1
|
Stern MA, Dingledine R, Gross RE, Berglund K. Epilepsy insights revealed by intravital functional optical imaging. Front Neurol 2024; 15:1465232. [PMID: 39268067 PMCID: PMC11390408 DOI: 10.3389/fneur.2024.1465232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Despite an abundance of pharmacologic and surgical epilepsy treatments, there remain millions of patients suffering from poorly controlled seizures. One approach to closing this treatment gap may be found through a deeper mechanistic understanding of the network alterations that underly this aberrant activity. Functional optical imaging in vertebrate models provides powerful advantages to this end, enabling the spatiotemporal acquisition of individual neuron activity patterns across multiple seizures. This coupled with the advent of genetically encoded indicators, be them for specific ions, neurotransmitters or voltage, grants researchers unparalleled access to the intact nervous system. Here, we will review how in vivo functional optical imaging in various vertebrate seizure models has advanced our knowledge of seizure dynamics, principally seizure initiation, propagation and termination.
Collapse
Affiliation(s)
- Matthew A Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurological Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
2
|
Li J, Yang F, Zhan F, Estin J, Iyer A, Zhao M, Niemeyer JE, Luo P, Li D, Lin W, Liou JY, Ma H, Schwartz TH. Mesoscopic mapping of hemodynamic responses and neuronal activity during pharmacologically induced interictal spikes in awake and anesthetized mice. J Cereb Blood Flow Metab 2024; 44:911-924. [PMID: 38230631 PMCID: PMC11318398 DOI: 10.1177/0271678x241226742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
Imaging hemodynamic responses to interictal spikes holds promise for presurgical epilepsy evaluations. Understanding the hemodynamic response function is crucial for accurate interpretation. Prior interictal neurovascular coupling data primarily come from anesthetized animals, impacting reliability. We simultaneously monitored calcium fluctuations in excitatory neurons, hemodynamics, and local field potentials (LFP) during bicuculline-induced interictal events in both isoflurane-anesthetized and awake mice. Isoflurane significantly affected LFP amplitude but had little impact on the amplitude and area of the calcium signal. Anesthesia also dramatically blunted the amplitude and latency of the hemodynamic response, although not its area of spread. Cerebral blood volume change provided the best spatial estimation of excitatory neuronal activity in both states. Targeted silencing of the thalamus in awake mice failed to recapitulate the impact of anesthesia on hemodynamic responses suggesting that isoflurane's interruption of the thalamocortical loop did not contribute either to the dissociation between the LFP and the calcium signal nor to the alterations in interictal neurovascular coupling. The blood volume increase associated with interictal spikes represents a promising mapping signal in both the awake and anesthetized states.
Collapse
Affiliation(s)
- Jing Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Fan Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Fengrui Zhan
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Joshua Estin
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Aditya Iyer
- Department of Anesthesiology, Weill Cornell Medicine, New York, USA
| | - Mingrui Zhao
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - James E Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Peijuan Luo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Dan Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jyun-you Liou
- Department of Anesthesiology, Weill Cornell Medicine, New York, USA
| | - Hongtao Ma
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| |
Collapse
|
3
|
Yang F, Li J, Song Y, Zhao M, Niemeyer JE, Luo P, Li D, Lin W, Ma H, Schwartz TH. Mesoscopic Mapping of Ictal Neurovascular Coupling in Awake Behaving Mice Using Optical Spectroscopy and Genetically Encoded Calcium Indicators. Front Neurosci 2021; 15:704834. [PMID: 34366781 PMCID: PMC8343016 DOI: 10.3389/fnins.2021.704834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Unambiguously identifying an epileptic focus with high spatial resolution is a challenge, especially when no anatomic abnormality can be detected. Neurovascular coupling (NVC)-based brain mapping techniques are often applied in the clinic despite a poor understanding of ictal NVC mechanisms, derived primarily from recordings in anesthetized animals with limited spatial sampling of the ictal core. In this study, we used simultaneous wide-field mesoscopic imaging of GCamp6f and intrinsic optical signals (IOS) to record the neuronal and hemodynamic changes during acute ictal events in awake, behaving mice. Similar signals in isoflurane-anesthetized mice were compared to highlight the unique characteristics of the awake condition. In awake animals, seizures were more focal at the onset but more likely to propagate to the contralateral hemisphere. The HbT signal, derived from an increase in cerebral blood volume (CBV), was more intense in awake mice. As a result, the “epileptic dip” in hemoglobin oxygenation became inconsistent and unreliable as a mapping signal. Our data indicate that CBV-based imaging techniques should be more accurate than blood oxygen level dependent (BOLD)-based imaging techniques for seizure mapping in awake behaving animals.
Collapse
Affiliation(s)
- Fan Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Jing Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Yan Song
- School of Nursing, Beihua University, Jilin City, China
| | - Mingrui Zhao
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - James E Niemeyer
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Peijuan Luo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Dan Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongtao Ma
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Theodore H Schwartz
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| |
Collapse
|
4
|
Liou JY, Ma H, Wenzel M, Zhao M, Baird-Daniel E, Smith EH, Daniel A, Emerson R, Yuste R, Schwartz TH, Schevon CA. Role of inhibitory control in modulating focal seizure spread. Brain 2019; 141:2083-2097. [PMID: 29757347 DOI: 10.1093/brain/awy116] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/04/2018] [Indexed: 11/12/2022] Open
Abstract
Focal seizure propagation is classically thought to be spatially contiguous. However, distribution of seizures through a large-scale epileptic network has been theorized. Here, we used a multielectrode array, wide field calcium imaging, and two-photon calcium imaging to study focal seizure propagation pathways in an acute rodent neocortical 4-aminopyridine model. Although ictal neuronal bursts did not propagate beyond a 2-3-mm region, they were associated with hemisphere-wide field potential fluctuations and parvalbumin-positive interneuron activity outside the seizure focus. While bicuculline surface application enhanced contiguous seizure propagation, focal bicuculline microinjection at sites distant to the 4-aminopyridine focus resulted in epileptic network formation with maximal activity at the two foci. Our study suggests that both classical and epileptic network propagation can arise from localized inhibition defects, and that the network appearance can arise in the context of normal brain structure without requirement for pathological connectivity changes between sites.
