1
|
M. Sheta N, A. El-Gazar A, M. Ragab G, A. Essa M, M. Abdel-Haleem K, El-Dahmy RM. Transcending Traditional Treatment: The Therapeutical Potential of Nanovesicles for Transdermal Baclofen Delivery in Repeated Traumatic Brain Injury. Adv Pharm Bull 2024; 14:346-363. [PMID: 39206406 PMCID: PMC11347745 DOI: 10.34172/apb.2024.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/25/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose The repositioning of previously approved drugs is occupying the researchers' plans. Baclofen (Bac) was our candidate for its established neuroprotective capacity, with a proposal of efficient drug delivery as non-ionic surfactant-based nanovesicles (NISNV) formulae against mild repetitive traumatic brain injury (mRTBI) in rats, thus reducing the number of orally or injected medications, especially in severely comatose patients or pediatrics. Methods A (23) factorial design was implemented for confining Bac-loaded NISNV formulae, where a bunch of variables were inspected. An in-vivo experiment was done to test the prepared formula's efficacy transdermally. The following parameters were measured: brain expression of gamma amino butyric acid B (GABAB), protein kinase C- α (PKC-α), focal adhesion kinase (FAK), TNF-α and nuclear factor kappa B (NF-κB) p65, malondialdehyde (MDA), superoxide dismutase (SOD), and histopathology. Results The particle size (PS) and entrapment efficiency percent (EE%) speckled from 60.40±0.28% to 88.02±0.01% for the former and 174.64±0.93 to 1174.50±3.54 nm for the latter. In vitro release% after 8 hours ranged from 63.25±5.47% to 84.79±3.75%. The optimized formula (F4) illustrated desirability=1, with 630.09±3.53 µg/cm2 of Bac permeated over 8 hours, which equates to 100% of Bac. Bac post-trauma treatment restored brain expression of GABAB and PKC-α, while decreasing FAK. Besides enhancing the histological findings, the anti-inflammatory effect was clear by decreasing TNF-α and NF-κB p65. Consequently, significant antioxidant sequelae were revealed herein by diminishing MDA levels and restoring SOD activity. Conclusion Transdermal delivery of Bac-loaded niosomes confirmed neuroprotection and succeeded in surpassing skin-to-brain barriers, which makes it a promising therapeutic option for repeated traumas.
Collapse
Affiliation(s)
- Nermin M. Sheta
- Pharmaceutics Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Amira A. El-Gazar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Ghada M. Ragab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr University for Science & Technology (MUST), Giza, Egypt
| | - Marwa A. Essa
- Biochemistry Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | | | | |
Collapse
|
2
|
Jones JA, Peña J, Likhotvorik RI, Garcia-Castañeda BI, Wilson CJ. Comparison of unitary synaptic currents generated by indirect and direct pathway neurons of the mouse striatum. J Neurophysiol 2024; 131:914-936. [PMID: 38596834 PMCID: PMC11381124 DOI: 10.1152/jn.00066.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/11/2024] Open
Abstract
Two subtypes of striatal spiny projection neurons, iSPNs and dSPNs, whose axons form the "indirect" and "direct" pathways of the basal ganglia, respectively, both make synaptic connections in the external globus pallidus (GPe) but are usually found to have different effects on behavior. Activation of the terminal fields of iSPNs or dSPNs generated compound currents in almost all GPe neurons. To determine whether iSPNs and dSPNs have the same or different effects on pallidal neurons, we studied the unitary synaptic currents generated in GPe neurons by action potentials in single striatal neurons. We used optogenetic excitation to elicit repetitive firing in a small number of nearby SPNs, producing sparse barrages of inhibitory postsynaptic currents (IPSCs) in GPe neurons. From these barrages, we isolated sequences of IPSCs with similar time courses and amplitudes, which presumably arose from the same SPN. There was no difference between the amplitudes of unitary IPSCs generated by the indirect and direct pathways. Most unitary IPSCs were small, but a subset from each pathway were much larger. To determine the effects of these unitary synaptic currents on the action potential firing of GPe neurons, we drove SPNs to fire as before and recorded the membrane potential of GPe neurons. Large unitary potentials from iSPNs and dSPNs perturbed the spike timing of GPe neurons in a similar way. Most SPN-GPe neuron pairs are weakly connected, but a subset of pairs in both pathways are strongly connected.NEW & NOTEWORTHY This is the first study to record the synaptic currents generated by single identified direct or indirect pathway striatal neurons on single pallidal neurons. Each GPe neuron receives synaptic inputs from both pathways. Most striatal neurons generate small synaptic currents that become influential when occurring together, but a few are powerful enough to be individually influential.
Collapse
Affiliation(s)
- James A Jones
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, United States
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Jacob Peña
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, United States
| | - Rostislav I Likhotvorik
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, United States
| | - Brandon I Garcia-Castañeda
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, United States
| | - Charles J Wilson
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, United States
| |
Collapse
|
3
|
Villalobos N, Magdaleno-Madrigal VM. Pallidal GABA B receptors: involvement in cortex beta dynamics and thalamic reticular nucleus activity. J Physiol Sci 2023; 73:14. [PMID: 37328793 DOI: 10.1186/s12576-023-00870-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The external globus pallidus (GP) firing rate synchronizes the basal ganglia-thalamus-cortex network controlling GABAergic output to different nuclei. In this context, two findings are significant: the activity and GABAergic transmission of the GP modulated by GABA B receptors and the presence of the GP-thalamic reticular nucleus (RTn) pathway, the functionality of which is unknown. The functional participation of GABA B receptors through this network in cortical dynamics is feasible because the RTn controls transmission between the thalamus and cortex. To analyze this hypothesis, we used single-unit recordings of RTn neurons and electroencephalograms of the motor cortex (MCx) before and after GP injection of the GABA B agonist baclofen and the antagonist saclofen in anesthetized rats. We found that GABA B agonists increase the spiking rate of the RTn and that this response decreases the spectral density of beta frequency bands in the MCx. Additionally, injections of GABA B antagonists decreased the firing activity of the RTn and reversed the effects in the power spectra of beta frequency bands in the MCx. Our results proved that the GP modulates cortical oscillation dynamics through the GP-RTn network via tonic modulation of RTn activity.
Collapse
Affiliation(s)
- Nelson Villalobos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, 11340, México City, México.
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, 11340, Mexico City, Mexico.
| | - Victor Manuel Magdaleno-Madrigal
- Laboratorio de Neuromodulación Experimental, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
- Carrera de Psicología, Facultad de Estudios Superiores Zaragoza-UNAM, México City, México
| |
Collapse
|
4
|
Luo X, Liao J, Liu H, Tang Q, Luo H, Chen X, Ruan J. The micro and macro interactions in acute autoimmune encephalitis: a study of resting-state EEG. Front Neurol 2023; 14:1181629. [PMID: 37360339 PMCID: PMC10285084 DOI: 10.3389/fneur.2023.1181629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Objective Early recognition of autoimmune encephalitis (AIE) is often difficult and time-consuming. Understanding how the micro-level (antibodies) and macro-level (EEG) couple with each other may help rapidly diagnose and appropriately treat AIE. However, limited studies focused on brain oscillations involving micro- and macro-interactions in AIE from a neuro-electrophysiological perspective. Here, we investigated brain network oscillations in AIE using Graph theoretical analysis of resting state EEG. Methods AIE Patients (n = 67) were enrolled from June 2018 to June 2022. Each participant underwent a ca.2-hour 19-channel EEG examination. Five 10-second resting state EEG epochs with eyes closed were extracted for each participant. The functional networks based on the channels and Graph theory analysis were carried out. Results Compared with the HC group, significantly decreased FC across whole brain regions at alpha and beta bands were found in AIE patients. In addition, the local efficiency and clustering coefficient of the delta band was higher in AIE patients than in the HC group (P < 0.05). AIE patients had a smaller world index (P < 0.05) and higher shortest path length (P < 0.001) in the alpha band than those of the control group. Also, the AIE patients' global efficiency, local efficiency, and clustering coefficients decreased in the alpha band (P < 0.001). Different types of antibodies (antibodies against ion channels, antibodies against synaptic excitatory receptors, antibodies against synaptic inhibitory receptors, and multiple antibodies positive) showed distinct graph parameters. Moreover, the graph parameters differed in the subgroups by intracranial pressure. Correlation analysis revealed that magnetic resonance imaging abnormalities were related to global efficiency, local efficiency, and clustering coefficients in the theta, alpha, and beta bands, but negatively related to the shortest path length. Conclusion These findings add to our understanding of how brain FC and graph parameters change and how the micro- (antibodies) scales interact with the macro- (scalp EEG) scale in acute AIE. The clinical traits and subtypes of AIE may be suggested by graph properties. Further longitudinal cohort studies are needed to explore the associations between these graph parameters and recovery status, and their possible applications in AIE rehabilitation.
Collapse
Affiliation(s)
- Xin Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jie Liao
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Hong Liu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Qiulin Tang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Xiu Chen
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
5
|
Dzhalagoniya IZ, Usova SV, Gamaleya AA, Tomskiy AA, Shaikh AG, Sedov AS. DYT1 dystonia: Neurophysiological properties of the pallidal activity. Parkinsonism Relat Disord 2023; 112:105447. [PMID: 37267819 DOI: 10.1016/j.parkreldis.2023.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
OBJECTIVES The aim of this paper is to find the differences in the physiology of the pallidal neurons in DYT1 and non-DYT1 dystonia. METHODS We performed microelectrode recording of the single unit activity in both segments of the globus pallidus during stereotactic implantation of electrodes for deep brain stimulation (DBS). RESULTS We found a reduced firing rate, reduced burst rate, and increased pause index in both pallidal segments in DYT1. Also, in DYT1 the activity in both pallidal segments was similar, but not so in non-DYT1. CONCLUSION The results suggest a common pathological focus for both pallidal segments, located in the striatum. We also speculate that strong striatal influence on GPi and GPe overrides other input sources to the pallidal nuclei causing similarity in neuronal activity. SIGNIFICANCE We found significant differences in neuronal activity between DYT1 and non-DYT1 neurons. Our findings shed light on the pathophysiology of DYT-1 dystonia which can be very different from non-DYT1 dystonia and have other efficient treatment tactics.
