1
|
Oz M, Kury LA, Sadek B, Mahgoub MO. The role of nicotinic acetylcholine receptors in the pathophysiology and pharmacotherapy of autism spectrum disorder: Focus on α7 nicotinic receptors. Int J Biochem Cell Biol 2024; 174:106634. [PMID: 39094731 DOI: 10.1016/j.biocel.2024.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Postmortem studies have revealed that brains of individuals with autism spectrum disorder (ASD) exhibit abnormalities in various components of the cholinergic system including cholinergic receptors, projections, and nuclei. Deletions in the 15q13.3 region which encompasses CHRNA7, the gene that encodes the α7-nACh receptor, have been linked to various neurodevelopmental disorders, including ASD. In addition, the involvement of α7-nACh receptors in biological phenomena known to play a role in the pathophysiology of ASD such as cognitive functions, learning, memory, neuroinflammation, and oxidative stress, as well as the excitation-inhibition balance in neuronal circuits and maternal immune activation have been reported in previous studies. Furthermore, evolving preclinical and clinical literature supports the potential therapeutic benefits of using selectively acting cholinergic compounds, particularly those targeting the α7-nACh receptor subtype, in the treatment of ASD. This study reviews the previous literature on the involvement of nACh receptors in the pathophysiology of ASD and focuses on the α7-nACh receptor as a potential therapeutic target.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Lina Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mohamed Omer Mahgoub
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| |
Collapse
|
2
|
Pastor V, Medina JH. α7 nicotinic acetylcholine receptor in memory processing. Eur J Neurosci 2024; 59:2138-2154. [PMID: 36634032 DOI: 10.1111/ejn.15913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Information storage in the brain involves different memory types and stages that are processed by several brain regions. Cholinergic pathways through acetylcholine receptors actively participate on memory modulation, and their disfunction is associated with cognitive decline in several neurological disorders. During the last decade, the role of α7 subtype of nicotinic acetylcholine receptors in different memory stages has been studied. However, the information about their role in memory processing is still scarce. In this review, we attempt to identify brain areas where α7 nicotinic receptors have an essential role in different memory types and stages. In addition, we discuss recent work implicating-or not-α7 nicotinic receptors as promising pharmacological targets for memory impairment associated with neurological disorders.
Collapse
Affiliation(s)
- Verónica Pastor
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Medicina, Departamento de Ciencias Fisiológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
3
|
Cai W, Li L, Sang S, Pan X, Zhong C. Physiological Roles of β-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology. Neurosci Bull 2023; 39:1289-1308. [PMID: 36443453 PMCID: PMC10387033 DOI: 10.1007/s12264-022-00985-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The physiological functions of endogenous amyloid-β (Aβ), which plays important role in the pathology of Alzheimer's disease (AD), have not been paid enough attention. Here, we review the multiple physiological effects of Aβ, particularly in regulating synaptic transmission, and the possible mechanisms, in order to decipher the real characters of Aβ under both physiological and pathological conditions. Some worthy studies have shown that the deprivation of endogenous Aβ gives rise to synaptic dysfunction and cognitive deficiency, while the moderate elevation of this peptide enhances long term potentiation and leads to neuronal hyperexcitability. In this review, we provide a new view for understanding the role of Aβ in AD pathophysiology from the perspective of physiological meaning.
Collapse
Affiliation(s)
- Wenwen Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linxi Li
- Basic Medical College, Nanchang University, Nanchang, 330031, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Nicotine alleviates alcohol-induced memory and long-term potentiation impairment. Neurosci Lett 2022; 786:136813. [PMID: 35878655 DOI: 10.1016/j.neulet.2022.136813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Alcohol and nicotine are routinely abused together. There is one plausible explanation that comorbidity can alleviate alcohol-induced cognitive impairment. However, the mechanism involved is not known. The aim of this report was to evaluate the interactive effects of alcohol coadministration with nicotine on hippocampal memory and long-term potentiation (LTP). C57BL/6 mice were distributed into 4 treatment groups: control, alcohol, nicotine, and alcohol plus nicotine. All mice received tap water or alcohol solution and saline or nicotine. In water maze test, the alcohol group showed significant decreases in hippocampus function and acquisition training than control, nicotine, and combined treatment groups. The alcohol group also showed a significantly shorter latency in entering the foot-shock compartment than control, nicotine, and combined treatment groups in a passive avoidance test. Theta burst stimulation was adopted to induce concrete LTP in CA1 field recording using hippocampal slice. Alcohol alone administration failed to maintain LTP. Nicotine alone administration did not alter hippocampal LTP. There were no negative effects of alcohol on hippocampal LTP in mice administrated with nicotine. The current study successfully demonstrated beneficial effects of nicotine on alcohol induced memory impairment accompanied by hippocampal LTP impairment after one week of co-administration and one-day withdrawal.
