1
|
Gong J, Duan X, Xiang B, Qin L, Hu J. Transcriptomic changes in the hypothalamus of mice with chronic migraine: Activation of pathways associated with neuropathic inflammation and central sensitization. Mol Cell Neurosci 2024; 131:103968. [PMID: 39251101 DOI: 10.1016/j.mcn.2024.103968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Chronic migraine is a common central nervous system disorder characterized by recurrent, pulsating headaches. However, the extent and mechanisms of hypothalamic involvement in disease progression have not been thoroughly investigated. Herein, we created a chronic migraine mouse model using repeated intraperitoneal injections of nitroglycerin. We performed transcriptomic sequencing on the hypothalamus of mice with chronic migraine and control mice under normal physiological conditions, followed by differential gene set enrichment and functional analysis of the data. Additionally, we examined the intrinsic connection between chronic migraine and sleep disorders using transcriptomic sequencing data from sleep-deprived mice available in public databases. We identified 39 differentially expressed genes (DEGs) in the hypothalamus of a mouse model of chronic migraine. Functional analysis of DEGs revealed enrichment primarily in signaling transduction, immune-inflammatory responses, and the cellular microenvironment. A comparison of the transcriptomic data of sleep-deprived mice revealed two commonly expressed DEGs. Our findings indicate that the hypothalamic DEGs are primarily enriched in the PI3K/AKT/mTOR pathway and associated with the NF-κB/NLRP3/IL-1 β pathway activation to maintain the central sensitization of the chronic migraine. Chronic migraine-induced gene expression changes in the hypothalamus may help better understand the underlying mechanisms and identify therapeutic targets.
Collapse
Affiliation(s)
- Junyou Gong
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xianghan Duan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Biyu Xiang
- Department of Blood Transfusion, the First Hospital of Nanchang City, Nanchang, China
| | - Lijun Qin
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jiejie Hu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Hashikawa-Hobara N, Fujiwara K, Hashikawa N. CGRP causes anxiety via HP1γ-KLF11-MAOB pathway and dopamine in the dorsal hippocampus. Commun Biol 2024; 7:322. [PMID: 38503899 PMCID: PMC10951359 DOI: 10.1038/s42003-024-05937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide that causes anxiety behavior; however, the underlying mechanisms remain unclear. We found that CGRP modulates anxiety behavior by epigenetically regulating the HP1γ-KLF-11-MAOB pathway and depleting dopamine in the dorsal hippocampus. Intracerebroventricular administration of CGRP (0.5 nmol) elicited anxiety-like behaviors in open field, hole-board, and plus-maze tests. Additionally, we observed an increase in monoamine oxidase B (MAOB) levels and a concurrent decrease in dopamine levels in the dorsal hippocampus of mice following CGRP administration. Moreover, CGRP increased abundance the transcriptional regulator of MAOB, Krüppel-like factor 11 (KLF11), and increased levels of phosphorylated heterochromatin protein (p-HP1γ), which is involved in gene silencing, by methylating histone H3 in the dorsal hippocampus. Chromatin immunoprecipitation assay showed that HP1γ was recruited to the Klf11 enhancer by CGRP. Furthermore, infusion of CGRP (1 nmol) into the dorsal hippocampus significantly increased MAOB expression as well as anxiety-like behaviors, which were suppressed by the pharmacological inhibition or knockdown of MAOB. Together, these findings suggest that CGRP reduces dopamine levels and induces anxiety-like behavior through epigenetic regulation in the dorsal hippocampus.
Collapse
Affiliation(s)
- Narumi Hashikawa-Hobara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| | - Kyoshiro Fujiwara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Naoya Hashikawa
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| |
Collapse
|
3
|
Xie W, Li F, Han Y, Chi X, Qin Y, Ye F, Li Z, Xiao J. Calcitonin gene-related peptide attenuated discogenic low back pain in rats possibly via inhibiting microglia activation. Heliyon 2024; 10:e25906. [PMID: 38371980 PMCID: PMC10873749 DOI: 10.1016/j.heliyon.2024.e25906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Discogenic low back pain (DLBP) is a multifactorial disease and associated with intervertebral disc degeneration. Calcitonin gene-related protein (CGRP) plays a critical role in pain processing, while the role in DLBP remains unclear. This study aims to investigate the anti-nociceptive role and related mechanisms of CGRP in DLBP. Here we established the DLBP rat and validated the model using histology and radiography. Minocycline, a microglial inhibitor, and CGRP were intrathecally injected and the behavioral test was performed to determine hyperalgesia. Further, BV2 microglial cells and microglial activation agent lipopolysaccharide (LPS) were employed for the in vitro experiment. We observed obvious lumbar intervertebral disc degeneration and hyperalgesia at 12 weeks postoperation in DLBP group, with significantly activated microglia in the spinal cord. CGRP treatment significantly inhibited the upregulation of proinflammatory cytokines and NLRP3/caspase-1 expression induced by LPS in BV2 cells, whereas treatment with CGRP alone had little effect on BV2 cells. The intrathecal injection of CGRP into DLBP rats relieved mechanical and thermal hyperalgesia, reverted the microglial activation and decreased the expression of NLRP3/caspase-1, similar to the effects produced by minocycline. Our results provide evidence that microglial activation in the spinal cord play a key role in hyperalgesia in DLBP rats. CGRP alleviates DLBP induced hyperalgesia and inhibits microglial activation in the spinal cord. Regulation of CGRP and microglial activation may provide a new strategy for ameliorating DLBP.
Collapse
Affiliation(s)
- Weixin Xie
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Fan Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yi Han
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xiaoying Chi
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yi Qin
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Fan Ye
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Zhanchun Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
4
|
Antonopoulos SR, Scharnhorst M, Nalley N, Durham PL. Method for cryopreservation of trigeminal ganglion for establishing primary cultures of neurons and glia. J Neurosci Methods 2024; 402:110034. [PMID: 38072069 DOI: 10.1016/j.jneumeth.2023.110034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Primary neuronal cultures are used to elucidate cellular and molecular mechanisms involved in disease pathology and modulation by pharmaceuticals and nutraceuticals, and to identify novel therapeutic targets. However, preparation of primary neuronal cultures from rodent embryos is labor-intensive, and it can be difficult to produce high-quality consistent cultures. To overcome these issues, cryopreservation can be used to obtain standardized, high-quality stocks of neuronal cultures. NEW METHOD In this study, we present a simplified cryopreservation method for rodent primary trigeminal ganglion neurons and glia from Sprague-Dawley neonates, using a 90:10 (v/v) fetal bovine serum/dimethyl sulfoxide cell freezing medium. RESULTS Cryopreserved trigeminal ganglion cells stored for up to one year in liquid nitrogen exhibited similar neuronal and glial cell morphology to fresh cultures and retained high cell viability. Proteins implicated in inflammation and pain signaling were expressed in agreement with the reported subcellular localization. Additionally, both neurons and glial cells exhibited an increase in intracellular calcium levels in response to a depolarizing stimulus. Cryopreserved cells were also transiently transfected with reporter genes. COMPARISON WITH EXISTING METHODS Our method is simple, does not require special reagents or equipment, will save time and money, increase flexibility in study design, and produce consistent cultures. CONCLUSIONS This method for the preparation and cryopreservation of trigeminal ganglia results in primary cultures of neurons and glia similar in viability and morphology to fresh preparations that could be utilized for biochemical, cellular, and molecular studies, increase reproducibility, and save laboratory resources.
Collapse
Affiliation(s)
- Sophia R Antonopoulos
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA
| | - Mikayla Scharnhorst
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA
| | - Nicole Nalley
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA
| | - Paul L Durham
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA.
| |
Collapse
|
5
|
Morris AJ, Parker RS, Nazzal MK, Natoli RM, Fehrenbacher JC, Kacena MA, White FA. Cracking the Code: The Role of Peripheral Nervous System Signaling in Fracture Repair. Curr Osteoporos Rep 2024; 22:193-204. [PMID: 38236511 PMCID: PMC10912155 DOI: 10.1007/s11914-023-00846-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW The traditionally understated role of neural regulation in fracture healing is gaining prominence, as recent findings underscore the peripheral nervous system's critical contribution to bone repair. Indeed, it is becoming more evident that the nervous system modulates every stage of fracture healing, from the onset of inflammation to repair and eventual remodeling. RECENT FINDINGS Essential to this process are neurotrophins and neuropeptides, such as substance P, calcitonin gene-related peptide, and neuropeptide Y. These molecules fulfill key roles in promoting osteogenesis, influencing inflammation, and mediating pain. The sympathetic nervous system also plays an important role in the healing process: while local sympathectomies may improve fracture healing, systemic sympathetic denervation impairs fracture healing. Furthermore, chronic activation of the sympathetic nervous system, often triggered by stress, is a potential impediment to effective fracture healing, marking an important area for further investigation. The potential to manipulate aspects of the nervous system offers promising therapeutic possibilities for improving outcomes in fracture healing. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Ashlyn J Morris
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reginald S Parker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| | - Fletcher A White
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Park EH, Seo J, Lee Y, Park K, Kim KR, Kim S, Mobasheri A, Choi H. TissueGene-C induces long-term analgesic effects through regulation of pain mediators and neuronal sensitization in a rat monoiodoacetate-induced model of osteoarthritis pain. Osteoarthritis Cartilage 2023; 31:1567-1580. [PMID: 37544583 DOI: 10.1016/j.joca.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/21/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE TissueGene-C (TG-C), a combination of human allogeneic chondrocytes and irradiated GP2-293 cells engineered to overexpress transforming growth factor-β1 (TGF-β1), has been developed as a novel cell-based gene therapy and a candidate for disease modifying osteoarthritis drug (DMOAD). We aim to investigate analgesic mechanism of TG-C in a pre-clinical animal model with monoiodoacetate (MIA)-induced pain. DESIGN We used a rat MIA model of osteoarthritis (OA) pain. We examined that TG-C can regulate pain by inhibiting the upregulation of various pain mediators in both knee joint tissue and dorsal root ganglia (DRG) (n = 112) and alleviating pain behavior (n = 41) and neuronal hyperexcitability in DRG (n = 60), afferent nerve fiber (n = 24), and spinal cord (n = 35). RESULTS TG-C significantly alleviated pain-related behavior by restoring altered dynamic weight bearing and reduced mechanical threshold of the affected hindlimb. TG-C significantly suppressed the expression of nerve growth factor (NGF) and calcitonin gene-related peptide (CGRP) in inflamed joint tissue. TG-C significantly suppressed the upregulation of tropomyosin receptor kinase A (TrkA) and nerve injury/regeneration protein (GAP43) and activation of Iba1-positive microglial cells in DRG. TG-C significantly recovered neuronal hyperexcitability by restoring RMP and firing threshold and frequency of DRG neurons, attenuating firing rates of mechanosensitive C- or Aδ-nerve fiber innervating knee joint, and lowering increased miniature and evoked excitatory postsynaptic currents (mEPSCs and eEPSCs) in the spinal cord. CONCLUSION Our results demonstrated that TG-C exerted potent analgesic effects in a rat MIA model of OA pain by inhibiting the upregulation of pain mediators and modulating neuronal sensitization.
Collapse
Affiliation(s)
- Eui Ho Park
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, South Korea
| | - Jinwon Seo
- Institute of BioInnovation Research, Kolon Life Science, Inc., Magok-dong, Gangseo-gu, Seoul, South Korea
| | - Yunsin Lee
- Institute of BioInnovation Research, Kolon Life Science, Inc., Magok-dong, Gangseo-gu, Seoul, South Korea
| | - Kiwon Park
- Institute of BioInnovation Research, Kolon Life Science, Inc., Magok-dong, Gangseo-gu, Seoul, South Korea
| | - Kyung-Ran Kim
- Institute of BioInnovation Research, Kolon Life Science, Inc., Magok-dong, Gangseo-gu, Seoul, South Korea
| | - Sujeong Kim
- Institute of BioInnovation Research, Kolon Life Science, Inc., Magok-dong, Gangseo-gu, Seoul, South Korea
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Center for Innovative Medicine, Vilnius, Lithuania; World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Heonsik Choi
- Healthcare Research Institute, Kolon Advanced Research Cluster, Magok-dong, Gangseo-gu, Seoul, South Korea.
| |
Collapse
|
7
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Sudershan A, Younis M, Sudershan S, Kumar P. Migraine as an inflammatory disorder with microglial activation as a prime candidate. Neurol Res 2023; 45:200-215. [PMID: 36197286 DOI: 10.1080/01616412.2022.2129774] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
BACKGROUND The lower threshold of neuronal hyperexcitability has been correlated with migraines for decades but as technology has progressed, it has now become conceivable to learn more about the migraine disease. Apart from the "cortical spreading depression" and "activation of the trigeminovascular system", inflammation has been increasingly recognized as a possible pathogenic process that may have the possibility to regulate the disease severity. Microglial cells, the prime candidate of the innate immune cells of central nervous tissue, has been associated with numerous diseases; including cancer, neurodegenerative disorders, and inflammatory disorders. AIM In this review, we have attempted to link the dot of various microglial activation signaling pathways to enlighten the correlation between microglial involvement and the progression of migraine conditions. METHOD A structured survey of research articles and review of the literature was done in the electronic databases of Google Scholar, PubMed, Springer, and Elsevier until 31 December 2021. RESULT & CONCLUSION Of 1136 articles found initially and screening of 1047 records, 47 studies were included for the final review. This review concluded that inflammation and microglial overexpression as the prime candidate, plays an important role in the modulation of migraine and are responsible for the progression toward chronification. Therefore, this increases the possibility of preventing migraine development and chronification by blocking microglia overexpression.
