1
|
Zhang LB, Chen YX, Li ZJ, Geng XY, Zhao XY, Zhang FR, Bi YZ, Lu XJ, Hu L. Advances and challenges in neuroimaging-based pain biomarkers. Cell Rep Med 2024; 5:101784. [PMID: 39383872 PMCID: PMC11513815 DOI: 10.1016/j.xcrm.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/24/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
Identifying neural biomarkers of pain has long been a central theme in pain neuroscience. Here, we review the state-of-the-art candidates for neural biomarkers of acute and chronic pain. We classify these potential neural biomarkers into five categories based on the nature of their target variables, including neural biomarkers of (1) within-individual perception, (2) between-individual sensitivity, and (3) discriminability for acute pain, as well as (4) assessment and (5) prospective neural biomarkers for chronic pain. For each category, we provide a synthesized review of candidate biomarkers developed using neuroimaging techniques including functional magnetic resonance imaging (fMRI), structural magnetic resonance imaging (sMRI), and electroencephalography (EEG). We also discuss the conceptual and practical challenges in developing neural biomarkers of pain. Addressing these challenges, optimal biomarkers of pain can be developed to deepen our understanding of how the brain represents pain and ultimately help alleviate patients' suffering and improve their well-being.
Collapse
Affiliation(s)
- Li-Bo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
| | - Yu-Xin Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Jiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Yi Geng
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yue Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Rui Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yan-Zhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Jing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
McLain N, Cavaleri R, Kutch J. Peak alpha frequency differs between chronic back pain and chronic widespread pain. Eur J Pain 2024. [PMID: 39373167 DOI: 10.1002/ejp.4737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Low peak alpha frequency (PAF) is an electroencephalography (EEG) outcome associated reliably with high acute pain sensitivity. However, existing research suggests that the relationship between PAF and chronic pain is more variable. This variability could be attributable to chronic pain groups typically being examined as homogenous populations, without consideration being given to potential diagnosis-specific differences. Indeed, while emerging work has compared individuals with chronic pain to healthy controls, no previous studies have examined differences in PAF between diagnoses or across chronic pain subtypes. METHODS To address this gap, we reanalysed a dataset of resting state EEG previously used to demonstrate a lack of difference in PAF between individuals with chronic pain and healthy controls. In this new analysis, we separated patients by diagnosis before comparing PAF across three subgroups: chronic widespread pain (n = 30), chronic back pain (n = 38), and healthy controls (n = 87). RESULTS We replicate the original finding of no significant difference between chronic pain groups and controls, but also find that individuals with widespread pain had significantly higher global average PAF values than those of people with chronic back pain [p = 0.028, β = 0.25 Hz] after controlling for age, sex, and depression. CONCLUSIONS These novel findings reveal PAF values in individuals with chronic pain may be diagnosis-specific and not uniformly shifted from the values of healthy controls. Future studies should account for diagnosis and be cautious with exploring homogenous 'chronic pain' classifications during investigations of PAF. SIGNIFICANCE Our work suggests that, contrary to previous hypotheses, inter-individual differences in PAF reflect diagnosis-specific mechanisms rather than the general presence of chronic pain, and therefore may have important implications for future work regarding individually-tailored pain management strategies.
Collapse
Affiliation(s)
- Natalie McLain
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
| | - Rocco Cavaleri
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - Jason Kutch
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Horsburgh A, Summers SJ, Lewis A, Keegan RJ, Flood A. The Relationship Between Pain and Interoception: A Systematic Review and Meta-Analysis. THE JOURNAL OF PAIN 2024; 25:104476. [PMID: 38244898 DOI: 10.1016/j.jpain.2024.01.341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Interoception refers to the ability to sense internal bodily sensations. Research suggests that dysfunctions in interoception may be implicated in the transition to chronic pain, however, little work has examined interoceptive ability in pain states. Therefore, this systematic review aimed to assess whether interoception is altered in individuals experiencing pain. Following a systematic search of 4 electronic databases from inception to February 2023, 28 studies were included. Outcomes of interoceptive accuracy, interoceptive sensibility, and interoceptive awareness were meta-analysed. The risk of bias was assessed, and the certainty of the evidence was evaluated. Meta-analyses indicated that those with chronic pain display reduced interoceptive accuracy and increased interoceptive sensibility. Subgroup analyses indicated that the change in interoceptive sensibility is dependent on the measure used, with those with chronic pain scoring higher on measures focusing on attention to bodily sensations, while also scoring lower on emotional reactivity. No difference in interoceptive awareness was observed between individuals with chronic pain and pain-free controls. Only one study was found that measured interoception in those experiencing acute pain, while another study recruited those experiencing recurrent pain. These findings suggest that while those with chronic pain self-report as more interoceptively aware, they are less accurate at detecting internal bodily signals. Further research investigating domains of interoception in those experiencing acute and recurrent pain is needed. Data should be interpreted with caution as the certainty of evidence was very low for all completed analyses. This review was registered on the PROSPERO International Prospective Register of Systematic Reviews (Registration ID = CRD42022318843). PERSPECTIVE: This review considered the relationship between interoception and pain and found that an individual's ability to accurately sense internal signals is decreased in those with chronic pain, despite them reporting being more aware of internal sensations. However, there remains little research examining interoception in non-chronic pain states.