Collapse
Affiliation(s)
- Jyun-You Liou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Hongtao Ma
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medical College, New York, NY, USA
| | - Michael Wenzel
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA
| | - Mingrui Zhao
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medical College, New York, NY, USA
| | - Eliza Baird-Daniel
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medical College, New York, NY, USA
| | - Elliot H Smith
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Andy Daniel
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medical College, New York, NY, USA
| | - Ronald Emerson
- Hospital for Special Surgery, Weill Cornell Medical College, 535 East 70th Street, New York, NY, USA
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Feil Family Brain and Mind Research Institute, Sackler Brain and Spine Institute, Weill Cornell Medical College, New York, NY, USA
| | - Catherine A Schevon
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
5
|
Landi S, Petrucco L, Sicca F, Ratto GM. Transient Cognitive Impairment in Epilepsy. Front Mol Neurosci 2019; 11:458. [PMID: 30666185 PMCID: PMC6330286 DOI: 10.3389/fnmol.2018.00458] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 11/28/2018] [Indexed: 02/05/2023] Open
Abstract
Impairments of the dialog between excitation and inhibition (E/I) is commonly associated to neuropsychiatric disorders like autism, bipolar disorders and epilepsy. Moderate levels of hyperexcitability can lead to mild alterations of the EEG and are often associated with cognitive deficits even in the absence of overt seizures. Indeed, various testing paradigms have shown degraded performances in presence of acute or chronic non-ictal epileptiform activity. Evidences from both animal models and the clinics suggest that anomalous activity can cause cognitive deficits by transiently disrupting cortical processing, independently from the underlying etiology of the disease. Here, we will review our understanding of the influence of an abnormal EEG activity on brain computation in the context of the available clinical data and in genetic or pharmacological animal models.
Collapse
Affiliation(s)
- Silvia Landi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Luigi Petrucco
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Federico Sicca
- Department of Developmental Neuroscience, Fondazione IRCCS Stella Maris, Pisa, Italy
| | - Gian Michele Ratto
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
6
|
Gómez CA, Sutin J, Wu W, Fu B, Uhlirova H, Devor A, Boas DA, Sakadžić S, Yaseen MA. Phasor analysis of NADH FLIM identifies pharmacological disruptions to mitochondrial metabolic processes in the rodent cerebral cortex. PLoS One 2018; 13:e0194578. [PMID: 29561904 PMCID: PMC5862490 DOI: 10.1371/journal.pone.0194578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/06/2018] [Indexed: 01/20/2023] Open
Abstract
Investigating cerebral metabolism in vivo at a microscopic level is essential for understanding brain function and its pathological alterations. The intricate signaling and metabolic dynamics between neurons, glia, and microvasculature requires much more detailed understanding to better comprehend the mechanisms governing brain function and its disease-related changes. We recently demonstrated that pharmacologically-induced alterations to different steps of cerebral metabolism can be distinguished utilizing 2-photon fluorescence lifetime imaging of endogenous reduced nicotinamide adenine dinucleotide (NADH) fluorescence in vivo. Here, we evaluate the ability of the phasor analysis method to identify these pharmacological metabolic alterations and compare the method's performance with more conventional nonlinear curve-fitting analysis. Visualization of phasor data, both at the fundamental laser repetition frequency and its second harmonic, enables resolution of pharmacologically-induced alterations to mitochondrial metabolic processes from baseline cerebral metabolism. Compared to our previous classification models based on nonlinear curve-fitting, phasor-based models required fewer parameters and yielded comparable or improved classification accuracy. Fluorescence lifetime imaging of NADH and phasor analysis shows utility for detecting metabolic alterations and will lead to a deeper understanding of cerebral energetics and its pathological changes.
Collapse
Affiliation(s)
- Carlos A. Gómez
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Jason Sutin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Weicheng Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Hana Uhlirova
- Department of Neurosciences and Radiology, UC San Diego, La Jolla, CA, United States of America
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
- Department of Neurosciences and Radiology, UC San Diego, La Jolla, CA, United States of America
| | - David A. Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Mohammad A. Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Yaseen MA, Sutin J, Wu W, Fu B, Uhlirova H, Devor A, Boas DA, Sakadžić S. Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in vivo. BIOMEDICAL OPTICS EXPRESS 2017; 8:2368-2385. [PMID: 28663879 PMCID: PMC5480486 DOI: 10.1364/boe.8.002368] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 05/06/2023]
Abstract
Evaluating cerebral energy metabolism at microscopic resolution is important for comprehensively understanding healthy brain function and its pathological alterations. Here, we resolve specific alterations in cerebral metabolism in vivo in Sprague Dawley rats utilizing minimally-invasive 2-photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence. Time-resolved fluorescence lifetime measurements enable distinction of different components contributing to NADH autofluorescence. Ostensibly, these components indicate different enzyme-bound formulations of NADH. We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in glycolytic and oxidative metabolism. Classification models were developed with the experimental data and used to predict the metabolic impairments induced during separate experiments involving bicuculline-induced seizures. The models consistently predicted that prolonged focal seizure activity results in impaired activity in the electron transport chain, likely the consequence of inadequate oxygen supply. 2P-FLIM observations of cerebral NADH will help advance our understanding of cerebral energetics at a microscopic scale. Such knowledge will aid in our evaluation of healthy and diseased cerebral physiology and guide diagnostic and therapeutic strategies that target cerebral energetics.
Collapse
Affiliation(s)
- Mohammad A. Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jason Sutin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Weicheng Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hana Uhlirova
- Department of Neurosciences and Radiology, UC San Diego, La Jolla, CA, USA
- Current affiliation: Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurosciences and Radiology, UC San Diego, La Jolla, CA, USA
| | - David A. Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
8
|
Petrucco L, Pracucci E, Brondi M, Ratto GM, Landi S. Epileptiform activity in the mouse visual cortex interferes with cortical processing in connected areas. Sci Rep 2017; 7:40054. [PMID: 28071688 PMCID: PMC5223162 DOI: 10.1038/srep40054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/08/2016] [Indexed: 01/19/2023] Open
Abstract
Epileptiform activity is associated with impairment of brain function even in absence of seizures, as demonstrated by failures in various testing paradigm in presence of hypersynchronous interictal spikes (ISs). Clinical evidence suggests that cognitive deficits might be directly caused by the anomalous activity rather than by its underlying etiology. Indeed, we seek to understand whether ISs interfere with neuronal processing in connected areas not directly participating in the hypersynchronous activity in an acute model of epilepsy. Here we cause focal ISs in the visual cortex of anesthetized mice and we determine that, even if ISs do not invade the opposite hemisphere, the local field potential is subtly disrupted with a modulation of firing probability imposed by the contralateral IS activity. Finally, we find that visual processing is altered depending on the temporal relationship between ISs and stimulus presentation. We conclude that focal ISs interact with normal cortical dynamics far from the epileptic focus, disrupting endogenous oscillatory rhythms and affecting information processing.
