous. While several lines of evidence show that the BOLD fluctuations are correlated with fast-amplitude dynamics, it has remained unclear whether the infra-slow scalp potential fluctuations in full-band electroencephalography (fbEEG) are related to the resting-state BOLD signals. We used concurrent fbEEG and functional magnetic resonance imaging (fMRI) recordings to address the relationship of infra-slow fluctuations (ISFs) in scalp potentials and BOLD signals. We show here that independent components of fbEEG recordings are selectively correlated with subsets of cortical BOLD signals in specific task-positive and task-negative, fMRI-defined resting-state networks. This brain system-specific association indicates that infra-slow scalp potentials are directly associated with the endogenous fluctuations in neuronal activity levels. fbEEG thus yields a noninvasive, high-temporal resolution window into the dynamics of intrinsic connectivity networks. These results support the view that the slow potentials reflect changes in cortical excitability and shed light on neuronal substrates underlying both electrophysiological and behavioral ISFs.
Collapse
|
8
|
Kathirvelu B, Colombo PJ. Effects of lentivirus-mediated CREB expression in the dorsolateral striatum: Memory enhancement and evidence for competitive and cooperative interactions with the hippocampus. Hippocampus 2013; 23:1066-74. [DOI: 10.1002/hipo.22188] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Balachandar Kathirvelu
- Department of Neurology; David Geffen School of Medicine at UCLA; Los Angeles California
| | - Paul J. Colombo
- Department of Psychology; Tulane University; New Orleans Louisiana
| |
Collapse
|
9
|
Mizumori SJY. Context prediction analysis and episodic memory. Front Behav Neurosci 2013; 7:132. [PMID: 24109442 PMCID: PMC3791547 DOI: 10.3389/fnbeh.2013.00132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/11/2013] [Indexed: 11/13/2022] Open
Abstract
Events that happen at a particular place and time come to define our episodic memories. Extensive experimental and clinical research illustrate that the hippocampus is central to the processing of episodic memories, and this is in large part due to its analysis of context information according to spatial and temporal references. In this way, hippocampus defines ones expectations for a given context as well as detects errors in predicted contextual features. The detection of context prediction errors is hypothesized to distinguished events into meaningful epochs that come to be recalled as separate episodic memories. The nature of the spatial and temporal context information processed by hippocampus is described, as is a hypothesis that the apparently self-regulatory nature of hippocampal context processing may ultimately be mediated by natural homeostatic operations and plasticity. Context prediction errors by hippocampus are suggested to be valued by the midbrain dopamine system, the output of which is ultimately fed back to hippocampus to update memory-driven context expectations for future events. Thus, multiple network functions (both within and outside hippocampus) combine to result in adaptive episodic memories.
Collapse
Affiliation(s)
- Sheri J Y Mizumori
- Laboratory of Neural Systems, Decision Science, Learning and Memory, Department of Psychology, University of Washington , Seattle, WA , USA
| |
Collapse
|
10
|
Huang L, Liu Y, Li M, Hu D. Hemodynamic and electrophysiological spontaneous low-frequency oscillations in the cortex: directional influences revealed by Granger causality. Neuroimage 2013; 85 Pt 2:810-22. [PMID: 23911674 DOI: 10.1016/j.neuroimage.2013.07.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/27/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022] Open
Abstract
We used a combined electrophysiological/hemodynamic system to examine low-frequency oscillations (LFOs) in spontaneous neuronal activities (spike trains and local field potentials) and hemodynamic signals (cerebral blood flow) recorded from the anesthetized rat somatosensory and visual cortices. The laser Doppler flowmetry (LDF) probe was tilted slightly to approach the area in which a microelectrode array (MEA) was implanted for simultaneous recordings. Spike trains (STs) were converted into continuous-time rate functions (CRFs) using the ST instantaneous firing rates. LFOs were detected for all three of the components using the multi-taper method (MTM). The frequencies of these LFOs ranged from 0.052 to 0.167 Hz (mean±SD, 0.10±0.026 Hz) for cerebral blood flow (CBF), from 0.027 to 0.26 Hz (mean±SD, 0.12±0.041 Hz) for the CRFs of the STs and from 0.04 to 0.19 Hz (mean±SD, 0.11±0.035 Hz) for local field potentials (LFPs). We evaluated the Granger causal relationships of spontaneous LFOs among CBF, LFPs and CRFs using Granger causality (GC) analysis. Significant Granger causal relationships were observed from LFPs to CBF, from STs to CBF and from LFPs to STs at approximately 0.1 Hz. The present results indicate that spontaneous LFOs exist not only in hemodynamic components but also in neuronal activities of the rat cortex. To the best of our knowledge, the present study is the first to identify Granger causal influences among CBF, LFPs and STs and show that spontaneous LFOs carry important Granger causal influences from neural activities to hemodynamic signals.
Collapse
Affiliation(s)
- Liangming Huang
- College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan, PR China
| | | | | | | |
Collapse
|
11
|
Stimulus detection rate and latency, firing rates and 1-40Hz oscillatory power are modulated by infra-slow fluctuations in a bistable attractor network model. Neuroimage 2013; 83:458-71. [PMID: 23851323 DOI: 10.1016/j.neuroimage.2013.06.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/23/2013] [Accepted: 06/30/2013] [Indexed: 11/22/2022] Open
Abstract
Recordings of membrane and field potentials, firing rates, and oscillation amplitude dynamics show that neuronal activity levels in cortical and subcortical structures exhibit infra-slow fluctuations (ISFs) on time scales from seconds to hundreds of seconds. Similar ISFs are salient also in blood-oxygenation-level dependent (BOLD) signals as well as in psychophysical time series. Functional consequences of ISFs are not fully understood. Here, they were investigated along with dynamical implications of ISFs in large-scale simulations of cortical network activity. For this purpose, a biophysically detailed hierarchical attractor network model displaying bistability and operating in an oscillatory regime was used. ISFs were imposed as slow fluctuations in either the amplitude or frequency of fast synaptic noise. We found that both mechanisms produced an ISF component in the synthetic local field potentials (LFPs) and modulated the power of 1-40Hz oscillations. Crucially, in a simulated threshold-stimulus detection task (TSDT), these ISFs were strongly correlated with stimulus detection probabilities and latencies. The results thus show that several phenomena observed in many empirical studies emerge concurrently in the model dynamics, which yields mechanistic insight into how infra-slow excitability fluctuations in large-scale neuronal networks may modulate fast oscillations and perceptual processing. The model also makes several novel predictions that can be experimentally tested in future studies.