Collapse
Affiliation(s)
- Annabel Horsburgh
- University of Canberra Research Institute for Sport and Exercise, Faculty of Health, University of Canberra, Bruce, Australian Capital Territory, Australia; Discipline of Psychology, Faculty of Health, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Simon J Summers
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Aidan Lewis
- University of Canberra Research Institute for Sport and Exercise, Faculty of Health, University of Canberra, Bruce, Australian Capital Territory, Australia; Discipline of Psychology, Faculty of Health, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Richard J Keegan
- University of Canberra Research Institute for Sport and Exercise, Faculty of Health, University of Canberra, Bruce, Australian Capital Territory, Australia; Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Andrew Flood
- University of Canberra Research Institute for Sport and Exercise, Faculty of Health, University of Canberra, Bruce, Australian Capital Territory, Australia; Discipline of Psychology, Faculty of Health, University of Canberra, Bruce, Australian Capital Territory, Australia
| |
Collapse
|
4
|
Chowdhury NS, Taseen K, Chiang A, Chang WJ, Millard SK, Seminowicz DA, Schabrun SM. A 5-day course of rTMS before pain onset ameliorates future pain and increases sensorimotor peak alpha frequency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598596. [PMID: 38915700 PMCID: PMC11195234 DOI: 10.1101/2024.06.11.598596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has shown promise as an intervention for pain. An unexplored research question is whether the delivery of rTMS prior to pain onset might protect against a future episode of prolonged pain. The present study aimed to determine i) whether 5 consecutive days of rTMS delivered prior to experimentally-induced prolonged jaw pain could reduce future pain intensity and ii) whether any effects of rTMS on pain were mediated by changes in corticomotor excitability (CME) and/or sensorimotor peak alpha frequency (PAF). On each day from Day 0-4, forty healthy individuals received a single session of active (n = 21) or sham (n = 19) rTMS over the left primary motor cortex. PAF and CME were assessed on Day 0 (before rTMS) and Day 4 (after rTMS). Prolonged pain was induced via intramuscular injection of nerve growth factor (NGF) in the right masseter muscle after the final rTMS session. From Days 5-25, participants completed twice-daily electronic dairies including pain on chewing and yawning (primary outcomes), as well as pain during other activities (e.g. talking), functional limitation in jaw function and muscle soreness (secondary outcomes). Compared to sham, individuals who received active rTMS subsequently experienced lower pain on chewing and yawning. Although active rTMS increased PAF, the effects of rTMS on pain were not mediated by changes in PAF or CME. This study is the first to show that rTMS delivered prior to pain onset can protect against future pain and associated functional impairment. Thus, rTMS may hold promise as a prophylactic intervention for persistent pain.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Khandoker Taseen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Alan Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - David A Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Siobhan M Schabrun
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph's Healthcare, London, Canada
- School of Physical Therapy, University of Western Ontario, London, Canada
| |
Collapse
|
5
|
Ho RL, Park J, Wang WE, Thomas JS, Cruz-Almeida Y, Coombes SA. Lower individual alpha frequency in individuals with chronic low back pain and fear of movement. Pain 2024; 165:1033-1043. [PMID: 38112575 PMCID: PMC11018483 DOI: 10.1097/j.pain.0000000000003098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/27/2023] [Indexed: 12/21/2023]
Abstract
ABSTRACT Significant progress has been made in linking measures of individual alpha frequency (IAF) and pain. A lower IAF has been associated with chronic neuropathic pain and with an increased sensitivity to pain in healthy young adults. However, the translation of these findings to chronic low back pain (cLBP) are sparse and inconsistent. To address this limitation, we assessed IAFs in a cohort of 70 individuals with cLBP, implemented 3 different IAF calculations, and separated cLBP subjects based on psychological variables. We hypothesized that a higher fear movement in cLBP is associated with a lower IAF at rest. A total of 10 minutes of resting data were collected from 128 electroencephalography channels. Our results offer 3 novel contributions to the literature. First, the high fear group had a significantly lower peak alpha frequency. The high fear group also reported higher pain and higher disability. Second, we calculated individual alpha frequency using 3 different but established methods; the effect of fear on individual alpha frequency was robust across all methods. Third, fear of movement, pain intensity, and disability highly correlated with each other and together significantly predicted IAF. Our findings are the first to show that individuals with cLBP and high fear have a lower peak alpha frequency.
Collapse
Affiliation(s)
- Rachel L.M. Ho
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| | - Jinhan Park
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| | - Wei-en Wang
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| | - James S. Thomas
- Motor Control Lab, Department of Physical Therapy, Virginia Commonwealth University
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence, Department of Community Dentistry, University of Florida
| | - Stephen A. Coombes
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| |
Collapse
|
6
|
Otero M, Prieur-Coloma Y, El-Deredy W, Weinstein A. A High-Resolution LED Stimulator for Steady-State Visual Stimulation: Customizable, Affordable, and Open Source. SENSORS (BASEL, SWITZERLAND) 2024; 24:678. [PMID: 38276370 PMCID: PMC10819381 DOI: 10.3390/s24020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Visually evoked steady-state potentials (SSVEPs) are neural responses elicited by visual stimuli oscillating at specific frequencies. In this study, we introduce a novel LED stimulator system explicitly designed for steady-state visual stimulation, offering precise control over visual stimulus parameters, including frequency resolution, luminance, and the ability to control the phase at the end of the stimulation. The LED stimulator provides a personalized, modular, and affordable option for experimental setups. Based on the Teensy 3.2 board, the stimulator utilizes direct digital synthesis and pulse width modulation techniques to control the LEDs. We validated its performance through four experiments: the first two measured LED light intensities directly, while the last two assessed the stimulator's impact on EEG recordings. The results demonstrate that the stimulator can deliver a stimulus suitable for generating SSVEPs with the desired frequency and phase resolution. As an open source resource, we provide comprehensive documentation, including all necessary codes and electrical diagrams, which facilitates the system's replication and adaptation for specific experimental requirements, enhancing its potential for widespread use in the field of neuroscience setups.