Collapse
Affiliation(s)
- Indiko Z Dzhalagoniya
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Novatorov st. 7A-1, Moscow, Russian Federation.
| | - Svetlana V Usova
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Novatorov st. 7A-1, Moscow, Russian Federation
| | - Anna A Gamaleya
- N.N. Burdenko National Medical Research Center for Neurosurgery, 4th Tverskaya-Yamskaya st. 16, Moscow, Russian Federation
| | - Alexey A Tomskiy
- N.N. Burdenko National Medical Research Center for Neurosurgery, 4th Tverskaya-Yamskaya st. 16, Moscow, Russian Federation
| | - Aasef G Shaikh
- Department of Neurology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA; Daroff-DelOsso Ocular Motility Laboratory, Neurology Service, Louis Stoke VA Medical Center, 10701 East Blvd, Cleveland, OH, USA
| | - Alexey S Sedov
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Novatorov st. 7A-1, Moscow, Russian Federation; Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation
| |
Collapse
|
6
|
Jones JA, Higgs MH, Olivares E, Peña J, Wilson CJ. Spontaneous Activity of the Local GABAergic Synaptic Network Causes Irregular Neuronal Firing in the External Globus Pallidus. J Neurosci 2023; 43:1281-1297. [PMID: 36623877 PMCID: PMC9987574 DOI: 10.1523/jneurosci.1969-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Autonomously firing GABAergic neurons in the external globus pallidus (GPe) form a local synaptic network. In slices, most GPe neurons receive a continuous inhibitory synaptic barrage from 1 or 2 presynaptic GPe neurons. We measured the barrage's effect on the firing rate and regularity of GPe neurons in male and female mice using perforated patch recordings. Silencing the firing of parvalbumin-positive (PV+) GPe neurons by activating genetically expressed Archaerhodopsin current increased the firing rate and regularity of PV- neurons. In contrast, silencing Npas1+ GPe neurons with Archaerhodopsin had insignificant effects on Npas1- neuron firing. Blocking spontaneous GABAergic synaptic input with gabazine reproduced the effects of silencing PV+ neuron firing on the firing rate and regularity of Npas1+ neurons and had similar effects on PV+ neuron firing. To simulate the barrage, we constructed conductance waveforms for dynamic clamp based on experimentally measured inhibitory postsynaptic conductance trains from 1 or 2 unitary local connections. The resulting inhibition replicated the effect on firing seen in the intact active network in the slice. We then increased the number of unitary inputs to match estimates of local network connectivity in vivo As few as 5 unitary inputs produced large increases in firing irregularity. The firing rate was also reduced initially, but PV+ neurons exhibited a slow spike-frequency adaptation that partially restored the rate despite sustained inhibition. We conclude that the irregular firing pattern of GPe neurons in vivo is largely due to the ongoing local inhibitory synaptic barrage produced by the spontaneous firing of other GPe neurons.SIGNIFICANCE STATEMENT Functional roles of local axon collaterals in the external globus pallidus (GPe) have remained elusive because of difficulty in isolating local inhibition from other GABAergic inputs in vivo, and in preserving the autonomous firing of GPe neurons and detecting their spontaneous local inputs in slices. We used perforated patch recordings to detect spontaneous local inputs during rhythmic firing. We found that the autonomous firing of single presynaptic GPe neurons produces inhibitory synaptic barrages that significantly alter the firing regularity of other GPe neurons. Our findings suggest that, although GPe neurons receive input from only a few other GPe neurons, each local connection has a large impact on their firing.
Collapse
Affiliation(s)
- James A. Jones
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Matthew H. Higgs
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Erick Olivares
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Jacob Peña
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Charles J. Wilson
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
7
|
Sitzia G, Abrahao KP, Liput D, Calandra GM, Lovinger DM. Distinct mechanisms of CB1 and GABA B receptor presynaptic modulation of striatal indirect pathway projections to mouse globus pallidus. J Physiol 2023; 601:195-209. [PMID: 36412169 PMCID: PMC10107704 DOI: 10.1113/jp283614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Presynaptic modulation is a fundamental process regulating synaptic transmission. Striatal indirect pathway projections originate from A2A-expressing spiny projection neurons (iSPNs), targeting the globus pallidus external segment (GPe) and control the firing of the tonically active GPe neurons via GABA release. It is unclear if and how the presynaptic G-protein-coupled receptors (GPCRs), GABAB and CB1 receptors modulate iSPN-GPe projections. Here we used an optogenetic platform to study presynaptic Ca2+ and GABAergic transmission at iSPN projections, using a genetic strategy to express the calcium sensor GCaMP6f or the excitatory channelrhodopsin (hChR2) on iSPNs. We found that P/Q-type calcium channels are the primary voltage-gated Ca2+ channel (VGCC) subtype controlling presynaptic calcium and GABA release at iSPN-GPe projections. N-type and L-type VGCCs also contribute to GABA release at iSPN-GPe synapses. GABAB receptor activation resulted in a reversible inhibition of presynaptic Ca2+ transients (PreCaTs) and an inhibition of GABAergic transmission at iSPN-GPe synapses. CB1 receptor activation did not inhibit PreCaTs but inhibited GABAergic transmission at iSPN-GPe projections. CB1 effects on GABAergic transmission persisted in experiments where NaV and KV 1 were blocked, indicating a VGCC- and KV 1-independent presynaptic mechanism of action of CB1 receptors. Taken together, presynaptic modulation of iSPN-GPe projections by CB1 and GABAB receptors is mediated by distinct mechanisms. KEY POINTS: P/Q-type are the predominant voltage-gated Ca2+ channels controlling presynaptic Ca2+ and GABA release on the striatal indirect pathway projections. GABAB receptors modulate iSPN-GPe projections via a VGCC-dependent mechanism. CB1 receptors modulate iSPN-GPe projections via a VGCC-independent mechanism.
Collapse
Affiliation(s)
- Giacomo Sitzia
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismUS National Institutes of HealthRockvilleMarylandUSA
- Molecular Neurophysiology LaboratoryDepartment of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Karina Possa Abrahao
- Departamento de PsicobiologiaUniversidade Federal de São PauloSão PauloSao PauloBrazil
| | - Daniel Liput
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismUS National Institutes of HealthRockvilleMarylandUSA
| | - Gian Marco Calandra
- Institute for Stroke and Dementia ResearchLudwig‐Maximilians‐UniversitätMunichGermany
| | - David M. Lovinger
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismUS National Institutes of HealthRockvilleMarylandUSA
| |
Collapse
|
8
|
Sciamanna G, Ponterio G, Vanni V, Laricchiuta D, Martella G, Bonsi P, Meringolo M, Tassone A, Mercuri NB, Pisani A. Optogenetic Activation of Striatopallidal Neurons Reveals Altered HCN Gating in DYT1 Dystonia. Cell Rep 2021; 31:107644. [PMID: 32433955 DOI: 10.1016/j.celrep.2020.107644] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 12/30/2022] Open
Abstract
Firing activity of external globus pallidus (GPe) is crucial for motor control and is severely perturbed in dystonia, a movement disorder characterized by involuntary, repetitive muscle contractions. Here, we show that GPe projection neurons exhibit a reduction of firing frequency and an irregular pattern in a DYT1 dystonia model. Optogenetic activation of the striatopallidal pathway fails to reset pacemaking activity of GPe neurons in mutant mice. Abnormal firing is paralleled by alterations in motor learning. We find that loss of dopamine D2 receptor-dependent inhibition causes increased GABA input at striatopallidal synapses, with subsequent downregulation of hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels. Accordingly, enhancing in vivo HCN channel activity or blocking GABA release restores both the ability of striatopallidal inputs to pause ongoing GPe activity and motor coordination deficits. Our findings demonstrate an impaired striatopallidal connectivity, supporting the central role of GPe in motor control and, more importantly, identifying potential pharmacological targets for dystonia.
Collapse
Affiliation(s)
- Giuseppe Sciamanna
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy; Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy
| | - Valentina Vanni
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, Faculty of Medicine and Psychology, University of Rome Sapienza, Rome, Italy; Lab of Behavioural and Experimental Neurophysiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Meringolo
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy
| | - Annalisa Tassone
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy; Lab of Experimental Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy; Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
9
|
Gorodetski L, Loewenstern Y, Faynveitz A, Bar-Gad I, Blackwell KT, Korngreen A. Endocannabinoids and Dopamine Balance Basal Ganglia Output. Front Cell Neurosci 2021; 15:639082. [PMID: 33815062 PMCID: PMC8010132 DOI: 10.3389/fncel.2021.639082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/18/2021] [Indexed: 12/04/2022] Open
Abstract
The entopeduncular nucleus is one of the basal ganglia's output nuclei, thereby controlling basal ganglia information processing. Entopeduncular nucleus neurons integrate GABAergic inputs from the Striatum and the globus pallidus, together with glutamatergic inputs from the subthalamic nucleus. We show that endocannabinoids and dopamine interact to modulate the long-term plasticity of all these primary afferents to the entopeduncular nucleus. Our results suggest that the interplay between dopamine and endocannabinoids determines the balance between direct pathway (striatum) and indirect pathway (globus pallidus) in entopeduncular nucleus output. Furthermore, we demonstrate that, despite the lack of axon collaterals, information is transferred between neighboring neurons in the entopeduncular nucleus via endocannabinoid diffusion. These results transform the prevailing view of the entopeduncular nucleus as a feedforward “relay” nucleus to an intricate control unit, which may play a vital role in the process of action selection.
Collapse
Affiliation(s)
- Lilach Gorodetski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yocheved Loewenstern
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Anna Faynveitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Izhar Bar-Gad
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Kim T Blackwell
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
| | - Alon Korngreen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
10
|
Milosevic L, Dallapiazza RF, Munhoz RP, Kalia SK, Popovic MR, Hutchison WD. Case Studies in Neuroscience: Lack of inhibitory synaptic plasticity in the substantia nigra pars reticulata of a patient with lithium-induced tremor. J Neurophysiol 2019; 122:1367-1372. [PMID: 31411948 DOI: 10.1152/jn.00203.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tremor is a well-known side effect from many psychiatric medications, including lithium and dopamine antagonists. In patients whose psychiatric symptoms are stabilized and only respond to certain medications, deep brain stimulation may offer relief of the consequent motor complications. We report the case of an elderly male with disabling tremor related to lithium therapy for bipolar affective disorder, who was subsequently treated with deep brain stimulation. In this patient, we obtained recordings from the substantia nigra pars reticulata and performed a high-frequency stimulation protocol that robustly elicits long-term potentiation (LTP)-like changes in patients with Parkinson's disease. We hypothesized that in this patient, who did not have Parkinson's disease, the levels of inhibitory plasticity would be much greater. However, we found an unanticipated lack of plasticity in the patient with lithium-induced tremor, compared with two de novo control patients with Parkinson's disease. This patient was successfully treated with deep brain stimulation in the vicinity of the ventral oral posterior nucleus, an area of the thalamus that receives inputs from the basal ganglia. We postulate that the lithium-induced blockade of LTP may bring about motor complications such as tremor while simultaneously contributing to the therapeutic mechanism for treating the symptoms of psychiatric disorders such as bipolar affective disorder.NEW & NOTEWORTHY Use of a dual-microelectrode technique enabled us to compare long-term potentiation (LTP)-like changes in a patient with lithium-induced tremor to that of patients with Parkinson's disease. This study corroborated the findings in rodent brain slices that chronic lithium treatment may block LTP. Whereas a deficit in LTP may underlie the therapeutic mechanism for treating psychiatric disorders such as bipolar affective disorder, it may simultaneously contribute to consequent appearance of tremor.
