1
|
Eon P, Grosprêtre S, Martin A. Neuromuscular electrical stimulation at submaximal intensity combined with motor imagery increases corticospinal excitability. Eur J Appl Physiol 2025; 125:561-572. [PMID: 39356322 DOI: 10.1007/s00421-024-05615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/14/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE There is sparse evidence in the literature that the combination of neuromuscular electrical stimulation (NMES) and motor imagery (MI) can increase corticospinal excitability more that the application of one or the other modality alone. However, the NMES intensity usually employed was below or at motor threshold, not allowing a proper activation of the whole neuromuscular system. This questions the effect of combined MI + NMES with higher intensities, closer to those used in clinical settings. The purpose here was to assess corticospinal excitability during either MI, NMES or a combination of both at different evoked forces. METHODS Seventeen healthy participants were enrolled in one session consisting of 6 conditions targeting flexor carpi radialis muscle (FCR): rest, MI, NMES at 5% and 20% of maximal voluntary contraction (MVC) and MI and NMES performed simultaneously (MI + NMES). During each condition, corticospinal excitability was assessed by evoking MEP of FCR by using transcranial magnetic stimulation. Maximal M-wave (Mmax) was measured by using the stimulation of the median nerve. RESULTS MEPs during MI were greater as compared to rest (P = 0.005). MEPs during MI were significantly lower than during MI + NMES at 5% (P = 0.02) and 20% (P = 0.001). Then, MEPs during NMES 5% was significantly lower than during MI + NMES 20% (P < 0.005). CONCLUSION The present study showed that MI + NMES increased corticospinal excitability more than MI alone. However, corticospinal excitability was not higher as the intensity increase during MI + NMES. Therefore, MI + NMES targeting FCR may not significantly increase the corticospinal excitability between different low-submaximal contractions intensities.
Collapse
Affiliation(s)
- Pauline Eon
- Laboratory Culture Sport Health Society (C3S-UR 4660), Sport and Performance Department, University of Franche-Comté, UFR STAPS, 31 Chemin de L'Epitaphe, 25000, Besançon, France.
| | - Sidney Grosprêtre
- Laboratory Culture Sport Health Society (C3S-UR 4660), Sport and Performance Department, University of Franche-Comté, UFR STAPS, 31 Chemin de L'Epitaphe, 25000, Besançon, France
- Institut Universitaire de France (IUF), Paris, France
| | - Alain Martin
- Cognition, Action Sensorimotor Plasticity [CAPS], Unité INSERM 1093, University of Bourgogne-UFR STAPS, BP 27877, 21078, Dijon Cedex, France
| |
Collapse
|
2
|
Kerr NR, Dashtmian AR, Darvishi FB, Brennan CD, Ayyagari SN, Moore PJ, Viteri JA, Wang M, Rich MM, Clark BC, David Arnold W. 5-HT 2C agonism as a neurotherapeutic for sarcopenia: preclinical proof of concept. GeroScience 2025:10.1007/s11357-025-01519-7. [PMID: 39825167 DOI: 10.1007/s11357-025-01519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Sarcopenia, the pathological age-related loss of muscle mass and strength, contributes to physical decline, frailty, and diminished healthspan. The impact of sarcopenia is expected to rise as the aging population grows, and treatments remain limited. Therefore, novel approaches for enhancing physical function and strength in older adults are desperately needed. Recent evidence suggests that deficits in motor neuron excitability contribute significantly to age-related weakness. Accordingly, we hypothesized that enhancing motor neuron excitability could be a novel strategy for mitigating age-related declines in physical function and strength. To test this hypothesis, we targeted the 5-HT2C receptor with an agonist, as this receptor is known to enhance intrinsic excitability and amplify persistent inward currents of motor neurons. We found that a single oral gavage dose of 1.5, 3, and 6 mg/kg lorcaserin, a selective 5-HT2C agonist, significantly increased indices of motor neuron excitability (e.g., cervical motor evoked potential (cMEP) amplitude by 53-64% and reduced attenuation in cMEP amplitude during repetitive stimulation), along with improvements in motor coordination (22-24% enhancement in rotarod performance) and functional strength (~ 17% increase in max weighted cart pull and 12% increase in grip strength) in aged mice. In contrast, antagonism of 5-HT2 receptors resulted in the opposite effect, reducing cMEP amplitude by ~ 26%, increasing attenuation of cMEP amplitude during repetitive stimulation, and decreasing grip strength by ~ 10% in aged mice. Overall, our findings indicate that enhancing motor neuron excitability via 5-HT2C agonism holds promise as a neurotherapeutic approach to treat age-related motor decline and sarcopenia.
Collapse
Affiliation(s)
- Nathan R Kerr
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, 1020 Hitt Street, Columbia, MO, 65211, USA
| | - Anna R Dashtmian
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, 1020 Hitt Street, Columbia, MO, 65211, USA
| | - Fereshteh B Darvishi
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, 1020 Hitt Street, Columbia, MO, 65211, USA
| | - Charles D Brennan
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, 1020 Hitt Street, Columbia, MO, 65211, USA
| | - Sindhuja N Ayyagari
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, 1020 Hitt Street, Columbia, MO, 65211, USA
| | - Peter J Moore
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, 1020 Hitt Street, Columbia, MO, 65211, USA
| | - Jose A Viteri
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, 1020 Hitt Street, Columbia, MO, 65211, USA
| | - Meifang Wang
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, 1020 Hitt Street, Columbia, MO, 65211, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, 45435, USA
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - W David Arnold
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA.
- NextGen Precision Health, University of Missouri, 1020 Hitt Street, Columbia, MO, 65211, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
- Department of Neurology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
3
|
Suero-Pineda A, Oliva-Pascual-Vaca Á, Durán MRP, Sánchez-Laulhé PR, García-Frasquet MÁ, Blanquero J. Effectiveness of a telerehabilitation tablet app in combination with face-to-face physiotherapy for people with wrist, hand or finger injuries: A pragmatic multicentre clinical trial. J Telemed Telecare 2025; 31:29-40. [PMID: 37208997 DOI: 10.1177/1357633x231172245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
OBJECTIVE To evaluate whether, in patients with trauma and soft tissue injuries of the wrist, hand and/or fingers, an exercise program performed on a touchscreen tablet-based app reduces the consumption of face-to-face resources and improves clinical recovery, compared to a conventional home exercise program prescribed on paper. DESIGN Pragmatic, multicentre, parallel, two-group, controlled clinical trial with blinded assessor. PARTICIPANTS AND SETTING Eighty-one patients with traumatic bone and/or soft tissue injuries of the hand, wrist and/or fingers recruited in four hospitals of the Andalusian Public Health System. INTERVENTIONS The experimental group received a home exercise program using a touchscreen tablet application and the control group received a home exercise program on paper. Both groups received the same treatment of face-to-face physiotherapy. PRIMARY OUTCOME Number of physiotherapy sessions. Secondary outcomes were the duration of physiotherapy and clinical variables such as functional ability, grip strength, pain and manual dexterity. RESULTS The experimental group required fewer physiotherapy sessions (MD -11,5 sessions; 95% CI -21.4 to -1.4), showed a shorter duration of physiotherapy (MD -3.8 weeks, 95% CI -7 to -1) and had better recovery of grip strength, pain and dexterity compared to the control group. CONCLUSIONS In patients with trauma and soft tissue injuries of the wrist, hand and/or fingers, an exercise program performed on a touchscreen tablet-based app in combination with face-to-face physiotherapy reduces the consumption of face-to-face resources and improves clinical recovery, compared to conventional home exercise program prescribed on paper.