Collapse
Affiliation(s)
- Mónica Otero
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago de Chile 8420000, Chile;
- Centro BASAL Ciencia & Vida, Universidad San Sebastián, Santiago de Chile 8580000, Chile
| | - Yunier Prieur-Coloma
- Brain Dynamics Laboratory, Universidad de Valparaíso, Valparaíso 2340000, Chile; (Y.P.-C.); (W.E.-D.)
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Wael El-Deredy
- Brain Dynamics Laboratory, Universidad de Valparaíso, Valparaíso 2340000, Chile; (Y.P.-C.); (W.E.-D.)
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Alejandro Weinstein
- Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| |
Collapse
|
7
|
Mathew J, Perez TM, Adhia DB, De Ridder D, Mani R. Is There a Difference in EEG Characteristics in Acute, Chronic, and Experimentally Induced Musculoskeletal Pain States? a Systematic Review. Clin EEG Neurosci 2024; 55:101-120. [PMID: 36377346 DOI: 10.1177/15500594221138292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electroencephalographic (EEG) alterations have been demonstrated in acute, chronic, and experimentally induced musculoskeletal (MSK) pain conditions. However, there is no cumulative evidence on the associated EEG characteristics differentiating acute, chronic, and experimentally induced musculoskeletal pain states, especially compared to healthy controls. The present systematic review was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines (PRISMA) to review and summarize available evidence for cortical brain activity and connectivity alterations in acute, chronic, and experimentally induced MSK pain states. Five electronic databases were systematically searched from their inception to 2022. A total of 3471 articles were screened, and 26 full articles (five studies on chronic pain and 21 studies on experimentally induced pain) were included for the final synthesis. Using the Downs and Black risk of assessment tool, 92% of the studies were assessed as low to moderate quality. The review identified a 'very low' level of evidence for the changes in EEG and subjective outcome measures for both chronic and experimentally induced MSK pain based on the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) criteria. Overall, the findings of this review indicate a trend toward decreased alpha and beta EEG power in evoked chronic clinical pain conditions and increased theta and alpha power in resting-state EEG recorded from chronic MSK pain conditions. EEG characteristics are unclear under experimentally induced pain conditions.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research (CHARR), School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Tyson Michael Perez
- Department of Surgical Sciences, Section of Neurosurgery, Otago Medical School-Dunedin campus, University of Otago, Dunedin, New Zealand
| | - Divya Bharatkumar Adhia
- Department of Surgical Sciences, Section of Neurosurgery, Otago Medical School-Dunedin campus, University of Otago, Dunedin, New Zealand
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Otago Medical School-Dunedin campus, University of Otago, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research (CHARR), School of Physiotherapy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Mazaheri A, Furman AJ, Seminowicz DA. Fear and pain slow the brain. Pain 2023; 165:00006396-990000000-00444. [PMID: 38112650 PMCID: PMC11045659 DOI: 10.1097/j.pain.0000000000003099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Ali Mazaheri
- School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK
| | - Andrew J. Furman
- Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David A. Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
9
|
Rockholt MM, Kenefati G, Doan LV, Chen ZS, Wang J. In search of a composite biomarker for chronic pain by way of EEG and machine learning: where do we currently stand? Front Neurosci 2023; 17:1186418. [PMID: 37389362 PMCID: PMC10301750 DOI: 10.3389/fnins.2023.1186418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023] Open
Abstract
Machine learning is becoming an increasingly common component of routine data analyses in clinical research. The past decade in pain research has witnessed great advances in human neuroimaging and machine learning. With each finding, the pain research community takes one step closer to uncovering fundamental mechanisms underlying chronic pain and at the same time proposing neurophysiological biomarkers. However, it remains challenging to fully understand chronic pain due to its multidimensional representations within the brain. By utilizing cost-effective and non-invasive imaging techniques such as electroencephalography (EEG) and analyzing the resulting data with advanced analytic methods, we have the opportunity to better understand and identify specific neural mechanisms associated with the processing and perception of chronic pain. This narrative literature review summarizes studies from the last decade describing the utility of EEG as a potential biomarker for chronic pain by synergizing clinical and computational perspectives.