Collapse
Affiliation(s)
- Amrit Sudershan
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir 180006, India
| | - Mohd Younis
- Department of Human Genetics and Molecular Biology, Bharathair University, Coimbatore, 641046, India
| | - Srishty Sudershan
- Department of Zoology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Parvinder Kumar
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir 180006, India.,Department of Zoology, University of Jammu, Jammu and Kashmir, 180006, India
| |
Collapse
|
9
|
Arai T, Suzuki-Narita M, Takeuchi J, Tajiri I, Inage K, Kawarai Y, Eguchi Y, Shiga Y, Hozumi T, Kim G, Tsuchiya R, Otagiri T, Mukaihata T, Hishiya T, Toshi N, Okuyama K, Tokeshi S, Furuya T, Maki S, Matsuura Y, Suzuki T, Nakamura J, Hagiwara S, Ohtori S, Orita S. Analgesic effects and arthritic changes following intra-articular injection of diclofenac etalhyaluronate in a rat knee osteoarthritis model. BMC Musculoskelet Disord 2022; 23:960. [DOI: 10.1186/s12891-022-05937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Diclofenac etalhyaluronate (DF-HA) is a recently developed analgesic conjugate of diclofenac and hyaluronic acid that has analgesic and anti-inflammatory effects on acute arthritis. In this study, we investigated its analgesic effect on osteoarthritis, using a rat model of monoiodoacetate (MIA).
Methods
We injected MIA into the right knees of eight 6-weeks-old male Sprague–Dawley rats. Four weeks later, rats were randomly injected with DF-HA or vehicle into the right knee. Seven weeks after the MIA injection, fluorogold (FG) and sterile saline were injected into the right knees of all the rats. We assessed hyperalgesia with weekly von Frey tests for 8 weeks after MIA administration. We took the right knee computed tomography (CT) as radiographical evaluation every 2 weeks. All rats were sacrificed 8 weeks after administration of MIA for histological evaluation of the right knee and immunohistochemical evaluation of the DRG and spinal cord. We also evaluated the number of FG-labeled calcitonin gene-related peptide (CGRP)-immunoreactive(ir) neurons in the dorsal root ganglion (DRG) and ionized calcium-binding adapter molecule 1 (Iba1)-ir microglia in the spinal cord.
Results
Administration of DF-HA significantly improved pain sensitivity and reduced CGRP and Iba1 expression in the DRG and spinal cord, respectively. However, computed tomography and histological evaluation of the right knee showed similar levels of joint deformity, despite DF-HA administration.
Conclusion
DF-HA exerted analgesic effects on osteoarthritic pain, but did not affect joint deformity.
Collapse
|
10
|
Nie L, Sun K, Gong Z, Li H, Quinn JP, Wang M. Src Family Kinases Facilitate the Crosstalk between CGRP and Cytokines in Sensitizing Trigeminal Ganglion via Transmitting CGRP Receptor/PKA Pathway. Cells 2022; 11:cells11213498. [PMID: 36359895 PMCID: PMC9655983 DOI: 10.3390/cells11213498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The communication between calcitonin gene-related peptide (CGRP) and cytokines plays a prominent role in maintaining trigeminal ganglion (TG) and trigeminovascular sensitization. However, the underlying regulatory mechanism is elusive. In this study, we explored the hypothesis that Src family kinases (SFKs) activity facilitates the crosstalk between CGRP and cytokines in sensitizing TG. Mouse TG tissue culture was performed to study CGRP release by enzyme-linked immunosorbent assay, cytokine release by multiplex assay, cytokine gene expression by quantitative polymerase chain reaction, and phosphorylated SFKs level by western blot. The results demonstrated that a SFKs activator, pYEEI (YGRKKRRQRRREPQY(PO3H2)EEIPIYL) alone, did not alter CGRP release or the inflammatory cytokine interleukin-1β (IL-1β) gene expression in the mouse TG. In contrast, a SFKs inhibitor, saracatinib, restored CGRP release, the inflammatory cytokines IL-1β, C-X-C motif ligand 1, C-C motif ligand 2 (CCL2) release, and IL-1β, CCL2 gene expression when the mouse TG was pre-sensitized with hydrogen peroxide and CGRP respectively. Consistently with this, the phosphorylated SFKs level was increased by both hydrogen peroxide and CGRP in the mouse TG, which was reduced by a CGRP receptor inhibitor BIBN4096 and a protein kinase A (PKA) inhibitor PKI (14–22) Amide. The present study demonstrates that SFKs activity plays a pivotal role in facilitating the crosstalk between CGRP and cytokines by transmitting CGRP receptor/PKA signaling to potentiate TG sensitization and ultimately trigeminovascular sensitization.
Collapse
Affiliation(s)
- Lingdi Nie
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
| | - Kai Sun
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - Ziyang Gong
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - Haoyang Li
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
| | - Minyan Wang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
- Correspondence:
| |
Collapse
|
11
|
The Impact of Activity-Based Interventions on Neuropathic Pain in Experimental Spinal Cord Injury. Cells 2022; 11:cells11193087. [PMID: 36231048 PMCID: PMC9563089 DOI: 10.3390/cells11193087] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Physical activity-based rehabilitative interventions represent the main treatment concept for people suffering from spinal cord injury (SCI). The role such interventions play in the relief of neuropathic pain (NP) states is emerging, along with underlying mechanisms resulting in SCI-induced NP (SCI-NP). Animal models have been used to investigate the benefits of activity-based interventions (ABI), such as treadmill training, wheel running, walking, swimming, and bipedal standing. These activity-based paradigms have been shown to modulate inflammatory-related alterations as well as induce functional and structural changes in the spinal cord gray matter circuitry correlated with pain behaviors. Thus far, the research available provides an incomplete picture of the cellular and molecular pathways involved in this beneficial effect. Continued research is essential for understanding how such interventions benefit SCI patients suffering from NP and allow the development of individualized rehabilitative therapies. This article reviews preclinical studies on this specific topic, goes over mechanisms involved in SCI-NP in relation to ABI, and then discusses the effectiveness of different activity-based paradigms as they relate to different forms, intensity, initiation times, and duration of ABI. This article also summarizes the mechanisms of respective interventions to ameliorate NP after SCI and provides suggestions for future research directions.
Collapse
|
12
|
The Role of Inflammation, Hypoxia, and Opioid Receptor Expression in Pain Modulation in Patients Suffering from Obstructive Sleep Apnea. Int J Mol Sci 2022; 23:ijms23169080. [PMID: 36012341 PMCID: PMC9409023 DOI: 10.3390/ijms23169080] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/18/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a relatively common disease in the general population. Besides its interaction with many comorbidities, it can also interact with potentially painful conditions and modulate its course. The association between OSA and pain modulation has recently been a topic of concern for many scientists. The mechanism underlying OSA-related pain connection has been linked with different pathophysiological changes in OSA and various pain mechanisms. Furthermore, it may cause both chronic and acute pain aggravation as well as potentially influencing the antinociceptive mechanism. Characteristic changes in OSA such as nocturnal hypoxemia, sleep fragmentation, and systemic inflammation are considered to have a curtailing impact on pain perception. Hypoxemia in OSA has been proven to have a significant impact on increased expression of proinflammatory cytokines influencing the hyperalgesic priming of nociceptors. Moreover, hypoxia markers by themselves are hypothesized to modulate intracellular signal transduction in neurons and have an impact on nociceptive sensitization. Pain management in patients with OSA may create problems arousing from alterations in neuropeptide systems and overexpression of opioid receptors in hypoxia conditions, leading to intensification of side effects, e.g., respiratory depression and increased opioid sensitivity for analgesic effects. In this paper, we summarize the current knowledge regarding pain and pain treatment in OSA with a focus on molecular mechanisms leading to nociceptive modulation.
Collapse
|
13
|
Eller OC, Stair RN, Neal C, Rowe PS, Nelson-Brantley J, Young EE, Baumbauer KM. Comprehensive phenotyping of cutaneous afferents reveals early-onset alterations in nociceptor response properties, release of CGRP, and hindpaw edema following spinal cord injury. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100097. [PMID: 35756343 PMCID: PMC9218836 DOI: 10.1016/j.ynpai.2022.100097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is a complex syndrome that has profound effects on patient well-being, including the development of medically-resistant chronic pain. The mechanisms underlying SCI pain have been the subject of thorough investigation but remain poorly understood. While the majority of the research has focused on changes occurring within and surrounding the site of injury in the spinal cord, there is now a consensus that alterations within the peripheral nervous system, namely sensitization of nociceptors, contribute to the development and maintenance of chronic SCI pain. Using an ex vivo skin/nerve/DRG/spinal cord preparation to characterize afferent response properties following SCI, we found that SCI increased mechanical and thermal responding, as well as the incidence of spontaneous activity (SA) and afterdischarge (AD), in below-level C-fiber nociceptors 24 hr following injury relative to naïve controls. Interestingly, the distribution of nociceptors that exhibit SA and AD are not identical, and the development of SA was observed more frequently in nociceptors with low heat thresholds, while AD was found more frequently in nociceptors with high heat thresholds. We also found that SCI resulted in hindpaw edema and elevated cutaneous calcitonin gene-related peptide (CGRP) concentration that were not observed in naïve mice. These results suggest that SCI causes a rapidly developing nociceptor sensitization and peripheral inflammation that may contribute to the early emergence and persistence of chronic SCI pain.
Collapse
Affiliation(s)
- Olivia C. Eller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rena N. Stair
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Christopher Neal
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Peter S.N. Rowe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- The Kidney Institute & Division of Nephrology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jennifer Nelson-Brantley
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Erin E. Young
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| | - Kyle M. Baumbauer
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| |
Collapse
|
14
|
Kanno K, Suzuki-Narita M, Kawarai Y, Hagiwara S, Yoh S, Nakamura J, Orita S, Inage K, Suzuki T, Ohtori S. Analgesic effects and arthritic changes following tramadol administration in a rat hip osteoarthritis model. J Orthop Res 2022; 40:1770-1777. [PMID: 34783063 DOI: 10.1002/jor.25208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 02/04/2023]
Abstract
We investigated the analgesic effects of tramadol and the arthritic changes following tramadol administration in the rat hip osteoarthritis (OA) model using mono-iodoacetate (MIA). The right hip joints of male Sprague-Dawley rats (n = 5 rats/group) in the Sham group were injected with 25 μl of sterile saline and 1% of fluorogold (FG) retrograde neurotracer. In the MIA + Vehicle and MIA + Tramadol groups, FG and 25 μl of sterile saline with 0.5 mg of MIA were injected into the right hip joint. The MIA + Vehicle and MIA + Tramadol groups were administered daily for 4 weeks, either sterile saline (10 mg/kg, intraperitoneal [i.p.]) or tramadol (10 mg/kg, i.p.). We assessed hyperalgesia every week after MIA administration. Histopathological changes and immunoreactive neurons for calcitonin gene-related peptide (CGRP) in dorsal root ganglia (DRG) were evaluated after 4 weeks of treatment. MIA injection into the hip joint led to mechanical hyperalgesia (p < 0.01), which was significantly reduced by tramadol administration (p < 0.01). Furthermore, daily i.p injection of tramadol significantly suppressed CGRP expression in DRG (p < 0.0001). MIA + Vehicle and MIA + Tramadol groups showed significant cartilage reduction and degeneration compared to the Sham group (p < 0.0001). Interestingly, OA changes significantly progressed in the MIA + Tramadol group compared to the MIA + Vehicle group (p < 0.0001).