Collapse
Affiliation(s)
- Alejandro Suero-Pineda
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Sevilla, Sevilla, Spain
| | - Ángel Oliva-Pascual-Vaca
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Sevilla, Sevilla, Spain
| | | | | | | | - Jesús Blanquero
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Sevilla, Sevilla, Spain
| |
Collapse
|
4
|
Zucco GM, Andretta E, Hummel T. Strategies to Improve Bladder Control: A Preliminary Case Study. Healthcare (Basel) 2024; 12:1855. [PMID: 39337196 PMCID: PMC11431092 DOI: 10.3390/healthcare12181855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Lower urinary tract symptoms (LUTSs) are a common complaint in adult and elderly men with bladder outlet obstruction, and have a considerable impact on their quality of life. Symptoms affect storage, voiding and post micturition stages. Among the latter, a feeling of incomplete emptying is one of the most bothersome for the patients; a condition that in turn contributes to affect urinary urgency, nocturia and frequency. Common recommendations include self-management practices (e.g., control of fluid intake, double-voiding and distraction techniques) to relieve patients' symptoms, whose effectiveness, however, is under debate. Methods: In this report we describe two pioneering procedures to favor bladder residual content voiding in people complaining of LUTS disorders. The first is based on motor imagery and the second on the use of odors. The beneficial effects of Mental imagery techniques on various tasks (e.g., in the treatment of several pathological conditions or as valid mnemonics aids have a long tradition and have received consistently experimental support. Thus, a patient (a 68-year-old Caucasian man) complaining of LUTS was trained to use a motor imagery technique (building up a visual image comprising the bladder, the detrusor muscle and the urethra, and to imagine the detrusor muscle contracting and the flow of urine expelled) for 90 days and two odors (coffee and a lavender scented cleanser) for 10 days, as a trigger for micturition. He was asked to record-immediately after the first morning micturition-the time interval between the first (free) and the second (cued) micturition. Results: Reported data suggest the efficacy of motor imagery in favoring the bladder residual urine voiding in a few minutes (M = 4.75 min.) compared to the control condition, i.e., the baseline of the patient (M = 79.5 min.), while no differences between the odor-based procedures (M 1st odorant = 70.6 min.; M 2nd odorant = 71.1 min) and the latter were observed. Conclusions: A procedure based on an imagery technique may, therefore, be of general value-as a suggested protocol-and accordingly can be applicable to clinical settings. An olfactory bladder control hypothesis cannot, however, be ruled out and is discussed as a promising future line of research.
Collapse
Affiliation(s)
- Gesualdo M. Zucco
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, 35131 Padova, Italy
- Centre for Mechanics of Biological Materials (CMBM), University of Padova, 35131 Padova, Italy
| | - Elena Andretta
- Urology Unit, Spinal Unit ORAS, Motta di Livenza, 31045 Treviso, Italy;
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, University of Dresden, 01307 Dresden, Germany;
| |
Collapse
|
5
|
Seo F, Clouette J, Huang Y, Potvin‐Desrochers A, Lajeunesse H, Parent‐L'Ecuyer F, Traversa C, Paquette C, Churchward‐Venne TA. Changes in brain functional connectivity and muscle strength independent of elbow flexor atrophy following upper limb immobilization in young females. Exp Physiol 2024; 109:1557-1571. [PMID: 38935545 PMCID: PMC11363139 DOI: 10.1113/ep091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Muscle disuse induces a decline in muscle strength that exceeds the rate and magnitude of muscle atrophy, suggesting that factors beyond the muscle contribute to strength loss. The purpose of this study was to characterize changes in the brain and neuromuscular system in addition to muscle size following upper limb immobilization in young females. Using a within-participant, unilateral design, 12 females (age: 20.6 ± 2.1 years) underwent 14 days of upper arm immobilization using an elbow brace and sling. Bilateral measures of muscle strength (isometric and isokinetic dynamometry), muscle size (magnetic resonance imaging), voluntary muscle activation capacity, corticospinal excitability, cortical thickness and resting-state functional connectivity were collected before and after immobilization. Immobilization induced a significant decline in isometric elbow flexion (-21.3 ± 19.2%, interaction: P = 0.0440) and extension (-19.9 ± 15.7%, interaction: P = 0.0317) strength in the immobilized arm only. There was no significant effect of immobilization on elbow flexor cross-sectional area (CSA) (-1.2 ± 2.4%, interaction: P = 0.466), whereas elbow extensor CSA decreased (-2.9 ± 2.9%, interaction: P = 0.0177) in the immobilized arm. Immobilization did not differentially alter voluntary activation capacity, corticospinal excitability, or cortical thickness (P > 0.05); however, there were significant changes in the functional connectivity of brain regions related to movement planning and error detection (P < 0.05). This study reveals that elbow flexor strength loss can occur in the absence of significant elbow flexor muscle atrophy, and that the brain represents a site of functional adaptation in response to upper limb immobilization in young females.
Collapse
Affiliation(s)
- Freddie Seo
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
| | - Julien Clouette
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
| | - Yijia Huang
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
| | - Alexandra Potvin‐Desrochers
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
- Centre for Interdisciplinary Research in Rehabilitation of Greater MontrealMontrealQCCanada
| | - Henri Lajeunesse
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
| | | | - Claire Traversa
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
| | - Caroline Paquette
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
- Centre for Interdisciplinary Research in Rehabilitation of Greater MontrealMontrealQCCanada
| | - Tyler A. Churchward‐Venne
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
- Division of Geriatric MedicineMcGill UniversityMontrealQCCanada
- Research Institute of the McGill University Health CentreMontrealQCCanada
| |
Collapse
|
6
|
Harmon KK, Girts RM, Rodriguez G, Beausejour JP, Pagan JI, Carr JC, Garcia J, Roberts MD, Hahs‐Vaughn DL, Stout JR, Fukuda DH, Stock MS. Combined action observation and mental imagery versus neuromuscular electrical stimulation as novel therapeutics during short-term knee immobilization. Exp Physiol 2024; 109:1145-1162. [PMID: 38687158 PMCID: PMC11215482 DOI: 10.1113/ep091827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
Limb immobilization causes rapid declines in muscle strength and mass. Given the role of the nervous system in immobilization-induced weakness, targeted interventions may be able to preserve muscle strength, but not mass, and vice versa. The purpose of this study was to assess the effects of two distinct interventions during 1 week of knee joint immobilization on muscle strength (isometric and concentric isokinetic peak torque), mass (bioimpedance spectroscopy and ultrasonography), and neuromuscular function (transcranial magnetic stimulation and interpolated twitch technique). Thirty-nine healthy, college-aged adults (21 males, 18 females) were randomized into one of four groups: immobilization only (n = 9), immobilization + action observation/mental imagery (AOMI) (n = 10), immobilization + neuromuscular electrical stimulation (NMES) (n = 12), or control group (n = 8). The AOMI group performed daily video observation and mental imagery of knee extensions. The NMES group performed twice daily stimulation of the quadriceps femoris. Based on observed effect sizes, it appears that AOMI shows promise as a means of preserving voluntary strength, which may be modulated by neural adaptations. Strength increased from PRE to POST in the AOMI group, with +7.2% (Cohen's d = 1.018) increase in concentric isokinetic peak torque at 30°/s. However, NMES did not preserve muscle mass. Though preliminary, our findings highlight the specific nature of clinical interventions and suggest that muscle strength can be independently targeted during rehabilitation. This study was prospectively registered: ClinicalTrials.gov NCT05072652.
Collapse
Affiliation(s)
- Kylie K. Harmon
- Department of Exercise ScienceSyracuse UniversitySyracuseNew YorkUSA
| | - Ryan M. Girts
- Department of Natural and Health SciencesPfeiffer UniversityMisenheimerNorth CarolinaUSA
| | - Gabriela Rodriguez
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation SciencesUniversity of Central FloridaOrlandoFloridaUSA
| | - Jonathan P. Beausejour
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation SciencesUniversity of Central FloridaOrlandoFloridaUSA
| | - Jason I. Pagan
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation SciencesUniversity of Central FloridaOrlandoFloridaUSA
| | - Joshua C. Carr
- Department of KinesiologyTexas Christian UniversityFort WorthTexasUSA
- Department of Medical EducationAnne Burnett Marion School of Medicine at Texas Christian UniversityFort WorthTexasUSA
| | - Jeanette Garcia
- School of Sport SciencesWest Virginia UniversityMorgantownWest VirginiaUSA
| | | | - Debbie L. Hahs‐Vaughn
- Department of Learning Sciences and Educational ResearchUniversity of Central FloridaOrlandoFloridaUSA
| | - Jeffrey R. Stout
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation SciencesUniversity of Central FloridaOrlandoFloridaUSA
| | - David H. Fukuda
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation SciencesUniversity of Central FloridaOrlandoFloridaUSA
| | - Matt S. Stock
- Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation SciencesUniversity of Central FloridaOrlandoFloridaUSA
| |
Collapse
|
7
|
Parsowith EJ, Stock MS, Girts RM, Beausejour JP, Alberto A, Carr JC, Harmon KK. The Influence of Resistance Training Experience on the Efficacy of Motor Imagery for Acutely Increasing Corticospinal Excitability. Brain Sci 2023; 13:1635. [PMID: 38137083 PMCID: PMC10742069 DOI: 10.3390/brainsci13121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Both motor imagery and resistance-training enhance motor function and corticospinal excitability. We tested the hypothesis that young participants with significant resistance-training experience would show heightened corticospinal excitability during a single session of motor imagery training. Fifty-six participants (mean ± SD age = 22 ± 2 years) were divided into resistance-trained and untrained groups. Forty-one upper-body resistance trained (21 males, 20 females; mean ± SD relative one repetition maximum bench press = 0.922 ± 0.317 kg/kg) and 15 untrained (4 males, 11 females; mean ± SD relative one repetition maximum bench press = 0.566 ± 0.175 kg/kg) participants visited the laboratory on three separate occasions. The first visit served as the familiarization session. During visits 2 and 3, participants engaged in a hand/wrist motor imagery protocol or rested quietly (control condition) in a randomized order. Before and after the interventions, single-pulse transcranial magnetic stimulation (TMS) over the motor cortex was used to measure resting motor-evoked potential amplitude of the first dorsal interosseous muscle. Our main finding was that motor imagery acutely increased corticospinal excitability by ~64% (marginal means pre = 784.1 µV, post = 1246.6 µV; p < 0.001, d = 0.487). However, there was no evidence that the increase in corticospinal excitability was influenced by resistance-training experience. We suspect that our results may have been influenced by the specific nature of the motor imagery task. Our findings have important implications for motor imagery prescription and suggest that motor imagery training may be equally beneficial for both resistance-trained and untrained populations. This study was prospectively registered at ClinicalTrials.gov (Identifier: NCT03889548).