Collapse
|
12
|
Palva JM, Palva S. Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series. Neuroimage 2012; 62:2201-11. [PMID: 22401756 DOI: 10.1016/j.neuroimage.2012.02.060] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022] Open
Abstract
Converging electrophysiological and neuroimaging data show that mammalian brain dynamics are governed by spontaneous modulations of neuronal activity levels in cortical and subcortical structures. The time scales of these fluctuations form a continuum from seconds to tens and hundreds of seconds corresponding to slow (0.1-1Hz), infra-slow (0.01-0.1Hz), and "ultradian" (<0.01Hz) frequency bands, respectively. We focus here on the spontaneous neuronal dynamics in the infra-slow frequency band, infra-slow fluctuations (ISFs), and explore their electrophysiological substrates and behavioral correlates. Although electrophysiological ISFs and the associated infra-slow modulations of fast (here, >1Hz) neuronal activities have been recognized on numerous occasions since late 50's, a resurgence in interest towards this frequency band has been driven by a discovery that ISFs in blood-oxygenation-level dependent (BOLD) signals are correlated among specific constellations of brain regions, which constitute intrinsic connectivity networks and define the dynamic architecture of spontaneous brain activity at large. Importantly, electrophysiological and BOLD signal ISFs are directly correlated both with ISFs in amplitudes of fast neuronal activities and with ISFs in behavioral performance. Moreover, both electrophysiological and neuroimaging data suggest that the apparently scale-free ISFs may arise from more local quasi-periodic infra-slow oscillations with a contribution of time-scale-specific cellular-level mechanisms. We conclude that ISFs in electrophysiological recordings, BOLD signals, neuronal activity levels, and behavioral time series are likely to reflect the same underlying phenomenon; a superstructure of interacting and transiently oscillatory ISFs that regulate both the integration within and decoupling between concurrently active neuronal communities.
Collapse
|
13
|
Penner MR, Mizumori SJY. Neural systems analysis of decision making during goal-directed navigation. Prog Neurobiol 2011; 96:96-135. [PMID: 21964237 DOI: 10.1016/j.pneurobio.2011.08.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/06/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
The ability to make adaptive decisions during goal-directed navigation is a fundamental and highly evolved behavior that requires continual coordination of perceptions, learning and memory processes, and the planning of behaviors. Here, a neurobiological account for such coordination is provided by integrating current literatures on spatial context analysis and decision-making. This integration includes discussions of our current understanding of the role of the hippocampal system in experience-dependent navigation, how hippocampal information comes to impact midbrain and striatal decision making systems, and finally the role of the striatum in the implementation of behaviors based on recent decisions. These discussions extend across cellular to neural systems levels of analysis. Not only are key findings described, but also fundamental organizing principles within and across neural systems, as well as between neural systems functions and behavior, are emphasized. It is suggested that studying decision making during goal-directed navigation is a powerful model for studying interactive brain systems and their mediation of complex behaviors.
Collapse
Affiliation(s)
- Marsha R Penner
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, United States
| | | |
Collapse
|
14
|
Palva JM, Palva S. Roles of multiscale brain activity fluctuations in shaping the variability and dynamics of psychophysical performance. PROGRESS IN BRAIN RESEARCH 2011; 193:335-50. [PMID: 21854973 DOI: 10.1016/b978-0-444-53839-0.00022-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Spontaneous brain activity across many time scales influences sensory perception and human cognitive performance. Empirical insight into the underlying systems-level mechanisms has, however, remained fragmented. We review here recent studies on how wideband scale-free and scale-specific neuronal activity fluctuations together bias sensory processing and perceptual performance. We posit that these fluctuations constitute the neurophysiological foundation for both the trial-to-trial behavioral variability and the scaling laws governing psychophysical performance.
Collapse
Affiliation(s)
- J Matias Palva
- Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
15
|
Walters JR, Bergstrom DA. Synchronous Activity in Basal Ganglia Circuits. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/b978-0-12-374767-9.00025-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
The modulation of striatal dopamine release correlates with water-maze performance in aged rats. Neurobiol Aging 2009; 30:957-72. [DOI: 10.1016/j.neurobiolaging.2007.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 11/20/2022]
|
17
|
Rothenberger A. Brain oscillations forever--neurophysiology in future research of child psychiatric problems. J Child Psychol Psychiatry 2009; 50:79-86. [PMID: 19220591 DOI: 10.1111/j.1469-7610.2008.01994.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For decades neurophysiology has successfully contributed to research and clinical care in child psychiatry. Recently, methodological progress has led to a revival of interest in brain oscillations (i.e., a band of periodic neuronal frequencies with a wave-duration from milliseconds to several seconds which may code and decode information). These oscillations will nurture future information processing research during normal and pathological brain development, allowing us to investigate basic neuronal connectivity as well as interactions of brain systems and their modulation (e.g., by temporal neuronal synchronisation) as close correlates of behaviour and intermediate phenotypes from genes to behavioural variations. Especially, a systematic neurodynamic look at transitional processes from rest to stimulus-triggered goal-directed performance will aid behavioural understanding and guidance of children. Preliminary data suggest two separate oscillatory mechanisms in this respect. One is ongoing from pre- to post-stimulus processing and related to quantitative modification of behaviour, while another is merely related to qualitative effects of behaviour and reflects 'on-top' post-stimulus processing by temporal neuronal synchronisation of the oscillatory network in question. Suggested neurodynamic models may be tested in multilevel clinical experiments as well as in the framework of computational neuropsychiatry.