Collapse
|
6
|
TrkA-cholinergic signaling modulates fear encoding and extinction learning in PTSD-like behavior. Transl Psychiatry 2022; 12:111. [PMID: 35301275 PMCID: PMC8931170 DOI: 10.1038/s41398-022-01869-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Recent studies have suggested that the use of cognitive enhancers as adjuncts to exposure-based therapy in individuals suffering from post-traumatic stress disorder (PTSD) may be beneficial. Brain cholinergic signaling through basal forebrain projections to the hippocampus is an established pathway mediating fear response and cognitive flexibility. Here we employed a genetic strategy to enhance cholinergic activity through increased signaling of the NGF receptor TrkA. This strategy leads to increased levels of the marker of cholinergic activation, acetylcholine synthesizing enzyme choline acetyltransferase, in forebrain cholinergic regions and their projection areas such as the hippocampus. Mice with increased cholinergic activity do not display any neurobehavioral abnormalities except a selective attenuation of fear response and lower fear expression in extinction trials. Reduction in fear response is rescued by the GABA antagonist picrotoxin in mutant mice, and, in wild-type mice, is mimicked by the GABA agonist midazolam suggesting that GABA can modulate cholinergic functions on fear circuitries. Importantly, mutant mice also show a reduction in fear processing under stress conditions in a single prolonged stress (SPS) model of PTSD-like behavior, and augmentation of cholinergic signaling by the drug donepezil in wild-type mice promotes extinction learning in a similar SPS model of PTSD-like behavior. Donepezil is already in clinical use for the treatment of dementia suggesting a new translational application of this drug for improving exposure-based psychotherapy in PTSD patients.
Collapse
|
7
|
Letsinger AC, Gu Z, Yakel JL. α7 nicotinic acetylcholine receptors in the hippocampal circuit: taming complexity. Trends Neurosci 2022; 45:145-157. [PMID: 34916082 PMCID: PMC8914277 DOI: 10.1016/j.tins.2021.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Cholinergic innervation of the hippocampus uses the neurotransmitter acetylcholine (ACh) to coordinate neuronal circuit activity while simultaneously influencing the function of non-neuronal cell types. The α7 nicotinic ACh receptor (nAChR) subtype is highly expressed throughout the hippocampus, has the highest calcium permeability compared with other subtypes of nAChRs, and is of high therapeutic interest due to its association with a variety of neurological disorders and neurodegenerative diseases. In this review, we synthesize research describing α7 nAChR properties, function, and relationship to cognitive dysfunction within the hippocampal circuit and highlight approaches to help improve therapeutic development.
Collapse
Affiliation(s)
- Ayland C. Letsinger
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Mail Drop F2-08, P.O. Box 12233, Durham, NC, 27709, USA
| | - Zhenglin Gu
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Mail Drop F2-08, P.O. Box 12233, Durham, NC, 27709, USA
| | - Jerrel L. Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Mail Drop F2-08, P.O. Box 12233, Durham, NC, 27709, USA,Corresponding Author,
| |
Collapse
|
8
|
Effect of Intrahippocampal Administration of α7 Subtype Nicotinic Receptor Agonist PNU-282987 and Its Solvent Dimethyl Sulfoxide on the Efficiency of Hypoxic Preconditioning in Rats. Molecules 2021; 26:molecules26237387. [PMID: 34885970 PMCID: PMC8659180 DOI: 10.3390/molecules26237387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
We have previously suggested a key role of the hippocampus in the preconditioning action of moderate hypobaric hypoxia (HBH). The preconditioning efficiency of HBH is associated with acoustic startle prepulse inhibition (PPI). In rats with PPI > 40%, HBH activates the cholinergic projections of hippocampus, and PNU-282987, a selective agonist of α7 nicotinic receptors (α7nAChRs), reduces the HBH efficiency and potentiating effect on HBH of its solvent dimethyl sulfoxide (DMSO, anticholinesterase agent) when administered intraperitoneally. In order to validate the hippocampus as a key structure in the mechanism of hypoxic preconditioning and research a significance of α7nAChR activation in the hypoxic preconditioning, we performed an in vivo pharmacological study of intrahippocampal injections of PNU-282987 into the CA1 area on HBH efficiency in rats with PPI ≥ 40%. We found that PNU-282987 (30 μM) reduced HBH efficiency as with intraperitoneal administration, while DMSO (0.05%) still potentiated this effect. Thus, direct evidence of the key role of the hippocampus in the preconditioning effect of HBH and some details of this mechanism were obtained in rats with PPI ≥ 40%. The activation of α7nAChRs is not involved in the cholinergic signaling initiated by HBH or DMSO via any route of administration. Possible ways of the potentiating action of DMSO on HBH efficiency and its dependence on α7nAChRs are discussed.
Collapse
|
9
|
Significance of GABA A Receptor for Cognitive Function and Hippocampal Pathology. Int J Mol Sci 2021; 22:ijms222212456. [PMID: 34830337 PMCID: PMC8623595 DOI: 10.3390/ijms222212456] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
The hippocampus is a primary area for contextual memory, known to process spatiotemporal information within a specific episode. Long-term strengthening of glutamatergic transmission is a mechanism of contextual learning in the dorsal cornu ammonis 1 (CA1) area of the hippocampus. CA1-specific immobilization or blockade of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor delivery can impair learning performance, indicating a causal relationship between learning and receptor delivery into the synapse. Moreover, contextual learning also strengthens GABAA (gamma-aminobutyric acid) receptor-mediated inhibitory synapses onto CA1 neurons. Recently we revealed that strengthening of GABAA receptor-mediated inhibitory synapses preceded excitatory synaptic plasticity after contextual learning, resulting in a reduced synaptic excitatory/inhibitory (E/I) input balance that returned to pretraining levels within 10 min. The faster plasticity at inhibitory synapses may allow encoding a contextual memory and prevent cognitive dysfunction in various hippocampal pathologies. In this review, we focus on the dynamic changes of GABAA receptor mediated-synaptic currents after contextual learning and the intracellular mechanism underlying rapid inhibitory synaptic plasticity. In addition, we discuss that several pathologies, such as Alzheimer’s disease, autism spectrum disorders and epilepsy are characterized by alterations in GABAA receptor trafficking, synaptic E/I imbalance and neuronal excitability.