Collapse
Affiliation(s)
- L Petrucco
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore Pisa, Pisa, Italy
| | - E Pracucci
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore Pisa, Pisa, Italy
| | - M Brondi
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore Pisa, Pisa, Italy
| | - G M Ratto
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore Pisa, Pisa, Italy
| | - S Landi
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore Pisa, Pisa, Italy
| |
Collapse
|
9
|
Vitantonio D, Xu W, Geng X, Wolff BS, Takagaki K, Motamedi GK, Wu JY. Emergence of dominant initiation sites for interictal spikes in rat neocortex. J Neurophysiol 2015; 114:3315-25. [PMID: 26445866 DOI: 10.1152/jn.00471.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/01/2015] [Indexed: 11/22/2022] Open
Abstract
Neuronal populations with unbalanced inhibition can generate interictal spikes (ISs), where each IS starts from a small initiation site and then spreads activation across a larger area. We used in vivo voltage-sensitive dye imaging to map the initiation site of ISs in rat visual cortex disinhibited by epidural application of bicuculline methiodide. Immediately after the application of bicuculline, the IS initiation sites were widely distributed over the entire disinhibited area. After ∼ 10 min, a small number of sites became "dominant" and initiated the majority of the ISs throughout the course of imaging. Such domination also occurred in cortical slices, which lack long-range connections between the cortex and subcortical structures. This domination of IS initiation sites may allow timing-related plasticity mechanisms to provide a spatial organization where connections projecting outward from the dominant initiation site become strengthened. Understanding the spatiotemporal organization of IS initiation sites may contribute to our understanding of epileptogenesis in its very early stages, because a dominant IS initiation site with strengthened outward connectivity may ultimately develop into a seizure focus.
Collapse
Affiliation(s)
- Daniel Vitantonio
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia; Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia
| | - Weifeng Xu
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia
| | - Xinling Geng
- Department of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Brian S Wolff
- Georgetown University Medical Center, Interdepartmental Program of Neuroscience, Washington, District of Columbia; and
| | - Kentaroh Takagaki
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Gholam K Motamedi
- Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia
| | - Jian-young Wu
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia;
| |
Collapse
|
10
|
Raguet H, Monier C, Foubert L, Ferezou I, Fregnac Y, Peyré G. Spatially Structured Sparse Morphological Component Separation for voltage-sensitive dye optical imaging. J Neurosci Methods 2015; 257:76-96. [PMID: 26434707 DOI: 10.1016/j.jneumeth.2015.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Voltage-sensitive dye optical imaging is a promising technique for studying in vivo neural assemblies dynamics where functional clustering can be visualized in the imaging plane. Its practical potential is however limited by many artifacts. NEW METHOD We present a novel method, that we call "SMCS" (Spatially Structured Sparse Morphological Component Separation), to separate the relevant biological signal from noise and artifacts. It extends Generalized Linear Models (GLM) by using a set of convex non-smooth regularization priors adapted to the morphology of the sources and artifacts to capture. RESULTS We make use of first order proximal splitting algorithms to solve the corresponding large scale optimization problem. We also propose an automatic parameters selection procedure based on statistical risk estimation methods. COMPARISON WITH EXISTING METHODS We compare this method with blank subtraction and GLM methods on both synthetic and real data. It shows encouraging perspectives for the observation of complex cortical dynamics. CONCLUSIONS This work shows how recent advances in source separation can be integrated into a biophysical model of VSDOI. Going beyond GLM methods is important to capture transient cortical events such as propagating waves.
Collapse
Affiliation(s)
- Hugo Raguet
- CNRS and Ceremade, Université Paris-Dauphine, Place du Maréchal De Lattre De Tassigny, 75775 Paris Cedex 16, France.
| | - Cyril Monier
- Unit of Neuroscience, Information and Complexity, CNRS UPR-3293, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | - Luc Foubert
- Unit of Neuroscience, Information and Complexity, CNRS UPR-3293, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | - Isabelle Ferezou
- Unit of Neuroscience, Information and Complexity, CNRS UPR-3293, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | - Yves Fregnac
- Unit of Neuroscience, Information and Complexity, CNRS UPR-3293, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | - Gabriel Peyré
- CNRS and Ceremade, Université Paris-Dauphine, Place du Maréchal De Lattre De Tassigny, 75775 Paris Cedex 16, France.
| |
Collapse
|
11
|
Synchronous inhibitory potentials precede seizure-like events in acute models of focal limbic seizures. J Neurosci 2015; 35:3048-55. [PMID: 25698742 DOI: 10.1523/jneurosci.3692-14.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interictal spikes in models of focal seizures and epilepsies are sustained by the synchronous activation of glutamatergic and GABAergic networks. The nature of population spikes associated with seizure initiation (pre-ictal spikes; PSs) is still undetermined. We analyzed the networks involved in the generation of both interictal and PSs in acute models of limbic cortex ictogenesis induced by pharmacological manipulations. Simultaneous extracellular and intracellular recordings from both principal cells and interneurons were performed in the medial entorhinal cortex of the in vitro isolated guinea pig brain during focal interictal and ictal discharges induced in the limbic network by intracortical and brief arterial infusions of either bicuculline methiodide (BMI) or 4-aminopyridine (4AP). Local application of BMI in the entorhinal cortex did not induce seizure-like events (SLEs), but did generate periodic interictal spikes sensitive to the glutamatergic non-NMDA receptor antagonist DNQX. Unlike local applications, arterial perfusion of either BMI or 4AP induced focal limbic SLEs. PSs just ahead of SLE were associated with hyperpolarizing potentials coupled with a complete blockade of firing in principal cells and burst discharges in putative interneurons. Interictal population spikes recorded from principal neurons between two SLEs correlated with a depolarizing potential. We demonstrate in two models of acute limbic SLE that PS events are different from interictal spikes and are sustained by synchronous activation of inhibitory networks. Our findings support a prominent role of synchronous network inhibition in the initiation of a focal seizure.
Collapse
|
12
|
Liang J, Xu W, Geng X, Wu JY. Monitoring Population Membrane Potential Signals from Neocortex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:171-96. [PMID: 26238053 DOI: 10.1007/978-3-319-17641-3_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Voltage-sensitive dyes (VSDs) and optical imaging are useful tools for studying spatiotemporal patterns of population neuronal activity in cortex. Because fast VSDs respond to membrane potential changes with microsecond temporal resolution, these are better suited than calcium indicators for recording rapid neural signals. Here we describe methods for using a 464 element photodiode array and fast VSDs to record signals ranging from large scale network activity in brain slices and in vivo mammalian preparations with sensitivity comparable to local field potential (LFP) recordings. With careful control of dye bleaching and phototoxicity, long recording times can be achieved. Absorption dyes have less photo-toxicity than fluorescent dyes. In brain slices, the total recording time in each slice can be 1,000-2,000 s, which can be divided into hundreds of short recording trials over several hours. In intact brains when fluorescent dyes are used, reduced light intensity can also increase recording time. In this chapter, we will discuss technical details for the methods to achieve reliable VSD imaging with high sensitivity and long recording time.