Collapse
Affiliation(s)
- Keijiro Kanno
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Miyako Suzuki-Narita
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Yuya Kawarai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Shigeo Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Satoshi Yoh
- Department of Orthopaedic Surgery, Eastern Chiba Medical Center, Togane, Japan
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Takane Suzuki
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba City, Japan
| |
Collapse
|
15
|
Abstract
We aimed to investigate a sexually dimorphic role of calcitonin gene-related peptide (CGRP) in rodent models of pain. Based on findings in migraine where CGRP has a preferential pain-promoting effect in female rodents, we hypothesized that CGRP antagonists and antibodies would attenuate pain sensitization more efficaciously in female than male mice and rats. In hyperalgesic priming induced by activation of interleukin 6 signaling, CGRP receptor antagonists olcegepant and CGRP8-37 both given intrathecally, blocked, and reversed hyperalgesic priming only in females. A monoclonal antibody against CGRP, given systemically, blocked priming specifically in female rodents but failed to reverse it. In the spared nerve injury model, there was a transient effect of both CGRP antagonists, given intrathecally, on mechanical hypersensitivity in female mice only. Consistent with these findings, intrathecally applied CGRP caused a long-lasting, dose-dependent mechanical hypersensitivity in female mice but more transient effects in males. This CGRP-induced mechanical hypersensitivity was reversed by olcegepant and the KCC2 enhancer CLP257, suggesting a role for anionic plasticity in the dorsal horn in the pain-promoting effects of CGRP in females. In spinal dorsal horn slices, CGRP shifted GABAA reversal potentials to significantly more positive values, but, again, only in female mice. Therefore, CGRP may regulate KCC2 expression and/or activity downstream of CGRP receptors specifically in females. However, KCC2 hypofunction promotes mechanical pain hypersensitivity in both sexes because CLP257 alleviated hyperalgesic priming in male and female mice. We conclude that CGRP promotes pain plasticity in female rodents but has a limited impact in males.SIGNIFICANCE STATEMENT The majority of patients impacted by chronic pain are women. Mechanistic studies in rodents are creating a clear picture that molecular events promoting chronic pain are different in male and female animals. We sought to build on evidence showing that CGRP is a more potent and efficacious promoter of headache in female than in male rodents. To test this, we used hyperalgesic priming and the spared nerve injury neuropathic pain models in mice. Our findings show a clear sex dimorphism wherein CGRP promotes pain in female but not male mice, likely via a centrally mediated mechanism of action. Our work suggests that CGRP receptor antagonists could be tested for efficacy in women for a broader variety of pain conditions.
Collapse
|
16
|
Uniyal A, Thakur V, Rani M, Tiwari V, Akhilesh, Gadepalli A, Ummadisetty O, Modi A, Tiwari V. Kinesin Nanomotors Mediated Trafficking of NMDA-Loaded Cargo as A Novel Target in Chronic Pain. ACS Chem Neurosci 2021; 12:2956-2963. [PMID: 34324307 DOI: 10.1021/acschemneuro.1c00319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic pain is among the most prevalent burdensome disorders worldwide. The N-methyl-d-aspartate (NMDA) receptor system plays a critical role in central sensitization, a primary feature of chronic pain. Despite the proven efficacy of exogenous ligands to this receptor system in preclinical studies, evidence for the clinical efficacy of NMDA antagonists for the treatment of chronic pain is weak. Researchers are studying alternate approaches, rather than direct inhibition of the NMDA receptors in pain processing neurons. This indirect approach utilizes the modulation of molecular switches that regulates the synthesis, maturation, and transport of receptors from cellular organelles to the synaptic membrane. Kinesins are nanomotors that anterogradely transport the cargo using microtubule tracks across the neurons. Various members of the kinesin family, including KIF17, KIF11, KIF5b, and KIF21a, regulate the intracellular transport of NMDA receptors. Pharmacological targeting of these ATP-driven nanomotors could be a useful tool for manipulating the NMDAR functioning. It could provide the potential for the development of a novel strategy for the management of chronic pain.
Collapse
Affiliation(s)
- Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Vaibhav Thakur
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Mousmi Rani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Vineeta Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Ajay Modi
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| |
Collapse
|
17
|
Sun C, An Q, Li R, Chen S, Gu X, An S, Wang Z. Calcitonin gene-related peptide induces the histone H3 lysine 9 acetylation in astrocytes associated with neuroinflammation in rats with neuropathic pain. CNS Neurosci Ther 2021; 27:1409-1424. [PMID: 34397151 PMCID: PMC8504526 DOI: 10.1111/cns.13720] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Aims Calcitonin gene‐related peptide (CGRP) as a regulator of astrocyte activation may facilitate spinal nociceptive processing. Histone H3 lysine 9 acetylation (H3K9ac) is considered an important regulator of cytokine and chemokine gene expression after peripheral nerve injury. In this study, we explored the relationship between CGRP and H3K9ac in the activation of astrocytes, and elucidated the underlying mechanisms in the pathogenesis of chronic neuropathic pain. Methods Astroglial cells (C6) were treated with CGRP and differentially enrichments of H3K9ac on gene promoters were examined using ChIP‐seq. A chronic constriction injury (CCI) rat model was used to evaluate the role of CGRP on astrocyte activation and H3K9ac signaling in CCI‐induced neuropathic pain. Specific inhibitors were employed to delineate the involved signaling. Results Intrathecal injection of CGRP and CCI increased the number of astrocytes displaying H3K9ac in the spinal dorsal horn of rats. Treatment of CGRP was able to up‐regulate H3K9ac and glial fibrillary acidic protein (GFAP) expression in astroglial cells. ChIP‐seq data indicated that CGRP significantly altered H3K9ac enrichments on gene promoters in astroglial cells following CGRP treatment, including 151 gaining H3K9ac and 111 losing this mark, which mostly enriched in proliferation, autophagy, and macrophage chemotaxis processes. qRT‐PCR verified expressions of representative candidate genes (ATG12, ATG4C, CX3CR1, MMP28, MTMR14, HMOX1, RET) and RTCA verified astrocyte proliferation. Additionally, CGRP treatment increased the expression of H3K9ac, CX3CR1, and IL‐1β in the spinal dorsal horn. CGRP antagonist and HAT inhibitor attenuated mechanical and thermal hyperalgesia in CCI rats. Such analgesic effects were concurrently associated with the reduced levels of H3K9ac, CX3CR1, and IL‐1β in the spinal dorsal horn of CCI rats. Conclusion Our findings highly indicate that CGRP is associated with the development of neuropathic pain through astrocytes‐mediated neuroinflammatory responses via H3K9ac in spinal dorsa horn following nerve injury. This study found that CGRP act on their astrocytic receptors and lead to H3K9 acetylation (H3K9ac), which are mainly associated with proliferation‐, autophagy‐, and inflammation‐related gene expression. The number of astrocytes with H3K9ac expression is increased after nerve injury. Inhibition of CGRP attenuates the development of neuropathic pain, which was accompanied by the suppression of H3K9ac, CX3CR1, and IL‐1β expression in CCI rats.
Collapse
Affiliation(s)
- Chenyan Sun
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Qi An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Ruidi Li
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhui Chen
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
18
|
Common and discrete mechanisms underlying chronic pain and itch: peripheral and central sensitization. Pflugers Arch 2021; 473:1603-1615. [PMID: 34245379 DOI: 10.1007/s00424-021-02599-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/26/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
Normally, an obvious antagonism exists between pain and itch. In normal conditions, painful stimuli suppress itch sensation, whereas pain killers often generate itch. Although pain and itch are mediated by separate pathways under normal conditions, most chemicals are not highly specific to one sensation in chronic pathologic conditions. Notably, in patients with neuropathic pain, histamine primarily induces pain rather than itch, while in patients with atopic dermatitis, bradykinin triggers itch rather than pain. Accordingly, repetitive scratching even enhances itch sensation in chronic itch conditions. Physicians often prescribe pain relievers to patients with chronic itch, suggesting common mechanisms underlying chronic pain and itch, especially peripheral and central sensitization. Rather than separating itch and pain, studies should investigate chronic itch and pain including neuropathic and inflammatory conditions. Here, we reviewed chronic sensitization leading to chronic pain and itch at both peripheral and central levels. Studies investigating the connection between pain and itch facilitate the development of new therapeutics against both chronic dysesthesias based on the underlying pathophysiology.
Collapse
|
19
|
Thammanichanon P, Kaewpitak A, Binlateh T, Pavasant P, Leethanakul C. Varied temporal expression patterns of trigeminal TRPA1 and TRPV1 and the neuropeptide CGRP during orthodontic force-induced pain. Arch Oral Biol 2021; 128:105170. [PMID: 34082374 DOI: 10.1016/j.archoralbio.2021.105170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The aim of this study was to quantify the temporal changes in inflammation and TRPA1, TRPV1 and CGRP expression in the trigeminal ganglion during force-induced orthodontic pain. DESIGN Orthodontic force was applied to both maxillary first molars in 8-week-old Wistar rats for 12 h, 24 h, 3 d or 7 d. The rat grimace scale (RGS) score and duration of face grooming were used to measure orthodontic pain. Western blotting was performed to assess TRPA1, TRPV1 and CGRP expression in trigeminal ganglia. NF-кB levels and colocalization of TRPA1, TRPV1 and CGRP were evaluated by immunofluorescent staining. RESULTS Application of continuous force significantly increased pain behaviours at 1 and 3 d. NF-кB significantly increased in periodontal ligament at 12 h until 3 d. TRPV1 was significantly elevated within 1 d; TRPA1 significantly increased from 1-3 d; CGRP expression significantly increased from 12 h to 3 d. The TRPV1/TRPA1 expression ratio was highest at 12 h; the TRPA1/TRPV1 ratio peaked at 3 d. The percentages of trigeminal neurons co-expressing TRPA1/TRPV1, TRPA1/CGRP, and TRPV1/CGRP significantly increased by 12 h and peaked at 24 h. CGRP expression had a stronger positive correlation with TRPV1 than TRPA1. CONCLUSIONS Inflammation induced by application of orthodontic force sensitizes trigeminal TRPV1 and TRPA1; TRPV1 is primarily activated as an early response, whereas TRPA1 is activated as a late response. Activation of both nociceptors results in CGRP release. Thus, blocking both TRPV1 and TRPA1 may represent a primary therapeutic target for relief of orthodontic pain.
Collapse
Affiliation(s)
- Peungchaleoy Thammanichanon
- Section of Orthodontics, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Aunwaya Kaewpitak
- Section of Pediatric Dentistry, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thunwa Binlateh
- Institute of Research and Development, Suranaree University of Technology, Nakhonratchasima, Thailand
| | - Prasit Pavasant
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chidchanok Leethanakul
- Section of Orthodontics, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
20
|
An Q, Sun C, Li R, Chen S, Gu X, An S, Wang Z. Calcitonin gene-related peptide regulates spinal microglial activation through the histone H3 lysine 27 trimethylation via enhancer of zeste homolog-2 in rats with neuropathic pain. J Neuroinflammation 2021; 18:117. [PMID: 34020664 PMCID: PMC8139106 DOI: 10.1186/s12974-021-02168-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) as a mediator of microglial activation at the transcriptional level may facilitate nociceptive signaling. Trimethylation of H3 lysine 27 (H3K27me3) by enhancer of zeste homolog 2 (EZH2) is an epigenetic mark that regulates inflammatory-related gene expression after peripheral nerve injury. In this study, we explored the relationship between CGRP and H3K27me3 in microglial activation after nerve injury, and elucidated the underlying mechanisms in the pathogenesis of chronic neuropathic pain. METHODS Microglial cells (BV2) were treated with CGRP and differentially enrichments of H3K27me3 on gene promoters were examined using ChIP-seq. A chronic constriction injury (CCI) rat model was used to evaluate the role of CGRP on microglial activation and EZH2/H3K27me3 signaling in CCI-induced neuropathic pain. RESULTS Overexpressions of EZH2 and H3K27me3 were confirmed in spinal microglia of CCI rats by immunofluorescence. CGRP treatment induced the increased of H3K27me3 expression in the spinal dorsal horn and cultured microglial cells (BV2) through EZH2. ChIP-seq data indicated that CGRP significantly altered H3K27me3 enrichments on gene promoters in microglia following CGRP treatment, including 173 gaining H3K27me3 and 75 losing this mark, which mostly enriched in regulation of cell growth, phagosome, and inflammation. qRT-PCR verified expressions of representative candidate genes (TRAF3IP2, BCL2L11, ITGAM, DAB2, NLRP12, WNT3, ADAM10) and real-time cell analysis (RTCA) verified microglial proliferation. Additionally, CGRP treatment and CCI increased expressions of ITGAM, ADAM10, MCP-1, and CX3CR1, key mediators of microglial activation in spinal dorsal horn and cultured microglial cells. Such increased effects induced by CCI were suppressed by CGRP antagonist and EZH2 inhibitor, which were concurrently associated with the attenuated mechanical and thermal hyperalgesia in CCI rats. CONCLUSION Our findings highly indicate that CGRP is implicated in the genesis of neuropathic pain through regulating microglial activation via EZH2-mediated H3K27me3 in the spinal dorsal horn.