Collapse
Affiliation(s)
- Mika M. Rockholt
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Lisa V. Doan
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience & Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience & Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
10
|
Corlier J, Tadayonnejad R, Wilson AC, Lee JC, Marder KG, Ginder ND, Wilke SA, Levitt J, Krantz D, Leuchter AF. Repetitive transcranial magnetic stimulation treatment of major depressive disorder and comorbid chronic pain: response rates and neurophysiologic biomarkers. Psychol Med 2023; 53:823-832. [PMID: 34154683 PMCID: PMC9976020 DOI: 10.1017/s0033291721002178] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) and chronic pain are highly comorbid, and pain symptoms are associated with a poorer response to antidepressant medication treatment. It is unclear whether comorbid pain also is associated with a poorer response to treatment with repetitive transcranial magnetic stimulation (rTMS). METHODS 162 MDD subjects received 30 sessions of 10 Hz rTMS treatment administered to the left dorsolateral prefrontal cortex (DLPFC) with depression and pain symptoms measured before and after treatment. For a subset of 96 patients, a resting-state electroencephalogram (EEG) was recorded at baseline. Clinical outcome was compared between subjects with and without comorbid pain, and the relationships among outcome, pain severity, individual peak alpha frequency (PAF), and PAF phase-coherence in the EEG were examined. RESULTS 64.8% of all subjects reported pain, and both depressive and pain symptoms were significantly reduced after rTMS treatment, irrespective of age or gender. Patients with severe pain were 27% less likely to respond to MDD treatment than pain-free individuals. PAF was positively associated with pain severity. PAF phase-coherence in the somatosensory and default mode networks was significantly lower for MDD subjects with pain who failed to respond to MDD treatment. CONCLUSIONS Pain symptoms improved after rTMS to left DLPFC in MDD irrespective of age or gender, although the presence of chronic pain symptoms reduced the likelihood of treatment response. Individual PAF and baseline phase-coherence in the sensorimotor and midline regions may represent predictors of rTMS treatment outcome in comorbid pain and MDD.
Collapse
Affiliation(s)
- Juliana Corlier
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Reza Tadayonnejad
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrew C Wilson
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Jonathan C Lee
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Katharine G Marder
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Nathaniel D Ginder
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
- VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| | - Scott A Wilke
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Jennifer Levitt
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - David Krantz
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Andrew F Leuchter
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| |
Collapse
|
11
|
Relief of chronic pain associated with increase in midline frontal theta power. Pain Rep 2022; 7:e1040. [PMID: 36247110 PMCID: PMC9555895 DOI: 10.1097/pr9.0000000000001040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
Unique electroencephalogram signatures of relief from chronic pain demonstrate theta power increase in the midline frontal cortex. Introduction: Objectives: Methods: Results: Conclusion:
Collapse
|
12
|
Fauchon C, Kim JA, El-Sayed R, Osborne NR, Rogachov A, Cheng JC, Hemington KS, Bosma RL, Dunkley BT, Oh J, Bhatia A, Inman RD, Davis KD. A Hidden Markov Model reveals magnetoencephalography spectral frequency-specific abnormalities of brain state power and phase-coupling in neuropathic pain. Commun Biol 2022; 5:1000. [PMID: 36131088 PMCID: PMC9492713 DOI: 10.1038/s42003-022-03967-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Neuronal populations in the brain are engaged in a temporally coordinated manner at rest. Here we show that spontaneous transitions between large-scale resting-state networks are altered in chronic neuropathic pain. We applied an approach based on the Hidden Markov Model to magnetoencephalography data to describe how the brain moves from one activity state to another. This identified 12 fast transient (~80 ms) brain states including the sensorimotor, ascending nociceptive pathway, salience, visual, and default mode networks. Compared to healthy controls, we found that people with neuropathic pain exhibited abnormal alpha power in the right ascending nociceptive pathway state, but higher power and coherence in the sensorimotor network state in the beta band, and shorter time intervals between visits of the sensorimotor network, indicating more active time in this state. Conversely, the neuropathic pain group showed lower coherence and spent less time in the frontal attentional state. Therefore, this study reveals a temporal imbalance and dysregulation of spectral frequency-specific brain microstates in patients with neuropathic pain. These findings can potentially impact the development of a mechanism-based therapeutic approach by identifying brain targets to stimulate using neuromodulation to modify abnormal activity and to restore effective neuronal synchrony between brain states.
Collapse
Affiliation(s)
- Camille Fauchon
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Junseok A Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rima El-Sayed
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kasey S Hemington
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Benjamin T Dunkley
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada.,Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, M5T 1W7, Canada
| | - Jiwon Oh
- Div of Neurology, Dept of Medicine, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Anuj Bhatia
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Department of Anesthesia and Pain Medicine, Toronto Western Hospital, and University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Robert D Inman
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Karen Deborah Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Surgery, University of Toronto, Toronto, ON, M5T 1P5, Canada.
| |
Collapse
|
13
|
Mazaheri A, Seminowicz DA, Furman AJ. Peak alpha frequency as a candidate biomarker of pain sensitivity: the importance of distinguishing slow from slowing. Neuroimage 2022; 262:119560. [PMID: 35973563 DOI: 10.1016/j.neuroimage.2022.119560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 10/31/2022] Open
Abstract
The study by Valentini et al. (2022) observed that the peak alpha frequency (PAF) of participants became slower after they were exposed to painful, as well as non-painful but unpleasant stimuli. The authors interpreted this as a challenge to our previous studies which propose that the speed of resting PAF, independently of pain-induced changes to PAF, can be a reliable biomarker marker for gaging individual pain sensitivity. While investigations into the role that PAF plays in pain perception are timely, we have some concerns about the assumptions and methodology employed by Valentini et al. Moreover, we believe the authors here have also misrepresented some of our previous work. In the current commentary, we detail the critical differences between our respective studies, with the ultimate aim of guiding future investigations.