Collapse
Affiliation(s)
- Emily J. Parsowith
- Cognition, Neuroplasticity, Sarcopenia (CNS) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL 32816, USA; (E.J.P.); (M.S.S.); (J.P.B.)
| | - Matt S. Stock
- Cognition, Neuroplasticity, Sarcopenia (CNS) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL 32816, USA; (E.J.P.); (M.S.S.); (J.P.B.)
| | - Ryan M. Girts
- Department of Natural and Health Sciences, Pfeiffer University, Misenheimer, NC 28109, USA;
| | - Jonathan P. Beausejour
- Cognition, Neuroplasticity, Sarcopenia (CNS) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL 32816, USA; (E.J.P.); (M.S.S.); (J.P.B.)
| | - Ariel Alberto
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Joshua C. Carr
- Department of Kinesiology, Texas Christian University, Fort Worth, TX 76109, USA;
- Department of Medical Education, Anne Burnett Marion School of Medicine at Texas Christian University, Fort Worth, TX 76109, USA
| | - Kylie K. Harmon
- Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
8
|
Spiering BA, Weakley J, Mujika I. Effects of Bed Rest on Physical Performance in Athletes: A Systematic and Narrative Review. Sports Med 2023; 53:2135-2146. [PMID: 37495758 PMCID: PMC10587175 DOI: 10.1007/s40279-023-01889-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Athletes can face scenarios in which they are confined to bed rest (e.g., due to injury or illness). Existing research in otherwise healthy individuals indicates that those entering bed rest with the greatest physical performance level might experience the greatest performance decrements, which indirectly suggests that athletes might be more susceptible to the detrimental consequences of bed rest than general populations. Therefore, a comprehensive understanding of the effects of bed rest might help guide the medical care of athletes during and following bed rest. OBJECTIVE This systematic and narrative review aimed to (1) establish the evidence for the effects of bed rest on physical performance in athletes; (2) discuss potential countermeasures to offset these negative consequences; and (3) identify the time-course of recovery following bed rest to guide return-to-sport rehabilitation. METHODS This review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Four databases were searched (SPORTDiscus, Web of Science, Scopus, and MEDLINE/PubMed) in October of 2022, and studies were included if they were peer-reviewed investigations, written in English, and investigated the effects of horizontal bed rest on changes in physical capacities and qualities in athletes (defined as Tier 3-5 participants). The reporting quality of the research was assessed using a modified version of the Downs & Black checklist. Furthermore, findings from studies that involved participants in Tiers 1-2 were presented and synthesized using a narrative approach. RESULTS Our systematic review of the literature using a rigorous criterion of 'athletes' revealed zero scientific publications. Nevertheless, as a by-product of our search, seven studies were identified that involved apparently healthy individuals who performed specific exercise training prior to bed rest. CONCLUSIONS Based on the limited evidence from studies involving non-athletes who were otherwise healthy prior to bed rest, we generally conclude that (1) bed rest rapidly (within 3 days) decreases upright endurance exercise performance, likely due to a rapid loss in plasma volume; whereas strength is reduced within 5 days, likely due to neural factors as well as muscle atrophy; (2) fluid/salt supplementation may be an effective countermeasure to protect against decrements in endurance performance during bed rest; while a broader array of potentially effective countermeasures exists, the efficacy of these countermeasures for previously exercise-trained individuals requires further study; and (3) athletes likely require at least 2-4 weeks of progressive rehabilitation following bed rest of ≤ 28 days, although the timeline of recovery might need to be extended depending on the underlying reason for bed rest (e.g., injury or illness). Despite these general conclusions from studies involving non-athletes, our primary conclusion is that substantial effort and research is still required to quantify the effects of bed rest on physical performance, identify effective countermeasures, and provide return-to-sport timelines in bona fide athletes. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION Registration ID: osf.io/d3aew; Date: October 24, 2022.
Collapse
Affiliation(s)
- Barry A Spiering
- Sports Research Laboratory, New Balance Athletics, Inc., Boston, MA, USA
| | - Jonathon Weakley
- School of Behavioural and Health Sciences, Australian Catholic University, McAuley at Banyo, Brisbane, QLD, Australia.
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, QLD, Australia.
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds, UK.
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Basque Country, Spain
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
9
|
Sahota VK, Stone A, Woodling NS, Spiers JG, Steinert JR, Partridge L, Augustin H. Plum modulates Myoglianin and regulates synaptic function in D. melanogaster. Open Biol 2023; 13:230171. [PMID: 37699519 PMCID: PMC10497343 DOI: 10.1098/rsob.230171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Alterations in the neuromuscular system underlie several neuromuscular diseases and play critical roles in the development of sarcopenia, the age-related loss of muscle mass and function. Mammalian Myostatin (MST) and GDF11, members of the TGF-β superfamily of growth factors, are powerful regulators of muscle size in both model organisms and humans. Myoglianin (MYO), the Drosophila homologue of MST and GDF11, is a strong inhibitor of synaptic function and structure at the neuromuscular junction in flies. Here, we identified Plum, a transmembrane cell surface protein, as a modulator of MYO function in the larval neuromuscular system. Reduction of Plum in the larval body-wall muscles abolishes the previously demonstrated positive effect of attenuated MYO signalling on both muscle size and neuromuscular junction structure and function. In addition, downregulation of Plum on its own results in decreased synaptic strength and body weight, classifying Plum as a (novel) regulator of neuromuscular function and body (muscle) size. These findings offer new insights into possible regulatory mechanisms behind ageing- and disease-related neuromuscular dysfunctions in humans and identify potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Virender K. Sahota
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Aelfwin Stone
- Faculty of Medicine & Health Sciences, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Nathaniel S. Woodling
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Jereme G. Spiers
- Faculty of Medicine & Health Sciences, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Joern R. Steinert
- Faculty of Medicine & Health Sciences, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Linda Partridge
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne 50931, Germany
| | - Hrvoje Augustin
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Institute of Healthy Ageing, and GEE, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne 50931, Germany
| |
Collapse
|
10
|
Kyriazis M, Swas L, Orlova T. The Impact of Hormesis, Neuronal Stress Response, and Reproduction, upon Clinical Aging: A Narrative Review. J Clin Med 2023; 12:5433. [PMID: 37629475 PMCID: PMC10455615 DOI: 10.3390/jcm12165433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION The primary objective of researchers in the biology of aging is to gain a comprehensive understanding of the aging process while developing practical solutions that can enhance the quality of life for older individuals. This involves a continuous effort to bridge the gap between fundamental biological research and its real-world applications. PURPOSE In this narrative review, we attempt to link research findings concerning the hormetic relationship between neurons and germ cells, and translate these findings into clinically relevant concepts. METHODS We conducted a literature search using PubMed, Embase, PLOS, Digital Commons Network, Google Scholar and Cochrane Library from 2000 to 2023, analyzing studies dealing with the relationship between hormetic, cognitive, and reproductive aspects of human aging. RESULTS The process of hormesis serves as a bridge between the biology of neuron-germ cell interactions on one hand, and the clinical relevance of these interactions on the other. Details concerning these processes are discussed here, emphasizing new research which strengthens the overall concept. CONCLUSIONS This review presents a scientifically and clinically relevant argument, claiming that maintaining a cognitively active lifestyle may decrease age-related degeneration, and improve overall health in aging. This is a totally novel approach which reflects current developments in several relevant aspects of our biology, technology, and society.