Collapse
Affiliation(s)
- Qi An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Chenyan Sun
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Ruidi Li
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhui Chen
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| |
Collapse
|
21
|
Hashikawa-Hobara N, Mishima S, Okujima C, Shitanishi Y, Hashikawa N. Npas4 impairs fear memory via phosphorylated HDAC5 induced by CGRP administration in mice. Sci Rep 2021; 11:7006. [PMID: 33772088 PMCID: PMC7997869 DOI: 10.1038/s41598-021-86556-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
The relationships among neuropeptide, calcitonin gene-related peptide (CGRP), and memory formation remain unclear. Here, we showed that the intracerebroventricular administration of CGRP impaired the traumatic fear memories, in a widely studied animal model of post-traumatic stress disorder. We found that CGRP administration suppressed fear memory by increasing neuronal PAS domain protein 4 (Npas4), phosphorylated histone deacetylase 5 (HDAC5), and protein kinase D (PKD). We also discovered that Npas4 knockdown inhibited CGRP-mediated fear memory. CGRP decreased the binding between HDAC5 and the Npas4 enhancer site and increased the binding between acetylated histone H3 and the Npas4 enhancer site. The pharmacological inhibition or knockdown of PKD attenuated the CGRP-mediated impairment of fear memory and the increased phosphorylation of HDAC5 and Npas4 expression. Our findings demonstrated that the CGRP-PKD pathway was associated with the histone H3 acetylation-Npas4 pathway. These results suggested a novel function for CGRP on fear memory, through epigenetic regulation.
Collapse
Affiliation(s)
- Narumi Hashikawa-Hobara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| | - Shuta Mishima
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Chihiro Okujima
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Youdai Shitanishi
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Naoya Hashikawa
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| |
Collapse
|
22
|
Shibata M, Tang C. Implications of Transient Receptor Potential Cation Channels in Migraine Pathophysiology. Neurosci Bull 2021; 37:103-116. [PMID: 32870468 PMCID: PMC7811976 DOI: 10.1007/s12264-020-00569-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Migraine is a common and debilitating headache disorder. Although its pathogenesis remains elusive, abnormal trigeminal and central nervous system activity is likely to play an important role. Transient receptor potential (TRP) channels, which transduce noxious stimuli into pain signals, are expressed in trigeminal ganglion neurons and brain regions closely associated with the pathophysiology of migraine. In the trigeminal ganglion, TRP channels co-localize with calcitonin gene-related peptide, a neuropeptide crucially implicated in migraine pathophysiology. Many preclinical and clinical data support the roles of TRP channels in migraine. In particular, activation of TRP cation channel V1 has been shown to regulate calcitonin gene-related peptide release from trigeminal nerves. Intriguingly, several effective anti-migraine therapies, including botulinum neurotoxin type A, affect the functions of TRP cation channels. Here, we discuss currently available data regarding the roles of major TRP cation channels in the pathophysiology of migraine and the therapeutic applicability thereof.
Collapse
Affiliation(s)
- Mamoru Shibata
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
- Department of Neurology, Tokyo Dental College Ichikawa General Hospital, Chiba, 272-8513, Japan.
| | - Chunhua Tang
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| |
Collapse
|
23
|
Xie D, Xu Y, Yang Y, Hua Z, Li J, Fu G, Wu Q. Sensory denervation increases potential of bisphosphonates to induce osteonecrosis via disproportionate expression of calcitonin gene-related peptide and substance P. Ann N Y Acad Sci 2020; 1487:56-73. [PMID: 33301204 DOI: 10.1111/nyas.14540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a serious side effect of systematic administration of bisphosphonates (BPs). Sensory innervation is crucial for bone healing. We established inferior alveolar nerve injury (IANI) and inferior alveolar nerve transection (IANT) models characterized by disorganized periosteum, increased osteoclasts, and unbalanced neuropeptide expression. Zoledronate injection disrupted neuropeptide expression in the IANI and IANT models by decreasing calcitonin gene-related peptide (CGRP) and increasing substance P (SP); associated with this, BRONJ prevalence was significantly higher in the IANT model, followed by the IANI model and the sham control. CGRP treatment significantly reduced BRONJ occurrence, whereas SP administration had the opposite effect. In vitro, RAW 264.7 cells were treated with BPs and then CGRP and/or SP to study changes in zoledronate toxicity; combined application of CGRP and SP decreased zoledronate toxicity, whereas CGRP or SP applied alone showed no effects. These results demonstrate that sensory denervation facilitates the occurrence of BRONJ and that CGRP used therapeutically may prevent BRONJ progression, provided that SP is also present. Further studies are necessary to determine the optimal ratio of CGRP to SP for promoting bone healing and to uncover the mechanism by which CGRP and SP cooperate.
Collapse
Affiliation(s)
- Dongni Xie
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yamei Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ziyi Hua
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao Li
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Fu
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qingqing Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
ChIP-seq Profiling Identifies Histone Deacetylase 2 Targeting Genes Involved in Immune and Inflammatory Regulation Induced by Calcitonin Gene-Related Peptide in Microglial Cells. J Immunol Res 2020; 2020:4384696. [PMID: 32832570 PMCID: PMC7424498 DOI: 10.1155/2020/4384696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a mediator of microglial activation at the transcriptional level. The involvement of the epigenetic mechanism in this process is largely undefined. Histone deacetylase (HDAC)1/2 are considered important epigenetic regulators of gene expression in activated microglia. In this study, we examined the effect of CGRP on HDAC2-mediated gene transcription in microglial cells through the chromatin immunoprecipitation sequencing (ChIP-seq) method. Immunofluorescence analysis showed that mouse microglial cells (BV2) expressed CGRP receptor components. Treatment of microglia with CGRP increased HDAC2 protein expression. ChIP-seq data indicated that CGRP remarkably altered promoter enrichments of HDAC2 in microglial cells. We identified 1271 gene promoters, whose HDAC2 enrichments are significantly altered in microglia after CGRP treatment, including 1181 upregulating genes and 90 downregulating genes. Bioinformatics analyses showed that HDAC2-enriched genes were mainly associated with immune- and inflammation-related pathways, such as nitric oxide synthase (NOS) biosynthetic process, retinoic acid-inducible gene- (RIG-) like receptor signaling pathway, and nuclear factor kappa B (NF-κB) signaling pathway. The expression of these key pathways (NOS, RIG-I, and NF-κB) were further verified by Western blot. Taken together, our findings suggest that genes with differential HDAC2 enrichments induced by CGRP function in diverse cellular pathways and many are involved in immune and inflammatory responses.
Collapse
|
25
|
Khodir SA, Al-Gholam MA, Salem HR. L-Carnitine potentiates the anti-inflammatory and antinociceptive effects of diclofenac sodium in an experimentally-induced knee osteoarthritis rat model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1035-1044. [PMID: 32952950 PMCID: PMC7478254 DOI: 10.22038/ijbms.2020.43136.10138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/09/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVES The aim of the present research is to investigate the efficacy of L-carnitine (LC) as a complementary therapy to diclofenac sodium (Dic) treatment in a mono-iodoacetate (MIA) induced knee osteoarthritis (OA) rat model, with respect to pain relief and the underlying pathology. MATERIALS AND METHODS Fifty adult male albino rats were randomly divided into five groups (n=10): Control, OA, OA/Dic, OA/LC, and OA/Dic+LC. Knee diameter and pain assessment tests were done weekly. After four weeks, serum malondialdehyde, reduced glutathione, interleukin 1-β, tumor necrosis factor-alpha, prostaglandin E2, and bone-specific alkaline phosphatase were measured. The injected knees were removed and processed for the histological and immunohistological study of matrix metalloproteinase-13 (MMP-13) and cyclooxygenase 2 (COX-2). Also, histological examination of dorsal root ganglia and calcitonin gene-related peptide (CGRP) expression in the spinal cord were assessed. RESULTS Treatment with Dic and/or LC significantly reduced knee swelling, improved pain-related behaviors, inflammatory and oxidative stress markers, attenuated the MIA-mediated histopathological alteration in the knee joint, and down-regulated expression of MMP-13 and COX-2 in the knee joint. It, also, significantly reduced CGRP expression, compared with the OA group. Dic+LC showed a better effect in improving some parameters than each treatment alone. CONCLUSION LC plus Dic is a more effective therapy than Dic alone for OA treatment.
Collapse
Affiliation(s)
- Suzan A Khodir
- Medical Physiology Department , Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Marwa A Al-Gholam
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Heba R Salem
- Medical Physiology Department , Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| |
Collapse
|
26
|
Xie W, Li F, Han Y, Li Z, Xiao J. Neuropeptides are associated with pain threshold and bone microstructure in ovariectomized rats. Neuropeptides 2020; 81:101995. [PMID: 31759680 DOI: 10.1016/j.npep.2019.101995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Postmenopausal osteoporosis (PMO) is a metabolic skeletal disorder with impaired bone density and bone quality in postmenopausal women. The aim of the present study was to investigate the correlation between neuropeptides, bone microstructure and pain threshold in ovariectomized (OVX) rats. METHODS Female rats were randomly divided into the ovariectomized (OVX) group and the sham surgery (SHAM) group. Bone microstructure and immunocytochemistry for substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP) and neuropeptide Y (NPY) in tibial and DRG were performed. Pain threshold was assessed at post-operative 11 weeks. Pearson correlation coefficients were calculated between neuropeptides, bone microstructure and pain threshold. RESULTS Significant decreases in bone volume fraction (BV/TV) and trabecular number (Tb. N) but significant increases in trabecular spacing (Tb.Sp) were showed in OVX group. Mechanical pain threshold (MPT) in OVX group was significantly decreased. The MOD values for SP, CGRP and VIP of tibial in OVX group were significantly lower, whereas NPY, NPY1R and NPY2R were significantly higher. And SP, CGRP, VIP, NPY and NPY2R of DRG were significantly increased in OVX group, while NPY1R was significantly decreased. Correlation analysis showed that NPY, Y1R and Y2R in bone were negatively correlated with BV/TV. MPT was negatively correlated with NPY and Y2R in DRG, and positively correlated with Y1R in DRG. CONCLUSIONS Our results suggested that SP, CGRP, VIP and NPY were involved in the osteoporotic bone microstructure and mechanical hypersensitivity in OVX rats, indicating the potential to utilize neuropeptides as novel therapeutic targets for PMO.
Collapse
Affiliation(s)
- Weixin Xie
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Fan Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yi Han
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Zhanchun Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
27
|
George NC, Laferrière A, Coderre TJ. Sex differences in the contributions of spinal atypical PKCs and downstream targets to the maintenance of nociceptive sensitization. Mol Pain 2020; 15:1744806919840582. [PMID: 30857476 PMCID: PMC6537080 DOI: 10.1177/1744806919840582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Chronic pain has been shown to depend on nociceptive sensitization in the spinal cord, and while multiple mechanisms involved in the initiation of plastic changes have been established, the molecular targets which maintain spinal nociceptive sensitization are still largely unknown. Building upon the established neurobiology underlying the maintenance of long-term potentiation in the hippocampus, this present study investigated the contributions of spinal atypical protein kinase C (PKC) isoforms PKCι/λ and PKMζ and their downstream targets (p62/GluA1 and NSF/GluA2 interactions, respectively) to the maintenance of spinal nociceptive sensitization in male and female rats. Results Pharmacological inhibition of atypical PKCs by ZIP reversed established allodynia produced by repeated intramuscular acidic saline injections in male animals only, replicating previously demonstrated sex differences. Inhibition of both PKCι/λ and downstream substrates p62/GluA1 resulted in male-specific reversals of intramuscular acidic saline-induced allodynia, while female animals continued to display allodynia. Inhibition of NSF/GluA2, the downstream target to PKMζ, reversed allodynia induced by intramuscular acidic saline in both sexes. Neither PKCι/λ, p62/GluA1 or NSF/GluA2 inhibition had any effect on formalin response for either sex. Conclusion This study provides novel behavioural evidence for the male-specific role of PKCι/λ and downstream target p62/GluA1, highlighting the potential influence of ongoing afferent input. The sexually divergent pathways underlying persistent pain are shown here to converge at the interaction between NSF and the GluA2 subunit of the AMPA receptor. Although this interaction is thought to be downstream of PKMζ in males, these findings and previous work suggest that females may rely on a factor independent of atypical PKCs for the maintenance of spinal nociceptive sensitization.