Collapse
Affiliation(s)
- Luka Milosevic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Robert F Dallapiazza
- Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, Ontario, Canada
| | - Renato P Munhoz
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - Milos R Popovic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada
| | - William D Hutchison
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Cellular and Synaptic Dysfunctions in Parkinson's Disease: Stepping out of the Striatum. Cells 2019; 8:cells8091005. [PMID: 31470672 PMCID: PMC6769933 DOI: 10.3390/cells8091005] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/30/2022] Open
Abstract
The basal ganglia (BG) are a collection of interconnected subcortical nuclei that participate in a great variety of functions, ranging from motor programming and execution to procedural learning, cognition, and emotions. This network is also the region primarily affected by the degeneration of midbrain dopaminergic neurons localized in the substantia nigra pars compacta (SNc). This degeneration causes cellular and synaptic dysfunctions in the BG network, which are responsible for the appearance of the motor symptoms of Parkinson’s disease. Dopamine (DA) modulation and the consequences of its loss on the striatal microcircuit have been extensively studied, and because of the discrete nature of DA innervation of other BG nuclei, its action outside the striatum has been considered negligible. However, there is a growing body of evidence supporting functional extrastriatal DA modulation of both cellular excitability and synaptic transmission. In this review, the functional relevance of DA modulation outside the striatum in both normal and pathological conditions will be discussed.
Collapse
|
12
|
Milosevic L, Kalia SK, Hodaie M, Lozano AM, Fasano A, Popovic MR, Hutchison WD. Neuronal inhibition and synaptic plasticity of basal ganglia neurons in Parkinson's disease. Brain 2019; 141:177-190. [PMID: 29236966 PMCID: PMC5917776 DOI: 10.1093/brain/awx296] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease symptoms. The therapeutic benefits of deep brain stimulation are frequency-dependent, but the underlying physiological mechanisms remain unclear. To advance deep brain stimulation therapy an understanding of fundamental mechanisms is critical. The objectives of this study were to (i) compare the frequency-dependent effects on cell firing in subthalamic nucleus and substantia nigra pars reticulata; (ii) quantify frequency-dependent effects on short-term plasticity in substantia nigra pars reticulata; and (iii) investigate effects of continuous long-train high frequency stimulation (comparable to conventional deep brain stimulation) on synaptic plasticity. Two closely spaced (600 µm) microelectrodes were advanced into the subthalamic nucleus (n = 27) and substantia nigra pars reticulata (n = 14) of 22 patients undergoing deep brain stimulation surgery for Parkinson’s disease. Cell firing and evoked field potentials were recorded with one microelectrode during stimulation trains from the adjacent microelectrode across a range of frequencies (1–100 Hz, 100 µA, 0.3 ms, 50–60 pulses). Subthalamic firing attenuated with ≥20 Hz (P < 0.01) stimulation (silenced at 100 Hz), while substantia nigra pars reticulata decreased with ≥3 Hz (P < 0.05) (silenced at 50 Hz). Substantia nigra pars reticulata also exhibited a more prominent increase in transient silent period following stimulation. Patients with longer silent periods after 100 Hz stimulation in the subthalamic nucleus tended to have better clinical outcome after deep brain stimulation. At ≥30 Hz the first evoked field potential of the stimulation train in substantia nigra pars reticulata was potentiated (P < 0.05); however, the average amplitude of the subsequent potentials was rapidly attenuated (P < 0.01). This is suggestive of synaptic facilitation followed by rapid depression. Paired pulse ratios calculated at the beginning of the train revealed that 20 Hz (P < 0.05) was the minimum frequency required to induce synaptic depression. Lastly, the average amplitude of evoked field potentials during 1 Hz pulses showed significant inhibitory synaptic potentiation after long-train high frequency stimulation (P < 0.001) and these increases were coupled with increased durations of neuronal inhibition (P < 0.01). The subthalamic nucleus exhibited a higher frequency threshold for stimulation-induced inhibition than the substantia nigra pars reticulata likely due to differing ratios of GABA:glutamate terminals on the soma and/or the nature of their GABAergic inputs (pallidal versus striatal). We suggest that enhancement of inhibitory synaptic plasticity, and frequency-dependent potentiation and depression are putative mechanisms of deep brain stimulation. Furthermore, we foresee that future closed-loop deep brain stimulation systems (with more frequent off stimulation periods) may benefit from inhibitory synaptic potentiation that occurs after high frequency stimulation.
Collapse
Affiliation(s)
- Luka Milosevic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.,Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, Ontario, M4G 3V9, Canada
| | - Suneil K Kalia
- Department of Surgery, University of Toronto, 149 College Street, 5th Floor, Toronto, Ontario, M5T 1P5, Canada.,Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, 399 Bathurst St, Toronto, Ontario, M5T 2S8, Canada.,Krembil Research Institute, 135 Nassau St, Toronto, Ontario, M5T 1M8, Canada
| | - Mojgan Hodaie
- Department of Surgery, University of Toronto, 149 College Street, 5th Floor, Toronto, Ontario, M5T 1P5, Canada.,Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, 399 Bathurst St, Toronto, Ontario, M5T 2S8, Canada.,Krembil Research Institute, 135 Nassau St, Toronto, Ontario, M5T 1M8, Canada
| | - Andres M Lozano
- Department of Surgery, University of Toronto, 149 College Street, 5th Floor, Toronto, Ontario, M5T 1P5, Canada.,Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, 399 Bathurst St, Toronto, Ontario, M5T 2S8, Canada.,Krembil Research Institute, 135 Nassau St, Toronto, Ontario, M5T 1M8, Canada
| | - Alfonso Fasano
- Krembil Research Institute, 135 Nassau St, Toronto, Ontario, M5T 1M8, Canada.,Morton and Gloria Shulman Movement Disorders Center and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital - University Health Network, 399 Bathurst St, Toronto, Ontario, M5T 2S8, Canada.,Division of Neurology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Milos R Popovic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.,Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, Ontario, M4G 3V9, Canada
| | - William D Hutchison
- Department of Surgery, University of Toronto, 149 College Street, 5th Floor, Toronto, Ontario, M5T 1P5, Canada.,Krembil Research Institute, 135 Nassau St, Toronto, Ontario, M5T 1M8, Canada.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
13
|
Long-Lasting Electrophysiological After-Effects of High-Frequency Stimulation in the Globus Pallidus: Human and Rodent Slice Studies. J Neurosci 2018; 38:10734-10746. [PMID: 30373767 DOI: 10.1523/jneurosci.0785-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/28/2018] [Accepted: 10/24/2018] [Indexed: 11/21/2022] Open
Abstract
Deep-brain stimulation (DBS) of the globus pallidus pars interna (GPi) is a highly effective therapy for movement disorders, yet its mechanism of action remains controversial. Inhibition of local neurons because of release of GABA from afferents to the GPi is a proposed mechanism in patients. Yet, high-frequency stimulation (HFS) produces prolonged membrane depolarization mediated by cholinergic neurotransmission in endopeduncular nucleus (EP, GPi equivalent in rodent) neurons. We applied HFS while recording neuronal firing from an adjacent electrode during microelectrode mapping of GPi in awake patients (both male and female) with Parkinson disease (PD) and dystonia. Aside from after-suppression and no change in neuronal firing, high-frequency microstimulation induced after-facilitation in 38% (26/69) of GPi neurons. In neurons displaying after-facilitation, 10 s HFS led to an immediate decrease of bursting in PD, but not dystonia patients. Moreover, the changes of bursting patterns in neurons with after-suppression or no change after HFS, were similar in both patient groups. To explore the mechanisms responsible, we applied HFS in EP brain slices from rats of either sex. As in humans, HFS in EP induced two subtypes of after-excitation: excitation or excitation with late inhibition. Pharmacological experiments determined that the excitation subtype, induced by lower charge density, was dependent on glutamatergic transmission. HFS with higher charge density induced excitation with late inhibition, which involved cholinergic modulation. Therefore HFS with different charge density may affect the local neurons through multiple synaptic mechanisms. The cholinergic system plays a role in mediating the after-facilitatory effects in GPi neurons, and because of their modulatory nature, may provide a basis for both the immediate and delayed effects of GPi-DBS. We propose a new model to explain the mechanisms of DBS in GPi.SIGNIFICANCE STATEMENT Deep-brain stimulation (DBS) in the globus pallidus pars interna (GPi) improves Parkinson disease (PD) and dystonia, yet its mechanisms in GPi remain controversial. Inhibition has been previously described and thought to indicate activation of GABAergic synaptic terminals, which dominate in GPi. Here we report that 10 s high-frequency microstimulation induced after-facilitation of neural firing in a substantial proportion of GPi neurons in humans. The neurons with after-facilitation, also immediately reduced their bursting activities after high-frequency stimulation in PD, but not dystonia patients. Based on these data and further animal experiments, a mechanistic hypothesis involving glutamatergic, GABAergic, and cholinergic synaptic transmission is proposed to explain both short- and longer-term therapeutic effects of DBS in GPi.