Collapse
Affiliation(s)
- Jianmin Liang
- Department of Neuroscience, Georgetown University Medical Center, 207A, Basic Science Building, 3900 Reservoir Road NW, Washington, DC, 20057, USA
| | | | | | | |
Collapse
|
13
|
Hill MRH, Greenfield SA. Characterization of early cortical population response to thalamocortical input in vitro. Front Neurosci 2014; 7:273. [PMID: 24550766 PMCID: PMC3907706 DOI: 10.3389/fnins.2013.00273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/23/2013] [Indexed: 11/13/2022] Open
Abstract
The in vitro thalamocortical slice preparation of mouse barrel cortex allows for stimulation of the cortex through its natural afferent thalamocortical pathway. This preparation was used here to investigate the first stage of cortical processing in the large postsynaptic dendritic networks as revealed by voltage sensitive dye imaging (VSDI). We identified the precise location and dimensions of two clearly distinguishable dendritic networks, one in the granular layer (GL) IV and one in the infragranular layer (IGL) V and VI and showed that they have different physiological properties. DiI fluorescent staining further revealed that thalamocortical axons project on to these two networks in the typical barrel like form, not only in the granular but also in the IGL. Finally we investigated the short-term dynamics of both the VSDI signal and the local field potential (LFP) in response to a train of eight-pulses at various frequencies in both these layers. We found evidence of differences in the plasticity between the first two response peaks compared to the remaining six peaks as well as differences in short-term plasticity between the VSDI response and the LFP. Our findings suggest, that at least early cortical processing takes place in two separate dendritic networks that may stand at the beginning of further parallel computation. The detailed characterization of the parameters of these networks may provide tools for further research into the complex dynamics of large dendritic networks and their role in cortical computation.
Collapse
|
14
|
Institoris A, Lenti L, Domoki F, Wappler E, Gáspár T, Katakam PV, Bari F, Busija DW. Cerebral microcirculatory responses of insulin-resistant rats are preserved to physiological and pharmacological stimuli. Microcirculation 2013; 19:749-56. [PMID: 22845548 DOI: 10.1111/j.1549-8719.2012.00213.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/23/2012] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Previously, we have shown that IR impairs the vascular reactivity of the major cerebral arteries of ZO rats prior to the occurrence of Type-II diabetes mellitus. However, the functional state of the microcirculation in the cerebral cortex is still being explored. METHODS We tested the local CoBF responses of 11-13-week-old ZO (n = 31) and control ZL (n = 32) rats to several stimuli measured by LDF using a closed cranial window setup. RESULTS The topical application of 1-100 μm bradykinin elicited the same degree of CoBF elevation in both ZL and ZO groups. There was no significant difference in the incidence, latency, and amplitude of the NMDA-induced CSD-related hyperemia between the ZO and ZL groups. Hypercapnic CoBF response to 5% carbon-dioxide ventilation did not significantly change in the ZO compared with the ZL. Topical bicuculline-induced cortical seizure was accompanied by the same increase of CoBF in both the ZO and ZL at all bicuculline doses. CONCLUSIONS CoBF responses of the microcirculation are preserved in the early period of the metabolic syndrome, which creates an opportunity for intervention to prevent and restore the function of the major cerebral vascular beds.
Collapse
Affiliation(s)
- Adam Institoris
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Grandy TH, Greenfield SA, Devonshire IM. An evaluation of in vivo voltage-sensitive dyes: pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts. J Neurophysiol 2012; 108:2931-45. [DOI: 10.1152/jn.00512.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the current study, we investigated pharmacological side effects and signal-to-noise ratios (SNRs) of two commonly used voltage-sensitive dyes (VSDs): the blue dye RH-1691 (1 mg/ml) and the red dye di-4-ANEPPS (0.1 mg/ml), applied in vivo to the rat barrel cortex. Blue dyes are often favored over red dyes in in vivo studies due to their apparent superior SNR, partly because their fluorescence spectrum is farther away from the hemoglobin absorption spectrum, making them less prone to heartbeat-associated brain-pulsation artifacts (BPA). We implemented a previously reported template-based BPA removal algorithm and evaluated its applicability to di-4-ANEPPS before comparing characteristics of the two dyes. Somatosensory-evoked potentials (SEPs) were also recorded. Whereas SEPs recorded before and after application of di-4-ANEPPS failed to exhibit demonstrable differences, RH-1691 caused a significant and prolonged increase in SEP amplitude for several hours. In contrast, neither dye influenced the spontaneous cortical activity as assessed by the spectral content of the EEG. Both dyes turned out to be strikingly similar with respect to changes in fractional fluorescence as a function of SEP response amplitude, as well as regarding shot noise characteristics after removal of the BPA. Thus there is strong evidence that the increased SNR for RH-1691 is a consequence of an artificially increased signal. When applying an appropriate BPA removal algorithm, di-4-ANEPPS has proven to be suitable for single-trial in vivo VSD imaging (VSDI) and produces no detectable neurophysiological changes in the system under investigation. Taken together, our data argue for a careful re-evaluation of pharmacological side effects of RH-1691 and support the applicability of di-4-ANEPPS for stable single-trial in vivo VSDI recordings.
Collapse
Affiliation(s)
- T. H. Grandy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; and
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - S. A. Greenfield
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; and
| | - I. M. Devonshire
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; and
| |
Collapse
|
16
|
Gao X, Xu W, Wang Z, Takagaki K, Li B, Wu JY. Interactions between two propagating waves in rat visual cortex. Neuroscience 2012; 216:57-69. [PMID: 22561730 DOI: 10.1016/j.neuroscience.2012.04.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/05/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
Abstract
Sensory-evoked propagating waves are frequently observed in sensory cortex. However, it is largely unknown how an evoked propagating wave affects the activity evoked by subsequent sensory inputs, or how two propagating waves interact when evoked by simultaneous sensory inputs. Using voltage-sensitive dye imaging, we investigated the interactions between two evoked waves in rat visual cortex, and the spatiotemporal patterns of depolarization in the neuronal population due to wave-to-wave interactions. We have found that visually-evoked propagating waves have a refractory period of about 300 ms, within which the response to a subsequent visual stimulus is suppressed. Simultaneous presentation of two visual stimuli at different locations can evoke two waves propagating toward each other, and these two waves fuse. Fusion significantly shortens the latency and half-width of the response, leading to changes in the spatial profile of evoked population activity. The visually-evoked propagating wave may also be suppressed by a preceding spontaneous wave. The refractory period following a propagating wave and the fusion between two waves may contribute to visual sensory processing by modifying the spatiotemporal profile of population neuronal activity evoked by sensory events.