Collapse
Affiliation(s)
- Nicole C George
- 1 Alan Edwards Centre for Research on Pain, Montreal, QC, Canada.,2 Integrated Program in Neuroscience, Montreal, QC, Canada.,3 Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - André Laferrière
- 1 Alan Edwards Centre for Research on Pain, Montreal, QC, Canada.,3 Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Terence J Coderre
- 1 Alan Edwards Centre for Research on Pain, Montreal, QC, Canada.,2 Integrated Program in Neuroscience, Montreal, QC, Canada.,3 Department of Anesthesia, McGill University, Montreal, QC, Canada
| |
Collapse
|
28
|
Pellesi L, Do TP, Ashina H, Ashina M, Burstein R. Dual Therapy With Anti-CGRP Monoclonal Antibodies and Botulinum Toxin for Migraine Prevention: Is There a Rationale? Headache 2020; 60:1056-1065. [PMID: 32437038 DOI: 10.1111/head.13843] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To narratively review the pathophysiological rationale of dual therapy with anti-calcitonin gene-related peptide monoclonal antibodies and botulinum toxin type A in treatment-resistant chronic migraine prevention. BACKGROUND For the prevention of chronic migraine, several pharmacological therapies are available, including oral medications, botulinum toxin type A, and the newly approved monoclonal antibodies targeting calcitonin gene-related peptide or its receptor. However, monotherapy does not yield benefits in some affected individuals, which raises the question of whether dual therapy with monoclonal antibodies and botulinum toxin type A hold promise in patients with treatment-resistant chronic migraine. METHOD We searched MEDLINE for articles published from database inception to December 31st, 2019. Publications were largely selected from the past 10 years but commonly referenced and highly regarded older publications were not excluded. RESULTS Preclinical data suggest that anti-calcitonin gene-related peptide monoclonal antibodies and botulinum toxin type A have synergistic effects within the trigeminovascular system. Of note, findings indicate that fremanezumab - an antibody targeting the calcitonin gene-related peptide - mainly prevents the activation of Aδ-fibers, whereas botulinum toxin type A prevents the activation of C-fibers. CONCLUSION There is currently only indirect preclinical evidence to support a rationale for dual therapy with anti-calcitonin gene-related peptide monoclonal antibodies and botulinum toxin type A for chronic migraine prevention. Rigorous studies evaluating clinical efficacy, safety, and cost-effectiveness are needed.
Collapse
Affiliation(s)
- Lanfranco Pellesi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thien P Do
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Håkan Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Tanaka T, Takao-Kawabata R, Takakura A, Shimazu Y, Nakatsugawa M, Ito A, Lee JW, Kawasaki K, Iimura T. Teriparatide relieves ovariectomy-induced hyperalgesia in rats, suggesting the involvement of functional regulation in primary sensory neurons by PTH-mediated signaling. Sci Rep 2020; 10:5346. [PMID: 32210273 PMCID: PMC7093455 DOI: 10.1038/s41598-020-62045-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/03/2020] [Indexed: 11/09/2022] Open
Abstract
Clinical studies have reported that teriparatide (TPTD), a human parathyroid hormone analog, reduces back pain in osteoporotic patients. However, the mechanistic insights of this pharmacological action remain elusive. This study investigated the antinociceptive effect of TPTD mainly on primary sensory neurons in ovariectomized (OVX) rats. The plantar test showed thermal hyperalgesia in the OVX rats, which was significantly, but not fully, recovered immediately after the initial TPTD administration. The von Frey test also demonstrated reduced withdrawal threshold in the OVX rats. This was partially recovered by TPTD. Consistently, the number and size of spinal microglial cells were significantly increased in the OVX rats, while TPTD treatment significantly reduced the number but not size of these cells. RNA sequencing-based bioinformatics of the dorsal root ganglia (DRG) demonstrated that changes in neuro-protective and inflammatory genes were involved in the pharmacological effect of TPTD. Most neurons in the DRG expressed substantial levels of parathyroid hormone 1 receptor. TPTD treatment of the cultured DRG-derived neuronal cells reduced the cAMP level and augmented the intracellular calcium level as the concentration increased. These findings suggest that TPTD targets neuronal cells as well as bone cells to exert its pharmacological action.
Collapse
Affiliation(s)
- Tomoya Tanaka
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka, 410-2321, Japan.,Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, 060-8586, Japan
| | - Ryoko Takao-Kawabata
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka, 410-2321, Japan.
| | - Aya Takakura
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka, 410-2321, Japan.,Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, 060-8586, Japan
| | - Yukari Shimazu
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka, 410-2321, Japan
| | - Momoko Nakatsugawa
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka, 410-2321, Japan
| | - Akitoshi Ito
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka, 410-2321, Japan
| | - Ji-Won Lee
- Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, 060-8586, Japan.,Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Shitsukawa, Toon city, Ehime, 791-0295, Japan
| | - Koh Kawasaki
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni city, Shizuoka, 410-2321, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo, 060-8586, Japan. .,Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Shitsukawa, Toon city, Ehime, 791-0295, Japan.
| |
Collapse
|
30
|
Tu C, Wu DZ, Huang YS, Zhuang JS, Zeng JH, Xu P, Meng TT, Zhong ZM. Oxidative Stress Contributes to Hyperalgesia in Osteoporotic Mice. J Pain Res 2020; 13:131-142. [PMID: 32021402 PMCID: PMC6970262 DOI: 10.2147/jpr.s234334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/24/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose Chronic pain is one of the most common complications of postmenopausal osteoporosis. Since oxidative stress is involved in the pathogenesis of postmenopausal osteoporosis, we explored whether oxidative stress contributes to postmenopausal osteoporotic pain. Methods Osteoporosis was induced in mice by ovariectomy (OVX). Pain-related behaviours were assessed by measuring sensitivity to mechanical, thermal and cold stimulation. The expression of pain-related transcripts, such acid-sensing ion channel 3 (ASIC3), transient receptor potential vanilloid 1 (TRPV1) and calcitonin gene-related peptide (CGRP), was evaluated. Plasma markers of oxidative stress were also measured. In addition, the effects of the reactive oxygen species scavenger phenyl N-tert-butylnitrone (PBN) on these parameters were assessed. Results The OVX mice presented hyperalgesia, as demonstrated by decreased paw withdrawal thresholds to mechanical stimulation and withdrawal latencies to thermal and cold stimulation, along with upregulated expression of ASIC3, TRPV1 and CGRP in the dorsal root ganglia, spinal cord and thalamus tissue. OVX elevated the plasma levels of malondialdehyde (MDA) and advanced oxidation protein products (AOPPs). However, the administration of PBN alleviated these effects. Conclusion Our results indicated that oxidative stress contributes to hyperalgesia in OVX mice. Enhanced oxidative stress may be associated with osteoporotic pain. Antioxidant treatment could help alleviate chronic pain in postmenopausal osteoporotic patients.
Collapse
Affiliation(s)
- Chen Tu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Di-Zheng Wu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yu-Sheng Huang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jing-Shen Zhuang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ji-Huan Zeng
- Department of Orthopaedic Surgery, Jiangxi Province People's Hospital, Nanchang University, Nanchang, People's Republic of China
| | - Ping Xu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ting-Ting Meng
- Department of Anaesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhao-Ming Zhong
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
31
|
Wang J, Xu W, Kong Y, Huang J, Ding Z, Deng M, Guo Q, Zou W. SNAP-25 Contributes to Neuropathic Pain by Regulation of VGLuT2 Expression in Rats. Neuroscience 2019; 423:86-97. [PMID: 31705888 DOI: 10.1016/j.neuroscience.2019.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/23/2022]
Abstract
Synaptosomal-associated protein 25 (SNAP-25) plays an important role in neuropathic pain. However, the underlying mechanism is largely unknown. Vesicular glutamate transporter 2 (VGluT2) is an isoform of vesicular glutamate transporters that controls the storage and release of glutamate. In the present study, we found the expression levels of VGluT2 correlated with the upregulation of SNAP-25 in the spinal cord of rats following chronic constriction injury (CCI)-induced neuropathic pain. Cleavage of SNAP-25 by Botulinum toxin A (BoNT/A) attenuated mechanical allodynia, downregulated the expression of VGluT2 and reduced glutamate release. Overexpression of VGluT2 abolished the antinociceptive effect of BoNT/A. Upregulation of SNAP-25 in naive rats increased VGluT2 expression and induced pain-responsive behaviors. In pheochromocytoma (PC12) cells, the expression of VGluT2 was also depended on SNAP-25 dysregulation. Moreover, we found VGluT2 was involved in SNAP-25-mediated regulation of astrocyte expression and activation of the PKA/p-CREB pathway mediated the upregulation of SNAP-25 in neuropathic pain. The findings of our study indicate that VGluT2 contributes to the effect of SNAP-25 in maintaining the development of neuropathic pain and suggests a novel mechanism underlying SNAP-25 regulation of neuropathic pain.
Collapse
Affiliation(s)
- Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Xu
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, China
| | - Yan Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiangju Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
32
|
Sakamoto T, Miyazaki T, Watanabe S, Takahashi A, Honjoh K, Nakajima H, Oki H, Kokubo Y, Matsumine A. Intraarticular injection of processed lipoaspirate cells has anti-inflammatory and analgesic effects but does not improve degenerative changes in murine monoiodoacetate-induced osteoarthritis. BMC Musculoskelet Disord 2019; 20:335. [PMID: 31324245 PMCID: PMC6642531 DOI: 10.1186/s12891-019-2710-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous basic research and clinical studies examined the effects of mesenchymal stem cells (MSCs) on regeneration and maintenance of articular cartilage. However, our pilot study suggested that MSCs are more effective at suppressing inflammation and pain rather than promoting cartilage regeneration in osteoarthritis. Adipose tissue is considered a useful source of MSCs; it can be harvested easily in larger quantities compared with the bone marrow. The present study was designed to evaluate the anti-inflammatory, analgesic, and regenerative effects of intra-articularly injected processed lipoaspirate (PLA) cells (containing adipose-derived MSCs) on degenerative cartilage in a rat osteoarthritis model. METHODS PLA cells were isolated from subcutaneous adipose tissue of 12-week-old female Sprague-Dawley rats. Osteoarthritis was induced by injection of monoiodoacetate (MIA). Each rat received 1 × 106 MSCs into the joint at day 7 (early injection group) and day 14 (late injection group) post-MIA injection. At 7, 14, 21 days after MIA administration, pain was assessed by immunostaining and western blotting of dorsal root ganglion (DRG). Cartilage quality was assessed macroscopically and by safranin-O and H&E staining, and joint inflammation was assessed by western blotting of the synovium. RESULTS The early injection group showed less cartilage degradation, whereas the late injection group showed cartilage damage similar to untreated OA group. The relative expression level of CGRP protein in DRG neurons was significantly lower in the two treatment groups, compared with the untreated group. CONCLUSIONS Intra-articular injection of PLA cells prevented degenerative changes in the early injection group, but had little effect in promoting cartilage repair in the late injection group. Interestingly, intra-articular injection of PLA cells resulted in suppression of inflammation and pain in both OA groups. Further studies are needed to determine the long-term effects of intra-articular injection of PLA cells in osteoarthritis.