Collapse
|
10
|
Wu M, Liu CZ, Barrall EA, Rissman RA, Joiner WJ. Unbalanced Regulation of α7 nAChRs by Ly6h and NACHO Contributes to Neurotoxicity in Alzheimer's Disease. J Neurosci 2021; 41:8461-8474. [PMID: 34446574 PMCID: PMC8513707 DOI: 10.1523/jneurosci.0494-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain where they promote fast cholinergic synaptic transmission and serve important neuromodulatory functions. However, their high permeability to Ca2+ also predisposes them to contribute to disease states. Here, using transfected HEK-tsa cells and primary cultured hippocampal neurons from male and female rats, we demonstrate that two proteins called Ly6h and NACHO compete for access to α7 subunits, operating together but in opposition to maintain α7 assembly and activity within a narrow range that is optimal for neuronal function and viability. Using mixed gender human temporal cortex and cultured hippocampal neurons from rats we further show that this balance is perturbed during Alzheimer's disease (AD) because of amyloid β (Aβ)-driven reduction in Ly6h, with severe reduction leading to increased phosphorylated tau and α7-mediated neurotoxicity. Ly6h release into human CSF is also correlated with AD severity. Thus, Ly6h links cholinergic signaling, Aβ and phosphorylated tau and may serve as a novel marker for AD progression.SIGNIFICANCE STATEMENT One of the earliest and most persistent hypotheses regarding Alzheimer's disease (AD) attributes cognitive impairment to loss of cholinergic signaling. More recently, interest has focused on crucial roles for amyloid β (Aβ) and phosphorylated tau in Alzheimer's pathogenesis. Here, we demonstrate that these elements are linked by Ly6h and its counterpart, NACHO, functioning in opposition to maintain assembly of nicotinic acetylcholine receptors (nAChRs) within the physiological range. Our data suggests that Aβ shifts the balance away from Ly6h and toward NACHO, resulting in increased assembly of Ca2+-permeable nAChRs and thus a conversion of basal cholinergic to neurotoxic signaling.
Collapse
Affiliation(s)
- Meilin Wu
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Clifford Z Liu
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Erika A Barrall
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093
- Alzheimer's Disease Research Center, University of California San Diego, La Jolla, California 92093
| | - William J Joiner
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
- Center for Circadian Biology, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
11
|
Seyedaghamiri F, Mahmoudi J, Hosseini L, Sadigh-Eteghad S, Farhoudi M. Possible Engagement of Nicotinic Acetylcholine Receptors in Pathophysiology of Brain Ischemia-Induced Cognitive Impairment. J Mol Neurosci 2021; 72:642-652. [PMID: 34596872 DOI: 10.1007/s12031-021-01917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Post-stroke disabilities like cognitive impairment impose are complex conditions with great economic burdens on health care systems. For these comorbidities, no effective therapies have been identified yet. Nicotinic acetylcholine receptors (nAChRs) are multifunctional receptors participating in various behavioral and neurobiological functions. During brain ischemia, the increased glutamate accumulation leads to neuronal excitotoxicity as well as mitochondrial dysfunction. These abnormalities then cause the increased levels of oxidants, which play key roles in neuronal death and apoptosis in the infarct zone. Additionally, recall of cytokines and inflammatory factors play a prominent role in the exacerbation of ischemic injury. As well, neurotrophic factors' insufficiency results in synaptic dysfunction and cognitive impairments in ischemic brain. Of note, nAChRs through various signaling pathways can participate in therapeutic approaches such as cholinergic system's stimulation, and reduction of excitotoxicity, inflammation, apoptosis, oxidative stress, mitochondrial dysfunction, and autophagy. Moreover, the possible roles of nAChRs in neurogenesis, synaptogenesis, and stimulation of neurotrophic factors expression have been reported previously. On the other hand, the majority of the above-mentioned mechanisms were found to be common in both brain ischemia pathogenesis and cognitive function tuning. Therefore, it seems that nAChRs might be known as key regulators in the control of ischemia pathology, and their modulation could be considered as a new avenue in the multi-target treatment of post-stroke cognitive impairment.
Collapse
Affiliation(s)
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Farhoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Deutsch SI, Burket JA. Psychotropic medication use for adults and older adults with intellectual disability; selective review, recommendations and future directions. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110017. [PMID: 32544599 DOI: 10.1016/j.pnpbp.2020.110017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022]
Abstract
A growing expert consensus has emerged to guide prescribing behavior and monitoring of psychotropic medications in adults and older adults with intellectual disability (ID). However, there is little empirically-derived evidence to inform physician selection of specific categories of psychotropic medication for treatment of "challenging" behaviors in this vulnerable population (such as aggression to self, others and objects; self-injurious behaviors; repetitive stereotypic behaviors; and hyperactivity). Difficulties with application of formal definitional diagnostic criteria and reliable assignment of psychiatric diagnoses to adults with ID, which is often difficult due to their poor communication skills, contribute to confusion and uncertainty surrounding medication selection. Long-term administration of antipsychotic medications are commonly prescribed for challenging behaviors in spite of their questionable long-term efficacy, leading some to suggest that their "episodic" short-term administration for imminent dangerousness to self and others or when difficult-to-find residential placements are threatened is preferred to their long-term administration. Further, literature supports engagement of interdisciplinary treatment teams to seek causes for challenging behaviors, formulate non-pharmacological psychosocial and behavioral plans for their amelioration and, if medications are initiated, convene regular medication monitoring to identify "drug-related problems". Medication monitoring is important because medication-related adverse events cause or contribute to challenging behaviors, which can sometimes be improved by dose reduction, medication discontinuation and/or elimination of polypharmacy and co-pharmacy. Importantly, medications themselves may interfere with self-reported measures of Quality of Life. The data clearly highlight the need for well-designed randomized controlled clinical trials in samples that are homogeneous with respect to severity of ID and residential setting; moreover, they should include a wider variety of clinical and safety outcome measures. Preclinical studies have suggested novel pharmacological strategies to prevent progressive worsening of adaptive function in adults with Down syndrome in particular, and improvement of cognition in adults with ID in general, irrespective of the etiopathogenesis of the ID. Translational clinical trials to address pathogenic mechanisms of ID, as well as challenging behaviors, are anticipated but raise societal issues pertaining to protection of this vulnerable population enrolling in clinical trials and prioritization of urgent therapeutic targets (e.g., amelioration of challenging behaviors versus improving or preserving intellectual functioning).