Collapse
Affiliation(s)
- X Gao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
17
|
Ma H, Zhao M, Schwartz TH. Dynamic neurovascular coupling and uncoupling during ictal onset, propagation, and termination revealed by simultaneous in vivo optical imaging of neural activity and local blood volume. Cereb Cortex 2012; 23:885-99. [PMID: 22499798 PMCID: PMC3593576 DOI: 10.1093/cercor/bhs079] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Traditional models of ictal propagation involve the concept of an initiation site and a progressive outward march of activation. The process of neurovascular coupling, whereby the brain supplies oxygenated blood to metabolically active neurons presumably results in a similar outward cascade of hyperemia. However, ictal neurovascular coupling has never been assessed in vivo using simultaneous measurements of membrane potential change and hyperemia with wide spatial sampling. In an acute rat ictal model, using simultaneous intrinsic optical signal (IOS) and voltage-sensitive dye (VSD) imaging of cerebral blood volume and membrane potential changes, we demonstrate that seizures consist of multiple dynamic multidirectional waves of membrane potential change with variable onset sites that spread through a widespread network. Local blood volume evolves on a much slower spatiotemporal scale. At seizure onset, the VSD waves extend beyond the IOS signal. During evolution, spatial correlation with hemodynamic signal only exists briefly at the maximal spread of the VSD signal. At termination, the IOS signal extends spatially and temporally beyond the VSD waves. Hence, vascular reactivity evolves in a separate but parallel fashion to membrane potential changes resulting in a mechanism of neurovascular coupling and uncoupling, which is as dynamic as the seizure itself.
Collapse
Affiliation(s)
- Hongtao Ma
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | |
Collapse
|
18
|
Takeshita D, Bahar S. Synchronization analysis of voltage-sensitive dye imaging during focal seizures in the rat neocortex. CHAOS (WOODBURY, N.Y.) 2011; 21:047506. [PMID: 22225380 DOI: 10.1063/1.3640043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Seizures are often assumed to result from an excess of synchronized neural activity. However, various recent studies have suggested that this is not necessarily the case. We investigate synchronization during focal neocortical seizures induced by injection of 4-aminopyridine (4AP) in the rat neocortex in vivo. Neocortical activity is monitored by field potential recording and by the fluorescence of the voltage-sensitive dye RH-1691. After removal of artifacts, the voltage-sensitive dye (VSD) signal is analyzed using the nonlinear dynamics-based technique of stochastic phase synchronization in order to determine the degree of synchronization within the neocortex during the development and spread of each seizure event. Results show a large, statistically significant increase in synchronization during seizure activity. Synchrony is typically greater between closer pixel pairs during a seizure event; the entire seizure region is synchronized almost exactly in phase. This study represents, to our knowledge, the first application of synchronization analysis methods to mammalian VSD imaging in vivo. Our observations indicate a clear increase in synchronization in this model of focal neocortical seizures across a large area of the neocortex; a sharp increase in synchronization during seizure events was observed in all 37 seizures imaged. The results are consistent with a recent computational study which simulates the effect of 4AP in a neocortical neuron model.
Collapse
Affiliation(s)
- Daisuke Takeshita
- Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis, One University Blvd., St. Louis, Missouri 63121, USA.
| | | |
Collapse
|
19
|
Bailey JL, O’Connor V, Hannah M, Hewlett L, Biggs TE, Sundstrom LE, Findlay MW, Chad JE. In vitro CNS tissue analogues formed by self-organisation of reaggregated post-natal brain tissue. J Neurochem 2011; 117:1020-32. [DOI: 10.1111/j.1471-4159.2011.07276.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Devonshire IM, Grandy TH, Dommett EJ, Greenfield SA. Effects of urethane anaesthesia on sensory processing in the rat barrel cortex revealed by combined optical imaging and electrophysiology. Eur J Neurosci 2010; 32:786-97. [PMID: 20646050 DOI: 10.1111/j.1460-9568.2010.07322.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The spatiotemporal dynamics of neuronal assemblies evoked by sensory stimuli have not yet been fully characterised, especially the extent to which they are modulated by prevailing brain states. In order to examine this issue, we induced different levels of anaesthesia, distinguished by specific electroencephalographic indices, and compared somatosensory-evoked potentials (SEPs) with voltage-sensitive dye imaging (VSDI) responses in the rat barrel cortex evoked by whisker deflection. At deeper levels of anaesthesia, all responses were reduced in amplitude but, surprisingly, only VSDI responses exhibited prolonged activation resulting in a delayed return to baseline. Further analysis of the optical signal demonstrated that the reduction in response amplitude was constant across the area of activation, resulting in a global down-scaling of the population response. The manner in which the optical signal relates to the various neuronal generators that produce the SEP signal is also discussed. These data provide information regarding the impact of anaesthetic agents on the brain, and show the value of combining spatial analyses from neuroimaging approaches with more traditional electrophysiological techniques.
Collapse
Affiliation(s)
- Ian M Devonshire
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK.
| | | | | | | |
Collapse
|
21
|
Ma H, Zhao M, Suh M, Schwartz TH. Hemodynamic surrogates for excitatory membrane potential change during interictal epileptiform events in rat neocortex. J Neurophysiol 2009; 101:2550-62. [PMID: 19244357 DOI: 10.1152/jn.90694.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hemodynamic changes in the brain are often used as surrogates for epileptic neuronal activity in both the laboratory and the clinic (e.g., intrinsic signal, functional magnetic resonance imaging and single-photon emission computed tomography) in spite of the fact that perfusion-based signals have been shown to overestimate the population of spiking neurons. In addition, mechanisms of neurovascular coupling that apply during normal cortical processing may not be relevant in pathological circumstances such as epilepsy. For these reasons, we investigated the spatiotemporal dynamics of epileptic neurovascular coupling using voltage-sensitive dyes (VSDs) to generate spatial maps of excitatory membrane activity and intrinsic optical spectroscopy (IOS) to measure deoxy-hemoglobin and total hemoglobin, i.e., cerebral blood volume (CBV), in vivo during interictal spikes in rat neocortex to examine their spatiotemporal correlations. We hypothesized that the IOS signal would correlate spatially with subthreshold excitatory activity, which involves a larger area of cortex than suprathreshold neuronal spiking. However, we found that both perfusion and oximetric signals spatially overshot the extent of the excitatory VSD signal by approximately 2x. Nevertheless, a high correlation could be found at specific time points in the evolution and dissolution of the hemodynamic signals. The increase in deoxy-hemoglobin reached the highest correlation with the excitatory VSD signal earlier than CBV signals although CBV signals correlated equally well at certain time points. The amplitude of the hemodynamic signals had a linear correlation with the amplitude of the VSD signals except for small nonlinearities in the very center of the focus and in the periphery of the surround, indicating a tight spatial coupling. Our data suggest that hemodynamic signals can accurately define the spatial extent of excitatory interictal epileptiform subthreshold membrane activity at specific time points in their evolution.