Collapse
|
18
|
Elias S, Ritov Y, Bergman H. Balance of increases and decreases in firing rate of the spontaneous activity of basal ganglia high-frequency discharge neurons. J Neurophysiol 2008; 100:3086-104. [PMID: 18842958 DOI: 10.1152/jn.90714.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most neurons in the external and internal segments of the globus pallidus and the substantia nigra pars reticulata (GPe, GPi, and SNr) are characterized by a high-frequency discharge (HFD) rate (50-80 Hz) that, in most GPe neurons, is also interrupted by pauses. Almost all (approximately 90%) of the synaptic inputs to these HFD neurons are GABAergic and inhibitory. Nevertheless, their responses to behavioral events are usually dominated by increases in discharge rate. Additionally, there are no reports of prolonged bursts in the spontaneous activity of these cells that could reflect their disinhibition by GPe pauses. We recorded the spontaneous activity of 385 GPe, GPi, and SNr HFD neurons during a quiet-wakeful state from two monkeys. We developed three complementary methods to quantify the balance of increases and decreases in the spontaneous discharge of HFD neurons and validated them by simulations. Unlike the behavioral evoked responses, the spontaneous activity of pallidal and SNr neurons is not dominated by increases. Moreover, the activity of basal ganglia neurons does not include bursts that could reflect disinhibition by the spontaneous pauses of GPe neurons. These findings suggest that the discharge increase/decrease balance during a quiet-wakeful state better reflects the inhibitory input of the HFD basal ganglia neurons than during responses to behavioral events; however, the GPe pauses are not echoed by comparable bursts either in the GPe or in the output nuclei. Changes in the excitatory drive of these structures (e.g., during behavioral activity) thus may lead to a remarkable change in this balance.
Collapse
Affiliation(s)
- Shlomo Elias
- Department of Physiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | | | |
Collapse
|
19
|
Başar E. Oscillations in “brain–body–mind”—A holistic view including the autonomous system. Brain Res 2008; 1235:2-11. [DOI: 10.1016/j.brainres.2008.06.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 06/23/2008] [Indexed: 11/25/2022]
|
20
|
Fukunaga M, Horovitz SG, de Zwart JA, van Gelderen P, Balkin TJ, Braun AR, Duyn JH. Metabolic origin of BOLD signal fluctuations in the absence of stimuli. J Cereb Blood Flow Metab 2008; 28:1377-87. [PMID: 18382468 DOI: 10.1038/jcbfm.2008.25] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging studies have shown the existence of ongoing blood flow fluctuations in the absence of stimuli. Although this so-called 'resting-state activity' appears to be correlated across brain regions with apparent functional relationship, its origin might be predominantly vascular and not directly representing neuronal signaling. To investigate this, we simultaneously measured BOLD and perfusion signals on healthy human subjects (n=11) and used their ratio (BOLD/perfusion ratio or BPR) as an indicator of metabolic demand. BPR during rest and sleep was compared with that during a visual task (VT) and a breath-holding task (BH), which are challenges with substantial and little metabolic involvement, respectively. Within the visual cortex, BPR was 3.76+/-1.23 during BH, which was significantly higher than during the VT (1.76+/-0.27) and rest (1.56+/-0.41). Meanwhile, BPR values during VT and rest were not significantly different, suggesting a similar metabolic involvement. Eight subjects showed stage 1 and 2 sleep, during which temporally correlated BOLD and perfusion activity continued. In these subjects, there was no significant difference in BPR between the sleep and waking conditions (1.79+/-0.54 and 1.66+/-0.67, respectively), but both were lower than the BPR during BH. These data suggest that resting-state activity, at least in part, represents a metabolic process.
Collapse
Affiliation(s)
- Masaki Fukunaga
- Advanced MRI, LFMI, NINDS, National Institutes of Health, Bethesda, Maryland 20892-1065, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhao F, Zhao T, Zhou L, Wu Q, Hu X. BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat. Neuroimage 2007; 39:248-60. [PMID: 17904868 PMCID: PMC2137163 DOI: 10.1016/j.neuroimage.2007.07.063] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/11/2007] [Accepted: 07/16/2007] [Indexed: 10/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) in anesthetized-animals is critical in studying the mechanisms of fMRI and investigating animal models of various diseases. Medetomidine was recently introduced for independent anesthesia for longitudinal (survival) fMRI studies in rats. Since stimulation-induced fMRI signal is anesthesia-dependent and its characteristics in rats under medetomidine are not fully elucidated, the blood oxygenation level dependent (BOLD) fMRI response to electrical forepaw stimulation under medetomidine was systematically investigated at 9.4 T. Robust activations in contralateral primary somatosensory cortex (SI) and thalamus were observed and peaked at the stimulus frequency of 9 Hz. The response in SI saturates at the stimulus strength of 4 mA while that in thalamus monotonically increases. In addition to fMRI data acquired with the forepaw stimulation, data were also acquired during the resting-state to investigate the synchronization of low frequency fluctuations (LFF) in the BOLD signal (<0.08 Hz) in different brain regions. LFF during resting-state have been observed to be synchronized between functionally related brain regions in human subjects while its origin is not fully understood. LFF have not been extensively studied or widely reported in anesthetized-animals. In our data, synchronized LFF of BOLD signals are found in clustered, bilaterally symmetric regions, including SI and caudate-putamen and the magnitude of the LFF is approximately 1.5%, comparable to the stimulation-induced BOLD signals. Similar to resting-state data reported in human subjects, LFF in rats under medetomidine likely reflect functional connectivity of these brain regions.