Collapse
|
14
|
Gorodetski L, Zeira R, Lavian H, Korngreen A. Long-term plasticity of glutamatergic input from the subthalamic nucleus to the entopeduncular nucleus. Eur J Neurosci 2018; 48:2139-2151. [PMID: 30103273 DOI: 10.1111/ejn.14105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 11/26/2022]
Abstract
The hyperdirect pathway of the basal ganglia bypasses the striatum, and delivers cortical information directly to the subthalamic nucleus (STN). In rodents, the STN excites the two output nuclei of the basal ganglia, the entopeduncular nucleus (EP) and the substantia nigra reticulata (SNr). Thus, during hyperdirect pathway activation, the STN drives EP firing inhibiting the thalamus. We hypothesized that STN activity could induce long-term changes to the STN->EP synapse. To test this hypothesis, we recorded in the whole-cell mode from neurons in the EP in acute brain slices from rats while electrically stimulating the STN. Repetitive pre-synaptic stimulation generated modest long-term depression (LTD) in the STN->EP synapse. However, pairing EP firing with STN stimulation generated robust LTD that manifested for pre-before post-as well as for post- before pre-synaptic pairing. This LTD was highly sensitive to the time difference and was not detected at a time delay of 10 ms. To investigate whether post-synaptic calcium levels were important for LTD induction, we made dendritic recordings from EP neurons that revealed action potential back-propagation and dendritic calcium transients. Buffering the dendritic calcium concentration in the EP neurons with EGTA generated long term potentiation instead of LTD. Finally, mild LTD could be induced by post-synaptic activity alone that was blocked by an endocannabinoid 1 (CB1) receptor blocker. These results thus suggest there may be an adaptive mechanism for buffering the impact of the hyperdirect pathway on basal ganglia output which could contribute to the de-correlation of STN and EP firing.
Collapse
Affiliation(s)
- Lilach Gorodetski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Reut Zeira
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hagar Lavian
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Alon Korngreen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
15
|
Modulation of sympathetic preganglionic neuron activity via adrenergic receptors. Hypertens Res 2018; 41:499-505. [PMID: 29748580 DOI: 10.1038/s41440-018-0049-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 11/08/2022]
Abstract
The sympathetic preganglionic neurons (SPNs) play a key role in the sympathetic nervous system. Previous reports have suggested that norepinephrine (NE) directly affects SPNs via both inhibitory hyperpolarization interactions mediated by α2 receptors and excitatory depolarization interactions mediated by α1 receptors. It remains poorly understood, however, whether the excitability of SPNs can be inhibited indirectly (presynaptically) as well as directly (postsynaptically). We intracellularly recorded 41 SPNs using the whole-cell patch-clamp technique in spinal cord slice preparations of neonatal rats. We examined the effects of NE or dexmedetomidine hydrochloride (Dxm) (α2-adrenergic receptor agonist) on SPNs by analyzing the excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs). EPSPs were dominant in 15 SPNs (EPSP-SPNs) and IPSPs were dominant in 7 SPNs (IPSP-SPNs) at baseline. We were unable to analyze the postsynaptic potentials in the other 19 SPNs, due to high frequency of action potential firings (firing-SPNs). At baseline, the membrane potentials and resistances of each type of SPN were similar. NE (1 μM) gradually depolarized the EPSP-SPNs and IPSP-SPNs (P < 0.001) and NE significantly increased the EPSP frequency of the EPSP-SPNs (P < 0.05). Dxm (10 nM) after application of NE decreased the EPSP frequency of the EPSP-SPNs (P < 0.001) and the EPSP voltage and IPSP voltage of the IPSP-SPNs (P < 0.05). In 5 of the 19 firing-SPNs, NE induced membrane hyperpolarization (P < 0.05) and completely inhibited firings. Dxm had no effect in these neurons. The SPNs received inhibitory modulation through α2-adrenergic receptors. Some SPNs can be directly inhibited via effects independent of the α2 receptors.
Collapse
|
16
|
Serafini A, Lukas RV, VanHaerents S, Warnke P, Tao JX, Rose S, Wu S. Paraneoplastic epilepsy. Epilepsy Behav 2016; 61:51-58. [PMID: 27304613 DOI: 10.1016/j.yebeh.2016.04.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/24/2016] [Accepted: 04/29/2016] [Indexed: 01/17/2023]
Abstract
Epilepsy can be a manifestation of paraneoplastic syndromes which are the consequence of an immune reaction to neuronal elements driven by an underlying malignancy affecting other organs and tissues. The antibodies commonly found in paraneoplastic encephalitis can be divided into two main groups depending on the target antigen: 1) antibodies against neuronal cell surface antigens, such as against neurotransmitter (N-methyl-d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), gamma-aminobutyric acid (GABA)) receptors, ion channels (voltage-gated potassium channel (VGKC)), and channel-complex proteins (leucine rich, glioma inactivated-1 glycoprotein (LGI1) and contactin-associated protein-2 (CASPR2)) and 2) antibodies against intracellular neuronal antigens (Hu/antineuronal nuclear antibody-1 (ANNA-1), Ma2/Ta, glutamate decarboxylase 65 (GAD65), less frequently to CV2/collapsin response mediator protein 5 (CRMP5)). In this review, we provide a comprehensive survey of the current literature on paraneoplastic epilepsy indexed by the associated onconeuronal antibodies. While a range of seizure types can be seen with paraneoplastic syndromes, temporal lobe epilepsy is the most common because of the association with limbic encephalitis. Early treatment of the paraneoplastic syndrome with immune modulation/suppression may prevent the more serious potential consequences of paraneoplastic epilepsy.
Collapse
Affiliation(s)
- Anna Serafini
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rimas V Lukas
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Stephen VanHaerents
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peter Warnke
- Section of Neurosurgery, University of Chicago, Chicago, IL 60637, USA
| | - James X Tao
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Sandra Rose
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Shasha Wu
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
17
|
Hegeman DJ, Hong ES, Hernández VM, Chan CS. The external globus pallidus: progress and perspectives. Eur J Neurosci 2016; 43:1239-65. [PMID: 26841063 PMCID: PMC4874844 DOI: 10.1111/ejn.13196] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The external globus pallidus (GPe) of the basal ganglia is in a unique and powerful position to influence processing of motor information by virtue of its widespread projections to all basal ganglia nuclei. Despite the clinical importance of the GPe in common motor disorders such as Parkinson's disease, there is only limited information about its cellular composition and organizational principles. In this review, recent advances in the understanding of the diversity in the molecular profile, anatomy, physiology and corresponding behaviour during movement of GPe neurons are described. Importantly, this study attempts to build consensus and highlight commonalities of the cellular classification based on existing but contentious literature. Additionally, an analysis of the literature concerning the intricate reciprocal loops formed between the GPe and major synaptic partners, including both the striatum and the subthalamic nucleus, is provided. In conclusion, the GPe has emerged as a crucial node in the basal ganglia macrocircuit. While subtleties in the cellular makeup and synaptic connection of the GPe create new challenges, modern research tools have shown promise in untangling such complexity, and will provide better understanding of the roles of the GPe in encoding movements and their associated pathologies.
Collapse
Affiliation(s)
- Daniel J Hegeman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ellie S Hong
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vivian M Hernández
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
18
|
De Bruijn MAAM, Titulaer MJ. Anti-NMDAR encephalitis and other glutamate and GABA receptor antibody encephalopathies. HANDBOOK OF CLINICAL NEUROLOGY 2016; 133:199-217. [PMID: 27112679 DOI: 10.1016/b978-0-444-63432-0.00012-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the last few year, antibodies to various central nervous system receptors, particularly the glutamate and γ-aminobutyric acid (GABA) receptors, have been found to be associated with autoimmune neurologic disorders. The receptors include the N-methyl-d-aspartate receptor (NMDAR), the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), the metabotropic glutamate receptors (mGluRs), and GABA type A and B receptors (respectively GABAAR and GABABR). Compared to the previously described paraneoplastic antibodies directed at intracellular targets, the patients with receptor antibodies are often younger, they less frequently have malignancies, and they respond better to immunotherapy. Many of the patients have limbic encephalitis with amnesia, disorientation, seizures, and psychological or psychiatric symptoms, but those with NMDAR antibodies usually develop a more widespread form of encephalitis, often leading to a decrease in consciousness and requirement for long-term intensive care treatment. The autoantibodies bind directly to the synaptic or extrasynaptic receptors on the membrane surface, and have direct effects on signal transduction in central synapses. These conditions are very important to recognize as the symptoms and complications can be fatal when not treated in time, whereas with immunotherapy many patients recover considerably.
Collapse
Affiliation(s)
| | - Maarten J Titulaer
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
19
|
Coinciding decreases in discharge rate suggest that spontaneous pauses in firing of external pallidum neurons are network driven. J Neurosci 2015; 35:6744-51. [PMID: 25926452 DOI: 10.1523/jneurosci.5232-14.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The external segment of the globus pallidus (GPe) is one of the core nuclei of the basal ganglia, playing a major role in normal control of behavior and in the pathophysiology of basal ganglia-related disorders such as Parkinson's disease. In vivo, most neurons in the GPe are characterized by high firing rates (50-100 spikes/s), interspersed with long periods (∼0.6 s) of complete silence, which are termed GPe pauses. Previous physiological studies of single and pairs of GPe neurons have failed to fully disclose the physiological process by which these pauses originate. We examined 1001 simultaneously recorded pairs of high-frequency discharge GPe cells recorded from four monkeys during task-irrelevant periods, considering the activity in one cell while the other is pausing. We found that pauses (n = 137,278 pauses) coincide with a small yet significant reduction in firing rate (0.78 ± 0.136 spikes/s) in other GPe cells. Additionally, we found an increase in the probability of the simultaneously recorded cell to pause during the pause period of the "trigger" cell. Importantly, this increase in the probability to pause at the same time does not account for the reduction in firing rate by itself. Modeling of GPe cells as class 2 excitability neurons (Hodgkin, 1948) with common external inputs can explain our results. We suggest that common inputs decrease the GPe discharge rate and lead to a bifurcation phenomenon (pause) in some of the GPe neurons.