Collapse
Affiliation(s)
- Takumi Sakamoto
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Tsuyoshi Miyazaki
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan.
| | - Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Ai Takahashi
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Kazuya Honjoh
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Hisashi Oki
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Yasuo Kokubo
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki 23-3, Eiheiji, Fukui, 910-1193, Japan
| |
Collapse
|
33
|
Almeida LS, Castro‐Lopes JM, Neto FL, Potes CS. Amylin, a peptide expressed by nociceptors, modulates chronic neuropathic pain. Eur J Pain 2019; 23:784-799. [DOI: 10.1002/ejp.1347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/05/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Lígia Sofia Almeida
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto Porto Portugal
- Departamento de Biomedicina – Unidade de Biologia Experimental, Faculdade de Medicina Universidade do Porto Porto Portugal
| | - José Manuel Castro‐Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto Porto Portugal
- Departamento de Biomedicina – Unidade de Biologia Experimental, Faculdade de Medicina Universidade do Porto Porto Portugal
| | - Fani Lourença Neto
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto Porto Portugal
- Departamento de Biomedicina – Unidade de Biologia Experimental, Faculdade de Medicina Universidade do Porto Porto Portugal
| | - Catarina Soares Potes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto Porto Portugal
- Departamento de Biomedicina – Unidade de Biologia Experimental, Faculdade de Medicina Universidade do Porto Porto Portugal
| |
Collapse
|
34
|
Nakagawa T, Wakabayashi H, Naito Y, Kato S, Miyamura G, Iino T, Sudo A. The effects of bisphosphonate on pain-related behavior and immunohistochemical analyses in hindlimb-unloaded mice. J Orthop Sci 2018; 23:1063-1069. [PMID: 30431005 DOI: 10.1016/j.jos.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/03/2018] [Accepted: 06/09/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate skeletal pain associated with immobility-induced osteoporosis and to examine the inhibitory effect of bisphosphonate (BP) administration on pain in hindlimb-unloaded (HU) mice. METHODS The mechanism of osteoporotic pain in HU mice was evaluated through an examination of pain-related behavior, as well as immunohistochemical findings. In addition, the effects of alendronate (ALN), a potent osteoclast inhibitor, on these parameters were assessed. RESULTS HU mice with tail suspension developed bone loss and mechanical hyperalgesia in the hindlimbs. The HU mice showed an increase in the number of calcitonin gene-related peptide (CGRP)-immunoreactive neurons and in transient receptor potential channel vanilloid subfamily member 1 (TRPV1)-immunoreactive neurons in the dorsal root ganglions (DRGs) innervating the hindlimbs. Furthermore, administration of ALN prevented HU-induced bone loss, mechanical hyperalgesia, and upregulation of CGRP and TRPV1 expressions in DRG neurons of immobility-induced osteoporotic animal models. CONCLUSIONS HU mice appear to be a useful model for immobility-induced osteoporotic pain and hindlimb-unloading-induced bone loss, as well as upregulation of CGRP and TRPV1 expressions in DRG neurons, and BP treatment prevented bone loss and mechanical hyperalgesia. The inhibitory effect of BP on osteoclast function might contribute to improving osteoporosis-related pain.
Collapse
Affiliation(s)
- Taro Nakagawa
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hiroki Wakabayashi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| | - Yohei Naito
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Sho Kato
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Gaku Miyamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| |
Collapse
|
35
|
Kawarai Y, Orita S, Nakamura J, Miyamoto S, Suzuki M, Inage K, Hagiwara S, Suzuki T, Nakajima T, Akazawa T, Ohtori S. Changes in proinflammatory cytokines, neuropeptides, and microglia in an animal model of monosodium iodoacetate-induced hip osteoarthritis. J Orthop Res 2018; 36:2978-2986. [PMID: 29888808 DOI: 10.1002/jor.24065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/03/2018] [Indexed: 02/04/2023]
Abstract
The aim of this study was to investigate the local production of proinflammatory cytokines, pain-related sensory innervation of dorsal-root ganglia (DRG), and spinal changes in a rat model of induced hip osteoarthritis (OA). Seventy-five Sprague-Dawley rats were used, including 25 controls and 50 injected into the right hip joints (sham group, injected with 25 µl of sterile saline: N = 25; and monosodium iodoacetate (MIA) group, injected with 25 µl of sterile saline with 2 mg of MIA: N = 25). We measured the local production of TNF-α, immunoreactive (-ir) neurons for calcitonin gene-related peptide (CGRP), and growth associated protein-43 (GAP-43) in DRG, and immunoreactive neurons for ionized-calcium-binding adaptor molecule-1 (Iba-1) in the dorsal horn of spinal cord, on post-induction days 7, 14, 28, 42, and 56 (N = 5 rats/group/time point). For post-induction days 7-42, the MIA group presented significantly elevated concentrations of TNF-α than the other groups (p < 0.01), and a higher expression of CGRP-ir in FG-labeled DRG neurons than the sham group (p < 0.01). MIA rats also presented significantly more FG-labeled GAP-43-ir DRG neurons than the sham group on post-induction days 28, 42, and 56 (p < 0.05), and a significantly higher number of Iba-1-ir microglia in the ipsilateral dorsal horn than the other groups, on post-induction days 28, 42, and 56. The results suggest that in rat models, pain-related pathologies due to MIA-induced hip OA, originate from inflammation caused by cytokines, which leads to progressive, chronic neuronal damage that may cause neuropathic pain. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2978-2986, 2018.
Collapse
Affiliation(s)
- Yuya Kawarai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Shuichi Miyamoto
- Department of Orthopaedic Surgery, Kimitsu Chuo Hospital 1010 Sakurai, Kisarazu City, Chiba 292-8535, Japan
| | - Miyako Suzuki
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Shigeo Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Takane Suzuki
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Takayuki Nakajima
- Department of Orthopaedic Surgery, Eastern Chiba Medical Center, 3-6-2 Okayamadai, Togane, Chiba 283-8686, Japan
| | - Tsutomu Akazawa
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| |
Collapse
|
36
|
Chatchaisak D, Connor M, Srikiatkhachorn A, Chetsawang B. The potentiating effect of calcitonin gene-related peptide on transient receptor potential vanilloid-1 activity and the electrophysiological responses of rat trigeminal neurons to nociceptive stimuli. J Physiol Sci 2018; 68:261-268. [PMID: 28205139 PMCID: PMC10717096 DOI: 10.1007/s12576-017-0529-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
Abstract
Growing evidence suggests that calcitonin gene-related peptide (CGRP) participates in trigeminal nociceptive responses. However, the role of CGRP in sensitization or desensitization of nociceptive transduction remains poorly understood. In this study, we sought to further investigate the CGRP-induced up-regulation of transient receptor potential vanilloid-1 (TRPV1) and the responses of trigeminal neurons to nociceptive stimuli. Rat trigeminal ganglion (TG) organ cultures and isolated trigeminal neurons were incubated with CGRP. An increase in TRPV1 levels was observed in CGRP-incubated TG organ cultures. CGRP potentiated capsaicin-induced increase in phosphorylated CaMKII levels in the TG organ cultures. The incubation of the trigeminal neurons with CGRP significantly increased the inward currents in response to capsaicin challenge, and this effect was inhibited by co-incubation with the CGRP receptor antagonist, BIBN4068BS or the inhibitor of protein kinase A, H-89. These findings reveal that CGRP acting on trigeminal neurons may play a significant role in facilitating cellular events that contribute to the peripheral sensitization of the TG in nociceptive transmission.
Collapse
Affiliation(s)
- Duangthip Chatchaisak
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, 73170, Thailand
| | - Mark Connor
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | - Anan Srikiatkhachorn
- International Medical College, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, 73170, Thailand.
| |
Collapse
|
37
|
Prediction of Pathological Subjects Using Genetic Algorithms. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:6154025. [PMID: 29623101 PMCID: PMC5829316 DOI: 10.1155/2018/6154025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/13/2017] [Accepted: 01/02/2018] [Indexed: 11/17/2022]
Abstract
This paper aims at estimating pathological subjects from a population through various physical information using genetic algorithm (GA). For comparison purposes, K-Means (KM) clustering algorithm has also been used for the estimation. Dataset consisting of some physical factors (age, weight, and height) and tibial rotation values was provided from the literature. Tibial rotation types are four groups as RTER, RTIR, LTER, and LTIR. Each tibial rotation group is divided into three types. Narrow (Type 1) and wide (Type 3) angular values were called pathological and normal (Type 2) angular values were called nonpathological. Physical information was used to examine if the tibial rotations of the subjects were pathological. Since the GA starts randomly and walks all solution space, the GA is seen to produce far better results than the KM for clustering and optimizing the tibial rotation data assessments with large number of subjects even though the KM algorithm has similar effect with the GA in clustering with a small number of subjects. These findings are discovered to be very useful for all health workers such as physiotherapists and orthopedists, in which this consequence is expected to help clinicians in organizing proper treatment programs for patients.
Collapse
|
38
|
Orita S, Suzuki M, Inage K, Shiga Y, Fujimoto K, Kanamoto H, Abe K, Inoue M, Kinoshita H, Norimoto M, Umimura T, Yamauchi K, Aoki Y, Nakamura J, Matsuura Y, Hagiwara S, Eguchi Y, Akazawa T, Takahashi K, Furuya T, Koda M, Ohtori S. Osteoporotic Pain is Associated with Increased Transient Receptor Vanilloid 4 Expression in the Dorsal Root Ganglia of Ovariectomized Osteoporotic Rats: A Pilot Basic Study. Spine Surg Relat Res 2018; 2:230-235. [PMID: 31440674 PMCID: PMC6698523 DOI: 10.22603/ssrr.2017-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/27/2018] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Osteoporosis can produce a persistent state of pain known as osteoporotic pain. One proposed mechanism of this pathology is increased calcitonin gene-related peptide (CGRP; a marker related to inflammatory pain) expression in the dorsal root ganglia (DRG) innervating osteoporotic vertebrae. Alternatively, a previous study revealed that axial loading caused osteoporotic pain in a rodent model of coccygeal vertebrae compression. Because this compression model is associated with trauma, additional mechanistic studies of osteoporotic pain in the absence of trauma are required. The current study aimedto evaluate the expression and relative distribution of transient receptor potential vanilloid 4 (TRPV4), a pain-related mechanoreceptor, in ovariectomized (OVX) osteoporotic rats. METHODS CGRP-immunoreactive (-ir) and TRPV4-ir DRG neurons innervating the L3 vertebrae of Sprague-Dawley rats were labeled with a neurotracer, FluoroGold. Intravertebral pH was also measured during the neurotracer procedure. TRPV4-ir/CGRP-ir FluoroGold-positive DRG neurons were quantified in sham control and OVX rats (n = 10, ea). The threshold for statistical significance was set at P < 0.05. RESULTS There was no statistical difference in the number of FluoroGold-positive DRG neurons between groups; however, there were significantly more CGRP-ir/TRPV4-ir FluoroGold-positive DRG neurons in the OVX group compared with the sham control group (P < 0.05) as well as the significantly increased molecular production of each peptide. Intravertebral pH was also lower in the OVX group compared with the sham control group (P < 0.05). CONCLUSION Sensory neurons innervating osteoporotic vertebrae exhibited increased expression of co-localized CGRP and TRPV4 in OVX osteoporotic rats. Additionally, intravertebral pH was low in the vicinity osteoporotic vertebrae. Considering that TRPV4 is a mechanosensitive nociceptor that is activated in acidic environments, its upregulation may be associated with the pathology of osteoporotic pain derived from microinflammation involved in osteoporosis.
Collapse
Affiliation(s)
- Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Miyako Suzuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuki Fujimoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hirohito Kanamoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koki Abe
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Inoue
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideyuki Kinoshita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Norimoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomotaka Umimura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyo Yamauchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuchika Aoki
- Department of Orthopaedic Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Matsuura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeo Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yawara Eguchi
- Department of Orthopaedic Surgery, Shimoshizu National Hospital, Chiba, Japan
| | - Tsutomu Akazawa
- Department of Orthopaedic Surgery, School of Medicine, St. Marianna University, Kawasaki, Japan
| | - Kazuhisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeo Furuya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masao Koda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
39
|
Sari M, Tuna C, Akogul S. Prediction of Tibial Rotation Pathologies Using Particle Swarm Optimization and K-Means Algorithms. J Clin Med 2018; 7:jcm7040065. [PMID: 29597270 PMCID: PMC5920439 DOI: 10.3390/jcm7040065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 11/18/2022] Open
Abstract
The aim of this article is to investigate pathological subjects from a population through different physical factors. To achieve this, particle swarm optimization (PSO) and K-means (KM) clustering algorithms have been combined (PSO-KM). Datasets provided by the literature were divided into three clusters based on age and weight parameters and each one of right tibial external rotation (RTER), right tibial internal rotation (RTIR), left tibial external rotation (LTER), and left tibial internal rotation (LTIR) values were divided into three types as Type 1, Type 2 and Type 3 (Type 2 is non-pathological (normal) and the other two types are pathological (abnormal)), respectively. The rotation values of every subject in any cluster were noted. Then the algorithm was run and the produced values were also considered. The values of the produced algorithm, the PSO-KM, have been compared with the real values. The hybrid PSO-KM algorithm has been very successful on the optimal clustering of the tibial rotation types through the physical criteria. In this investigation, Type 2 (pathological subjects) is of especially high predictability and the PSO-KM algorithm has been very successful as an operation system for clustering and optimizing the tibial motion data assessments. These research findings are expected to be very useful for health providers, such as physiotherapists, orthopedists, and so on, in which this consequence may help clinicians to appropriately designing proper treatment schedules for patients.