Collapse
|
11
|
Suero-Pineda A, Oliva-Pascual-Vaca Á, Durán MRP, Sánchez-Laulhé PR, García-Frasquet MÁ, Blanquero J. Effectiveness of a Telerehabilitation Evidence-Based Tablet App for Rehabilitation in Traumatic Bone and Soft Tissue Injuries of the Hand, Wrist, and Fingers. Arch Phys Med Rehabil 2023; 104:932-941. [PMID: 36758713 DOI: 10.1016/j.apmr.2023.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
OBJECTIVE To assess whether feedback-guided exercises performed on a tablet touchscreen improve clinical recovery and reduce health care usage more than the conventional home exercise program prescribed on paper in patients with bone and soft tissue injuries of the wrist, hand, and/or fingers treated by public health services. DESIGN A multicenter assessor-blinded, parallel, 2-group controlled trial. SETTING Trauma and rehabilitation services of 4 hospitals. PARTICIPANTS Six hundred sixty-three patients with limited functional ability due to bone and soft tissue injuries of the wrist, hand, and/or fingers (N=663). INTERVENTIONS The experimental group received a home exercise program using a tablet-based application with feedback, monitoring, and progression; the control group received an evidence-based home exercise program on paper. MAIN OUTCOME MEASURES The primary outcome was functional ability through Patient Rated Wrist Evaluation for wrist conditions and the short version of Disabilities of the Arm, Shoulder and Hand for all other hand pathologies. Secondary outcomes included dexterity, pain intensity, grip strength, and health care usage (number of patients referred to rehabilitation service and number of clinical appointments). RESULTS The experimental group showed a significant improvement on the Patient Rated Wrist Evaluation (P=.001) and the short version of Disabilities of the Arm, Shoulder and Hand (P=.001) with medium effect sizes (η2=0.066-0.067) when compared with the control group. Regarding health care usage, the experimental group presented a reduction of 41% in the rate of referrals to face-to-face rehabilitation service consultations, a reduction of rehabilitation consultations (mean difference=-1.64; 95% confidence interval, -2.64 to -0.65) and physiotherapy sessions (mean difference=-8.52, 95% confidence interval, -16.92 to -0.65) compared to the control group. CONCLUSIONS In patients with bone and soft tissue injuries of the wrist, hand, and/or fingers, prescribing feedback-guided exercises performed on a tablet touchscreen was more effective for improving patients' functional ability and reduced the number of patients referred to rehabilitation consultation and number of clinical appointments.
Collapse
Affiliation(s)
- Alejandro Suero-Pineda
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Sevilla, Seville, Spain.
| | - Ángel Oliva-Pascual-Vaca
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Sevilla, Seville, Spain
| | | | | | | | - Jesús Blanquero
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Sevilla, Seville, Spain
| |
Collapse
|
12
|
Spiering BA, Clark BC, Schoenfeld BJ, Foulis SA, Pasiakos SM. Maximizing Strength: The Stimuli and Mediators of Strength Gains and Their Application to Training and Rehabilitation. J Strength Cond Res 2023; 37:919-929. [PMID: 36580280 DOI: 10.1519/jsc.0000000000004390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT Spiering, BA, Clark, BC, Schoenfeld, BJ, Foulis, SA, and Pasiakos, SM. Maximizing strength: the stimuli and mediators of strength gains and their application to training and rehabilitation. J Strength Cond Res 37(4): 919-929, 2023-Traditional heavy resistance exercise (RE) training increases maximal strength, a valuable adaptation in many situations. That stated, some populations seek new opportunities for pushing the upper limits of strength gains (e.g., athletes and military personnel). Alternatively, other populations strive to increase or maintain strength but cannot perform heavy RE (e.g., during at-home exercise, during deployment, or after injury or illness). Therefore, the purpose of this narrative review is to (a) identify the known stimuli that trigger gains in strength; (b) identify the known factors that mediate the long-term effectiveness of these stimuli; (c) discuss (and in some cases, speculate on) potential opportunities for maximizing strength gains beyond current limits; and (d) discuss practical applications for increasing or maintaining strength when traditional heavy RE cannot be performed. First, by conceptually deconstructing traditional heavy RE, we identify that strength gains are stimulated through a sequence of events, namely: giving maximal mental effort, leading to maximal neural activation of muscle to produce forceful contractions, involving lifting and lowering movements, training through a full range of motion, and (potentially) inducing muscular metabolic stress. Second, we identify factors that mediate the long-term effectiveness of these RE stimuli, namely: optimizing the dose of RE within a session, beginning each set of RE in a minimally fatigued state, optimizing recovery between training sessions, and (potentially) periodizing the training stimulus over time. Equipped with these insights, we identify potential opportunities for further maximizing strength gains. Finally, we identify opportunities for increasing or maintaining strength when traditional heavy RE cannot be performed.
Collapse
Affiliation(s)
- Barry A Spiering
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio
- Department of Biomedical Sciences, Ohio University, Athens, Ohio; and
| | | | - Stephen A Foulis
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Stefan M Pasiakos
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
13
|
Criss CR, Lepley AS, Onate JA, Simon JE, France CR, Clark BC, Grooms DR. Neural Correlates of Self-Reported Knee Function in Individuals After Anterior Cruciate Ligament Reconstruction. Sports Health 2023; 15:52-60. [PMID: 35321615 PMCID: PMC9808834 DOI: 10.1177/19417381221079339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Anterior cruciate ligament (ACL) rupture is a common knee injury among athletes and physically active adults. Despite surgical reconstruction and extensive rehabilitation, reinjuries are common and disability levels are high, even years after therapy and return to activity. Prolonged knee dysfunction may result in part from unresolved neuromuscular deficits of the surrounding joint musculature in response to injury. Indeed, "upstream" neurological adaptations occurring after injury may explain these persistent functional deficits. Despite evidence for injury consequences extending beyond the joint to the nervous system, the link between neurophysiological impairments and patient-reported measures of knee function remains unclear. HYPOTHESIS Patterns of brain activation for knee control are related to measures of patient-reported knee function in individuals after ACL reconstruction (ACL-R). STUDY DESIGN Cross-sectional study. LEVEL OF EVIDENCE Level 3. METHODS In this multicenter, cross-sectional study, participants with unilateral ACL-R (n = 25; 10 men, 15 women) underwent task-based functional magnetic resonance imaging testing. Participants performed repeated cycles of open-chain knee flexion/extension. Neural activation patterns during the movement task were quantified using blood oxygen level-dependent (BOLD) signals. Regions of interest were generated using the Juelich Histological Brain Atlas. Pearson product-moment correlations were used to determine the relationship between mean BOLD signal within each brain region and self-reported knee function level, as measured by the International Knee Documentation Committee index. Partial correlations were also calculated after controlling for time from surgery and sex. RESULTS Patient-reported knee function was positively and moderately correlated with the ipsilateral secondary somatosensory cortex (r = 0.57, P = 0.005) and the ipsilateral supplementary motor area (r = 0.51, P = 0.01). CONCLUSION Increased ipsilateral secondary sensorimotor cortical activity is related to higher perceived knee function. CLINICAL RELEVANCE Central nervous system mechanisms for knee control are related to subjective levels of knee function after ACL-R. Increased neural activity may reflect central neuroplastic strategies to preserve knee functionality after traumatic injury.