Collapse
Affiliation(s)
- Ali Mazaheri
- School of Psychology, University of Birmingham, Birmingham, UK; Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK.
| | - David A Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Andrew J Furman
- Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
14
|
Stillianesis G, Cavaleri R, Summers SJ, Tang C. Exploring patient perceptions of repetitive transcranial magnetic stimulation as a treatment for chronic musculoskeletal pain: a qualitative study. BMJ Open 2022; 12:e058928. [PMID: 35918117 PMCID: PMC9351339 DOI: 10.1136/bmjopen-2021-058928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/20/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS), a form of non-invasive brain stimulation, is a novel avenue for the management of chronic musculoskeletal pain. Despite evidence for the effectiveness of rTMS in chronic pain conditions, the clinical uptake of rTMS remains limited and little is known regarding patient perceptions of this therapeutic technique. DESIGN Qualitative study using a phenomenological approach, reported in accordance with the Consolidated criteria for Reporting Qualitative research checklist. SETTING Sydney, Australia. PARTICIPANTS Fifteen participants were recruited from the community and completed the study. All participants had a diagnosis of chronic musculoskeletal pain, a history of seeking treatment and no prior experience with rTMS. METHODS AND ANALYSIS All participants completed a semistructured interview to explore overall knowledge, preconceived concerns and attitudes regarding rTMS as a treatment for chronic musculoskeletal pain. The interviews were transcribed verbatim and analysed thematically. RESULTS The key themes that influenced an individual's hypothetical acceptance of rTMS for chronic pain management were (1) the individual's initial impression of the equipment appearance, (2) the participant's individual history and familiarity with technology, (3) the accessibility and availability of rTMS and (4) knowledge regarding pain physiology and rTMS. CONCLUSIONS This was the first qualitative study to explore the perception of rTMS as a treatment among people with chronic musculoskeletal pain. RTMS appears to be accepted as a treatment option among individuals with chronic musculoskeletal pain. Developing targeted strategies to address accessibility, funding support and medical endorsements may encourage use of rTMS in a clinical chronic pain setting.
Collapse
Affiliation(s)
- Georgia Stillianesis
- Physiotherapy, Western Sydney University, Penrith South, New South Wales, Australia
- Brain Stimulation and Rehabilitation Lab, Western Sydney University, Penrith South, New South Wales, Australia
| | - Rocco Cavaleri
- Physiotherapy, Western Sydney University, Penrith South, New South Wales, Australia
- Brain Stimulation and Rehabilitation Lab, Western Sydney University, Penrith South, New South Wales, Australia
| | - Simon J Summers
- Brain Stimulation and Rehabilitation Lab, Western Sydney University, Penrith South, New South Wales, Australia
- School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Clarice Tang
- Physiotherapy, Western Sydney University, Penrith South, New South Wales, Australia
| |
Collapse
|
15
|
Exploring sex differences in alpha brain activity as a potential neuromarker associated with neuropathic pain. Pain 2022; 163:1291-1302. [PMID: 34711764 DOI: 10.1097/j.pain.0000000000002491] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022]
Abstract
ABSTRACT Alpha oscillatory activity (8-13 Hz) is the dominant rhythm in the awake brain and is known to play an important role in pain states. Previous studies have identified alpha band slowing and increased power in the dynamic pain connectome (DPC) of people with chronic neuropathic pain. However, a link between alpha-band abnormalities and sex differences in brain organization in healthy individuals and those with chronic pain is not known. Here, we used resting-state magnetoencephalography to test the hypothesis that peak alpha frequency (PAF) abnormalities are general features across chronic central and peripheral conditions causing neuropathic pain but exhibit sex-specific differences in networks of the DPC (ascending nociceptive pathway [ANP], default mode network, salience network [SN], and subgenual anterior cingulate cortex). We found that neuropathic pain (N = 25 men and 25 women) was associated with increased PAF power in the DPC compared with 50 age- and sex-matched healthy controls, whereas slower PAF in nodes of the SN (temporoparietal junction) and the ANP (posterior insula) was associated with higher trait pain intensity. In the neuropathic pain group, women exhibited lower PAF power in the subgenual anterior cingulate cortex and faster PAF in the ANP and SN than men. The within-sex analyses indicated that women had neuropathic pain-related increased PAF power in the ANP, SN, and default mode network, whereas men with neuropathic pain had increased PAF power restricted to the ANP. These findings highlight neuropathic pain-related and sex-specific abnormalities in alpha oscillations across the DPC that could underlie aberrant neuronal communication in nociceptive processing and modulation.