Collapse
Affiliation(s)
- Hongtao Ma
- Dept. of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
22
|
Takagaki K, Lippert MT, Dann B, Wanger T, Ohl FW. Normalization of voltage-sensitive dye signal with functional activity measures. PLoS One 2008; 3:e4041. [PMID: 19116673 PMCID: PMC2612132 DOI: 10.1371/journal.pone.0004041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 11/13/2008] [Indexed: 11/18/2022] Open
Abstract
In general, signal amplitude in optical imaging is normalized using the well-established DeltaF/F method, where functional activity is divided by the total fluorescent light flux. This measure is used both directly, as a measure of population activity, and indirectly, to quantify spatial and spatiotemporal activity patterns. Despite its ubiquitous use, the stability and accuracy of this measure has not been validated for voltage-sensitive dye imaging of mammalian neocortex in vivo. In this report, we find that this normalization can introduce dynamic biases. In particular, the DeltaF/F is influenced by dye staining quality, and the ratio is also unstable over the course of experiments. As methods to record and analyze optical imaging signals become more precise, such biases can have an increasingly pernicious impact on the accuracy of findings, especially in the comparison of cytoarchitechtonic areas, in area-of-activation measurements, and in plasticity or developmental experiments. These dynamic biases of the DeltaF/F method may, to an extent, be mitigated by a novel method of normalization, DeltaF/DeltaF(epileptiform). This normalization uses as a reference the measured activity of epileptiform spikes elicited by global disinhibition with bicuculline methiodide. Since this normalization is based on a functional measure, i.e. the signal amplitude of "hypersynchronized" bursts of activity in the cortical network, it is less influenced by staining of non-functional elements. We demonstrate that such a functional measure can better represent the amplitude of population mass action, and discuss alternative functional normalizations based on the amplitude of synchronized spontaneous sleep-like activity. These findings demonstrate that the traditional DeltaF/F normalization of voltage-sensitive dye signals can introduce pernicious inaccuracies in the quantification of neural population activity. They further suggest that normalization-independent metrics such as waveform propagation patterns, oscillations in single detectors, and phase relationships between detector pairs may better capture the biological information which is obtained by high-sensitivity imaging.
Collapse
Affiliation(s)
- Kentaroh Takagaki
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- School of Medicine, Georgetown University, Washington, D. C., United
States of America
| | - Michael Thomas Lippert
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen,
Germany
- Institute of Biology, Otto-von-Guericke-University, Magdeburg,
Germany
| | - Benjamin Dann
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Max Planck Institute for Brain Research, Frankfurt/Main,
Germany
- Institute of Biology, Otto-von-Guericke-University, Magdeburg,
Germany
| | - Tim Wanger
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Biology, Otto-von-Guericke-University, Magdeburg,
Germany
| | - Frank W. Ohl
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Biology, Otto-von-Guericke-University, Magdeburg,
Germany
| |
Collapse
|
23
|
Zalay OC, Bardakjian BL. Mapped Clock Oscillators as Ring Devices and Their Application to Neuronal Electrical Rhythms. IEEE Trans Neural Syst Rehabil Eng 2008; 16:233-44. [DOI: 10.1109/tnsre.2008.923708] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Direct, live imaging of cortical spreading depression and anoxic depolarisation using a fluorescent, voltage-sensitive dye. J Cereb Blood Flow Metab 2008; 28:251-62. [PMID: 17971792 PMCID: PMC2653938 DOI: 10.1038/sj.jcbfm.9600569] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perilesion depolarisations, whether transient anoxic depolarisation (AD) or spreading depression (SD), occur in stroke models and in patients with acute brain ischaemia, but their contribution to lesion progression remains unclear. As these phenomena correspond to waves of cellular depolarisation, we have developed a technique for their live imaging with a fluorescent voltage-sensitive (VS) dye (RH-1838). Method development and validation were performed in two different preparations: chicken retina, to avoid any vascular interference; and cranial window exposing the cortical surface of anaesthetised rats. Spreading depression was produced by high-K medium, and AD by complete terminal ischaemia in rats. After dye loading, the preparation was illuminated at its excitation wavelength and fluorescence changes were recorded sequentially with a charge-coupled device camera. No light was recorded when the VS dye was omitted, ruling out the contribution of any endogenous fluorophore. With both preparations, the changes in VS dye fluorescence with SD were analogous to those of the DC (direct current) potential recorded with glass electrodes. Although some blood quenching of the emitted light was identified, the VS dye signatures of SD had a good signal-to-noise ratio and were reproducible. The changes in VS dye fluorescence associated with AD were more complex because of additional interferents, especially transient brain swelling with subsequent shrinkage. However, the kinetics of the AD-associated changes in VS dye fluorescence was also analogous to that of the DC potential. In conclusion, this method provides the imaging equivalent of electrical extracellular DC potential recording, with the SD and AD negative shifts translating directly to fluorescence increase.
Collapse
|
25
|
Xu W, Huang X, Takagaki K, Wu JY. Compression and reflection of visually evoked cortical waves. Neuron 2007; 55:119-29. [PMID: 17610821 PMCID: PMC1988694 DOI: 10.1016/j.neuron.2007.06.016] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 05/07/2007] [Accepted: 06/11/2007] [Indexed: 10/23/2022]
Abstract
Neuronal interactions between primary and secondary visual cortical areas are important for visual processing, but the spatiotemporal patterns of the interaction are not well understood. We used voltage-sensitive dye imaging to visualize neuronal activity in rat visual cortex and found visually evoked waves propagating from V1 to other visual areas. A primary wave originated in the monocular area of V1 and was "compressed" when propagating to V2. A reflected wave initiated after compression and propagated backward into V1. The compression occurred at the V1/V2 border, and local GABAA inhibition is important for the compression. The compression/reflection pattern provides a two-phase modulation: V1 is first depolarized by the primary wave, and then V1 and V2 are simultaneously depolarized by the reflected and primary waves, respectively. The compression/reflection pattern only occurred for evoked waves and not for spontaneous waves, suggesting that it is organized by an internal mechanism associated with visual processing.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | | | |
Collapse
|
26
|
Haglund MM, Hochman DW. Imaging of Intrinsic Optical Signals in Primate Cortex during Epileptiform Activity. Epilepsia 2007; 48 Suppl 4:65-74. [PMID: 17767577 DOI: 10.1111/j.1528-1167.2007.01243.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Localized increases in neuronal activity are known to alter the distribution and oxygen content of blood within the surrounding brain tissue. In the neocortex, these activity-evoked hemodynamic changes are predominantly mediated through the dilation of the microscopic pial arterioles that lie on the surface of the brain, nearest to the site of activation. Since hemoglobin absorbs light throughout the visible and near-infrared spectrum, optical microscopy combined with computer imaging techniques can be used to map the patterns of hemodynamic changes associated with neuronal activity. Examples of optical imaging data are provided here to demonstrate four points. First, depending on the optical wavelength chosen for illumination of the cortex, different spatial and temporal patterns of optical changes are elicited by similar stimuli yielding distinctly different types of physiological information. Second, by selecting the appropriate wavelengths, it is possible to generate maps from optical-imaging data that represent changes predominately due to either blood volume (at 535 nm) or blood oxygenation (at 660 nm). Third, "negative" optical signals are negative only relative to a given optical wavelength, and appear to be associated with more intense types of neuronal activation. Fourth, optical imaging is a useful technique for studying neocortical seizure activity in animal models, with the caveat that species-specific differences in cortical size and vascularization patterns may be important to consider in the interpretation of optical imaging data.