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavior Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, Virginia 23507, USA.
| | - Jessica A Burket
- Department of Molecular Biology and Chemistry, Christopher Newport University, 1 Avenue of the Arts, Newport News, Virginia 23606, USA; Program in Neuroscience, Christopher Newport University, 1 Avenue of the Arts, Newport News, Virginia 23606, USA
| |
Collapse
|
13
|
Ca 2+ Dyshomeostasis Disrupts Neuronal and Synaptic Function in Alzheimer's Disease. Cells 2020; 9:cells9122655. [PMID: 33321866 PMCID: PMC7763805 DOI: 10.3390/cells9122655] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ homeostasis is essential for multiple neuronal functions and thus, Ca2+ dyshomeostasis can lead to widespread impairment of cellular and synaptic signaling, subsequently contributing to dementia and Alzheimer's disease (AD). While numerous studies implicate Ca2+ mishandling in AD, the cellular basis for loss of cognitive function remains under investigation. The process of synaptic degradation and degeneration in AD is slow, and constitutes a series of maladaptive processes each contributing to a further destabilization of the Ca2+ homeostatic machinery. Ca2+ homeostasis involves precise maintenance of cytosolic Ca2+ levels, despite extracellular influx via multiple synaptic Ca2+ channels, and intracellular release via organelles such as the endoplasmic reticulum (ER) via ryanodine receptor (RyRs) and IP3R, lysosomes via transient receptor potential mucolipin channel (TRPML) and two pore channel (TPC), and mitochondria via the permeability transition pore (PTP). Furthermore, functioning of these organelles relies upon regulated inter-organelle Ca2+ handling, with aberrant signaling resulting in synaptic dysfunction, protein mishandling, oxidative stress and defective bioenergetics, among other consequences consistent with AD. With few effective treatments currently available to mitigate AD, the past few years have seen a significant increase in the study of synaptic and cellular mechanisms as drivers of AD, including Ca2+ dyshomeostasis. Here, we detail some key findings and discuss implications for future AD treatments.
Collapse
|
14
|
Sakimoto Y, Mizuno J, Kida H, Kamiya Y, Ono Y, Mitsushima D. Learning Promotes Subfield-Specific Synaptic Diversity in Hippocampal CA1 Neurons. Cereb Cortex 2020; 29:2183-2195. [PMID: 30796817 PMCID: PMC6459007 DOI: 10.1093/cercor/bhz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
The hippocampus is functionally heterogeneous between the dorsal and ventral subfields with left–right asymmetry. To determine the possible location of contextual memory, we performed an inhibitory avoidance task to analyze synaptic plasticity using slice patch-clamp technique. The training bilaterally increased the AMPA/NMDA ratio at dorsal CA3–CA1 synapses, whereas the training did not affect the ratio at ventral CA3–CA1 synapses regardless of the hemisphere. Moreover, sequential recording of miniature excitatory postsynaptic currents and miniature inhibitory postsynaptic currents from the same CA1 neuron clearly showed learning-induced synaptic plasticity. In dorsal CA1 neurons, the training dramatically strengthened both excitatory and inhibitory postsynaptic responses in both hemispheres, whereas the training did not promote the plasticity in either hemisphere in ventral CA1 neurons. Nonstationary fluctuation analysis further revealed that the training bilaterally increased the number of AMPA or GABAA receptor channels at dorsal CA1 synapses, but not at ventral CA1 synapses, suggesting functional heterogeneity of learning-induced receptor mobility. Finally, the performance clearly impaired by the bilateral microinjection of plasticity blockers in dorsal, but not ventral CA1 subfields, suggesting a crucial role for contextual learning. The quantification of synaptic diversity in specified CA1 subfields may help us to diagnose and evaluate cognitive disorders at the information level.