Collapse
|
16
|
Mechanisms and manifestations in musculoskeletal pain: from experimental to clinical pain settings. Pain 2022; 163:S29-S45. [PMID: 35984370 DOI: 10.1097/j.pain.0000000000002690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/18/2023]
|
17
|
Millard SK, Bokelmann K, Schalbroeck R, van der Wee NJA, van Loey NEE, van Laarhoven AIM. No indications for altered EEG oscillatory activity in patients with chronic post-burn itch compared to healthy controls. Sci Rep 2022; 12:5184. [PMID: 35338171 PMCID: PMC8956573 DOI: 10.1038/s41598-022-08742-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
A large proportion of patients with burn injuries develop chronic itch, which impacts quality of life. The underlying pathophysiological mechanisms are poorly understood. This cross-sectional pilot study investigates whether altered cortical oscillatory processes are involved in chronic post-burn itch. Continuous electroencephalography (EEG) data were recorded during rest and stimulation of non-injured skin, inducing itch (histamine and electrical) and cold-pressor task pain for 15 adults with chronic post-burn itch and 15 matched healthy controls. Quantitative metrics comprised oscillatory power and peak frequencies in theta, alpha, and beta bands. No statistical differences between patients and healthy controls were found in oscillatory activity during rest or stimulation, with Bayesian analysis suggesting equivocal evidence. However, post-traumatic stress symptoms and duration of chronic itch may be associated with changes in oscillatory activity. A lack of differences in cortical oscillatory processing and itch levels at non-injured sites, suggests that itch symptoms have a localised character in this sample of patients with post-burn itch. For future studies, a biopsychological approach with integration of peripheral and central nervous system techniques, linear and non-linear EEG analysis, injured and non-injured stimulation sites, and incorporation of individual characteristics is recommended. Insight into pathophysiological mechanisms underlying chronic post-burn itch could improve diagnostics and treatments.
Collapse
Affiliation(s)
- Samantha K Millard
- Health, Medical, and Neuropsychology Unit, Faculty of Social and Behavioural Sciences, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands.,Centre for Pain IMPACT, Neuroscience Research Australia, 139 Barker Street, Randwick, Sydney, NSW, 2031, Australia.,School of Medical Science, Faculty of Medicine, University of New South Wales, 18 High St, Kensington, Sydney, NSW, 2052, Australia
| | - Klara Bokelmann
- Health, Medical, and Neuropsychology Unit, Faculty of Social and Behavioural Sciences, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands
| | - Rik Schalbroeck
- Health, Medical, and Neuropsychology Unit, Faculty of Social and Behavioural Sciences, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Nancy E E van Loey
- Association of Dutch Burn Centers, Maasstad Hospital, Burn Center, Maasstadweg 21, 3079 DZ, Rotterdam, The Netherlands.,Department of Clinical Psychology, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Antoinette I M van Laarhoven
- Health, Medical, and Neuropsychology Unit, Faculty of Social and Behavioural Sciences, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands. .,Department of Psychiatry, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands. .,Leiden Institute for Brain and Cognition (LIBC), Leiden University, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
18
|
McLain NJ, Yani MS, Kutch JJ. Analytic consistency and neural correlates of peak alpha frequency in the study of pain. J Neurosci Methods 2022; 368:109460. [PMID: 34958820 PMCID: PMC9236562 DOI: 10.1016/j.jneumeth.2021.109460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Several studies have found evidence of reduced resting-state peak alpha frequency (PAF) in populations with pain. However, the stability of PAF from different analytic pipelines used to study pain has not been determined and underlying neural correlates of PAF have not been validated in humans. NEW METHOD For the first time we compare analytic pipelines and the relationship of PAF to activity in the whole brain and thalamus, a hypothesized generator of PAF. We collected resting-state functional magnetic resonance imaging (rs-fMRI) data and subsequently 64 channel resting-state electroencephalographic (EEG) from 47 healthy men, controls from an ongoing study of chronic prostatitis (a pain condition affecting men). We identified important variations in EEG processing for PAF from a review of 17 papers investigating the relationship between pain and PAF. We tested three progressively complex pre-processing pipelines and varied four postprocessing variables (epoch length, alpha band, calculation method, and region-of-interest [ROI]) that were inconsistent across the literature. RESULTS We found a single principal component, well-represented by the average PAF across all electrodes (grand-average PAF), explained > 95% of the variance across participants. We also found the grand-average PAF was highly correlated among the pre-processing pipelines and primarily impacted by calculation method and ROI. Across methods, interindividual differences in PAF were correlated with rs-fMRI-estimated activity in the thalamus, insula, cingulate, and sensory cortices. CONCLUSIONS These results suggest PAF is a relatively stable marker with respect to common pre and post-processing methods used in pain research and reflects interindividual differences in thalamic and salience network function.
Collapse
Affiliation(s)
| | | | - Jason J. Kutch
- Correspondence to: University of Southern California, 1540 E. Alcazar Street, CHP 155, Los Angeles, CA 90033, USA. (J.J. Kutch)
| |
Collapse
|
19
|
A systematic review of porcine models in translational pain research. Lab Anim (NY) 2021; 50:313-326. [PMID: 34650279 DOI: 10.1038/s41684-021-00862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/27/2021] [Indexed: 11/09/2022]
Abstract
Translating basic pain research from rodents to humans has proven to be a challenging task. Efforts have been made to develop preclinical large animal models of pain, such as the pig. However, no consistent overview and comparison of pig models of pain are currently available. Therefore, in this review, our primary aim was to identify the available pig models in pain research and compare these models in terms of intensity and duration. First, we systematically searched Proquest, Scopus and Web of Science and compared the duration for which the pigs were significantly sensitized as well as the intensity of mechanical sensitization. We searched models within the specific field of pain and adjacent fields in which pain induction or assessment is relevant, such as pig production. Second, we compared assessment methodologies in surrogate pain models in humans and pigs to identify areas of overlap and possible improvement. Based on the literature search, 23 types of porcine pain models were identified; 13 of which could be compared quantitatively. The induced sensitization lasted from hours to months and intensities ranged from insignificant to the maximum attainable. We also found a near to complete overlap of assessment methodologies between human and pig models within the area of peripheral neurophysiology, which allows for direct comparison of results obtained in the two species. In spite of this overlap, further development of pain assessment methodologies is still needed. We suggest that central nervous system electrophysiology, such as electroencephalography, electrocorticography or intracortical recordings, may pave the way for future objective pain assessment.