Collapse
|
20
|
Lavian H, Korngreen A. Inhibitory short-term plasticity modulates neuronal activity in the rat entopeduncular nucleus in vitro. Eur J Neurosci 2015; 43:870-84. [PMID: 26013247 DOI: 10.1111/ejn.12965] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/13/2015] [Accepted: 05/19/2015] [Indexed: 11/30/2022]
Abstract
The entopeduncular nucleus (EP) is one of the basal ganglia output nuclei integrating synaptic information from several pathways within the basal ganglia. The firing of EP neurons is modulated by two streams of inhibitory synaptic transmission, the direct pathway from the striatum and the indirect pathway from the globus pallidus. These two inhibitory pathways continuously modulate the firing of EP neurons. However, the link between these synaptic inputs to neuronal firing in the EP is unclear. To investigate this input-output transformation we performed whole-cell and perforated-patch recordings from single neurons in the entopeduncular nucleus in rat brain slices during repetitive stimulation of the striatum and the globus pallidus at frequencies within the in vivo activity range of these neurons. These recordings, supplemented by compartmental modelling, showed that GABAergic synapses from the striatum, converging on EP dendrites, display short-term facilitation and that somatic or proximal GABAergic synapses from the globus pallidus show short-term depression. Activation of striatal synapses during low presynaptic activity decreased postsynaptic firing rate by continuously increasing the inter-spike interval. Conversely, activation of pallidal synapses significantly affected postsynaptic firing during high presynaptic activity. Our data thus suggest that low-frequency striatal output may be encoded as progressive phase shifts in downstream nuclei of the basal ganglia while high-frequency pallidal output may continuously modulate EP firing.
Collapse
Affiliation(s)
- Hagar Lavian
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Alon Korngreen
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
21
|
Kim J, Kita H. Posttetanic enhancement of striato-pallidal synaptic transmission. J Neurophysiol 2015; 114:447-54. [PMID: 25995348 DOI: 10.1152/jn.00241.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/17/2015] [Indexed: 11/22/2022] Open
Abstract
The striato (Str)-globus pallidus external segment (GPe) projection plays major roles in the control of neuronal activity in the basal ganglia under both normal and pathological conditions. The present study used rat brain slice preparations to characterize the enhancement of Str-GPe synapses observed after repetitive conditioning stimuli (CS) of Str with the whole cell patch-clamp recording technique. The results show that 1) the Str-GPe synapses have a posttetanic enhancement (PTE) mechanism, which is considered to be a combination of an augmentation and a posttetanic potentiation; 2) the degree of PTE observed in GPe neurons had a wide range and was positively correlated with a wide range of paired-pulse ratios assessed before application of CS; 3) a wide range of CS, from frequencies as low as 2 Hz with as few as 5 pulses to as high as 100 Hz with 100 pulses, could induce PTE; 4) the decay time constant of PTE was dependent on the strength of CS and was prolonged greatly, up to 120 s, when strong CS were applied; and 5) the level of postsynaptic Cl(-) became a limiting factor for the degree of PTE when strong CS were applied. These results imply that Str-GPe synapses transmit inhibitions in a nonlinear activity-weighted manner, which may be suited for scaling timing and force of repeated or sequential body movements. Other possible factors controlling the induction of PTE and functional implications are also discussed.
Collapse
Affiliation(s)
- Juhyon Kim
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hitoshi Kita
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
22
|
Possible role of GABA-B receptor modulation in MPTP induced Parkinson's disease in rats. ACTA ACUST UNITED AC 2015; 67:211-7. [DOI: 10.1016/j.etp.2014.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 10/23/2014] [Accepted: 12/04/2014] [Indexed: 01/27/2023]
|
23
|
Tsuchiya H, Haga S, Takahashi Y, Kano T, Ishizaka Y, Mimori A. Identification of novel autoantibodies to GABA(B) receptors in patients with neuropsychiatric systemic lupus erythematosus. Rheumatology (Oxford) 2014; 53:1219-28. [PMID: 24599914 DOI: 10.1093/rheumatology/ket481] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The gamma-aminobutyric acid type B receptors (GABAR(B)) are G-protein coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. We identified GABAR(B) subunits as candidate antigens in patients with SLE using a random peptide display library. The aim of this study was to investigate the possible link between anti-GABAR(B) antibodies and disease activity and NPSLE. METHODS ELISA was performed with recombinant proteins of GABAR(B1b) and GABAR(B2) on serum samples from patients with SLE (n = 88), scleroderma (n = 20), myositis (n = 20) or vasculitis (n = 20) as well as healthy subjects (n = 20). Cerebrospinal fluid (CSF) from 23 patients with SLE was also examined. RESULTS Autoantibodies to GABAR(Bs) were exclusive to patients with SLE (P < 0.001) and positively associated with SLEDAI (anti-GABAR(B1b), P = 0.001; anti-GABAR(B2), P < 0.001). Of note, autoantibodies were positively linked with NPSLE (anti-GABAR(B1b), P = 0.02; anti-GABAR(B2), P = 0.03). Moreover, anti-GABAR(Bs) was detected in 61.5% of CSF samples from patients with active NPSLE, a frequency that was significantly higher than that for patients with non-SLE syndromes. CONCLUSION Anti-GABAR(B) antibodies could represent novel candidate markers for disease activity and NPSLE.
Collapse
Affiliation(s)
- Haruka Tsuchiya
- Division of Rheumatic Diseases, National Center for Global Health and Medicine and Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.Division of Rheumatic Diseases, National Center for Global Health and Medicine and Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Shiori Haga
- Division of Rheumatic Diseases, National Center for Global Health and Medicine and Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuko Takahashi
- Division of Rheumatic Diseases, National Center for Global Health and Medicine and Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Toshikazu Kano
- Division of Rheumatic Diseases, National Center for Global Health and Medicine and Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukihito Ishizaka
- Division of Rheumatic Diseases, National Center for Global Health and Medicine and Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Akio Mimori
- Division of Rheumatic Diseases, National Center for Global Health and Medicine and Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
24
|
High-frequency pallidal stimulation disrupts information flow through the pallidum by GABAergic inhibition. J Neurosci 2013; 33:2268-80. [PMID: 23392658 DOI: 10.1523/jneurosci.4144-11.2013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To elucidate the mechanism of deep brain stimulation (DBS) targeting the internal segment of the globus pallidus (GPi), neuronal activity of the GPi and the external segment of the globus pallidus (GPe) was examined during local electrical microstimulation in normal awake monkeys. Single-pulse stimulation of the GPi evoked brief inhibition in neighboring GPi neurons, which was mediated by GABA(A) receptors. High-frequency stimulation of the GPi completely inhibited spontaneous firings of GPi neurons by activation of GABA(A) and GABA(B) receptors. Local single-pulse stimulation directly excited some GPi neurons. Such directly evoked responses were also inhibited by high-frequency stimulation through GABA(A) receptors. In contrast to the GPi, single-pulse and high-frequency stimulation of the GPe induced complex responses composed of GABAergic inhibition and glutamatergic excitation in neighboring GPe neurons. Cortically evoked triphasic responses of GPi neurons were completely inhibited during high-frequency GPi stimulation. These findings suggest that GPi-DBS dissociates inputs and outputs in the GPi by intense GABAergic inhibition and disrupts information flow through the GPi.
Collapse
|
25
|
Deister CA, Dodla R, Barraza D, Kita H, Wilson CJ. Firing rate and pattern heterogeneity in the globus pallidus arise from a single neuronal population. J Neurophysiol 2012; 109:497-506. [PMID: 23114208 DOI: 10.1152/jn.00677.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intrinsic heterogeneity in networks of interconnected cells has profound effects on synchrony and spike-time reliability of network responses. Projection neurons of the globus pallidus (GPe) are interconnected by GABAergic inhibitory synapses and in vivo fire continuously but display significant rate and firing pattern heterogeneity. Despite being deprived of most of their synaptic inputs, GPe neurons in slices also fire continuously and vary greatly in their firing rate (1-70 spikes/s) and in regularity of their firing. We asked if this rate and pattern heterogeneity arises from separate cell types differing in rate, local synaptic interconnections, or variability of intrinsic properties. We recorded the resting discharge of GPe neurons using extracellular methods both in vivo and in vitro. Spike-to-spike variability (jitter) was measured as the standard deviation of interspike intervals. Firing rate and jitter covaried continuously, with slow firing being associated with higher variability than faster firing, as would be expected from heterogeneity arising from a single physiologically distinct cell type. The relationship between rate and jitter was unaffected by blockade of GABA and glutamate receptors. When the firing rate of individual neurons was altered with constant current, jitter changed to maintain the rate-jitter relationship seen across neurons. Long duration (30-60 min) recordings showed slow and spontaneous bidirectional drift in rate similar to the across-cell heterogeneity. Paired recordings in vivo and in vitro showed that individual cells wandered in rate independently of each other. Input conductance and rate wandered together, in a manner suggestive that both were due to fluctuations of an inward current.
Collapse
Affiliation(s)
- Christopher A Deister
- Department of Biology and Neurosciences Institute, University of Texas, San Antonio, Texas, USA.
| | | | | | | | | |
Collapse
|
26
|
Jin XT, Paré JF, Smith Y. GABA transporter subtype 1 and GABA transporter subtype 3 modulate glutamatergic transmission via activation of presynaptic GABA(B) receptors in the rat globus pallidus. Eur J Neurosci 2012; 36:2482-92. [PMID: 22616751 DOI: 10.1111/j.1460-9568.2012.08147.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intra-pallidal application of γ-aminobutyric acid (GABA) transporter subtype 1 (GAT-1) or GABA transporter subtype 3 (GAT-3) transporter blockers [1-(4,4-diphenyl-3-butenyl)-3-piperidinecarboxylic acid hydrochloride (SKF 89976A) or 1-[2-[tris(4-methoxyphenyl)methoxy]ethyl]-(S)-3-piperidinecarboxylic acid (SNAP 5114)] reduces the activity of pallidal neurons in monkey. This effect could be mediated through the activation of presynaptic GABA(B) heteroreceptors in glutamatergic terminals by GABA spillover following GABA transporter (GAT) blockade. To test this hypothesis, we applied the whole-cell recording technique to study the effects of SKF 89976A and SNAP 5114 on evoked excitatory postsynaptic currents (eEPSCs) in the presence of gabazine, a GABA(A) receptor antagonist, in rat globus pallidus slice preparations. Under the condition of postsynaptic GABA(B) receptor blockade by the intra-cellular application of N-(2,6-dimethylphenylcarbamoylmethyl)-triethylammonium bromide (OX314), bath application of SKF 89976A (10 μM) or SNAP 5114 (10 μM) decreased the amplitude of eEPSCs, without a significant effect on its holding current and whole cell input resistance. The inhibitory effect of GAT blockade on eEPSCs was blocked by (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid, a GABA(B) receptor antagonist. The paired-pulse ratio of eEPSCs was increased, whereas the frequency, but not the amplitude, of miniature excitatory postsynaptic currents was reduced in the presence of either GAT blocker, demonstrating a presynaptic effect. These results suggest that synaptically released GABA can inhibit glutamatergic transmission through the activation of presynaptic GABA(B) heteroreceptors following GAT-1 or GAT-3 blockade. In conclusion, our findings demonstrate that presynaptic GABA(B) heteroreceptors in putative glutamatergic subthalamic afferents to the globus pallidus are sensitive to increases in extracellular GABA induced by GAT inactivation, thereby suggesting that GAT blockade represents a potential mechanism by which overactive subthalamopallidal activity may be reduced in parkinsonism.