Collapse
Affiliation(s)
- Michael M Haglund
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
27
|
Lippert MT, Takagaki K, Xu W, Huang X, Wu JY. Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio. J Neurophysiol 2007; 98:502-12. [PMID: 17493915 PMCID: PMC2855339 DOI: 10.1152/jn.01169.2006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We describe methods to achieve high sensitivity in voltage-sensitive dye (VSD) imaging from rat barrel and visual cortices in vivo with the use of a blue dye RH1691 and a high dynamic range imaging device (photodiode array). With an improved staining protocol and an off-line procedure to remove pulsation artifact, the sensitivity of VSD recording is comparable with that of local field potential recording from the same location. With this sensitivity, one can record from approximately 500 individual detectors, each covering an area of cortical tissue 160 microm in diameter (total imaging field approximately 4 mm in diameter) and a temporal resolution of 1,600 frames/s, without multiple-trial averaging. We can record 80-100 trials of intermittent 10-s trials from each imaging field before the VSD signal reduces to one half of its initial amplitude because of bleaching and wash-out. Taken together, the methods described in this report provide a useful tool for visualizing evoked and spontaneous waves from rodent cortex.
Collapse
Affiliation(s)
- Michael T Lippert
- Department of Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
28
|
Suh M, Ma H, Zhao M, Sharif S, Schwartz TH. Neurovascular coupling and oximetry during epileptic events. Mol Neurobiol 2007; 33:181-97. [PMID: 16954595 DOI: 10.1385/mn:33:3:181] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/30/1999] [Accepted: 02/20/2006] [Indexed: 11/11/2022]
Abstract
Epilepsy is an abnormal brain state in which a large population of neurons is synchronously active, causing an enormous increase in metabolic demand. Recent investigations using highresolution imaging techniques, such as optical recording of intrinsic signals and voltagesensitive dyes, as well as measurements with oxygen-sensitive electrodes have elucidated the spatiotemporal relationship between neuronal activity, cerebral blood volume, and oximetry in vivo. A focal decrease in tissue oxygenation and a focal increase in deoxygenated hemoglobin occurs following both interictal and ictal events. This "epileptic dip" in oxygenation can persist for the duration of an ictal event, suggesting that cerebral blood flow is inadequate to meet metabolic demand. A rapid focal increase in cerebral blood flow and cerebral blood volume also accompanies epileptic events; however, this increase in perfusion soon (>2 s) spreads to a larger area of the cortex than the excitatory change in membrane potential. Investigations in humans during neurosurgical operations have confirmed the laboratory data derived from animal studies. These data not only have clinical implications for the interpretation of noninvasive imaging studies such as positron emission tomography, single-photon emission tomography, and functional magnetic resonance imaging but also provide a mechanism for the cognitive decline in patients with chronic epilepsy.
Collapse
Affiliation(s)
- Minah Suh
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA.
| | | | | | | | | |
Collapse
|
29
|
Ang CW, Carlson GC, Coulter DA. Hippocampal CA1 circuitry dynamically gates direct cortical inputs preferentially at theta frequencies. J Neurosci 2006; 25:9567-80. [PMID: 16237162 PMCID: PMC2048747 DOI: 10.1523/jneurosci.2992-05.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal CA1 pyramidal neurons receive intrahippocampal and extrahipppocampal inputs during theta cycle, whose relative timing and magnitude regulate the probability of CA1 pyramidal cell spiking. Extrahippocampal inputs, giving rise to the primary theta dipole in CA1 stratum lacunosum moleculare, are conveyed by the temporoammonic pathway. The temporoammonic pathway impinging onto the CA1 distal apical dendritic tuft is the most electrotonically distant from the perisomatic region yet is critical in regulating CA1 place cell activity during theta cycles. How does local hippocampal circuitry regulate the integration of this essential, but electrotonically distant, input within the theta period? Using whole-cell somatic recording and voltage-sensitive dye imaging with simultaneous dendritic recording of CA1 pyramidal cell responses, we demonstrate that temporoammonic EPSPs are normally compartmentalized to the apical dendritic tuft by feedforward inhibition. However, when this input is preceded at a one-half theta cycle interval by proximally targeted Schaffer collateral activity, temporoammonic EPSPs propagate to the soma through a joint, codependent mechanism involving activation of Schaffer-specific NMDA receptors and presynaptic inhibition of GABAergic terminals. These afferent interactions, tuned for synaptic inputs arriving one-half theta interval apart, are in turn modulated by feedback inhibition initiated via axon collaterals of pyramidal cells. Therefore, CA1 circuit integration of excitatory inputs endows the CA1 principal cell with a novel property: the ability to function as a temporally specific "AND" gate that provides for sequence-dependent readout of distal inputs.
Collapse
Affiliation(s)
- Chyze W Ang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
30
|
Pinto DJ, Patrick SL, Huang WC, Connors BW. Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. J Neurosci 2006; 25:8131-40. [PMID: 16148221 PMCID: PMC6725540 DOI: 10.1523/jneurosci.2278-05.2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Waves of epileptiform activity in neocortex have three phenomenological stages: initiation, propagation, and termination. We use a well studied model of epileptiform activity in vitro to investigate directly the hypothesis that each stage is governed by an independent mechanism within the underlying cortical circuit. Using the partially disinhibited neocortical slice preparation, activity is induced and modulated using neurotransmitter receptor antagonists and is measured using both intracellular recordings and a linear array of extracellular electrodes. We find that initiation depends on both synaptic excitation and inhibition and entails a slow process of recruitment at discrete spatial locations within cortical layer 5 but not layer 2/3. Propagation depends on synaptic excitation but not inhibition and is a fast process that involves neurons across the spatial extent of the slice and in all cortical layers. Termination is modulated by synaptic excitation and inhibition. In space, termination occurs reliably at discrete locations. In time, termination is characterized by a strong depolarizing shift (block) and recovery of neurons in all cortical layers. These results suggest that the phenomenological stages of epileptiform events correspond to distinct mechanistic stages.