Collapse
Affiliation(s)
- Cody R. Criss
- Translational Biomedical Sciences,
Graduate College, Ohio University, Athens, Ohio
- Ohio Musculoskeletal & Neurological
Institute (OMNI), Ohio University, Athens, Ohio
- Cody R Criss, W283 Grover
Center, 1 Ohio University, Athens, OH 45701 (
) (Twitter: @criss_cody)
| | - Adam S. Lepley
- Exercise and Sport Science Initiative,
School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - James A. Onate
- School of Health and Rehabilitation
Sciences, The Ohio State University, Columbus, Ohio
| | - Janet E. Simon
- Ohio Musculoskeletal & Neurological
Institute (OMNI), Ohio University, Athens, Ohio
- Division of Athletic Training, School
of Applied Health Sciences and Wellness, College of Health Sciences and Professions,
Ohio University, Athens, Ohio
| | - Christopher R. France
- Ohio Musculoskeletal & Neurological
Institute (OMNI), Ohio University, Athens, Ohio
- Department of Psychology, College of
Arts and Sciences, Ohio University, Athens, Ohio
| | - Brian C. Clark
- Ohio Musculoskeletal & Neurological
Institute (OMNI), Ohio University, Athens, Ohio
- Department of Biomedical Sciences,
Ohio University, Athens, Ohio
- Department of Geriatric Medicine, Ohio
University, Athens, Ohio
| | - Dustin R. Grooms
- Ohio Musculoskeletal & Neurological
Institute (OMNI), Ohio University, Athens, Ohio
- Division of Athletic Training, School
of Applied Health Sciences and Wellness, College of Health Sciences and Professions,
Ohio University, Athens, Ohio
- Division of Physical Therapy, School
of Rehabilitation and Communication Sciences, College of Health Sciences and
Professions, Ohio University, Athens, Ohio
| |
Collapse
|
14
|
Siddique U, Frazer AK, Avela J, Walker S, Ahtiainen JP, Howatson G, Tallent J, Kidgell DJ. Determining the cortical, spinal and muscular adaptations to strength-training in older adults: A systematic review and meta-analysis. Ageing Res Rev 2022; 82:101746. [PMID: 36223874 DOI: 10.1016/j.arr.2022.101746] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 01/31/2023]
Abstract
There are observable decreases in muscle strength as a result of ageing that occur from the age of 40, which are thought to occur as a result of changes within the neuromuscular system. Strength-training in older adults is a suitable intervention that may counteract the age-related loss in force production. The neuromuscular adaptations (i.e., cortical, spinal and muscular) to strength-training in older adults are largely equivocal and a systematic review with meta-analysis will serve to clarify the present circumstances regarding the benefits of strength-training in older adults. 20 studies entered the meta-analysis and were analysed using a random-effects model. A best evidence synthesis that included 36 studies was performed for variables that had insufficient data for meta-analysis. One study entered both. There was strong evidence that strength-training increases maximal force production, rate of force development and muscle activation in older adults. There was limited evidence for strength-training to improve voluntary-activation, the volitional-wave and spinal excitability, but strong evidence for increased muscle mass. The findings suggest that strength-training performed between 2 and 12 weeks increases strength, rate of force development and muscle activation, which likely improves motoneurone excitability by increased motor unit recruitment and improved discharge rates.
Collapse
Affiliation(s)
- Ummatul Siddique
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Ashlyn K Frazer
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Juha P Ahtiainen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, UK; Water Research Group, North West University, Potchefstroom, South Africa
| | - Jamie Tallent
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia; School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia.
| |
Collapse
|
15
|
McGeady C, Vučković A, Singh Tharu N, Zheng YP, Alam M. Brain-Computer Interface Priming for Cervical Transcutaneous Spinal Cord Stimulation Therapy: An Exploratory Case Study. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:896766. [PMID: 36188944 PMCID: PMC9397879 DOI: 10.3389/fresc.2022.896766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/01/2022] [Indexed: 06/01/2023]
Abstract
Loss of arm and hand function is one of the most devastating consequences of cervical spinal cord injury (SCI). Although some residual functional neurons often pass the site of injury, recovery after SCI is extremely limited. Recent efforts have aimed to augment traditional rehabilitation by combining exercise-based training with techniques such as transcutaneous spinal cord stimulation (tSCS), and movement priming. Such methods have been linked with elevated corticospinal excitability, and enhanced neuroplastic effects following activity-based therapy. In the present study, we investigated the potential for facilitating tSCS-based exercise-training with brain-computer interface (BCI) motor priming. An individual with chronic AIS A cervical SCI with both sensory and motor complete tetraplegia participated in a two-phase cross-over intervention whereby they engaged in 15 sessions of intensive tSCS-mediated hand training for 1 h, 3 times/week, followed by a two week washout period, and a further 15 sessions of tSCS training with bimanual BCI motor priming preceding each session. We found using the Graded Redefined Assessment for Strength, Sensibility, and Prehension that the participant's arm and hand function improved considerably across each phase of the study: from 96/232 points at baseline, to 117/232 after tSCS training alone, and to 131/232 points after BCI priming with tSCS training, reflecting improved strength, sensation, and gross and fine motor skills. Improved motor scores and heightened perception to sharp sensations improved the neurological level of injury from C4 to C5 following training and improvements were generally maintained four weeks after the final training session. Although functional improvements were similar regardless of the presence of BCI priming, there was a moderate improvement of bilateral strength only when priming preceded tSCS training, perhaps suggesting a benefit of motor priming for tSCS training.
Collapse
Affiliation(s)
- Ciarán McGeady
- Centre for Rehabilitation Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Aleksandra Vučković
- Centre for Rehabilitation Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Niraj Singh Tharu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Monzurul Alam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
16
|
Zhu M, Lee TXY, Hsieh YW, Lai LF, Condello G, Donnelly CJ, Smith M, Hamzah SH, Lim BH, Huang CY, Chi NF, Kuo CH. Vascular function in the aging human brain during muscle exertion. Aging (Albany NY) 2022; 14:3910-3920. [PMID: 35500246 PMCID: PMC9134944 DOI: 10.18632/aging.204052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
Abstract
To determine how brain oxygenation is stably maintained during advancing age, cerebral oxygenation and hemoglobin were measured real-time at 10 Hz using near-infrared spectroscopy (NIRS) at rest (30 seconds) and during a 10-repeated handgrip strength test (30 seconds) for 834 adults (M/F = 45/55%) aged 20-88 y. The amplitude of cerebral hemodynamic fluctuation was reflected by converting 300 values of % oxygen saturation and hemoglobin of each 30-second phase to standard deviation as indicatives of brain oxygenation variability (BOV) and brain hemodynamic variability (BHV) for each participant. Both BOV (+21-72%) and BHV (+94-158%) increased during the maximal voluntary muscle exertions for all age levels (α < 0.05), suggesting an increased vascular recruitment to maintain oxygen homeostasis in the brain. Intriguingly, BHV was >100 folds for both resting and challenged conditions (α < 0.001) in >80% of adults aged above 50 y despite similar BOV compared with young age counterparts, indicating a huge cost of amplifying hemodynamic oscillation to maintain a stable oxygenation in the aging brain. Since vascular endothelial cells are short-lived, our results implicate a hemodynamic compensation to emergence of daily deficits in replacing senescent endothelial cells after age 50 y.
Collapse
Affiliation(s)
- Maijian Zhu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City 11153, Taiwan, ROC
| | - Tania Xu Yar Lee
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City 11153, Taiwan, ROC
| | - Yu-Wen Hsieh
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City 11153, Taiwan, ROC
| | - Li-Fan Lai
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City 11153, Taiwan, ROC
| | - Giancarlo Condello
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City 11153, Taiwan, ROC.,Department of Medicine and Surgery, University of Parma, Via Gramsci, Parma 43126, Italy
| | - Cyril J Donnelly
- Rehabilitation Research Institute of Singapore, Nanyang Technological University, Singapore
| | - Marc Smith
- Body Composition Technologies, Pty Ltd., South Perth, Western Australia, Australia
| | - Sareena Hanim Hamzah
- Centre for Sport and Exercise Sciences, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Boon-Hooi Lim
- Centre for Sport and Exercise Sciences, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan, ROC.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan, ROC
| | - Nai-Fang Chi
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taiwan, ROC.,Department of Neurology, Taipei Veterans General Hospital, Taiwan, ROC
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City 11153, Taiwan, ROC
| |
Collapse
|
17
|
The acute effects of action observation on muscle strength/weakness and corticospinal excitability in older adults. Exp Brain Res 2022; 240:1801-1810. [PMID: 35488129 PMCID: PMC9053563 DOI: 10.1007/s00221-022-06370-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/11/2022] [Indexed: 11/21/2022]
Abstract
Muscle weakness is a critical problem facing many older adults. Interventions targeting nervous system plasticity may show promise in enhancing strength. The purpose of this study was to examine the acute effects of action observation on muscular strength characteristics and corticospinal excitability in older adults. Isometric wrist flexion strength characteristics and corticospinal excitability of the first dorsal interosseous (FDI) were measured in 14 older adults (mean age = 73 years) in response to observation of (1) STRONG contractions of the hand/wrist, (2) WEAK contractions of the hand/wrist, and (3) a CONTROL condition. Results from repeated measures analyses of variance (ANOVAs) indicated that rate of torque development at 200 ms (RTD200) significantly decreased from PRE to POST observation for CONTROL and WEAK, but not STRONG. No other ANOVAs were significant. However, effect sizes indicated that maximal voluntary contraction (MVC) peak torque showed moderate declines following WEAK (d = − 0.571) and CONTROL (d = − 0.636), but not STRONG (d = 0.024). Similarly, rate of torque development at 30 (RTD30), 50 (RTD50), and 200 (RTD200) ms showed large declines from PRE to POST after WEAK and CONTROL, but small changes following STRONG. FDI motor-evoked potential (MEP) amplitude tended to increase over time, but these results were variable. There was a pronounced effect from PRE to 8MIN (d = 0.954) during all conditions. Action observation of strong contractions may exert a preservatory effect on muscular strength. More work is needed to determine whether this is modulated by increased corticospinal excitability. The study was prospectively registered (ClinicalTrials.gov Identifier: NCT03946709).