Collapse
Affiliation(s)
- Murat Sari
- Department of Mathematics, Yildiz Technical University, Istanbul 34220, Turkey.
| | - Can Tuna
- Department of Mathematics, Yildiz Technical University, Istanbul 34220, Turkey.
| | - Serkan Akogul
- Department of Statistics, Yildiz Technical University, Istanbul 34220, Turkey.
| |
Collapse
|
40
|
Burgos A, Honjo K, Ohyama T, Qian CS, Shin GJE, Gohl DM, Silies M, Tracey WD, Zlatic M, Cardona A, Grueber WB. Nociceptive interneurons control modular motor pathways to promote escape behavior in Drosophila. eLife 2018. [PMID: 29528286 PMCID: PMC5869015 DOI: 10.7554/elife.26016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Rapid and efficient escape behaviors in response to noxious sensory stimuli are essential for protection and survival. Yet, how noxious stimuli are transformed to coordinated escape behaviors remains poorly understood. In Drosophila larvae, noxious stimuli trigger sequential body bending and corkscrew-like rolling behavior. We identified a population of interneurons in the nerve cord of Drosophila, termed Down-and-Back (DnB) neurons, that are activated by noxious heat, promote nociceptive behavior, and are required for robust escape responses to noxious stimuli. Electron microscopic circuit reconstruction shows that DnBs are targets of nociceptive and mechanosensory neurons, are directly presynaptic to pre-motor circuits, and link indirectly to Goro rolling command-like neurons. DnB activation promotes activity in Goro neurons, and coincident inactivation of Goro neurons prevents the rolling sequence but leaves intact body bending motor responses. Thus, activity from nociceptors to DnB interneurons coordinates modular elements of nociceptive escape behavior.
Collapse
Affiliation(s)
- Anita Burgos
- Department of Neuroscience, Columbia University Medical Center, New York, United States
| | - Ken Honjo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomoko Ohyama
- Department of Biology, McGill University, Montreal, Canada
| | - Cheng Sam Qian
- Department of Neuroscience, Columbia University Medical Center, New York, United States
| | - Grace Ji-Eun Shin
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Daryl M Gohl
- University of Minnesota Genomics Center, Minneapolis, United States
| | - Marion Silies
- European Neuroscience Institute Göttingen, Göttingen, Germany
| | - W Daniel Tracey
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, United States.,Department of Biology, Indiana University, Bloomington, United States
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Wesley B Grueber
- Department of Neuroscience, Columbia University Medical Center, New York, United States.,Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| |
Collapse
|
41
|
Hawkins JL, Durham PL. Enriched Chicken Bone Broth as a Dietary Supplement Reduces Nociception and Sensitization Associated with Prolonged Jaw Opening. J Oral Facial Pain Headache 2018; 32:208–215. [PMID: 29509826 PMCID: PMC7001769 DOI: 10.11607/ofph.1971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIMS To test a commercially available enriched chicken bone broth (ECBB) product for its potential anti-inflammatory properties and to evaluate its ability to reduce nociception and expression of protein kinase A (PKA) in a clinically relevant model of temporomandibular disorder (TMD) caused by prolonged jaw opening in rats. METHODS The potential of the ECBB and of a homemade broth was investigated using the Folin-Ciocalteu reagent and percent inhibition of cyclooxygenase-2 (COX-2) activity, which was determined using a commercially available kit. Additionally, the effect of ECBB and homemade broth on nocifensive head withdrawal responses to mechanical stimulation in male Sprague-Dawley rats subjected to prolonged jaw opening was evaluated. Differences were considered significant at P < .025. Changes in PKA expression in the medullary dorsal horn region of the spinal trigeminal nucleus associated with prolonged jaw opening were assessed using immunofluorescence, and these changes were considered significant at P < .05. Behavioral data were analyzed by using multiple nonparametric tests, and immunohistochemistry data were analyzed by using one-way analysis of variance with Games-Howell post hoc tests in SPSS software. RESULTS ECBB exhibited greater reducing potential and inhibition of COX-2 activity compared to homemade broth. Near maximal jaw opening was sufficient to induce sustained nocifensive responses to mechanical stimuli for 7 days. This increased sensitivity was correlated with elevated levels of the active form of PKA. Importantly, dietary inclusion of ECBB, but not of homemade broth, for 2 weeks prior to jaw opening was sufficient to reduce nocifensive behaviors and PKA expression. CONCLUSION Findings from this study provide evidence that ECBB attenuates nociception and expression of the pro-inflammatory protein PKA and thus may be beneficial as a nutraceutical supplement to manage inflammatory pain associated with TMD.
Collapse
|
42
|
Orita S, Inage K, Suzuki M, Fujimoto K, Yamauchi K, Nakamura J, Matsuura Y, Furuya T, Koda M, Takahashi K, Ohtori S. Pathomechanisms and management of osteoporotic pain with no traumatic evidence. Spine Surg Relat Res 2017; 1:121-128. [PMID: 31440622 PMCID: PMC6698492 DOI: 10.22603/ssrr.1.2016-0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/06/2017] [Indexed: 12/31/2022] Open
Abstract
Introduction Osteoporosis is a pathological state with an unbalanced bone metabolism mainly caused by accelerated osteoporotic osteoclast activity due to a postmenopausal estrogen deficiency, and it causes some kinds of pain, which can be divided into two types: traumatic pain due to a fragility fracture from impaired rigidity, and pain derived from an osteoporotic pathology without evidence of fracture. We aimed to review the concepts of osteoporosis-related pain and its management. Methods We reviewed clinical and basic articles on osteoporosis-related pain, especially with a focus on the mechanism of pain derived from an osteoporotic pathology (i.e., osteoporotic pain) and its pharmacological treatment. Results Osteoporosis-related pain tends to be robust and acute if it is due to fracture or collapse, whereas pathology-related osteoporotic pain is vague and dull. Non-traumatic osteoporotic pain can originate from an undetectable microfracture or structural change such as muscle fatigue in kyphotic patients. Furthermore, basic studies have shown that the osteoporotic state itself is related to pain or hyperalgesia with increased pain-related neuropeptide expression or acid-sensing channels in the local tissue and nervous system. Traditional treatment for osteoporotic pain potentially prevents possible fracture-induced pain by increasing bone mineral density and affecting related mediators such as osteoclasts and osteoblasts. The most common agent for osteoporotic pain management is a bisphosphonate. Other non-osteoporotic analgesic agents such as celecoxib have also been reported to have a suppressive effect on osteoporotic pain. Conclusions Osteoporotic pain has traumatic and non-traumatic factors. Anti-osteoporotic treatments are effective for osteoporotic pain, as they improve bone structure and the condition of the pain-related sensory nervous system. Physicians should always consider these matters when choosing a treatment strategy that would best benefit patients with osteoporotic pain.
Collapse
Affiliation(s)
- Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Miyako Suzuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuki Fujimoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyo Yamauchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Matsuura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeo Furuya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masao Koda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
43
|
Schou WS, Ashina S, Amin FM, Goadsby PJ, Ashina M. Calcitonin gene-related peptide and pain: a systematic review. J Headache Pain 2017; 18:34. [PMID: 28303458 PMCID: PMC5355411 DOI: 10.1186/s10194-017-0741-2] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/28/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is widely distributed in nociceptive pathways in human peripheral and central nervous system and its receptors are also expressed in pain pathways. CGRP is involved in migraine pathophysiology but its role in non-headache pain has not been clarified. METHODS We performed a systematic literature search on PubMed, Embase and ClinicalTrials.gov for articles on CGRP and non-headache pain covering human studies including experimental studies and randomized clinical trials. RESULTS The literature search identified 375 citations of which 50 contained relevant original data. An association between measured CGRP levels and somatic, visceral, neuropathic and inflammatory pain was found. In 13 out of 20 studies in somatic pain conditions, CGRP levels had a positive correlation with pain. Increased CGRP levels were reported in plasma, synovial and cerebrospinal fluid in subjects with musculoskeletal pain. A randomized clinical trial on monoclonal antibody, which selectively binds to and inhibits the activity of CGRP (galcanezumab) in patients with osteoarthritis knee pain, failed to demonstrate improvement of pain compared with placebo. No studies to date have investigated the efficacy of monoclonal antibodies against CGRP receptor in non-headache pain conditions. CONCLUSION The present review revealed the association between measured CGRP levels and somatic, visceral, neuropathic and inflammatory pain. These data suggest that CGRP may act as a neuromodulator in non-headache pain conditions. However, more studies are needed to fully understand the role of CGRP in nociceptive processing and therapy of chronic pain.
Collapse
Affiliation(s)
- Wendy Sophie Schou
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Sait Ashina
- Department of Neurology, NYU Lutheran Headache Center, New York University School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Peter J Goadsby
- Basic & Clinical Neuroscience, and NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, London, UK
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
44
|
Koop LK, Hawkins JL, Cornelison LE, Durham PL. Central Role of Protein Kinase A in Promoting Trigeminal Nociception in an In Vivo Model of Temporomandibular Disorders. J Oral Facial Pain Headache 2017; 31:264-274. [PMID: 28738112 PMCID: PMC5989561 DOI: 10.11607/ofph.1803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS To investigate cellular changes in the spinal trigeminal nucleus (STN) and trigeminal ganglion (TG) associated with trigeminal nociception mediated by inflammation in the temporomandibular joint (TMJ). METHODS Male Sprague-Dawley rats (n = 86) were utilized to investigate cellular and behavioral responses to prolonged TMJ inflammation caused by bilateral injection of Complete Freund's Adjuvant (CFA) in the TMJ capsules. To investigate the cellular effects of protein kinase A (PKA) in the STN, rats were injected intrathecally with the selective PKA inhibitor KT5720 prior to injection of CFA into both TMJ capsules. Levels of calcitonin gene-related peptide (CGRP), active PKA, and ionized calcium-binding adapter molecule 1 (Iba1) in the STN and expression of phosphorylated extracellular regulated kinases (p-ERK) in the TG were determined with immunohistochemistry (n ≥ 3 experiments per test condition). Nocifensive head withdrawal responses to mechanical stimulation of the cutaneous tissue over the TMJ were monitored following CFA injection in the absence or presence of KT5720 (n = 7). Statistical analysis was performed using parametric analysis of variance (ANOVA) tests. RESULTS Intrathecal injection of KT5720 significantly inhibited the stimulatory effect of CFA on levels of CGRP, PKA, and Iba1 in the STN. In addition, administration of KT5720 decreased the average number of CFA-induced nocifensive withdrawal responses to mechanical stimulation and the CFA-mediated increase in p-ERK expression in the ganglion. CONCLUSION These findings provide evidence that elevated PKA activity in the STN promotes cellular events temporally associated with trigeminal nociception caused by prolonged TMJ inflammation.
Collapse
|
45
|
Fremanezumab-A Humanized Monoclonal Anti-CGRP Antibody-Inhibits Thinly Myelinated (Aδ) But Not Unmyelinated (C) Meningeal Nociceptors. J Neurosci 2017; 37:10587-10596. [PMID: 28972120 DOI: 10.1523/jneurosci.2211-17.2017] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 11/21/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP), the most abundant neuropeptide in primary afferent sensory neurons, is strongly implicated in the pathophysiology of migraine headache, but its role in migraine is still equivocal. As a new approach to migraine treatment, humanized anti-CGRP monoclonal antibodies (CGRP-mAbs) were developed to reduce the availability of CGRP, and were found effective in reducing the frequency of chronic and episodic migraine. We recently tested the effect of fremanezumab (TEV-48125), a CGRP-mAb, on the activity of second-order trigeminovascular dorsal horn neurons that receive peripheral input from the cranial dura, and found a selective inhibition of high-threshold but not wide-dynamic range class of neurons. To investigate the basis for this selective inhibitory effect, and further explore the mechanism of action of CGRP-mAbs, we tested the effect of fremanezumab on the cortical spreading depression-evoked activation of mechanosensitive primary afferent meningeal nociceptors that innervate the cranial dura, using single-unit recording in the trigeminal ganglion of anesthetized male rats. Fremanezumab pretreatment selectively inhibited the responsiveness of Aδ neurons, but not C-fiber neurons, as reflected in a decrease in the percentage of neurons that showed activation by cortical spreading depression. These findings identify Aδ meningeal nociceptors as a likely site of action of fremanezumab in the prevention of headache. The selectivity in its peripheral inhibitory action may partly account for fremanezumab's selective inhibition of high-threshold, as a result of a predominant A-δ input to high-threshold neurons, but not wide dynamic-range dorsal horn neurons, and why it may not be effective in all migraine patients.SIGNIFICANCE STATEMENT Recently, we reported that humanized CGRP monoclonal antibodies (CGRP-mAbs) prevent activation and sensitization of high-threshold (HT) but not wide-dynamic range trigeminovascular neurons by cortical spreading depression (CSD). In the current paper, we report that CGRP-mAbs prevent the activation of Aδ but not C-type meningeal nociceptors by CSD. This is the first identification of an anti-migraine drug that appears to be selective for Aδ-fibers (peripherally) and HT neurons (centrally). As the main CGRP-mAb site of action appears to be situated outside the brain, we conclude that the initiation of the headache phase of migraine depends on activation of meningeal nociceptors, and that for selected patients, activation of the Aδ-HT pain pathway may be sufficient for the generation of headache perception.