Collapse
Affiliation(s)
- Fuqiang Zhao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 101 Woodruff Circle, Suite 2001, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
22
|
Fountas KN, Smith JR. Neuronal networks of the basal ganglia and the value of recording field potentials from them. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 97:155-61. [PMID: 17691300 DOI: 10.1007/978-3-211-33081-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The basal ganglia constitute parts of highly sophisticated and complex neuronal networks, which represent essential elements of functional circuits, actively involved in the control of movement. The physiologic properties of these networks and their interchange with different brain areas could serve as a model for the pathophysiologic explanation of various movement disorders, particularly Parkinson's disease. Stimulation of these networks and subsequent recording of the evoked Local Field Potentials is currently used not only for understanding the pathophysiology of movement disorders but also for the physiologic localization of the anatomical target during deep brain stimulation procedures. An overview of the currently available research and clinical data from the recording of Local Field Potentials as well as the advantages, the disadvantages and the limitations of this methodology are presented in this chapter.
Collapse
Affiliation(s)
- K N Fountas
- Department of Neurosurgery, Medical College of Georgia, Augusta, Georgia, USA.
| | | |
Collapse
|
23
|
Cassel JC, Lazaris A, Birthelmer A, Jackisch R. Spatial reference- (not working- or procedural-) memory performance of aged rats in the water maze predicts the magnitude of sulpiride-induced facilitation of acetylcholine release by striatal slices. Neurobiol Aging 2007; 28:1270-85. [PMID: 16843572 DOI: 10.1016/j.neurobiolaging.2006.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/18/2006] [Accepted: 05/30/2006] [Indexed: 11/17/2022]
Abstract
Cluster analysis of water-maze reference-memory performance distinguished subpopulations of young adult (3-5 months), aged (25-27 months) unimpaired (AU) and aged impaired (AI) rats. Working-memory performances of AU and AI rats were close to normal (though young and aged rats differed in exploration strategies). All aged rats showed impaired procedural-memory. Electrically evoked release of tritium was assessed in striatal slices (preloaded with [(3)H]choline) in the presence of oxotremorine, physostigmine, atropine+physostigmine, quinpirole, nomifensine or sulpiride. Aged rats exhibited reduced accumulation of [(3)H]choline (-30%) and weaker transmitter release. Drug effects (highest concentration) were reductions of release by 44% (oxotremorine), 72% (physostigmine), 84% (quinpirole) and 65% (nomifensine) regardless of age. Sulpiride and atropine+physostigmine facilitated the release more efficiently in young rats versus aged rats. The sulpiride-induced facilitation was weaker in AI rats versus AU rats; it significantly correlated with reference-memory performance. The results confirm age-related alterations of cholinergic and dopaminergic striatal functions, and point to the possibility that alterations in the D(2)-mediated dopaminergic regulation of these functions contribute to age-related reference-memory deficits.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Comportementales et Cognitives, FRE 2855, CNRS-Université Louis Pasteur, IFR 37 Neurosciences, GDR CNRS 2905, Strasbourg, France.
| | | | | | | |
Collapse
|
24
|
Başar E, Güntekin B. A breakthrough in neuroscience needs a “Nebulous Cartesian System”. Int J Psychophysiol 2007; 64:108-22. [PMID: 17049654 DOI: 10.1016/j.ijpsycho.2006.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Revised: 06/24/2006] [Accepted: 07/13/2006] [Indexed: 11/29/2022]
Abstract
The Cartesian System is a fundamental conceptual and analytical framework related and interwoven with the concept and applications of Newtonian Dynamics. In order to analyze quantum processes physicist moved to a Probabilistic Cartesian System in which the causality principle became a probabilistic one. This means the trajectories of particles (obeying quantum rules) can be described only with the concept of cloudy wave packets. The approach to the brain-body-mind problem requires more than the prerequisite of modern physics and quantum dynamics. In the analysis of the brain-body-mind construct we have to include uncertain causalities and consequently multiple uncertain causalities. These multiple causalities originate from (1) nonlinear properties of the vegetative system (e.g. irregularities in biochemical transmitters, cardiac output, turbulences in the vascular system, respiratory apnea, nonlinear oscillatory interactions in peristalsis); (2) nonlinear behavior of the neuronal electricity (e.g. chaotic behavior measured by EEG), (3) genetic modulations, and (4) additional to these physiological entities nonlinear properties of physical processes in the body. The brain shows deterministic chaos with a correlation dimension of approx. D(2)=6, the smooth muscles approx. D(2)=3. According to these facts we propose a hyper-probabilistic approach or a hyper-probabilistic Cartesian System to describe and analyze the processes in the brain-body-mind system. If we add aspects as our sentiments, emotions and creativity to this construct, better said to this already hyper-probabilistic construct, this "New Cartesian System" is more than hyper-probabilistic, it is a nebulous system, we can predict the future only in a nebulous way; however, despite this chain of reasoning we can still provide predictions on brain-body-mind incorporations. We tentatively assume that the processes or mechanisms of the brain-body-mind system can be analyzed and predicted similar to the metaphor of "finding the walking path in a cloudy or foggy day". This is meant by stating "The Nebulous Cartesian System" (NCS). Descartes, at his time undertaking his genius step, did not possess the knowledge of today's physiology and modern physics; we think that the time has come to consider such a New Cartesian System. To deal with this, we propose the utilization of the Heisenberg S-Matrix and a modified version of the Feynman Diagrams which we call "Brain Feynman Diagrams". Another metaphor to consider within the oscillatory approach of the NCS is the "string theory". We also emphasize that fundamental steps should be undertaken in order to create the own dynamical framework of the brain-body-mind incorporation; suggestions or metaphors from physics and mathematics are useful; however, the grammar of the brains intrinsic language must be understood with the help of a new biologically founded, adaptive-probabilistic Cartesian system. This new Cartesian System will undergo mutations and transcend to the philosophy of Henri Bergson in parallel to the Evolution theory of Charles Darwin to open gateways for approaching the brain-body-mind problem.