Collapse
|
18
|
Zafeiridis A, Kounoupis A, Papadopoulos S, Koutlas A, Boutou AK, Smilios I, Dipla K. Brain oxygenation during multiple sets of isometric and dynamic resistance exercise of equivalent workloads: Association with systemic haemodynamics. J Sports Sci 2022; 40:1020-1030. [PMID: 35271420 DOI: 10.1080/02640414.2022.2045061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brain function relies on sufficient blood flow and oxygen supply. Changes in cerebral oxygenation during exercise have been linked to brain activity and central command. Isometric- and dynamic-resistance exercise-(RE) may elicit differential responses in systemic circulation, neural function and metabolism; all important regulators of cerebral circulation. We examined whether (i) cerebral oxygenation differs between isometric- and dynamic-RE of similar exercise characteristics and (ii) cerebral oxygenation changes relate to cardiovascular adjustments occurring during RE. Fourteen men performed, randomly, an isometric-RE and a dynamic-RE of similar characteristics (bilateral-leg-press, 2-min×4-sets, 30% of maximal-voluntary-contraction, equivalent tension-time-index/workload). Cerebral-oxygenation (oxyhaemoglobin-O2Hb; total haemoglobin-tHb/blood-volume-index; deoxyhemoglobin-HHb) was assessed by NIRS and beat-by-beat haemodynamics via photoplethysmography. Cerebral-O2Hb and tHb progressively increased from the 1st to 4th set in both RE-protocols (p < 0.05); HHb slightly decreased (p < 0.05). Changes in NIRS-parameters were similar between RE-protocols within each exercise-set (p = 0.91-1.00) and during the entire protocol (including resting-phases) (p = 0.48-0.63). O2Hb and tHb changes were not correlated with changes in systemic haemodynamics. In conclusion, cerebral oxygenation/blood-volume steadily increased during multiple-set RE-protocols. Isometric- and dynamic-RE of matched exercise characteristics resulted in similar prefrontal oxygenation/blood volume changes, suggesting similar cerebral haemodynamic and possibly neuronal responses to maintain a predetermined force.
Collapse
Affiliation(s)
- Andreas Zafeiridis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Anastasios Kounoupis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Stavros Papadopoulos
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Aggelos Koutlas
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Afroditi K Boutou
- Department of Respiratory Medicine, General Papanikolaou Hospital, Thessaloniki, Greece
| | - Ilias Smilios
- Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
19
|
Cuenca-Martínez F, Angulo-Díaz-Parreño S, Feijóo-Rubio X, Fernández-Solís MM, León-Hernández JV, LA Touche R, Suso-Martí L. Motor effects of movement representation techniques and cross-education: a systematic review and meta-analysis. Eur J Phys Rehabil Med 2022; 58:94-107. [PMID: 34105921 PMCID: PMC9987463 DOI: 10.23736/s1973-9087.21.06893-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION The objective was to assess the impact of movement representation techniques (MRT) through motor imagery (MI), action observation (AO) and visual mirror feedback (VMF) and cross-education training (CE) on strength, range of motion (ROM), speed, functional state and balance during experimental immobilization processes in healthy individuals, in patients with injuries that did not require surgery and in those with surgical processes that did or did not require immobilization. EVIDENCE ACQUISITION MEDLINE, EMBASE, CINAHL and Google Scholar were searched. Thirteen meta-analyses were conducted. EVIDENCE SYNTHESIS Regarding the immobilized participants, in the healthy individuals, MI showed significant results regarding maintenance of strength and ROM, with low-quality evidence. Regarding the process with no immobilization, VMF and MI techniques showed significant changes in maintaining ROM in patients with injury without surgery, with very low-quality evidence. Results had shown that MI demonstrated significantly higher maintenance of strength and speed in patients undergoing surgery, with low-quality evidence. No significant results were found in ROM. Low-quality evidence showed better results in AO plus usual care compared with usual treatment in isolation with respect to maintenance of functional state and balance. CE training demonstrated maintenance of strength in patients undergoing surgery, with moderate evidence; however, not in healthy experimentally immobilized individuals. VMF did not show significant results in maintaining ROM after surgery without immobilization, nor did MI in maintaining strength after surgery and immobilization. CONCLUSIONS MRT and CE training have been shown to have a significant impact on the improvement of various motor variables and on physical maintenance in general.
Collapse
Affiliation(s)
- Ferran Cuenca-Martínez
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), La Salle Higher Center for University Studies, Autonomous University of Madrid, Madrid, Spain
| | - Santiago Angulo-Díaz-Parreño
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), La Salle Higher Center for University Studies, Autonomous University of Madrid, Madrid, Spain.,Faculty of Medicine, CEU San Pablo University, Madrid, Spain
| | - Xosé Feijóo-Rubio
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta M Fernández-Solís
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - José V León-Hernández
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain.,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), La Salle Higher Center for University Studies, Autonomous University of Madrid, Madrid, Spain
| | - Roy LA Touche
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain - .,Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), La Salle Higher Center for University Studies, Autonomous University of Madrid, Madrid, Spain.,Institute of Neurosciences and Craniofacial Pain (INDCRAN), Madrid, Spain
| | - Luis Suso-Martí
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), La Salle Higher Center for University Studies, Autonomous University of Madrid, Madrid, Spain.,Department of Physiotherapy, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| |
Collapse
|
20
|
Vaughan BA, Simon JE, Grooms DR, Clark LA, Wages NP, Clark BC. Brain-Predicted Age Difference Moderates the Association Between Muscle Strength and Mobility. Front Aging Neurosci 2022; 14:808022. [PMID: 35173606 PMCID: PMC8841783 DOI: 10.3389/fnagi.2022.808022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Approximately 35% of individuals over age 70 report difficulty with mobility. Muscle weakness has been demonstrated to be one contributor to mobility limitations in older adults. The purpose of this study was to examine the moderating effect of brain-predicted age difference (an index of biological brain age/health derived from structural neuroimaging) on the relationship between leg strength and mobility. METHODS In community dwelling older adults (N = 57, 74.7 ± 6.93 years; 68% women), we assessed the relationship between isokinetic leg extensor strength and a composite measure of mobility [mobility battery assessment (MBA)] using partial Pearson correlations and multifactorial regression modeling. Brain predicted age (BPA) was calculated from T1 MR-images using a validated machine learning Gaussian Process regression model to explore the moderating effect of BPA difference (BPAD; BPA minus chronological age). RESULTS Leg strength was significantly correlated with BPAD (r = -0.317, p < 0.05) and MBA score (r = 0.541, p < 0.001). Chronological age, sex, leg strength, and BPAD explained 63% of the variance in MBA performance (p < 0.001). BPAD was a significant moderator of the relationship between strength and MBA, accounting for 7.0% of MBA score variance [△R 2 = 0.044, F(1,51) = 6.83, p = 0.01]. Conditional moderation effects of BPAD indicate strength was a stronger predictor of mobility in those with a great BPAD. CONCLUSION The relationship between strength and mobility appears to be influenced by brain aging, with strength serving as a possible compensation for decline in neural integrity.