Collapse
|
20
|
De Martino E, Gregoret L, Zandalasini M, Graven-Nielsen T. Slowing in Peak-Alpha Frequency Recorded After Experimentally-Induced Muscle Pain is not Significantly Different Between High and Low Pain-Sensitive Subjects. THE JOURNAL OF PAIN 2021; 22:1722-1732. [PMID: 34182105 DOI: 10.1016/j.jpain.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Peak alpha frequency (PAF) reduces during cutaneous pain, but no studies have investigated PAF during movement-related muscle pain. Whether high-pain sensitive (HPS) individuals exhibit a more pronounced PAF response to pain than low-pain sensitive (LPS) individuals is unclear. As a pain model, twenty-four participants received nerve growth factor injections into a wrist extensor muscle at Day 0, Day 2, and Day 4. At Day 4, a subgroup of twelve participants also undertook eccentric wrist exercise to induce additional pain. Pain numerical rating scale (NRS) scores and electroencephalography were recorded at Day 0 (before injection), Day 4, and Day 6 for 3 minutes (eyes closed) with wrist at rest (Resting-state) and extension (Contraction-state). The average pain NRS scores in contraction-state across Days were used to divide participants into HPS (NRS-scores≥2) and LPS groups. PAF was calculated by frequency decomposition of electroencephalographic recordings. Compared with Day 0, contraction NRS-scores only increased in HPS-group at Day 4 and Day 6 (P < .001). PAF in Contraction-state decreased in both groups at Day 6 compared with Day 0 (P = .011). Across days, HPS-group showed faster PAF than LPS-group during Resting-state and Contraction-state (P < .04). Average pain NRS-scores across days during Contraction-states correlated with PAF at Day 0 (P = .012). Pain NRS-scores were associated with PAF during Contraction-state at Day 4 and Day 6 (P < .05). PERSPECTIVE: PAF was slowed during long-lasting movement-related pain in both groups, suggesting a widespread change in cortical excitability independent of the pain sensitivity. Moreover, HPS individuals showed faster PAF than LPS individuals during muscle pain, which may reflect a different cognitive, emotional, or attentional response to muscle pain among individuals.
Collapse
Affiliation(s)
- Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark; Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise & Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Luisina Gregoret
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Matteo Zandalasini
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark; Department of Spinal Unit and Intensive Rehabilitation Medicine. A.U.S.L. Piacenza, Italy
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
21
|
Kim JA, Davis KD. Magnetoencephalography: physics, techniques, and applications in the basic and clinical neurosciences. J Neurophysiol 2021; 125:938-956. [PMID: 33567968 DOI: 10.1152/jn.00530.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Magnetoencephalography (MEG) is a technique used to measure the magnetic fields generated from neuronal activity in the brain. MEG has a high temporal resolution on the order of milliseconds and provides a more direct measure of brain activity when compared with hemodynamic-based neuroimaging methods such as magnetic resonance imaging and positron emission tomography. The current review focuses on basic features of MEG such as the instrumentation and the physics that are integral to the signals that can be measured, and the principles of source localization techniques, particularly the physics of beamforming and the techniques that are used to localize the signal of interest. In addition, we review several metrics that can be used to assess functional coupling in MEG and describe the advantages and disadvantages of each approach. Lastly, we discuss the current and future applications of MEG.
Collapse
Affiliation(s)
- Junseok A Kim
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen D Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Steiner GZ, Barry RJ, Wassink K, De Blasio FM, Fogarty JS, Cave AE, Love S, Armour M. Neuronal Correlates of Cognitive Control Are Altered in Women With Endometriosis and Chronic Pelvic Pain. Front Syst Neurosci 2020; 14:593581. [PMID: 33390910 PMCID: PMC7772245 DOI: 10.3389/fnsys.2020.593581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is a debilitating women's health condition and is the most common cause of chronic pelvic pain. Impaired cognitive control is common in chronic pain conditions, however, it has not yet been investigated in endometriosis. The aim of this study was to explore the neuronal correlates of cognitive control in women with endometriosis. Using a cross-sectional study design with data collected at a single time-point, event-related potentials were elicited during a cued continuous performance test from 20 women with endometriosis (mean age = 28.5 ± 5.2 years) and 20 age- and gender-matched controls (mean age = 28.5 ± 5.2 years). Event-related potential components were extracted and P3 component amplitudes were derived with temporal principal components analysis. Behavioral and ERP outcomes were compared between groups and subjective pain severity was correlated with ERP component amplitudes. No significant behavioral differences were seen in task performance between the groups (all p > 0.094). Target P3b (all p < 0.034) and SW (all p < 0.040), and non-target early P3a (eP3a; all p < 0.023) and late P3a (lP3a; all p < 0.035) amplitudes were smaller for the endometriosis compared to the healthy control group. Lower non-target eP3a (p < 0.001), lP3a (p = 0.013), and SW (p = 0.019) amplitudes were correlated with higher pain severity scores. Findings suggest that endometriosis-associated chronic pelvic pain is linked to alterations in stimulus-response processing and inhibitory control networks, but not impaired behavioral performance, due to compensatory neuroplastic changes in overlapping cognitive control and pain networks.