Collapse
Affiliation(s)
- Y Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | | | - H Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Y Kamiya
- Uonuma Institute of Community Medicine, Niigata University Medical Hospital, Niigata, Japan
| | - Y Ono
- Department of Electronics and Bioinformatics, Meiji University School of Science and Technology, Tokyo, Japan
| | - D Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan.,Department of Physiology and Neuroscience, Kanagawa Dental University, Kanagawa, Japan.,The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
15
|
Xu Y, Zhao M, Han Y, Zhang H. GABAergic Inhibitory Interneuron Deficits in Alzheimer's Disease: Implications for Treatment. Front Neurosci 2020; 14:660. [PMID: 32714136 PMCID: PMC7344222 DOI: 10.3389/fnins.2020.00660] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized clinically by severe cognitive deficits and pathologically by amyloid plaques, neuronal loss, and neurofibrillary tangles. Abnormal amyloid β-protein (Aβ) deposition in the brain is often thought of as a major initiating factor in AD neuropathology. However, gamma-aminobutyric acid (GABA) inhibitory interneurons are resistant to Aβ deposition, and Aβ decreases synaptic glutamatergic transmission to decrease neural network activity. Furthermore, there is now evidence suggesting that neural network activity is aberrantly increased in AD patients and animal models due to functional deficits in and decreased activity of GABA inhibitory interneurons, contributing to cognitive deficits. Here we describe the roles played by excitatory neurons and GABA inhibitory interneurons in Aβ-induced cognitive deficits and how altered GABA interneurons regulate AD neuropathology. We also comprehensively review recent studies on how GABA interneurons and GABA receptors can be exploited for therapeutic benefit. GABA interneurons are an emerging therapeutic target in AD, with further clinical trials urgently warranted.
Collapse
Affiliation(s)
- Yilan Xu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Manna Zhao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yuying Han
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
16
|
Deutsch SI, Burket JA. An Evolving Therapeutic Rationale for Targeting the α 7 Nicotinic Acetylcholine Receptor in Autism Spectrum Disorder. Curr Top Behav Neurosci 2020; 45:167-208. [PMID: 32468495 DOI: 10.1007/7854_2020_136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Abnormalities of cholinergic nuclei, cholinergic projections, and cholinergic receptors, as well as abnormalities of growth factors involved in the maturation and maintenance of cholinergic neurons, have been described in postmortem brains of persons with autism spectrum disorder (ASD). Further, microdeletions of the 15q13.3 locus that encompasses CHRNA7, the gene coding the α7 nicotinic acetylcholine receptor (α7 nAChR), are associated with a spectrum of neurodevelopmental disorders, including ASD. The heterozygous 15q13.3 microdeletion syndrome suggests that diminished or impaired transduction of the acetylcholine (ACh) signal by the α7 nAChR can be a pathogenic mechanism of ASD. The α7 nAChR has a role in regulating the firing and function of parvalbumin (PV)-expressing GABAergic projections, which synchronize the oscillatory output of assemblies of pyramidal neurons onto which they project. Synchronous oscillatory output is an electrophysiological substrate for higher executive functions, such as working memory, and functional connectivity between discrete anatomic areas of the brain. The α7 nAChR regulates PV expression and works cooperatively with the co-expressed NMDA receptor in subpopulations of GABAergic interneurons in mouse models of ASD. An evolving literature supports therapeutic exploration of selectively targeted cholinergic interventions for the treatment of ASD, especially compounds that target the α7 nAChR subtype. Importantly, development and availability of high-affinity, brain-penetrable, α7 nAChR-selective agonists, partial agonists, allosteric agonists, and positive allosteric modulators (PAMs) should facilitate "proof-of-principle/concept" clinical trials. nAChRs are pentameric allosteric proteins that function as ligand-gated ion channel receptors constructed from five constituent polypeptide subunits, all of which share a common structural motif. Importantly, in addition to α7 nAChR-gated Ca2+ conductance causing membrane depolarization, there are emerging data consistent with possible metabotropic functions of this ionotropic receptor. The ability of α7-selective type II PAMs to "destabilize" the desensitized state and promote ion channel opening may afford them therapeutic advantages over orthosteric agonists. The current chapter reviews historic and recent literature supporting selective therapeutic targeting of the α7 nAChR in persons affected with ASD.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA.
| | - Jessica A Burket
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA, USA
| |
Collapse
|
17
|
Sakimoto Y, Kida H, Mitsushima D. Temporal dynamics of learning-promoted synaptic diversity in CA1 pyramidal neurons. FASEB J 2019; 33:14382-14393. [PMID: 31689120 PMCID: PMC6894079 DOI: 10.1096/fj.201801893rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although contextual learning requires plasticity at both excitatory and inhibitory (E/I) synapses in cornu ammonis 1 (CA1) neurons, the temporal dynamics across the neuronal population are poorly understood. Using an inhibitory avoidance task, we analyzed the dynamic changes in learning-induced E/I synaptic plasticity. The training strengthened GABAA receptor–mediated synapses within 1 min, peaked at 10 min, and lasted for over 60 min. The intracellular loop (Ser408−409) of GABAA receptor β3 subunit was also phosphorylated within 1 min of training. As the results of strengthening of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor–mediated synapses, CA1 pyramidal neurons exhibited broad diversity of E/I synaptic currents within 5 min. Moreover, presynaptic glutamate release probability at basal dendrites also increased within 5 min. To further quantify the diversified E/I synaptic currents, we calculated self-entropy (bit) for individual neurons. The neurons showed individual levels of the parameter, which rapidly increased within 1 min of training and maintained for over 60 min. These results suggest that learning-induced synaptic plasticity is critical immediately following encoding rather than during the retrieval phase of the learning. Understanding the temporal dynamics along with the quantification of synaptic diversity would be necessary to identify a failure point for learning-promoted plasticity in cognitive disorders.—Sakimoto, Y., Kida, H., Mitsushima, D. Temporal dynamics of learning-promoted synaptic diversity in CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Hiroyuki Kida