Collapse
Affiliation(s)
- Erol Başar
- Istanbul Kültür University, Faculty of Science and Letters, Turkey.
| | | |
Collapse
|
25
|
Fukunaga M, Horovitz SG, van Gelderen P, de Zwart JA, Jansma JM, Ikonomidou VN, Chu R, Deckers RHR, Leopold DA, Duyn JH. Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. Magn Reson Imaging 2006; 24:979-92. [PMID: 16997067 DOI: 10.1016/j.mri.2006.04.018] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 04/10/2006] [Indexed: 11/26/2022]
Abstract
A number of recent studies of human brain activity using blood-oxygen-level-dependent (BOLD) fMRI and EEG have reported the presence of spatiotemporal patterns of correlated activity in the absence of external stimuli. Although these patterns have been hypothesized to contain important information about brain architecture, little is known about their origin or about their relationship to active cognitive processes such as conscious awareness and monitoring of the environment. In this study, we have investigated the amplitude and spatiotemporal characteristics of resting-state activity patterns and their dependence on the subjects' alertness. For this purpose, BOLD fMRI was performed at 3.0 T on 12 normal subjects using a visual stimulation protocol, followed by a 27 min rest period, during which subjects were allowed to fall asleep. In subjects who were asleep at the end of the scan, we found (a) a higher amplitude of BOLD signal fluctuation during rest compared with subjects who were awake at the end of the scan; (b) spatially independent patterns of correlated activity that involve all of gray matter, including deep brain nuclei; (c) many patterns that were consistent across subjects; (d) that average percentage levels of fluctuation in visual cortex (VC) and whole brain were higher in subjects who were asleep (up to 1.71% and 1.16%, respectively) than in those who were awake (up to 1.15% and 0.96%) at the end of the scan and were comparable with those levels evoked by intense visual stimulation (up to 1.85% and 0.76% for two subject groups); (e) no confirmation of correlation, positive or negative, between thalamus and VC found in earlier studies. These findings suggest that resting-state activity continues during sleep and does not require active cognitive processes or conscious awareness.
Collapse
Affiliation(s)
- Masaki Fukunaga
- Advanced MRI, LFMI, NINDS, National Institutes of Health, Bethesda, MD 20892-1065, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Anderson CM, Lowen SB, Renshaw PF. Emotional task-dependent low-frequency fluctuations and methylphenidate: Wavelet scaling analysis of 1/f-type fluctuations in fMRI of the cerebellar vermis. J Neurosci Methods 2006; 151:52-61. [PMID: 16427128 DOI: 10.1016/j.jneumeth.2005.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 09/07/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
UNLABELLED Ion channel currents, neural firing patterns, and brain BOLD signals display 1/f-type fluctuations or fractal properties in time. By design, fMRI methods attempt to minimize the contribution of variance from low-frequency physiological 1/f-noise. New fMRI methods are described to visualize and measure 1/f-type BOLD fluctuations in volunteers recalling affectively neutral or emotional memories or meditating (i.e., attending to breathing) then retrospectively rating emotional content. A wavelet scaling exponent (alpha) was used to characterize signals from 0.015625 to 0.5Hz in cerebellar lobules VIII to X of the vermis (posterior inferior vermis; PIV), a region coordinating balance, eye tracking, locomotion, and vascular tone, and a possible site of pathology in attention deficit hyperactivity disorder (ADHD). RESULTS Changes in alpha and emotional measures were correlated in PIV voxels (r = 0.622, d.f .= 14, P < 0.0005), but not other regions examined. In contrast, conventional means and standard deviations of PIV voxels were unchanged. Methylphenidate, shown to decrease slow oscillations in rodent basal ganglia [Ruskin DN, Bergstrom DA, Shenker A, Freeman LE, Baek D, Walters JR. Drugs used in the treatment of attention-deficit/hyperactivity disorder affect postsynaptic firing rate and oscillation without preferential dopamine autoreceptor action. Biol Psychiatry 2001;49:340-50.], abolished task-dependent alpha changes in the PIV of an adult with ADHD. Wavelet analysis of long BOLD time series appears well suited to fractal physiology and studies of pharmacologically modulated cerebellar-thalamic-cortical function in ADHD or other psychiatric disorders.
Collapse
Affiliation(s)
- Carl M Anderson
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
27
|
Gengler S, Mallot HA, Hölscher C. Inactivation of the rat dorsal striatum impairs performance in spatial tasks and alters hippocampal theta in the freely moving rat. Behav Brain Res 2005; 164:73-82. [PMID: 16039727 DOI: 10.1016/j.bbr.2005.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/31/2005] [Accepted: 06/01/2005] [Indexed: 11/27/2022]
Abstract
We analysed the interaction between the dorsal striatum (motor coordination and planning) and the hippocampus (sensory information processing and integration) during performance of goal-directed tasks. The performance of rats that had been injected with different doses of the D(2)-antagonist Sulpiride into the dorsal striatum was tested in an egocentric 4-arm maze task that tests striatal functions. Furthermore, hippocampal EEGs were recorded before, during and after inactivation of the dorsal striatum via injections of Sulpiride of rats that were performing a continuous alternation task. Injection of 5 microl of 100 mM Sulpiride increased the number of errors committed in the egocentric 4-arm maze (p < 0.01), indicating that the dorsal striatum is involved in motor control and motor memory recall in such a task. In the recording study, the same dose of Sulpiride injected into the dorsal striatum had powerful effects on the hippocampal EEG. The main activity in the theta range (5-10 Hz) was shifted from higher frequencies in the 8-10 Hz range to lower frequencies in the 5-7 Hz range (p < 0.005). The impairment in the behavioural egocentric task after Sulpiride injection, and the effects of Sulpiride on hippocampal theta shows that there is a functional interaction between the dorsal striatum and the hippocampus. While the dorsal striatum coordinates the execution of complex motor programs, the hippocampus integrates spatial and other sensory information required for the planning and execution of goal-directed movements.