Collapse
Affiliation(s)
- David J Pinto
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | |
Collapse
|
31
|
Shariff S, Suh M, Zhao M, Ma H, Schwartz TH. Recent developments in oximetry and perfusion-based mapping techniques and their role in the surgical treatment of neocortical epilepsy. Epilepsy Behav 2006; 8:363-75. [PMID: 16406817 DOI: 10.1016/j.yebeh.2005.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 11/08/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
Detailed understanding of neurovascular coupling during epilepsy is critical for the interpretation of various perfusion-based imaging techniques, such as positron emission tomography, single-photon-emission computed tomography, and functional magnetic resonance imaging, which are used to guide surgical therapy. We used high-resolution intrinsic signal- and voltage-sensitive dye imaging, as well as oxygen-sensitive electrodes, to map the precise spatiotemporal relationship between excitatory and inhibitory neuronal activity, cerebral blood volume, and oximetry during epilepsy. We observed a rapid focal decrease in tissue oxygenation and an increase in deoxygenated hemoglobin in association with both interictal and ictal events. This "epileptic dip" in oxygenation lasts several seconds following both interictal and ictal events, implying that for a period, cerebral blood flow is inadequate to meet metabolic demand. We also observed a rapid focal increase in cerebral blood volume that soon spread to adjacent nonepileptic gyri. Likewise, a diffuse decrease in deoxygenated hemoglobin, related to the blood oxygen level-dependent signal recorded with functional magnetic resonance imaging, spread to adjacent gyri and was poorly localized.
Collapse
Affiliation(s)
- Saadat Shariff
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
32
|
Hirota A, Ito SI. A Long-Time, High Spatiotemporal Resolution Optical Recording System for Membrane Potential Activity via Real-Time Writing to the Hard Disk. J Physiol Sci 2006; 56:263-6. [PMID: 16839457 DOI: 10.2170/physiolsci.tn003006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 05/22/2006] [Indexed: 11/05/2022]
Abstract
Using real-time hard disk recording, we have developed an optical system for the long-duration detection of changes in membrane potential from 1,020 sites with a high temporal resolution. The signal-to-noise ratio was sufficient for analyzing the spreading pattern of excitatory waves in frog atria in a single sweep.
Collapse
Affiliation(s)
- Akihiko Hirota
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan.
| | | |
Collapse
|
33
|
Bolea S, Sanchez-Andres JV, Huang X, Wu JY. Initiation and Propagation of Neuronal Coactivation in the Developing Hippocampus. J Neurophysiol 2006; 95:552-61. [PMID: 16177178 DOI: 10.1152/jn.00321.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Correlated neuronal activity is ubiquitous in developing nervous systems, where it may introduce spatiotemporal coherence and contribute to the organization of functional circuits. In this report, we used voltage-sensitive dyes and optical imaging to examine the spatiotemporal pattern of a spontaneous network activity, giant depolarizing potentials (GDPs), in rat hippocampal slices during the first postnatal week. The propagation pattern of the GDP is closely correlated to the anatomical organization of the network. In the hilus, where mossy cells and interneurons are not organized in layers, GDPs propagate at the same velocity in all directions. In CA3 and CA1, the activation is synchronous along the axis of the pyramidal cells' dendritic tree. The velocity of wave propagation is significantly different in three hippocampal subfields: it is slowest in the hilus, faster in CA3, and fastest in CA1. The velocity of horizontal propagation (along the axis of the pyramidal layer) has a large variation from trial to trial, suggesting that the horizontal velocity is determined to some extent by dynamic network factors. Imaging revealed that each GDP event is initiated from a small focus. The location of the initiation focus differs from event to event. All together, our data suggest that GDP is a propagating excitation wave, initiated from a small site, and propagating to the whole hippocampus. The spatiotemporal patterns of the wave in CA3 and CA1 areas show better synchrony along the pyramidal cell dendritic trees and progressive activation along the axis of the pyramidal cell layer.
Collapse
Affiliation(s)
- Sonia Bolea
- Dept. of Physiology and Biophysics, Georgetown Univ., 3970 Reservoir Rd. NW, Washington, DC 20057-1421, USA
| | | | | | | |
Collapse
|
34
|
Köhling R, Senner V, Paulus W, Speckmann EJ. Epileptiform activity preferentially arises outside tumor invasion zone in glioma xenotransplants. Neurobiol Dis 2005; 22:64-75. [PMID: 16309916 DOI: 10.1016/j.nbd.2005.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 09/23/2005] [Accepted: 10/10/2005] [Indexed: 11/15/2022] Open
Abstract
Seizures occur commonly with brain tumors. The underlying mechanisms are not understood. We analyzed network and cellular excitability changes in tumor-invaded and sham neocortical tissue in vitro using a rat glioblastoma model. Rat C6 glioma cells were transplanted into rat neocortex, yielding diffusely invading gliomas resembling human glioblastomas. We hypothesized that network excitability would increase in regions neighboring the tumor, and that initiation of epileptic discharges might be correlated to a higher density of intrinsically bursting neurones. Voltage-sensitive dye imaging revealed epileptic activity to be initiated in paratumoral zones (1-2 mm from main tumor mass), in contrast to control tissue, where epileptic foci appeared randomly throughout the neocortex. Neuronal firing patterns revealed significantly more intrinsically bursting neurones within these initiation zones than in regions directly adjacent to the tumor or in control tissue. We conclude that gliomas are associated with a higher density of intrinsically bursting neurones, and that these may preferentially initiate epileptiform events.
Collapse
Affiliation(s)
- Rüdiger Köhling
- Institute of Physiology, University of Münster, Robert-Koch-Str. 27a, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
35
|
|
36
|
Hirase H, Creso J, Buzsáki G. Capillary level imaging of local cerebral blood flow in bicuculline-induced epileptic foci. Neuroscience 2004; 128:209-16. [PMID: 15450368 DOI: 10.1016/j.neuroscience.2004.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2004] [Indexed: 11/21/2022]
Abstract
Local hemodynamics of the cerebral cortex is the basis of modern functional imaging techniques, such as fMRIand PET. Despite the importance of local regulation of the blood flow, capillary level quantification of cerebral blood flow has been limited by the spatial resolution of functional imaging techniques and the depth penetration of conventional optical microscopy. Two-photon laser scanning microscopic imaging technique has the necessary spatial resolution and can image capillaries in the depth of the cortex. We have loaded the serum with fluorescein isothiocyanate dextran and quantified the flow of red blood cells (RBCs) in capillaries in layers 2/3 of the mouse somatosensory cortex in vivo. Basal capillary flux was quantified as approximately 28.9+/-13.6 RBCs/s (n=50, mean+/-S.D.) under ketamine-xylazine anesthesia and 26.7+/-16.0 RBCs/s (n=31) under urethane anesthesia. Focal interictal (epileptiform) activity was induced by local infusion of bicuculline methochloride in the cortex. We have observed that capillary blood flow increased as the cortical local field events developed into epileptiform in the vicinity of GABA receptor blockade (<300 microm from the administration site). Local blood flow in the interictal focus increased significantly (42.5+/-18.5RBCs/s, n=52) relative to the control conditions or to blood flow measured in capillaries at distant (>1mm from the focus) sites from the epileptic focus (27.8+/-12.9 RBCs/s, n=30). These results show that hyper-synchronized neural activity is associated with increased capillary perfusion in a localized cortical area. This volume is significantly smaller than the currently available resolution of the fMRI signal.
Collapse
Affiliation(s)
- H Hirase
- Center for Molecular and Behavioral Neuroscience Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA.
| | | | | |
Collapse
|