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Dai Mitsushima
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan.,The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
18
|
Shalbafan M, Malekpour F, Tadayon Najafabadi B, Ghamari K, Dastgheib SA, Mowla A, Shirazi E, Eftekhar Ardebili M, Ghazizadeh-Hashemi M, Akhondzadeh S. Fluvoxamine combination therapy with tropisetron for obsessive-compulsive disorder patients: A placebo-controlled, randomized clinical trial. J Psychopharmacol 2019; 33:1407-1414. [PMID: 31575326 DOI: 10.1177/0269881119878177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND About 50% of obsessive-compulsive disorder patients still suffer significant symptoms even after the recommended first-line therapy. This demonstrates the necessity to investigate strategies to improve alleviation of symptoms. OBJECTIVE The main objective of this study was to investigate the efficacy of a 5-hydroxytryptophan 3 receptor antagonist, tropisetron, as an adjuvant therapy to selective serotonin reuptake inhibitors, in ameliorating obsessive-compulsive disorder symptoms. METHODS Men and women between the ages of 18-60 years diagnosed with obsessive-compulsive disorder, based on DSM5, who had a Yale-Brown obsessive compulsive scale score of more than 21 were recruited in a double-blinded, parallel-group, placebo-controlled, clinical trial of 10 weeks to receive either tropisetron (5 mg twice daily) and fluvoxamine (100 mg daily initially followed by 200 mg daily after week 4) or placebo and fluvoxamine. The primary outcome of interest in this study was the Yale-Brown obsessive compulsive scale total score decrease from baseline. RESULTS One hundred and eight participants were equally randomized into two groups; 48 participants in each group finished the trial. The Yale-Brown obsessive compulsive total score significantly dropped in both groups while the tropisetron group participants experienced a significantly higher decrease in their scores (Greenhouse-Geisser F(1.53-65.87)=3.516, p-value=0.04). No major adverse effect was observed in any of the groups. CONCLUSION This trial showed a significant efficacy for tropisetron over placebo in treatment of obsessive-compulsive disorder symptoms when added to fluvoxamine.
Collapse
Affiliation(s)
| | - Farzaneh Malekpour
- Mental Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Kiandokht Ghamari
- Psychiatric Research Center, Tehran University of Medical, Tehran, Iran
| | - Seyed-Ali Dastgheib
- Substance Abuse Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Mowla
- Substance Abuse Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Shirazi
- Mental Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
19
|
Sun LL, Yang TY, Wei NN, Lu W, Jiao WX, Zhou QQ, Miao YZ, Gao Q, Wang XT, Sun Q, Wang K. Pharmacological characterization of JWX-A0108 as a novel type I positive allosteric modulator of α7 nAChR that can reverse acoustic gating deficits in a mouse prepulse inhibition model. Acta Pharmacol Sin 2019; 40:737-745. [PMID: 30333556 PMCID: PMC6786413 DOI: 10.1038/s41401-018-0163-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor (α7 nAChR) is a ligand-gated Ca2+-permeable homopentameric ion channel implicated in cognition and neuropsychiatric disorders. Pharmacological enhancement of α7 nAChR function has been suggested for improvement of cognitive deficits. In the present study, we characterized a thiazolyl heterocyclic derivative, 6-(2-chloro-6-methylphenyl)-2-((3-fluoro-4-methylphenyl)amino)thiazolo[4,5-d]pyrimidin-7(6H)-one (JWX-A0108), as a novel type I α7 nAChR positive allosteric modulator (PAM), and evaluated its ability to reverse auditory gating and spatial working memory deficits in mice. In Xenopus oocytes expressing human nAChR channels, application of JWX-A0108 selectively enhanced α7 nAChR-mediated inward current in the presence of the agonist ACh (EC50 value = 4.35 ± 0.12 µM). In hippocampal slices, co-application of ACh and JWX-A0108 (10 µM for each) markedly increased both the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded in pyramidal neurons, but JWX-A0108 did not affect GABA-induced current in oocytes expressing human GABAA receptor α1β3γ2 and α5β3γ2 subtypes. In mice with MK-801-induced deficits in auditory gating, administration of JWX-A0108 (1, 3, and 10 mg/kg, i.p.) dose-dependently attenuates MK-801-induced auditory gating deficits in five prepulse intensities (72, 76, 80, 84, and 88 dB). Furthermore, administration of JWX-A0108 (0.03, 0.1, or 0.3 mg/kg, i.p.) significantly reversed MK-801-induced impaired spatial working memory in mice. Our results demonstrate that JWX-A0108 is a novel type I PAM of α7 nAChR, which may be beneficial for improvement of cognitive deficits commonly found in neuropsychiatric disorders such as schizophrenia and Alzheimer's disease.
Collapse
Affiliation(s)
- Li-Lan Sun
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266021, China
| | - Tao-Yi Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ning-Ning Wei
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266021, China
| | - Wei Lu
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266021, China
| | - Wen-Xuan Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qi-Qi Zhou
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266021, China
| | - Yong-Zhen Miao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266021, China
| | - Qin Gao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266021, China
| | - Xin-Tong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266021, China.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The objective of this article is to highlight the potential role of the galantamine-memantine combination as a novel antioxidant treatment for schizophrenia. RECENT FINDINGS In addition to the well-known mechanisms of action of galantamine and memantine, these medications also have antioxidant activity. Furthermore, an interplay exists between oxidative stress, inflammation (redox-inflammatory hypothesis), and kynurenine pathway metabolites. Also, there is an interaction between brain-derived neurotrophic factor and oxidative stress in schizophrenia. Oxidative stress may be associated with positive, cognitive, and negative symptoms and impairments in white matter integrity in schizophrenia. The antipsychotic-galantamine-memantine combination may provide a novel strategy in schizophrenia to treat positive, cognitive, and negative symptoms. SUMMARY A "single antioxidant" may be inadequate to counteract the complex cascade of oxidative stress. The galantamine-memantine combination as "double antioxidants" is promising. Hence, randomized controlled trials are warranted with the antipsychotic-galantamine-memantine combination with oxidative stress and antioxidant biomarkers in schizophrenia.