Collapse
Affiliation(s)
- Xiao-Tao Jin
- Division of Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA
| | | | | |
Collapse
|
27
|
Modulation of in vivo GABA-evoked responses by nitric oxide-active compounds in the globus pallidus of rat. J Neural Transm (Vienna) 2012; 119:911-21. [DOI: 10.1007/s00702-011-0760-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/25/2011] [Indexed: 10/14/2022]
|
28
|
Luo B, Wang HT, Su YY, Wu SH, Chen L. Activation of presynaptic GABAB receptors modulates GABAergic and glutamatergic inputs to the medial geniculate body. Hear Res 2011; 280:157-65. [DOI: 10.1016/j.heares.2011.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 04/21/2011] [Accepted: 05/17/2011] [Indexed: 02/03/2023]
|
29
|
Jaeger D, Kita H. Functional connectivity and integrative properties of globus pallidus neurons. Neuroscience 2011; 198:44-53. [PMID: 21835227 DOI: 10.1016/j.neuroscience.2011.07.050] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
The globus pallidus consists of the external (GPe) and the internal (GPi) segments. The GPe and GPi have different functional roles. The GPe is located centrally within multiple basal ganglia feedforward and feedback connections. The GPi is an output nucleus of the basal ganglia. A complex interplay between intrinsic pacemaking conductances and the balance of glutamatergic and GABAergic input largely determines the rate and pattern of firing of pallidal neurons. The initial part of this article introduces recent findings made in vivo that are related to the roles of glutamatergic and GABAergic inputs in the control of pallidal activity. The latter part describes the roles of intrinsic mechanisms of GPe neurons in the integration of the synaptic inputs. The presence of dendritic voltage-gated sodium channels may allow the initiation of dendritic spikes, giving distal inputs on the long and thin GPe dendrites an opportunity to strongly shape spiking activity. Basal ganglia disorders including Parkinson's disease, hemiballismus, and dystonias are accompanied by increased irregularity and synchronized bursts of pallidal activity. These changes may be in part due to changes in the GABA release in the GPe and GPi, but also involve intrinsic cellular changes in pallidal neurons.
Collapse
Affiliation(s)
- D Jaeger
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
30
|
Kita H, Kita T. Role of Striatum in the Pause and Burst Generation in the Globus Pallidus of 6-OHDA-Treated Rats. Front Syst Neurosci 2011; 5:42. [PMID: 21713126 PMCID: PMC3113166 DOI: 10.3389/fnsys.2011.00042] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/27/2011] [Indexed: 11/17/2022] Open
Abstract
Electrophysiological studies in patients and animal models of Parkinson's disease (PD) often reported increased burst activity of neurons in the basal ganglia. Neurons in the globus pallidus external (GPe) segment in 6-hydroxydopamine (6-OHDA)-treated hemi-parkinsonian rats fire with strong bursts interrupted by pauses. The goal of this study was to evaluate the hypothesis that dopamine (DA)-depletion increases burst firings of striatal (Str) neurons projecting to the GPe and that the increased Str–GPe burst inputs play a significant role in the generation of pauses and bursts in GPe and its projection sites. To evaluate this hypothesis, the unitary activity of Str and GPe was recorded from control and 6-OHDA-treated rats anesthetized with 0.5–1% isoflurane. The occurrence of pauses and bursts in the firings of GPe neurons was significantly higher in 6-OHDA than in normal rats. Muscimol injection into the Str of 6-OHDA rats increased average firing rate and greatly reduced the pauses and bursts in GPe. Recordings from Str revealed that most of the presumed projection neurons in control rats have very low spontaneous activity, and even the occasional neurons that did exhibit spontaneous burst firings did so with an average rate of less than 2 Hz. In DA-depleted Str, neurons having stronger bursts and a higher average firing rate were encountered more frequently. Juxtacellular labeling revealed that most of these neurons were medium spiny neurons projecting only to GPe. Injection of a behaviorally effective dose of methyl-l-DOPA into the Str of 6-OHDA rats significantly increased the average firing rate and decreased the number of pauses of GPe neurons. These data validate the hypothesis that DA-depletion increases burst firings of Str neurons projecting to the GPe and that the increased Str–GPe burst inputs play a significant role in the generation of pauses and bursts in GPe. These results suggest that treatment to reduce burst Str–GPe inhibitory inputs may help to restore some PD disabilities.
Collapse
Affiliation(s)
- Hitoshi Kita
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center Memphis, TN, USA
| | | |
Collapse
|
31
|
Galvan A, Hu X, Smith Y, Wichmann T. Localization and pharmacological modulation of GABA-B receptors in the globus pallidus of parkinsonian monkeys. Exp Neurol 2011; 229:429-39. [PMID: 21419765 DOI: 10.1016/j.expneurol.2011.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 01/11/2023]
Abstract
Changes in GABAergic transmission in the external and internal segments of the globus pallidus (GPe and GPi) contribute to the pathophysiology of the basal ganglia network in Parkinson's disease. Because GABA-B receptors are involved in the modulation of GABAergic transmission in GPe and GPi, it is possible that changes in the functions or localization of these receptors contribute to the changes in GABAergic transmission. To further examine this question, we investigated the anatomical localization of GABA-B receptors and the electrophysiologic effects of microinjections of GABA-B receptor ligands in GPe and GPi of MPTP-treated (parkinsonian) monkeys. We found that the pattern of cellular and ultrastructural localization of the GABA-BR1 subunit of the GABA-B receptor in GPe and GPi was not significantly altered in parkinsonian monkeys. However, the magnitude of reduction in firing rate of GPe and GPi neurons produced by microinjections of the GABA-B receptor agonist baclofen was larger in MPTP-treated animals than in normal monkeys. Injections of the GABA-B receptor antagonist CGP55845A were more effective in reducing the firing rate of GPi neurons in parkinsonian monkeys than in normal animals. In addition, the injections of baclofen in GPe and GPi, or of CGP55845A in GPi lead to a significant increase in the proportion of spikes in rebound bursts in parkinsonian animals, but not in normal monkeys. Thus, despite the lack of changes in the localization of GABA-BR1 subunits in the pallidum, GABA-B receptor-mediated effects are altered in the GPe and GPi of parkinsonian monkeys. These changes in GABA-B receptor function may contribute to bursting activities in the parkinsonian state.
Collapse
Affiliation(s)
- Adriana Galvan
- Yerkes National Primate Research Center, 954 Gatewood Road NE, Emory University Atlanta, GA 30329, USA.
| | | | | | | |
Collapse
|
32
|
High-frequency microstimulation in human globus pallidus and substantia nigra. Exp Brain Res 2010; 205:251-61. [DOI: 10.1007/s00221-010-2362-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 07/03/2010] [Indexed: 12/27/2022]
|
33
|
Lancaster E, Lai M, Peng X, Hughes E, Constantinescu R, Raizer J, Friedman D, Skeen MB, Grisold W, Kimura A, Ohta K, Iizuka T, Guzman M, Graus F, Moss SJ, Balice-Gordon R, Dalmau J. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol 2010; 9:67-76. [PMID: 19962348 PMCID: PMC2824142 DOI: 10.1016/s1474-4422(09)70324-2] [Citation(s) in RCA: 597] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Some encephalitides or seizure disorders once thought idiopathic now seem to be immune mediated. We aimed to describe the clinical features of one such disorder and to identify the autoantigen involved. METHODS 15 patients who were suspected to have paraneoplastic or immune-mediated limbic encephalitis were clinically assessed. Confocal microscopy, immunoprecipitation, and mass spectrometry were used to characterise the autoantigen. An assay of HEK293 cells transfected with rodent GABA(B1) or GABA(B2) receptor subunits was used as a serological test. 91 patients with encephalitis suspected to be paraneoplastic or immune mediated and 13 individuals with syndromes associated with antibodies to glutamic acid decarboxylase 65 were used as controls. FINDINGS All patients presented with early or prominent seizures; other symptoms, MRI, and electroencephalography findings were consistent with predominant limbic dysfunction. All patients had antibodies (mainly IgG1) against a neuronal cell-surface antigen; in three patients antibodies were detected only in CSF. Immunoprecipitation and mass spectrometry showed that the antibodies recognise the B1 subunit of the GABA(B) receptor, an inhibitory receptor that has been associated with seizures and memory dysfunction when disrupted. Confocal microscopy showed colocalisation of the antibody with GABA(B) receptors. Seven of 15 patients had tumours, five of which were small-cell lung cancer, and seven patients had non-neuronal autoantibodies. Although nine of ten patients who received immunotherapy and cancer treatment (when a tumour was found) showed neurological improvement, none of the four patients who were not similarly treated improved (p=0.005). Low levels of GABA(B1) receptor antibodies were identified in two of 104 controls (p<0.0001). INTERPRETATION GABA(B) receptor autoimmune encephalitis is a potentially treatable disorder characterised by seizures and, in some patients, associated with small-cell lung cancer and with other autoantibodies. FUNDING National Institutes of Health.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Autoantibodies/analysis
- Autoantibodies/blood
- Autoantibodies/cerebrospinal fluid
- Autoimmune Diseases of the Nervous System/immunology
- Autoimmune Diseases of the Nervous System/metabolism
- Autoimmune Diseases of the Nervous System/pathology
- Autoimmune Diseases of the Nervous System/therapy
- Brain/immunology
- Brain/metabolism
- Brain/pathology
- Cell Line
- Cells, Cultured
- Female
- Humans
- Immunoglobulin G/analysis
- Immunoglobulin G/immunology
- Limbic Encephalitis/immunology
- Limbic Encephalitis/metabolism
- Limbic Encephalitis/pathology
- Limbic Encephalitis/therapy
- Lung Neoplasms
- Male
- Middle Aged
- Neurons/immunology
- Neurons/metabolism
- Neurons/pathology
- Paraneoplastic Syndromes, Nervous System/immunology
- Paraneoplastic Syndromes, Nervous System/pathology
- Paraneoplastic Syndromes, Nervous System/therapy
- Rats
- Rats, Wistar
- Receptors, GABA-B/genetics
- Receptors, GABA-B/immunology
- Receptors, GABA-B/metabolism
- Seizures/immunology
- Seizures/metabolism
- Seizures/pathology
- Seizures/therapy
Collapse
Affiliation(s)
- Eric Lancaster
- Department of Neurology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sun H, Wu SH. The physiological role of pre- and postsynaptic GABA(B) receptors in membrane excitability and synaptic transmission of neurons in the rat's dorsal cortex of the inferior colliculus. Neuroscience 2009; 160:198-211. [PMID: 19409201 DOI: 10.1016/j.neuroscience.2009.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 02/02/2009] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
Abstract
In the inferior colliculus (IC), GABAergic inhibition mediated by GABA(A) receptors has been shown to play a significant role in regulating physiological responses, but little is known about the physiological role of GABA(B) receptors in IC neurons. In the present study, we used whole-cell patch clamp recording in vitro to investigate the effects of activation of GABA(B) receptors on membrane excitability and synaptic transmission of neurons in the rat's dorsal cortex of the inferior colliculus (ICD). Repetitive stimulation of GABAergic inputs to ICD neurons at high frequencies could elicit a slow and long-lasting postsynaptic response, which was reversibly abolished by the GABA(B) receptor antagonist, CGP 35348. The results suggest that postsynaptic GABA(B) receptors can directly mediate inhibitory synaptic transmission in ICD. The role of postsynaptic GABA(B) receptors in regulation of membrane excitability was further investigated by application of the GABA(B) receptor agonist, baclofen. Baclofen hyperpolarized the cell, reduced the membrane input resistance and firing rate, increased the threshold for generating action potentials (APs), and decreased the amplitude of the AP and its associated after-hyperpolarization. The Ca2+-mediated rebound depolarization following hyperpolarization and the depolarization hump at the beginning of membrane depolarization were also suppressed by baclofen. In voltage clamp experiments, baclofen induced inward rectifying K+ current and reduced low- and high-threshold Ca2+ currents, which may account for the suppression of membrane excitability by postsynaptic GABA(B) receptors. Application of baclofen also reduced excitatory synaptic responses mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and inhibitory synaptic responses mediated by GABA(A) receptors. Baclofen increased the ratios of 2nd/1st excitatory and inhibitory postsynaptic currents to paired-pulse stimulation of the synaptic inputs. These results suggest that fast glutamatergic and GABAergic synaptic transmission in ICD can be modulated by presynaptic GABA(B) receptors.