Collapse
Affiliation(s)
- Brooke A. Vaughan
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH, United States
| | - Janet E. Simon
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- School of Applied Health Sciences and Wellness, Ohio University, Athens, OH, United States
| | - Dustin R. Grooms
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH, United States
- School of Applied Health Sciences and Wellness, Ohio University, Athens, OH, United States
| | - Leatha A. Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
- Department of Family Medicine, Ohio University, Athens, OH, United States
| | - Nathan P. Wages
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| | - Brian C. Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| |
Collapse
|
21
|
Criss CR, Melton MS, Ulloa SA, Simon JE, Clark BC, France CR, Grooms DR. Rupture, reconstruction, and rehabilitation: A multi-disciplinary review of mechanisms for central nervous system adaptations following anterior cruciate ligament injury. Knee 2021; 30:78-89. [PMID: 33873089 DOI: 10.1016/j.knee.2021.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/18/2021] [Accepted: 03/18/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Despite surgical reconstruction and extensive rehabilitation, persistent quadriceps inhibition, gait asymmetry, and functional impairment remain prevalent in patients after anterior cruciate ligament (ACL) injury. A combination of reports have suggested underlying central nervous system adaptations in those after injury govern long-term neuromuscular impairments. The classic assumption has been to attribute neurophysiologic deficits to components of injury, but other factors across the continuum of care (e.g. surgery, perioperative analgesia, and rehabilitative strategies) have been largely overlooked. OBJECTIVE This review provides a multidisciplinary perspective to 1) provide a narrative review of studies reporting neuroplasticity following ACL injury in order to inform clinicians of the current state of literature and 2) provide a mechanistic framework of neurophysiologic deficits with potential clinical implications across all phases of injury and recovery (injury, surgery, and rehabilitation) RESULTS: Studies using a variety of neurophysiologic modalities have demonstrated peripheral and central nervous system adaptations in those with prior ACL injury. Longitudinal investigations suggest neurophysiologic changes at spinal-reflexive and corticospinal pathways follow a unique timecourse across injury, surgery, and rehabilitation. CONCLUSION Clinicians should consider the unique injury, surgery, anesthesia, and rehabilitation on central nervous system adaptations. Therapeutic strategies across the continuum of care may be beneficial to mitigate maladaptive neuroplasticity in those after ACL injury.
Collapse
Affiliation(s)
- Cody R Criss
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA.
| | - M Stephen Melton
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Sergio A Ulloa
- OhioHealth Physician Group Heritage College: Orthopedic and Sports Medicine, OhioHealth O'Bleness Memorial Hospital, Athens, OH, USA
| | - Janet E Simon
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA; Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA; Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Christopher R France
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA; Department of Psychology, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Dustin R Grooms
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA; Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, USA; Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| |
Collapse
|
22
|
Dylan RM, Charalambos P, Aymeric G, Florent L. Motor imagery and action observation following immobilization-induced hypoactivity: a narrative review. Ann Phys Rehabil Med 2021; 65:101541. [PMID: 34023499 DOI: 10.1016/j.rehab.2021.101541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND In sports, the risk of pathology or event that leads to an injury, a cessation of practice or even to an immobilization is high. The subsequent reduction of physical activity, or hypoactivity, induces neural and muscular changes that adversely affect motor skills and functional motor rehabilitation. Because the implementation of physical practice is difficult, if not impossible, during and immediately following injury or immobilization, complementary techniques have been proposed to minimize the deleterious impact of hypoactivity on neuromuscular function. OBJECTIVE The current narrative review aimed to discuss the contributions of motor imagery and action observation, which enhance motor (re)learning and induce neural adaptations in both healthy individuals and injured athletes. METHODS Online literature research for studies of the effects of motor imagery, action observation and their combination on hypoactivity, extracting relevant publications within the last decade (2009-2020). RESULTS From published studies and the authors' knowledge of both motor imagery and action observation, some elements are provided for developing applied protocols during and after the immobilization period. Such interventions consist of associating congruent action observation with kinesthetic motor imagery of different movements, organized in increasing difficulty. The aim is to maintain motor functions and promote motor relearning by activating sensorimotor cortical areas and corticomotor pathways of the injured effector. CONCLUSION This narrative review supports the implementation of combined motor imagery and action observation protocols in the context of sports rehabilitation.
Collapse
Affiliation(s)
- Rannaud Monany Dylan
- Cognition, Action et Plasticité Sensorimotrice (CAPS), INSERM UMR1093, UFR STAPS, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Papaxanthis Charalambos
- Cognition, Action et Plasticité Sensorimotrice (CAPS), INSERM UMR1093, UFR STAPS, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Guillot Aymeric
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, F-69622 Villeurbanne Cedex, France
| | - Lebon Florent
- Cognition, Action et Plasticité Sensorimotrice (CAPS), INSERM UMR1093, UFR STAPS, Université de Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
23
|
Debarnot U, Perrault AA, Sterpenich V, Legendre G, Huber C, Guillot A, Schwartz S. Motor imagery practice benefits during arm immobilization. Sci Rep 2021; 11:8928. [PMID: 33903619 PMCID: PMC8076317 DOI: 10.1038/s41598-021-88142-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/30/2021] [Indexed: 11/26/2022] Open
Abstract
Motor imagery (MI) is known to engage motor networks and is increasingly used as a relevant strategy in functional rehabilitation following immobilization, whereas its effects when applied during immobilization remain underexplored. Here, we hypothesized that MI practice during 11 h of arm-immobilization prevents immobilization-related changes at the sensorimotor and cortical representations of hand, as well as on sleep features. Fourteen participants were tested after a normal day (without immobilization), followed by two 11-h periods of immobilization, either with concomitant MI treatment or control tasks, one week apart. At the end of each condition, participants were tested on a hand laterality judgment task, then underwent transcranial magnetic stimulation to measure cortical excitability of the primary motor cortices (M1), followed by a night of sleep during which polysomnography data was recorded. We show that MI treatment applied during arm immobilization had beneficial effects on (1) the sensorimotor representation of hands, (2) the cortical excitability over M1 contralateral to arm-immobilization, and (3) sleep spindles over both M1s during the post-immobilization night. Furthermore, (4) the time spent in REM sleep was significantly longer, following the MI treatment. Altogether, these results support that implementing MI during immobilization may limit deleterious effects of limb disuse, at several levels of sensorimotor functioning.
Collapse
Affiliation(s)
- Ursula Debarnot
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland. .,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland. .,Inter-University Laboratory of Human Movement Biology-EA 7424, University Claude Bernard Lyon 1, Villeurbanne, France. .,Institut Universitaire de France, Paris, France.
| | - Aurore A Perrault
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland.,Sleep, Cognition and Neuroimaging Laboratory, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Canada
| | - Virginie Sterpenich
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| | - Guillaume Legendre
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| | - Chieko Huber
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| | - Aymeric Guillot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Sophie Schwartz
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| |
Collapse
|
24
|
Clark BC, Carson RG. Sarcopenia and Neuroscience: Learning to Communicate. J Gerontol A Biol Sci Med Sci 2021; 76:1882-1890. [PMID: 33824986 DOI: 10.1093/gerona/glab098] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
In the 1990s and early 2000s, the common definition for sarcopenia was age-related loss of skeletal muscle, and low levels of muscle mass were central to sarcopenia diagnosis. In more recent consensus definitions, however, low muscle strength displaces low muscle mass as a defining feature of sarcopenia. The change stems from growing evidence that muscle weakness is a better predictor of adverse health outcomes (e.g., mobility limitations) than muscle mass. This evidence accompanies an emerging recognition that central neural mechanisms are critical determinants of age-related changes in strength and mobility that can occur independently of variations in muscle mass. However, strikingly little practical attention is typically given to the potential role of the central nervous system in the aetiology or remediation of sarcopenia (i.e., low muscle function). In this article, we provide an overview of some mechanisms that mediate neural regulation of muscle contraction and control, and highlight the specific contributions of neural hypoexcitability, dopaminergic dysfunction, and degradation of functional and structural brain connectivity in relation to sarcopenia. We aim to enhance the lines of communication between the domains of sarcopenia and neuroscience. We believe that appreciation of the neural regulation of muscle contraction and control is fundamental to understanding sarcopenia and to developing targeted therapeutic strategies for its treatment.
Collapse
Affiliation(s)
- Brian C Clark
- Ohio Musculoskeletal & Neurological Institute and the Department of Biomedical Sciences, Ohio University, Athens, Ohio, USA
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland.,School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK.,School of Human Movement and Nutrition Sciences, The University of Queensland, Australia
| |
Collapse
|
25
|
Clark LA, Manini TM, Wages NP, Simon JE, Russ DW, Clark BC. Reduced Neural Excitability and Activation Contribute to Clinically Meaningful Weakness in Older Adults. J Gerontol A Biol Sci Med Sci 2021; 76:692-702. [PMID: 32588058 PMCID: PMC8011705 DOI: 10.1093/gerona/glaa157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Weakness is a risk factor for physical limitations and death in older adults (OAs). We sought to determine whether OAs with clinically meaningful leg extensor weakness exhibit differences in voluntary inactivation (VIA) and measures of corticospinal excitability when compared to young adults (YAs) and OAs without clinically meaningful weakness. We also sought to estimate the relative contribution of indices of neural excitability and thigh lean mass in explaining the between-subject variability in OAs leg extensor strength. METHODS In 66 OAs (75.1 ± 7.0 years) and 20 YAs (22.0 ± 1.9 years), we quantified leg extensor strength, thigh lean mass, VIA, and motor evoked potential (MEP) amplitude and silent period (SP) duration. OAs were classified into weakness groups based on previously established strength/body weight (BW) cut points (Weak, Modestly Weak, or Not Weak). RESULTS The OAs had 63% less strength/BW when compared to YAs. Weak OAs exhibited higher levels of leg extensor VIA than Not Weak OAs (14.2 ± 7.5% vs 6.1 ± 7.5%). Weak OAs exhibited 24% longer SPs compared to Not Weak OAs, although this difference was insignificant (p = .06). The Weak OAs MEPs were half the amplitude of the Not Weak OAs. Regression analysis indicated that MEP amplitude, SP duration, and thigh lean mass explained ~62% of the variance in strength, with the neural excitability variables explaining ~33% of the variance and thigh lean mass explaining ~29%. CONCLUSION These findings suggest that neurotherapeutic interventions targeting excitability could be a viable approach to increase muscle strength in order to reduce the risk of physical impairments in late life.