Collapse
|
21
|
Koola MM. Potential Role of Antipsychotic-Galantamine-Memantine Combination in the Treatment of Positive, Cognitive, and Negative Symptoms of Schizophrenia. MOLECULAR NEUROPSYCHIATRY 2018; 4:134-148. [PMID: 30643787 PMCID: PMC6323397 DOI: 10.1159/000494495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
Schizophrenia is, in part, a cognitive illness. There are no approved medications for cognitive impairments associated with schizophrenia (CIAS) and primary negative symptoms. Cholinergic and glutamatergic systems, alpha-7 nicotinic acetylcholine (α-7nACh) and N-methyl-D-aspartate (NMDA) receptors, kynurenic acid (KYNA), and mismatch negativity have been implicated in the pathophysiology of CIAS and negative symptoms. Galantamine is an acetylcholinesterase inhibitor that is also a positive allosteric modulator at the α4β2 and α7nACh receptors. Memantine is a noncompetitive NMDA receptor antagonist. Galantamine and memantine alone and in combination were effective for cognition in animals and people with Alzheimer's disease. The objective of this article is to critically dissect the published randomized controlled trials with galantamine and memantine for CIAS to highlight the efficacy signal. These studies may have failed to detect a clinically meaningful efficacy signal due to limitations, methodological issues, and possible medication nonadherence. There is evidence from a small open-label study that the galantamine-memantine combination may be effective for CIAS with kynurenine pathway metabolites as biomarkers to detect the severity of cognitive impairments. Given that there are no available treatments for cognitive impairments and primary negative symptoms in schizophrenia, testing of this "five-pronged strategy" (quintuple hypotheses: dopamine, nicotinic-cholinergic, glutamatergic/NMDA, GABA, and KYNA) is a "low-risk high-gain" approach that could be a major breakthrough in the field. The galantamine-memantine combination has the potential to treat positive, cognitive, and negative symptoms, and targeting the quintuple hypotheses concurrently may lead to a major scientific advancement - from antipsychotic treatment to antischizophrenia treatment.
Collapse
Affiliation(s)
- Maju Mathew Koola
- Department of Psychiatry and Behavioral Sciences, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
22
|
Jones C. Impact of the Alpha-7 Nicotinic Acetylcholine Receptor on Long-Term Potentiation within the Hippocampus: Implications in Schizophrenia. Psychiatr Ann 2018. [DOI: 10.3928/00485713-20180605-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Lu XX, Hong ZQ, Tan Z, Sui MH, Zhuang ZQ, Liu HH, Zheng XY, Yan TB, Geng DF, Jin DM. Nicotinic Acetylcholine Receptor Alpha7 Subunit Mediates Vagus Nerve Stimulation-Induced Neuroprotection in Acute Permanent Cerebral Ischemia by a7nAchR/JAK2 Pathway. Med Sci Monit 2017; 23:6072-6081. [PMID: 29274273 PMCID: PMC5747934 DOI: 10.12659/msm.907628] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background The role of nicotinic acetylcholine receptor alpha7 subunit (a7nAchR) in the treatment of acute cerebral ischemia by VNS has not been thoroughly clarified to date. Therefore, this study aimed to investigate the specific role of a7nAchR and explore whether this process is involved in the mechanisms of VNS-induced neuroprotection in rats undergoing permanent middle cerebral artery occlusion (PMCAO) surgery. Material/Methods Rats received a7nAChR antagonist (A) or antagonist placebo injection for control (AC), followed by PMCAO and VNS treatment, whereas the a7nAChR agonist (P) was utilized singly without VNS treatment but only with PMCAO pretreatment. The rats were randomly divided into 6 groups: sham PMCAO, PMCAO, PMCAO+VNS, PMCAO+VNS+A, PMCAO+VNS+AC, and PMCAO+P. Neurological function and cerebral infarct volume were measured to evaluate the level of brain injury at 24 h after PMCAO or PMCAO-sham. Moreover, the related proteins levels of a7nAChR, p-JAK2, and p-STAT3 in the ischemic penumbra were assessed by Western blot analysis. Results Rats pretreated with VNS had significantly improved neurological function and reduced cerebral infarct volume after PMCAO injury (p<0.05). In addition, VNS enhanced the levels of a7nAchR, p-JAK2, and p-STAT3 in the ischemic penumbra (p<0.05). However, inhibition of a7nAchR not only attenuated the beneficial neuroprotective effects induced by VNS, but also decreased levels of p-JAK2 and p-STAT3. Strikingly, pharmacological activation of a7nAchR can partially substitute for VNS-induced beneficial neurological protection. Conclusions These results suggest that a7nAchR is a pivotal mediator of VNS-induced neuroprotective effects on PMCAO injury, which may be related to suppressed inflammation via activation of the a7nAchR/JAK2 anti-inflammatory pathway.