Collapse
Affiliation(s)
- H Sun
- Institute of Neuroscience, 335 Life Sciences Research Building, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S5B6, Canada
| | | |
Collapse
|
35
|
Sani S, Ostrem JL, Shimamoto S, Levesque N, Starr PA. Single unit "pauser" characteristics of the globus pallidus pars externa distinguish primary dystonia from secondary dystonia and Parkinson's disease. Exp Neurol 2009; 216:295-9. [PMID: 19146856 PMCID: PMC2659350 DOI: 10.1016/j.expneurol.2008.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 12/01/2008] [Accepted: 12/03/2008] [Indexed: 11/16/2022]
Abstract
The presence of high frequency discharge neurons with long periods of silence or "pauses" in the globus pallidus pars externa (GPe) is a unique identifying feature of this nucleus. Prior studies have demonstrated that pause characteristics reflect synaptic inputs into GPe. We hypothesized that GPe pause characteristics should distinguish movement disorders whose basal ganglia network abnormalities are different. We examined pause characteristics in 224 GPe units in patients with primary generalized dystonia, Parkinson's disease (PD), and secondary dystonia, undergoing single unit microelectrode recording for DBS placement in the awake state. Pauses in neuronal discharge were identified using the Poisson surprise method. Mean pause length in primary dystonia (606.8373.3) was higher than in PD (557.4366.6) (p<0.05). Interpause interval (IPI) was lower in primary dystonia (2331.63874.1) than PD (3646.45894.5) (p<0.01), and mean pause frequency was higher in primary dystonia (0.140.10) than PD (0.070.12) (p<0.01). Comparison of pause characteristics in primary versus secondary generalized dystonia revealed a significantly longer mean pause length in primary (606.8373.3) than in secondary dystonia (495.6236.5) (p<0.01). IPI was shorter in primary (2331.6+/-3874.1) than in secondary dystonia (3484.5+/-3981.6) (p<0.01). The results show that pause characteristics recorded in the awake human GPe distinguish primary dystonia from Parkinson's disease and secondary dystonia. The differences may reflect increased phasic input from striatal D2 receptor positive cells in primary dystonia, and are consistent with a recent model proposing that GPe provides capacity scaling for cortical input.
Collapse
Affiliation(s)
- Sepehr Sani
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
36
|
Mapelli L, Rossi P, Nieus T, D'Angelo E. Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. J Neurophysiol 2009; 101:3089-99. [PMID: 19339456 DOI: 10.1152/jn.91190.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the cerebellum, granule cells are inhibited by Golgi cells through GABAergic synapses generating complex responses involving both phasic neurotransmitter release and the establishment of ambient gamma-aminobutyric acid (GABA) levels. Although at this synapse the mechanisms of postsynaptic integration have been clarified to a considerable extent, the mechanisms of neurotransmitter release remained largely unknown. Here we have investigated the quantal properties of release during repetitive neurotransmission, revealing that tonic GABA(B) receptor activation by ambient GABA regulates release probability. Blocking GABA(B) receptors with CGP55845 enhanced the first inhibitory postsynaptic current (IPSC) and short-term depression in a train while reducing trial-to-trial variability and failures. The changes caused by CGP55845 were similar to those caused by increasing extracellular Ca(2+) concentration, in agreement with a presynaptic GABA(B) receptor modulation of release probability. However, the slow tail following IPSC peak demonstrated a remarkable temporal summation and was not modified by CGP55845 or extracellular Ca(2+) increase. This result shows that tonic activation of presynaptic GABA(B) receptors by ambient GABA selectively regulates the onset of inhibition bearing potential consequences for the dynamic regulation of signal transmission through the mossy fiber-granule cell pathway of the cerebellum.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Physiological and Pharmacological Sciences and National Consortium for the Physics of Matter, University of Pavia, I-27100 Pavia, Italy
| | | | | | | |
Collapse
|
37
|
Abstract
The current dominant concept for the control of saccadic eye movements by the basal ganglia is that release from tonic GABAergic inhibition by the substantia nigra pars reticulata (SNr) triggers burst firings of intermediate gray layer (SGI) neurons in the superior colliculus (SC) to allow saccade initiation. This hypothesis is based on the assumption that SNr cells inhibit excitatory projection neurons in the SGI. Here we show that nigrotectal fibers are connected to local GABAergic neurons in the SGI with a similar frequency to non-GABAergic neurons. This was accomplished by applying neuroanatomical tracing and slice electrophysiological experiments in GAD67-green fluorescent protein (GFP) knock-in mice, in which GABAergic neurons specifically express GFP. We also found that GABA(A), but not GABA(B), receptors subserve nigrotectal transmission. The present results revealed a novel aspect on the role of the basal ganglia in the control of saccades, e.g., the SNr not only regulates burst initiation but also modulates the spatiotemporal properties of premotor neurons via connections to local GABAergic neurons in the SC.
Collapse
|
38
|
Chen L, Wang HT, Han XH, Li YL, Cui QL, Xie JX. Behavioral and electrophysiological effects of pallidal GABAB receptor activation and blockade on haloperidol-induced akinesia in rats. Brain Res 2008; 1244:65-70. [DOI: 10.1016/j.brainres.2008.09.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/14/2008] [Accepted: 09/16/2008] [Indexed: 02/05/2023]
|
39
|
Rav-Acha M, Bergman H, Yarom Y. Pre- and Postsynaptic Serotoninergic Excitation of Globus Pallidus Neurons. J Neurophysiol 2008; 100:1053-66. [DOI: 10.1152/jn.00845.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The basal ganglia (BG) play a critical role in the pathogenesis and pathophysiology of Parkinson's disease (PD). Recent studies indicate that serotoninergic systems modulate BG activity and may be implicated in the pathophysiology and treatment of PD. The globus pallidus (GP), the rodent homologue of the primate GPe, is the main central nucleus of the basal ganglia, affecting the striatum, the subthalamic nucleus (STN), and BG output structures. We therefore studied the effect of serotonin (5-HT) and specific 5-HT agonists and antagonists on GP neurons from rat brain slices. Using intra- and extracellular recordings of GP neurons we found that serotonin increases the firing rate of GP neurons. Analyzing the effects of specific 5-HT agonists and antagonists on the firing rate of GP neurons showed that the increase in firing rate is due to the activation of 5-HT1B and 5-HT1A receptors. Intracellular recordings in both voltage- and current-clamp modes revealed that serotonin mediates its effect via pre- and postsynaptic mechanisms. The presynaptic effect is mediated by attenuation of γ-aminobutyric acid release, probably through activation of 5-HT1B receptors. Postsynaptically, serotonin activates a hyperpolarization-activated cation channel, probably via 5-HT1A receptors. Furthermore, serotonin decreases the fast synaptic depression characteristic of the striatal afferent input. The decreased serotonin concentrations in the BG nuclei in PD may contribute to depressed GP activity and enhance the emergence of BG pathological synchronous oscillations. We therefore suggest that future therapeutics of PD should be directed toward restoration of normal serotonin levels in BG nuclei.
Collapse
|
40
|
Darbin O, Wichmann T. Effects of Striatal GABAA-Receptor Blockade on Striatal and Cortical Activity in Monkeys. J Neurophysiol 2008; 99:1294-305. [DOI: 10.1152/jn.01191.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To elucidate the role of ambient striatal γ-aminobutyric acid (GABA) in the regulation of neuronal activity in the basal ganglia–thalamocortical circuits, we studied the effects of blocking striatal GABAA receptors on the electrical activities of single striatal neurons, on local field potentials (LFPs) in the striatum, and on motor cortical electroencephalograms (EEGs) in two monkeys. Striatal LFPs were recorded with a device that allowed us to simultaneously record field potentials and apply drugs by reverse microdialysis at the same site. Administration of the GABAA-receptor antagonist gabazine (SR95531, 10 and 500 μM) induced large-amplitude LFP fluctuations at the infusion site, occurring every 2–5 s for about 2 h after the start of the 20-min drug administration. These events were prevented by cotreatment with a GABAA-receptor agonist (muscimol, 100 μM) or a combination of ionotropic glutamate receptor antagonists (CNQX and MK-801, each given at 100 μM). Gabazine (10 μM) also increased the firing of single neurons recorded close to the injection site, but in most cases there was no correlation between single-neuron activity and the concomitantly recorded LFP signals from the same striatal region. In contrast, intrastriatal application of gabazine increased the correlation between striatal LFPs and EEG, and resulted in the appearance of recurrent EEG events that were temporally related to the striatal LFP events. These data provide evidence that a GABAergic “tone” in the monkey striatum controls the spontaneous activity of striatal neurons, as well as the level of striatal and cortical synchrony.