Collapse
Affiliation(s)
- Simon Gengler
- Cognitive Neuroscience, Department of Zoology, University of Tübingen, Germany
| | | | | |
Collapse
|
28
|
Başar E. Memory as the "whole brain work": a large-scale model based on "oscillations in super-synergy". Int J Psychophysiol 2005; 58:199-226. [PMID: 16168506 DOI: 10.1016/j.ijpsycho.2005.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
According to recent trends, memory depends on several brain structures working in concert across many levels of neural organization; "memory is a constant work-in progress." The proposition of a brain theory based on super-synergy in neural populations is most pertinent for the understanding of this constant work in progress. This report introduces a new model on memory basing on the processes of EEG oscillations and Brain Dynamics. This model is shaped by the following conceptual and experimental steps: 1. The machineries of super-synergy in the whole brain are responsible for formation of sensory-cognitive percepts. 2. The expression "dynamic memory" is used for memory processes that evoke relevant changes in alpha, gamma, theta and delta activities. The concerted action of distributed multiple oscillatory processes provides a major key for understanding of distributed memory. It comprehends also the phyletic memory and reflexes. 3. The evolving memory, which incorporates reciprocal actions or reverberations in the APLR alliance and during working memory processes, is especially emphasized. 4. A new model related to "hierarchy of memories as a continuum" is introduced. 5. The notions of "longer activated memory" and "persistent memory" are proposed instead of long-term memory. 6. The new analysis to recognize faces emphasizes the importance of EEG oscillations in neurophysiology and Gestalt analysis. 7. The proposed basic framework called "Memory in the Whole Brain Work" emphasizes that memory and all brain functions are inseparable and are acting as a "whole" in the whole brain. 8. The role of genetic factors is fundamental in living system settings and oscillations and accordingly in memory, according to recent publications. 9. A link from the "whole brain" to "whole body," and incorporation of vegetative and neurological system, is proposed, EEG oscillations and ultraslow oscillations being a control parameter.
Collapse
Affiliation(s)
- Erol Başar
- Department of Biophysics, Brain Dynamics Multidisciplinary Research Center and Faculty of Medicine, Dokuz Eylül University, 35340, Balçova, Izmir, Turkey.
| |
Collapse
|
29
|
Castellanos FX, Sonuga-Barke EJS, Scheres A, Di Martino A, Hyde C, Walters JR. Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biol Psychiatry 2005; 57:1416-23. [PMID: 15950016 PMCID: PMC1236991 DOI: 10.1016/j.biopsych.2004.12.005] [Citation(s) in RCA: 375] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 11/16/2004] [Accepted: 12/02/2004] [Indexed: 11/21/2022]
Abstract
Intra-individual variability in behavior and functioning is ubiquitous among children with attention-deficit/hyperactivity disorder (ADHD), but it has not been systematically examined or integrated within causal models. This article seeks to provide a conceptual, methodologic, and analytic framework as a foundation for future research. We first identify five key research questions and methodologic issues. For illustration, we examine the periodic structure of Eriksen Flanker task reaction time (RT) data obtained from 24 boys with ADHD and 18 age-matched comparison boys. Reaction time variability in ADHD differed quantitatively from control subjects, particularly at a modal frequency around .05 Hz (cycle length approximately 20 sec). These oscillations in RT were unaffected by double-blind placebo and were suppressed by double-blind methylphenidate. Together with converging lines of basic and clinical evidence, these secondary data analyses support the speculative hypothesis that the increased power of multisecond oscillations in ADHD RT data, and by inference, in attentional performance, represents a catecholaminergic deficit in the ability to appropriately modulate such oscillations in neuronal activity. These results highlight the importance of retaining time-series data and quantitatively examining intra-subject measures of variability as a putative endophenotype for ADHD.
Collapse
Affiliation(s)
- F Xavier Castellanos
- Institute for Pediatric Neuroscience, New York University, Child Study Center, NYU School of Medicine, New York, New York 10016, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Allers KA, Bergstrom DA, Ghazi LJ, Kreiss DS, Walters JR. MK801 and amantadine exert different effects on subthalamic neuronal activity in a rodent model of Parkinson's disease. Exp Neurol 2005; 191:104-18. [PMID: 15589517 DOI: 10.1016/j.expneurol.2004.08.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 08/16/2004] [Accepted: 08/30/2004] [Indexed: 11/24/2022]
Abstract
Efforts to develop adjuvant therapies for the treatment of Parkinson's disease (PD) have led to interest in drugs that could mimic the therapeutic effects of lesion or deep brain stimulation of the subthalamic nucleus (STN). Extracellular single unit recordings were conducted to determine whether noncompetitive NMDA receptor blockade, suggested to have potential as an adjuvant treatment in PD, attenuates rate increases and firing pattern changes observed in the STN in a rodent model of PD. Systemic administration of the noncompetitive NMDA antagonist MK801 to rats with unilateral dopamine cell lesions did not significantly alter burstiness or interspike interval coefficient of variation, although mean firing rate decreased by a modest 20% with 50% of neurons showing decreases in rate >15% and spike train power in the 3-8-Hz (theta) range was reduced. MK801, combined with the D1 dopamine agonist SKF 38393 in intact rats or administered alone in lesioned rats, also significantly reduced incidence of multisecond (2-60 s) periodic oscillatory activity. Amantadine, a drug currently used as an adjuvant agent in PD whose beneficial effects are commonly attributed to its noncompetitive NMDA antagonist properties, had effects that contrasted with those of MK801. In both intact and lesioned animals, amantadine significantly increased STN firing rates and total spike train power in the 8-50-Hz range and did not alter spike power in the 3-8-Hz range or multisecond oscillatory activity. These observations show that an effective noncompetitive NMDA antagonist such as MK801 induces modest change in STN activity in 6-hydroxydopamine (6-OHDA)-lesioned rats, with the most notable effect on multisecond periodicities in firing rate and theta frequency total spike power. Amantadine's effects differed from MK801's, raising questions about its primary mechanism of action and the role in PD pharmacotherapy of the STN rate increases induced by this drug.