Collapse
Affiliation(s)
- Xin-Xin Lu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Department of Rehabilitation Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Zhong-Qiu Hong
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Zhi Tan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Ming-Hong Sui
- Department of Rehabilitation Medicine, Shenzhen Nanshan People's Hospital (The Sixth People's Hospital of Shenzhen), Shenzhen University, Shenzhen, Guangdong, China (mainland)
| | - Zhi-Qiang Zhuang
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Technology Research Center for Rehabilitation and Elderly Care, Guangdong, China (mainland)
| | - Hui-Hua Liu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Technology Research Center for Rehabilitation and Elderly Care, Guangdong, China (mainland)
| | - Xiu-Yuan Zheng
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Technology Research Center for Rehabilitation and Elderly Care, Guangdong, China (mainland)
| | - Tie-Bin Yan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Technology Research Center for Rehabilitation and Elderly Care, Guangdong, China (mainland)
| | - Deng-Feng Geng
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Dong-Mei Jin
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Technology Research Center for Rehabilitation and Elderly Care, Guangdong, China (mainland)
| |
Collapse
|
24
|
Mahar I, Albuquerque MS, Mondragon-Rodriguez S, Cavanagh C, Davoli MA, Chabot JG, Williams S, Mechawar N, Quirion R, Krantic S. Phenotypic Alterations in Hippocampal NPY- and PV-Expressing Interneurons in a Presymptomatic Transgenic Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2017; 8:327. [PMID: 28154533 PMCID: PMC5243860 DOI: 10.3389/fnagi.2016.00327] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/19/2016] [Indexed: 11/21/2022] Open
Abstract
Interneurons, key regulators of hippocampal neuronal network excitability and synchronization, are lost in advanced stages of Alzheimer’s disease (AD). Given that network changes occur at early (presymptomatic) stages, we explored whether alterations of interneurons also occur before amyloid-beta (Aβ) accumulation. Numbers of neuropeptide Y (NPY) and parvalbumin (PV) immunoreactive (IR) cells were decreased in the hippocampus of 1 month-old TgCRND8 mouse AD model in a sub-regionally specific manner. The most prominent change observed was a decrease in the number of PV-IR cells that selectively affected CA1/2 and subiculum, with the pyramidal layer (PY) of CA1/2 accounting almost entirely for the reduction in number of hippocampal PV-IR cells. As PV neurons were decreased selectively in CA1/2 and subiculum, and given that they are critically involved in the control of hippocampal theta oscillations, we then assessed intrinsic theta oscillations in these regions after a 4-aminopyridine (4AP) challenge. This revealed increased theta power and population bursts in TgCRND8 mice compared to non-transgenic (nTg) controls, suggesting a hyperexcitability network state. Taken together, our results identify for the first time AD-related alterations in hippocampal interneuron function as early as at 1 month of age. These early functional alterations occurring before amyloid deposition may contribute to cognitive dysfunction in AD.
Collapse
Affiliation(s)
- Ian Mahar
- Douglas Mental Health University InstituteVerdun, QC, Canada; McGill Group for Suicide Studies, Douglas Mental Health University InstituteVerdun, QC, Canada; Integrated Program in Neuroscience, McGill UniversityMontreal, QC, Canada
| | - Marilia Silva Albuquerque
- Douglas Mental Health University InstituteVerdun, QC, Canada; Laboratory of Biomedicine and Biotechnology, School of Arts, Sciences and Humanities, Universidade de São PauloSão Paulo, Brazil; Graduation Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São PauloSão Paulo, Brazil; Research Group on Neuropharmacology of AgingSão Paulo, Brazil
| | - Siddhartha Mondragon-Rodriguez
- Douglas Mental Health University InstituteVerdun, QC, Canada; CONACYT National Council for Science and TechnologyMéxico city, Mexico; UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of MéxicoQuerétaro, Mexico
| | - Chelsea Cavanagh
- Douglas Mental Health University InstituteVerdun, QC, Canada; Integrated Program in Neuroscience, McGill UniversityMontreal, QC, Canada
| | - Maria Antonietta Davoli
- Douglas Mental Health University InstituteVerdun, QC, Canada; McGill Group for Suicide Studies, Douglas Mental Health University InstituteVerdun, QC, Canada
| | - Jean-Guy Chabot
- Douglas Mental Health University InstituteVerdun, QC, Canada; Integrated Program in Neuroscience, McGill UniversityMontreal, QC, Canada
| | - Sylvain Williams
- Douglas Mental Health University InstituteVerdun, QC, Canada; Integrated Program in Neuroscience, McGill UniversityMontreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University InstituteVerdun, QC, Canada; McGill Group for Suicide Studies, Douglas Mental Health University InstituteVerdun, QC, Canada; Integrated Program in Neuroscience, McGill UniversityMontreal, QC, Canada
| | - Rémi Quirion
- Douglas Mental Health University InstituteVerdun, QC, Canada; Integrated Program in Neuroscience, McGill UniversityMontreal, QC, Canada
| | - Slavica Krantic
- Douglas Mental Health University InstituteVerdun, QC, Canada; Integrated Program in Neuroscience, McGill UniversityMontreal, QC, Canada; Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138Paris, France
| |
Collapse
|
25
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by the loss of memory, multiple cognitive impairments and changes in the personality and behavior. Several decades of intense research have revealed that multiple cellular changes are involved in disease process, including synaptic damage, mitochondrial abnormalities and inflammatory responses, in addition to formation and accumulation of amyloid-β (Aβ) and phosphorylated tau. Although tremendous progress has been made in understanding the impact of neurotransmitters in the progression and pathogenesis of AD, we still do not have a drug molecule associated with neurotransmitter(s) that can delay disease process in elderly individuals and/or restore cognitive functions in AD patients. The purpose of our article is to assess the latest developments in neurotransmitters research using cell and mouse models of AD. We also updated the current status of clinical trials using neurotransmitters' agonists/antagonists in AD.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P. Hemachandra Reddy
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|