Collapse
Affiliation(s)
- Genevieve Z Steiner
- NICM Health Research Institute and Translational Health Research Institute (THRI), Western Sydney University, Penrith, NSW, Australia.,Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| | - Robert J Barry
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| | - Katherine Wassink
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| | - Frances M De Blasio
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| | - Jack S Fogarty
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| | - Adele E Cave
- NICM Health Research Institute and Translational Health Research Institute (THRI), Western Sydney University, Penrith, NSW, Australia
| | - Sapphire Love
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| | - Mike Armour
- NICM Health Research Institute and Translational Health Research Institute (THRI), Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
23
|
Abstract
Neural oscillations play an important role in the integration and segregation of brain regions that are important for brain functions, including pain. Disturbances in oscillatory activity are associated with several disease states, including chronic pain. Studies of neural oscillations related to pain have identified several functional bands, especially alpha, beta, and gamma bands, implicated in nociceptive processing. In this review, we introduce several properties of neural oscillations that are important to understand the role of brain oscillations in nociceptive processing. We also discuss the role of neural oscillations in the maintenance of efficient communication in the brain. Finally, we discuss the role of neural oscillations in healthy and chronic pain nociceptive processing. These data and concepts illustrate the key role of regional and interregional neural oscillations in nociceptive processing underlying acute and chronic pains.
Collapse
Affiliation(s)
- Junseok A. Kim
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen D. Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
A novel cortical biomarker signature for predicting pain sensitivity: protocol for the PREDICT longitudinal analytical validation study. Pain Rep 2020; 5:e833. [PMID: 32766469 PMCID: PMC7390594 DOI: 10.1097/pr9.0000000000000833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 11/26/2022] Open
Abstract
PREDICT will undertake analytical validation of a peak alpha frequency and corticomotor excitability biomarker, determining the sensitivity, specificity, and accuracy at predicting pain sensitivity. Introduction: Temporomandibular disorder is a common musculoskeletal pain condition with development of chronic symptoms in 49% of patients. Although a number of biological factors have shown an association with chronic temporomandibular disorder in cross-sectional and case control studies, there are currently no biomarkers that can predict the development of chronic symptoms. The PREDICT study aims to undertake analytical validation of a novel peak alpha frequency (PAF) and corticomotor excitability (CME) biomarker signature using a human model of the transition to sustained myofascial temporomandibular pain (masseter intramuscular injection of nerve growth factor [NGF]). This article describes, a priori, the methods and analysis plan. Methods: This study uses a multisite longitudinal, experimental study to follow individuals for a period of 30 days as they progressively develop and experience complete resolution of NGF-induced muscle pain. One hundred fifty healthy participants will be recruited. Participants will complete twice daily electronic pain diaries from day 0 to day 30 and undergo assessment of pressure pain thresholds, and recording of PAF and CME on days 0, 2, and 5. Intramuscular injection of NGF will be given into the right masseter muscle on days 0 and 2. The primary outcome is pain sensitivity. Perspective: PREDICT is the first study to undertake analytical validation of a PAF and CME biomarker signature. The study will determine the sensitivity, specificity, and accuracy of the biomarker signature to predict an individual's sensitivity to pain. Registration details: ClinicalTrials.gov: NCT04241562 (prospective).
Collapse
|
25
|
Furman AJ, Prokhorenko M, Keaser ML, Zhang J, Chen S, Mazaheri A, Seminowicz DA. Sensorimotor Peak Alpha Frequency Is a Reliable Biomarker of Prolonged Pain Sensitivity. Cereb Cortex 2020; 30:6069-6082. [PMID: 32591813 DOI: 10.1093/cercor/bhaa124] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/29/2020] [Accepted: 04/21/2020] [Indexed: 01/28/2023] Open
Abstract
Previous research has observed that the speed of alpha band oscillations (8-12 Hz range) recorded during resting electroencephalography is slowed in chronic pain patients. While this slowing may reflect pathological changes that occur during the chronification of pain, an alternative explanation is that healthy individuals with slower alpha oscillations are more sensitive to prolonged pain, and by extension, more susceptible to developing chronic pain. To test this hypothesis, we examined the relationship between the pain-free, resting alpha oscillation speed of healthy individuals and their sensitivity to two models of prolonged pain, Phasic Heat Pain and Capsaicin Heat Pain, at two visits separated by 8 weeks on average (n = 61 Visit 1, n = 46 Visit 2). We observed that the speed of an individual's pain-free alpha oscillations was negatively correlated with sensitivity to both models and that this relationship was reliable across short (minutes) and long (weeks) timescales. Furthermore, the speed of pain-free alpha oscillations can successfully identify the most pain sensitive individuals, which we validated on data from a separate, independent study. These results suggest that alpha oscillation speed is a reliable biomarker of prolonged pain sensitivity with potential for prospectively identifying pain sensitivity in the clinic.
Collapse
Affiliation(s)
- Andrew J Furman
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.,Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Mariya Prokhorenko
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Michael L Keaser
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.,Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Jing Zhang
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Shuo Chen
- Department of Epidemiology and Public Health, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Ali Mazaheri
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, B15 2TT, UK
| | - David A Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.,Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Fear of movement is associated with corticomotor depression in response to acute experimental muscle pain. Exp Brain Res 2020; 238:1945-1955. [DOI: 10.1007/s00221-020-05854-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022]
|