Collapse
Affiliation(s)
- Kelly A Allers
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Porter Neuroscience Center, Bethesda, MD 20892-3702, USA.
| | | | | | | | | |
Collapse
|
31
|
Magill PJ, Sharott A, Bevan MD, Brown P, Bolam JP. Synchronous Unit Activity and Local Field Potentials Evoked in the Subthalamic Nucleus by Cortical Stimulation. J Neurophysiol 2004; 92:700-14. [PMID: 15044518 DOI: 10.1152/jn.00134.2004] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The responses of single subthalamic nucleus (STN) neurons to cortical activation are complex and depend on the relative activation of several neuronal circuits, making theoretical extrapolation of single neuron responses to the population level difficult. To understand better the degree of synchrony imposed on STN neurons and associated neuronal networks by cortical activation, we recorded the responses of single units, pairs of neighboring neurons, and local field potentials (LFPs) in STN to discrete electrical stimulation of the cortex in anesthetized rats. Stimulation of ipsilateral frontal cortex, but not temporal cortex, generated synchronized “multiphasic” responses in neighboring units in rostral STN, usually consisting of a brief, short-latency excitation, a brief inhibition, a second excitation, and a long-duration inhibition. Evoked LFPs in STN consistently mirrored unit responses; brief, negative deflections in the LFP coincided with excitations and brief, positive deflections with inhibitions. This characteristic LFP was dissimilar to potentials evoked in cortex and structures surrounding STN and was resistant to fluctuations in forebrain activity. The short-latency excitation and associated LFP deflection exhibited the highest fidelity to low-intensity cortical stimuli. Unit response failures, which mostly occurred in caudal STN, were not associated with LFPs typical of rostral STN. These data suggest that local populations of STN neurons can be synchronized by both direct and indirect cortical inputs. Synchronized ensemble activity is dependent on topography and input intensity. Finally, the stereotypical, multiphasic profile of the evoked LFP indicates that it might be useful for locating the STN in clinical as well as nonclinical settings.
Collapse
Affiliation(s)
- Peter J Magill
- MRC Anatomical Neuropharmacology Unit, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
| | | | | | | | | |
Collapse
|
32
|
Hallworth NE, Bland BH. Basal ganglia–hippocampal interactions support the role of the hippocampal formation in sensorimotor integration. Exp Neurol 2004; 188:430-43. [PMID: 15246842 DOI: 10.1016/j.expneurol.2004.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 04/05/2004] [Accepted: 04/19/2004] [Indexed: 11/24/2022]
Abstract
Experiments were carried out to evaluate whether neural activity in the basal ganglia is functionally related to the neural activity underlying mechanisms of theta band oscillation and synchrony in the hippocampal formation. Experiment 1 demonstrated that electrical stimulation administered to the substantia nigra, globus pallidus (GP) and caudate-putamen (CPu) in urethane anesthetized rats elicited theta field activity in the hippocampal formation. Subsequent microinfusion of the local anesthetic procaine hydrochloride into the medial septum reversibly abolished this effect. In Experiment 2, single cell discharge profiles established for 152 cells recorded in nuclei of the basal ganglia resulted in 101 (66%) being classified as theta-related and 51 (34%) classified as nonrelated. Theta-related cells were further subclassified as tonic theta-ON cells (n = 79) and tonic theta-OFF (n = 22). Tonic theta-ON and tonic theta-OFF cells displayed irregular or regular (tonic) discharge patterns. Rhythmic discharge patterns did not occur in any theta-related cells in the nuclei of the basal ganglia. However, analyses using Kaneoke and Vitek's [J. Neurosci. Methods 68, (1996) 211] algorithms revealed that 51/101 (50%) theta-related cells displayed periodicity in their discharge patterns whereas 27/51 (53%) of the nonrelated cells displayed periodicity in their discharge patterns. The periodicities in the majority of cells were in frequency ranges above that of theta band oscillation and synchrony. The results support the following conclusions: (1) the cellular activity of the basal ganglia, composed of nuclei traditionally associated with motor functions, is functionally connected with the neural circuitry involved in the generation of theta band oscillation and synchrony in the hippocampal formation; (2) the observed functional connectivity provides support for the role of the hippocampal formation in sensorimotor integration.
Collapse
Affiliation(s)
- Nicholas E Hallworth
- Department of Psychology, Behavioral Neuroscience Research Group, University of Calgary, Alberta, Canada T2N 1N4
| | | |
Collapse
|
33
|
Abstract
The terms gifted, talented, and intelligent all have meanings that suggest an individual's highly proficient or exceptional performance in one or more specific areas of strength. Other than Spearman's g, which theorizes about a general elevated level of potential or ability, more contemporary theories of intelligence are based on theoretical models that define ability or intelligence according to a priori categories of specific performance. Recent studies in cognitive neuroscience report on the neural basis of g from various perspectives such as the neural speed theory and the efficiency of prefrontal function. Exceptional talent is the result of interactions between goal-directed behavior and nonvolitional perceptual processes in the brain that have yet to be fully characterized and understood by the fields of psychology and cognitive neuroscience. Some developmental studies report differences in region-specific neural activation, recruitment patterns, and reaction times in subjects who are identified with high IQ scores according to traditional scales of assessment such as the WISC-III or Stanford-Binet. Although as cases of savants and prodigies illustrate, talent is not synonymous with high IQ. This review synthesizes information from the fields of psychometrics and gifted education, with findings from the neurosciences on the neural basis of intelligence, creativity, profiles of expert performers, cognitive function, and plasticity to suggest a paradigm for investigating talent as the maximal and productive use of either or both of one's high level of general intelligence or domain-specific ability. Anat Rec (Part B: New Anat) 277B:21-36, 2004.