Collapse
|
46
|
Shinohara K, Watabe AM, Nagase M, Okutsu Y, Takahashi Y, Kurihara H, Kato F. Essential role of endogenous calcitonin gene-related peptide in pain-associated plasticity in the central amygdala. Eur J Neurosci 2017; 46:2149-2160. [PMID: 28833700 PMCID: PMC5698701 DOI: 10.1111/ejn.13662] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/04/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022]
Abstract
The role of the neuropeptide calcitonin gene‐related peptide (CGRP) is well established in nociceptive behaviors. CGRP is highly expressed in the projection pathway from the parabrachial nucleus to the laterocapsular region of the central amygdala (CeC), which plays a critical role in relaying nociceptive information. The CeC is a key structure in pain behavior because it integrates and modulates nociceptive information along with other sensory signals. Previous studies have demonstrated that blockade of the amygdalar CGRP‐signaling cascade attenuates nociceptive behaviors in pain models, while CGRP application facilitates amygdalar synaptic transmission and induces pain behaviors. Despite these lines of evidence, it remains unclear whether endogenous CGRP is involved in the development of nociceptive behaviors accompanied with amygdalar plasticity in a peripheral inflammation model in vivo. To directly address this, we utilized a previously generated CGRP knockout (KO) mouse to longitudinally study formalin‐induced plasticity and nociceptive behavior. We found that synaptic potentiation in the right PB‐CeC pathway that was observed in wild‐type mice was drastically attenuated in the CGRP KO mice 6 h post‐inflammation, when acute nociceptive behavior was no longer observed. Furthermore, the bilateral tactile allodynia 6 h post‐inflammation was significantly decreased in the CGRP KO mice. In contrast, the acute nociceptive behavior immediately after the formalin injection was reduced only at 20–25 min post‐injection in the CGRP KO mice. These results suggest that endogenous CGRP contributes to peripheral inflammation‐induced synaptic plasticity in the amygdala, and this plasticity may underlie the exaggerated nociception–emotion linkage in pain chronification.
Collapse
Affiliation(s)
- Kei Shinohara
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Department of Orthopaedic Surgery, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Ayako M Watabe
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Masashi Nagase
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yuya Okutsu
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Department of Orthopaedic Surgery, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yukari Takahashi
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Hiroki Kurihara
- Department of Molecular Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
47
|
Dux M, Will C, Eberhardt M, Fischer MJM, Messlinger K. Stimulation of rat cranial dura mater with potassium chloride causes CGRP release into the cerebrospinal fluid and increases medullary blood flow. Neuropeptides 2017; 64:61-68. [PMID: 28202186 DOI: 10.1016/j.npep.2017.02.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/30/2016] [Accepted: 02/08/2017] [Indexed: 01/28/2023]
Abstract
Primary headaches may be accompanied by increased intracranial blood flow induced by the release of the potent vasodilator calcitonin gene-related peptide (CGRP) from activated meningeal afferents. We aimed to record meningeal and medullary blood flow simultaneously and to localize the sites of CGRP release in rodent preparations in vivo and ex vivo. Blood flow in the exposed rat parietal dura mater and the medulla oblongata was recorded by laser Doppler flowmetry, while the dura was stimulated by topical application of 60mM potassium chloride (KCl). Samples of jugular venous plasma and cerebrospinal fluid (CSF) collected from the cisterna magna were analysed for CGRP concentrations using an enzyme immunoassay. In a hemisected rat skull preparation lined with dura mater the CGRP releasing effect of KCl superfusion was examined. Superfusion of the dura mater with KCl decreased meningeal blood flow unless alpha-adrenoceptors were blocked by phentolamine, whereas the medullary blood flow was increased. The same treatment caused increased CGRP concentrations in jugular plasma and CSF and induced significant CGRP release in the hemisected rat skull preparation. Anaesthesia of the trigeminal ganglion by injection of lidocaine reduced increases in medullary blood flow and CGRP concentration in the CSF upon meningeal KCl application. CGRP release evoked by depolarisation of meningeal afferents is accompanied by increased blood flow in the medulla oblongata but not the dura mater. This discrepancy can be explained by the smooth muscle depolarising effect of KCl and the activation of sympathetic vasoconstrictor mechanisms. The medullary blood flow response is most likely mediated by CGRP released from activated central terminals of trigeminal afferents. Increased blood supply of the medulla oblongata and CGRP release into the CSF may also occur in headaches accompanying vigorous activation of meningeal afferents.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged. Dóm tér 10, H-6720 Szeged, Hungary
| | - Christine Will
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstrasse 17, D-91054 Erlangen, Germany
| | - Mirjam Eberhardt
- Department of Anaesthesia and Critical Care Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Michael J M Fischer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstrasse 17, D-91054 Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstrasse 17, D-91054 Erlangen, Germany.
| |
Collapse
|
48
|
Miyamoto S, Nakamura J, Ohtori S, Orita S, Nakajima T, Omae T, Hagiwara S, Takazawa M, Suzuki M, Suzuki T, Takahashi K. Pain-related behavior and the characteristics of dorsal-root ganglia in a rat model of hip osteoarthritis induced by mono-iodoacetate. J Orthop Res 2017; 35:1424-1430. [PMID: 27543839 DOI: 10.1002/jor.23395] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/19/2016] [Indexed: 02/04/2023]
Abstract
The principal aim of this study was to clarify the time course of pain-related behavior and pain-related sensory innervation in a rat model of hip osteoarthritis (OA) induced by intra-articular injection of mono-iodoacetate (MIA). Using 6-week-old male Sprague Dawley rats, 25 μl of sterile saline of 1% Fluoro-Gold solution (FG) (control group; n = 30) and 25 μl of sterile saline of 1% FG with 2 mg of MIA (MIA group; n = 30) was injected into the right hip joints. Gait function was evaluated using a CatWalk system after 7, 14, 28, 42, and 56 days (n = 5, respectively). Neurons in the dorsal root ganglion (DRG) between L1 and L5 were immunostained for calcitonin gene-related peptide (CGRP) and activating transcription factor-3 (ATF3). Gait analysis revealed the mean six parameters of hind paws at all time points were significantly lower in the MIA group (p = 0.05). The number of CGRP-immunoreactive (-IR) DRG neurons was significantly increased on days 7, 14, 28, and 42 peaking at 14 days in the MIA group. By contrast, expression of ATF3-IR in FG-labeled DRG neurons was significantly increased on days 42 and 57. The FG-labeled DRG neurons were distributed between L1 and L5, mainly at the L4 level. Pain-related behavior indicated by gait disturbance was observed in a MIA model of hip OA in rat. Early elevation of CGRP expression and late expression of ATF-3 were demonstrated in DRG neurons, possibly reflecting inflammatory pain and neuropathic pain in hip OA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1424-1430, 2017.
Collapse
Affiliation(s)
- Shuichi Miyamoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-8677, Chiba, Japan
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-8677, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-8677, Chiba, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-8677, Chiba, Japan
| | - Takayuki Nakajima
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-8677, Chiba, Japan
| | - Takanori Omae
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-8677, Chiba, Japan
| | - Shigeo Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-8677, Chiba, Japan
| | - Makoto Takazawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-8677, Chiba, Japan
| | - Miyako Suzuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-8677, Chiba, Japan
| | - Takane Suzuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-8677, Chiba, Japan
| | - Kazuhisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-8677, Chiba, Japan
| |
Collapse
|
49
|
Naito Y, Wakabayashi H, Kato S, Nakagawa T, Iino T, Sudo A. Alendronate inhibits hyperalgesia and suppresses neuropeptide markers of pain in a mouse model of osteoporosis. J Orthop Sci 2017; 22:771-777. [PMID: 28258808 DOI: 10.1016/j.jos.2017.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/30/2017] [Accepted: 02/05/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic back pain is one of the most important complications of postmenopausal osteoporosis. The aim of this study was to evaluate skeletal pain associated with osteoporosis and to examine the inhibitory effect of bisphosphonates (BPs) on pain in ovariectomized (OVX) mice. The mechanism of osteoporotic pain in OVX mice was evaluated through an examination of pain-related behavior, as well as immunohistochemical findings. In addition, the effects of alendronate (ALN), a potent osteoclast inhibitor, on these parameters were assessed. METHODS 8-week-old female ddY mice were ovariectomized and assigned to 3 groups: SHAM-operated mice treated with vehicle (SHAM; n = 8); OVX mice treated with vehicle (OVX-V; n = 8); and OVX mice treated with ALN (OVX-ALN; n = 8). Starting immediately after surgery, vehicle or 40 μg/kg ALN was injected subcutaneously twice a week for 4 weeks. The bilateral distal femoral metaphyses and proximal tibial metaphyses were analyzed three-dimensionally by μCT. Mechanical sensitivity was tested using von Frey filaments. Transient receptor potential channel vanilloid 1 (TRPV1) and calcitonin gene-related peptide (CGRP) expressions in L3-5 dorsal root ganglion (DRG) neurons were examined immunohistochemically. RESULTS Ovariectomy induced bone loss and mechanical hyperalgesia in hindlimbs with upregulation of TRPV1 and CGRP expressions in DRG neurons innervating hindlimbs. ALN prevented bone loss and mechanical hyperalgesia in ovariectomized mouse hindlimbs, and it suppressed upregulation of pain markers. CONCLUSIONS ALN prevented ovariectomy-induced bone loss and mechanical hyperalgesia in hindlimbs, and it suppressed TRPV1 and CGRP expressions in DRG neurons. The results suggest that bone resorption with upregulation of TRPV1 and CGRP expressions is one of the causes of postmenopausal osteoporotic pain.
Collapse
Affiliation(s)
- Yohei Naito
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Japan
| | - Hiroki Wakabayashi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Japan.
| | - Sho Kato
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Japan
| | - Taro Nakagawa
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Japan
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Japan
| |
Collapse
|
50
|
Pellesi L, Guerzoni S, Pini LA. Spotlight on Anti-CGRP Monoclonal Antibodies in Migraine: The Clinical Evidence to Date. Clin Pharmacol Drug Dev 2017; 6:534-547. [PMID: 28409893 PMCID: PMC5697612 DOI: 10.1002/cpdd.345] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/27/2017] [Indexed: 12/16/2022]
Abstract
Migraine, a common neurovascular brain disorder, represents a severe and widespread health problem; along with medication‐induced (medication‐overuse) headache, it is the third‐leading cause of disability worldwide. Currently, its therapeutic management remains unsatisfactory for several reasons; up to 40% of migraineurs are eligible for prophylactic treatment, but there are issues of efficacy, safety, and adherence. In recent years the evidence on the role of calcitonin gene‐related peptide (CGRP) in migraine pathophysiology has been consolidated, so new and promising treatments for migraine pain and its possible prevention have been developed. The following review reports the results of the clinical trials conducted so far with each of the new monoclonal antibodies targeting CGRP or its receptor, with particular reference to safety, tolerance, and efficacy in migraine prevention. Moreover, the pharmacological characterization and further developments of each monoclonal antibody are reported, based on current knowledge.
Collapse
Affiliation(s)
- Lanfranco Pellesi
- Medical Toxicology and Headache Center, Policlinic Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Simona Guerzoni
- Medical Toxicology and Headache Center, Policlinic Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Luigi Alberto Pini
- Medical Toxicology and Headache Center, Policlinic Hospital, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|