Collapse
|
41
|
Regulation of burst activity through presynaptic and postsynaptic GABA(B) receptors in mouse superior colliculus. J Neurosci 2008; 28:816-27. [PMID: 18216190 DOI: 10.1523/jneurosci.4666-07.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In slice preparations, electrical stimulation of the superficial gray layer (SGS) of the superior colliculus (SC) induces EPSC bursts in neurons in the intermediate gray layer (SGI) when GABA(A) receptor (GABA(A)R)-mediated inhibition is reduced. This preparation has been used as a model system to study signal processing involved in execution of short-latency orienting responses to visual stimuli such as saccadic eye movements. In the present study, we investigated the role of GABA(B) receptors (GABA(B)Rs) in modulating signal transmission in the above pathway with whole-cell patch-clamp recordings in SC slices obtained from GAD67-GFP knock-in mice. Perfusion of the slice with the GABA(B)R antagonist CGP52432 (CGP) greatly prolonged the duration of the EPSC bursts. Local application of CGP to the SGS but not to the SGI produced similar effects. Because SGS stimulation elicited bursts in GABAergic neurons in the SGS when GABA(A)Rs were blocked, these results suggest that GABA released after bursts activates GABA(B)Rs in the SGS, leading to reduced burst duration. We found both postsynaptic and presynaptic actions of GABA(B)Rs in the SGS; activation of postsynaptic GABA(B)Rs induced outward currents in narrow-field vertical cells, whereas it caused shunting inhibition in distal dendrites in wide-field vertical cells. On the other hand, activation of presynaptic GABA(B)Rs suppressed excitatory synaptic transmissions to non-GABAergic neurons in the SGS. These results indicate that synaptically released GABA can activate both presynaptic and postsynaptic GABA(B)Rs in the SGS and limit the duration of burst responses in the SC local circuit.
Collapse
|
42
|
Abstract
The external segment of the pallidum (GP(e)) is a relatively large nucleus located caudomedial to the neostriatum (Str). The GP(e) receives major inputs from two major basal ganglia input nuclei, the Str and the subthalamic nucleus (STN), and sends its output to many basal ganglia nuclei including the STN, the Str, the internal pallidal segment (GP(i)), and the substantia nigra (SN). Thus, the GPe can be placed at the center of the basal ganglia connection diagram (Fig. 1(A)). From the viewpoint that emphasizes the direct and indirect pathways of the basal ganglia, the GP(e) is a component of the indirect pathway that relays Str inputs to the STN. The indirect pathway can be traced in Fig. 1(A), although it comprises only a part of multiple indirect pathways. This chapter begins with a brief description of the anatomical organization of the GP(e) followed by physiological and pharmacological characterizations of GABAergic responses in the GP(e).
Collapse
Affiliation(s)
- Hitoshi Kita
- Department of Anatomy and Neurobiology, The University of Tennessee Memphis, 855 Monroe Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
43
|
Abstract
The internal segment of the globus pallidus (GP(i)) gathers many bits of information including movement-related activity from the striatum, external segment of the globus pallidus (GP(e)), and subthalamic nucleus (STN), and integrates them. The GP(i) receives rich GABAergic inputs from the striatum and GP(e), and gamma-aminobutyric acid (GABA) receptors are distributed in the GP(i) in a specific manner. Thus, inputs from the striatum and GP(e) may control GP(i) activity in a different way. The GP(i) finally conveys processed information outside the basal ganglia. Changes in GABAergic neurotransmission have been reported in movement disorders and suggested to play an important role in the pathophysiology of the symptoms.
Collapse
Affiliation(s)
- Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigo-naka, Myodaiji, Okazaki 444-8585, Japan.
| |
Collapse
|
44
|
Kaneda K, Kita T, Kita H. Repetitive Activation of Glutamatergic Inputs Evokes a Long-Lasting Excitation in Rat Globus Pallidus Neurons In Vitro. J Neurophysiol 2007; 97:121-33. [PMID: 17228082 DOI: 10.1152/jn.00010.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
External globus pallidus (GPe) neurons express abundant metabotropic glutamate receptor 1 (mGluR1) in their somata and dendrites and receive glutamatergic inputs mainly from the subthalamic nucleus. We investigated whether synaptically released glutamate could activate mGluR1s using whole cell and cell-attached recordings in rat brain slice preparations. Repetitive internal capsule stimulation evoked EPSPs followed by a slow depolarizing response (sDEPO) lasting 10–20 s. Bath application of both GABAA and GABAB receptor antagonists increased the amplitude of sDEPOs. A mixture of AMPA/kainate and N-methyl-d-aspartate receptor antagonists did not alter sDEPOs. The induction of sDEPOs was only partially mediated by mGluR1 because mGluR1 antagonists reduced but failed to completely block the responses. Voltage-clamp recordings revealed that slow inward currents sensitive to mGluR1 antagonist were larger at −60 than at −100 mV, whereas the currents insensitive to mGluR1 antagonist were larger at −100 than at −60 mV. In cell-attached recordings, repetitive internal capsule stimulation evoked long-lasting excitations in GPe neurons, which were also partially suppressed by mGluR1 antagonists. Application of a glutamate uptake inhibitor or an mGluR1 agonist significantly increased the spontaneous firing rate but decreased the excitations to repetitive stimulation. These results suggest that synaptically released glutamate can activate mGluR1, contributing to the induction of long-lasting excitation in GPe neurons and that background mGluR1 activation suppresses the slow mGluR1 responses. Thus mGluR1 may play important roles in the control of GPe neuronal activity.
Collapse
Affiliation(s)
- Katsuyuki Kaneda
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee-Memphis, 855 Monroe Avenue, Memphis, TN 38163, USA
| | | | | |
Collapse
|
45
|
Barbaresi P. Cellular and subcellular localization of the GABAB receptor 1a/b subunit in the rat periaqueductal gray matter. J Comp Neurol 2007; 505:478-92. [DOI: 10.1002/cne.21509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Misgeld U, Drew G, Yanovsky Y. Presynaptic modulation of GABA release in the basal ganglia. PROGRESS IN BRAIN RESEARCH 2007; 160:245-59. [PMID: 17499118 DOI: 10.1016/s0079-6123(06)60014-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Presynaptic receptors provide plasticity to GABAergic synapses in the basal ganglia network, in which GABA neurons outnumber all other neurons. Presynaptic receptors, mostly of the metabotropic type, enhance or reduce the strength of synaptic inhibition and are activated by ligands being released from the GABA terminals themselves (autoreceptors) or by ligands coming from other sources (heteroreceptors), including the target neurons innervated by the GABA terminals. The latter mechanism, termed retrograde signaling, is given particular emphasis as far as it occurs in substantia nigra.
Collapse
Affiliation(s)
- Ulrich Misgeld
- Institute of Physiology and Pathophysiology and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 326, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
47
|
Galvan A, Kuwajima M, Smith Y. Glutamate and GABA receptors and transporters in the basal ganglia: what does their subsynaptic localization reveal about their function? Neuroscience 2006; 143:351-75. [PMID: 17059868 PMCID: PMC2039707 DOI: 10.1016/j.neuroscience.2006.09.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 09/10/2006] [Accepted: 09/13/2006] [Indexed: 01/29/2023]
Abstract
GABA and glutamate, the main transmitters in the basal ganglia, exert their effects through ionotropic and metabotropic receptors. The dynamic activation of these receptors in response to released neurotransmitter depends, among other factors, on their precise localization in relation to corresponding synapses. The use of high resolution quantitative electron microscope immunocytochemical techniques has provided in-depth description of the subcellular and subsynaptic localization of these receptors in the CNS. In this article, we review recent findings on the ultrastructural localization of GABA and glutamate receptors and transporters in monkey and rat basal ganglia, at synaptic, extrasynaptic and presynaptic sites. The anatomical evidence supports numerous potential locations for receptor-neurotransmitter interactions, and raises important questions regarding mechanisms of activation and function of synaptic versus extrasynaptic receptors in the basal ganglia.
Collapse
Affiliation(s)
- A Galvan
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
48
|
Kita H, Chiken S, Tachibana Y, Nambu A. Origins of GABA(A) and GABA(B) receptor-mediated responses of globus pallidus induced after stimulation of the putamen in the monkey. J Neurosci 2006; 26:6554-62. [PMID: 16775143 PMCID: PMC6674022 DOI: 10.1523/jneurosci.1543-06.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The external and internal segments of the pallidum (GPe and GPi) receive heavy GABAergic innervations from the neostriatum, an input nucleus of the basal ganglia. The GPe neurons provide another major GABAergic innervation to the GPe itself and GPi. Although these GABAergic inputs are considered to play key roles in controlling the level and pattern of firing activity of pallidal neurons in both normal and pathophysiological conditions, these inputs have not been well characterized in vivo. Here, we characterized the responses of pallidal neurons to single and burst stimulation of the putamen (Put) in awake monkeys. Unit recordings in combination with local infusion of drugs and a chemical blockade of the subthalamic nucleus (STN), the major origin of excitatory afferents, revealed the following. Under STN blockade, the duration of single Put stimulation induced gabazine (a GABA(A) antagonist)-sensitive responses differed greatly in the GPe ( approximately 400 ms long) and in the GPi (60 ms long). Burst stimulation of the Put induced CGP55845 [(2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid] (a GABA(B) antagonist)-sensitive responses in the GPe and GPi. However, the data suggested that the origin of the GABA(B) responses was the GPe, not the Put. Local CGP55845 application increased the spontaneous firing of GPe and GPi neurons, suggesting that GABA released from the axons of GPe neurons effectively activates GABA(B) receptors in the GPe and GPi and contributes significantly to the control of the level of neuronal activity.
Collapse
Affiliation(s)
- Hitoshi Kita
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis, Tennessee 38163, USA.
| | | | | | | |
Collapse
|