Collapse
Affiliation(s)
- M Layne Kalbfleisch
- Krasnow Institute for Advanced Study and Graduate School of Education, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
34
|
Yuan H, Yamada K, Inagaki N. Multiminute oscillations in mouse substantia nigra pars reticulata neurons in vitro. Neurosci Lett 2004; 355:136-40. [PMID: 14729253 DOI: 10.1016/j.neulet.2003.10.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In acute slice of substantia nigra pars reticulata (SNr), a small proportion (6.6%) of GABAergic neurons exhibited abrupt increases in spontaneous firing rate from baseline frequency ( approximately 40 Hz) to peak (>100 Hz) with periods ranging in minutes when GABA(A) receptors were blocked by 20 microM bicuculline. The combination of GABA(B), non-NMDA, and NMDA blockers, SCH50911 (10 microM), 6,7-dinitro-quinoxaline-2,3-dione (20 microM), and DL-2-amino-5-phosphonovalerate (50 microM), respectively, did not affect the incidence or properties of these multiminute oscillations, indicating that disinhibition induced by blockade of GABA(A) receptors is crucial in their generation. Incidence of oscillatory activity was increased to 16% by elevation of the K(+) concentration to 8 mM from basal level (6.24 mM). The SNr neurons exhibiting oscillatory activity with the addition of bicuculline had shown irregular fluctuations in basal firing rate, while the non-oscillatory neurons had shown a more regular baseline firing pattern. This is the first in vitro report of oscillations in firing rate of multiminute range in basal ganglia.
Collapse
Affiliation(s)
- Hongjie Yuan
- Department of Physiology, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | |
Collapse
|
35
|
Ruskin DN, Bergstrom DA, Tierney PL, Walters JR. Correlated multisecond oscillations in firing rate in the basal ganglia: modulation by dopamine and the subthalamic nucleus. Neuroscience 2003; 117:427-38. [PMID: 12614683 DOI: 10.1016/s0306-4522(02)00921-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous studies from this laboratory have shown that many neurons in the basal ganglia have multisecond (<0.5 Hz) periodicities in firing rate in awake rats. The frequency and regularity of these oscillations are significantly increased by systemically injected dopamine (DA) agonists. Because oscillatory activity should have greater functional impact if shared by many neurons, the level of correlation of multisecond oscillations was assessed by recording pairs of neurons in the globus pallidus and substantia nigra pars reticulata in the same hemisphere, or pairs of globus pallidus neurons in opposite hemispheres in awake, immobilized rats. Cross-correlation (90-180 s lags) and spectral analysis were used to characterize correlated oscillations. Thirty-eight percent of pairs recorded in baseline (n=50) demonstrated correlated multisecond oscillations. Phase relationships were near 0 or 180 degrees. DA agonist injection significantly increased the incidence of correlation (intra- and interhemispheric) to 94% (n=17). After DA agonist injection, phase relationships of globus pallidus/substantia nigra neuron pairs were exclusively concentrated near 180 degrees, and phases of interhemispheric pairs of globus pallidus neurons were concentrated near 0 degrees. After subthalamic nucleus lesion (n=8), the incidence of correlated multisecond oscillations (or of multisecond oscillations per se) was not changed, although the consistent phase relationship between the globus pallidus and substantia nigra pars reticulata was disrupted. Subthalamic lesion also blocked apomorphine-induced decreases in oscillatory period and increases in oscillation amplitude, and significantly attenuated apomorphine-induced changes in mean firing rate. The data demonstrate that multisecond oscillations in the basal ganglia can be correlated between nuclei, and that DA receptor activation increases the level of correlation and organizes internuclear phase relationships at these multisecond time scales. While the subthalamic nucleus is not necessary for generating or transmitting these slow oscillations, it is involved in DA agonist-induced modulation of mean firing rate, oscillatory period, and internuclear phase relationship. These data further support a role for DA in modulating coherent oscillatory activity in the basal ganglia, and for the subthalamic nucleus in shaping the effects of DA receptor stimulation on basal ganglia output.
Collapse
Affiliation(s)
- D N Ruskin
- Neurophysiological Pharmacology Section, National Institute of Neurological Disease and Stroke, The National Institutes of Health, 10 Center Drive, MSC 1406, Building 10 Room 5C103, Bethesda, MD 20892-1406, USA
| | | | | | | |
Collapse
|
36
|
Belluscio MA, Kasanetz F, Riquelme LA, Murer MG. Spreading of slow cortical rhythms to the basal ganglia output nuclei in rats with nigrostriatal lesions. Eur J Neurosci 2003; 17:1046-52. [PMID: 12653980 DOI: 10.1046/j.1460-9568.2003.02543.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A high proportion of neurons in the basal ganglia display rhythmic burst firing after chronic nigrostriatal lesions. For instance, the periodic bursts exhibited by certain striatal and subthalamic nucleus neurons in 6-hydroxydopamine-lesioned rats seem to be driven by the approximately 1 Hz high-amplitude rhythm that is prevalent in the cerebral cortex of anaesthetized animals. Because the striatum and subthalamic nucleus are the main afferent structures of the substantia nigra pars reticulata, we examined the possibility that the low-frequency modulations (periodic bursts) that are evident in approximately 50% nigral pars reticulata neurons in the parkinsonian condition were also coupled to this slow cortical rhythm. By recording the frontal cortex field potential simultaneously with single-unit activity in the substantia nigra pars reticulata of anaesthetized rats, we proved the following. (i) The firing of nigral pars reticulata units from sham-lesioned rats is not coupled to the approximately 1 Hz frontal cortex slow oscillation. (ii) Approximately 50% nigral pars reticulata units from 6-hydroxydopamine-lesioned rats oscillate synchronously with the approximately 1 Hz cortical rhythm, with the cortex leading the substantia nigra by approximately 55 ms; the remaining approximately 50% nigral pars reticulata units behave as the units recorded from sham-lesioned rats. (iii) Periodic bursting in nigral pars reticulata units from 6-hydroxydopamine-lesioned rats is disrupted by episodes of desynchronization of cortical field potential activity. Our results strongly support that nigrostriatal lesions promote the spreading of low-frequency cortical rhythms to the substantia nigra pars reticulata and may be of outstanding relevance for understanding the pathophysiology of Parkinson's disease.
Collapse
Affiliation(s)
- Mariano A Belluscio
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires (1121), Argentina
| | | | | | | |
Collapse
|