Collapse
Affiliation(s)
- Leatha A Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens
- Department of Biomedical Sciences, Ohio University, Athens
| | - Todd M Manini
- Department of Aging and Geriatric Research, University of Florida, Gainesville
| | - Nathan P Wages
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens
- Department of Biomedical Sciences, Ohio University, Athens
| | - Janet E Simon
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens
- School of Applied Health Sciences and Wellness, Ohio University, Athens
| | - David W Russ
- School of Physical Therapy & Rehabilitation Sciences, University of South Florida, Tampa
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens
- Department of Biomedical Sciences, Ohio University, Athens
| |
Collapse
|
26
|
Maestroni L, Read P, Bishop C, Papadopoulos K, Suchomel TJ, Comfort P, Turner A. The Benefits of Strength Training on Musculoskeletal System Health: Practical Applications for Interdisciplinary Care. Sports Med 2021; 50:1431-1450. [PMID: 32564299 DOI: 10.1007/s40279-020-01309-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global health organizations have provided recommendations regarding exercise for the general population. Strength training has been included in several position statements due to its multi-systemic benefits. In this narrative review, we examine the available literature, first explaining how specific mechanical loading is converted into positive cellular responses. Secondly, benefits related to specific musculoskeletal tissues are discussed, with practical applications and training programmes clearly outlined for both common musculoskeletal disorders and primary prevention strategies.
Collapse
Affiliation(s)
- Luca Maestroni
- Smuoviti, Viale Giulio Cesare, 29, 24121, Bergamo, BG, Italy. .,StudioErre, Via della Badia, 18, 25127, Brescia, BS, Italy. .,London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK.
| | - Paul Read
- Athlete Health and Performance Research Center, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Chris Bishop
- London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK
| | - Konstantinos Papadopoulos
- London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK
| | - Timothy J Suchomel
- Department of Human Movement Sciences, Carroll University, Waukesha, WI, USA.,Directorate of Psychology and Sport, University of Salford, Frederick Road, Salford, Greater Manchester, UK
| | - Paul Comfort
- Directorate of Psychology and Sport, University of Salford, Frederick Road, Salford, Greater Manchester, UK.,Institute for Sport, Physical Activity and Leisure, Carnegie School of Sport, Leeds Beckett University, Leeds, UK.,Centre for Exercise and Sport Science Research, Edith Cowan University, Joondalup, Australia
| | - Anthony Turner
- London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK
| |
Collapse
|
27
|
Flanagan SD, Proessl F, Dunn-Lewis C, Sterczala AJ, Connaboy C, Canino MC, Beethe AZ, Eagle SR, Szivak TK, Onate JA, Volek JS, Maresh CM, Kaeding CC, Kraemer WJ. Differences in brain structure and theta burst stimulation-induced plasticity implicate the corticomotor system in loss of function after musculoskeletal injury. J Neurophysiol 2021; 125:1006-1021. [PMID: 33596734 DOI: 10.1152/jn.00689.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic musculoskeletal injury (MSI) may involve changes in corticomotor structure and function, but direct evidence is needed. To determine the corticomotor basis of MSI, we examined interactions among skeletomotor function, corticospinal excitability, corticomotor structure (cortical thickness and white matter microstructure), and intermittent theta burst stimulation (iTBS)-induced plasticity. Nine women with unilateral anterior cruciate ligament rupture (ACL) 3.2 ± 1.1 yr prior to the study and 11 matched controls (CON) completed an MRI session followed by an offline plasticity-probing protocol using a randomized, sham-controlled, double-blind, cross-over study design. iTBS was applied to the injured (ACL) or nondominant (CON) motor cortex leg representation (M1LEG) with plasticity assessed based on changes in skeletomotor function and corticospinal excitability compared with sham iTBS. The results showed persistent loss of function in the injured quadriceps, compensatory adaptations in the uninjured quadriceps and both hamstrings, and injury-specific increases in corticospinal excitability. Injury was associated with lateralized reductions in paracentral lobule thickness, greater centrality of nonleg corticomotor regions, and increased primary somatosensory cortex leg area inefficiency and eccentricity. Individual responses to iTBS were consistent with the principles of homeostatic metaplasticity; corresponded to injury-related differences in skeletomotor function, corticospinal excitability, and corticomotor structure; and suggested that corticomotor adaptations involve both hemispheres. Moreover, iTBS normalized skeletomotor function and corticospinal excitability in ACL. The results of this investigation directly confirm corticomotor involvement in chronic loss of function after traumatic MSI, emphasize the sensitivity of the corticomotor system to skeletomotor events and behaviors, and raise the possibility that brain-targeted therapies could improve recovery.NEW & NOTEWORTHY Traumatic musculoskeletal injuries may involve adaptive changes in the brain that contribute to loss of function. Our combination of neuroimaging and theta burst transcranial magnetic stimulation (iTBS) revealed distinct patterns of iTBS-induced plasticity that normalized differences in muscle and brain function evident years after unilateral knee ligament rupture. Individual responses to iTBS corresponded to injury-specific differences in brain structure and physiological activity, depended on skeletomotor deficit severity, and suggested that corticomotor adaptations involve both hemispheres.
Collapse
Affiliation(s)
- Shawn D Flanagan
- Department of Human Sciences, The Ohio State University, Columbus, Ohio.,Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Felix Proessl
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Courtenay Dunn-Lewis
- Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam J Sterczala
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chris Connaboy
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Maria C Canino
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Z Beethe
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shawn R Eagle
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tunde K Szivak
- Department of Health Sciences, Merrimack College, North Andover, Massachusetts
| | - James A Onate
- School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jeff S Volek
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Carl M Maresh
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Christopher C Kaeding
- Sports Health and Performance Institute, Department of Orthopaedics, The Ohio State University, Columbus, Ohio
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
28
|
MacLennan RJ, Ogilvie D, McDorman J, Vargas E, Grusky AR, Kim Y, Garcia JM, Stock MS. The time course of neuromuscular impairment during short-term disuse in young women. Physiol Rep 2021; 9:e14677. [PMID: 33426809 PMCID: PMC7797948 DOI: 10.14814/phy2.14677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscle disuse results in rapid functional declines. Previous studies have typically been at least 1 week in duration and focused on the responsiveness of men. Herein, we report the timeline of initial impairments in strength, voluntary activation (VA), and motor unit control during 2 weeks of knee joint immobilization. Thirteen women (mean age =21 years) underwent 2 weeks of left knee joint immobilization via ambulation on crutches and use of a brace. Participants visited the laboratory for testing on seven occasions (two familiarization visits, pretest, 48 and 72 h, 1 and 2 weeks). Knee extensor isometric and concentric isokinetic strength at two velocities (180 and 360 degrees⋅s-1 ), VA, and submaximal vastus lateralis motor unit activity were evaluated. Moderate-to-large decreases in isometric and concentric strength at 180 degrees⋅s-1 and VA were observed within 48 hours. Isometric strength continued to decline beyond 72 h, whereas other variables plateaued. The B-term of the motor unit mean firing rate versus action potential amplitude relationship demonstrated a moderate increase 1 week into immobilization, suggesting that greater firing rates were necessary to maintain pretest torque levels. Concentric strength at a velocity of 360 degrees s-1 was not affected. Decreases in knee extensor strength occur within a matter of days after immobilization, although the time course and magnitude vary among assessment methods. These changes are mediated by the nervous system's capacity to activate skeletal muscle. Clinically appropriate interventions which target nervous system plasticity should be implemented early to minimize the rapid functional impairments associated with disuse.
Collapse
Affiliation(s)
- Rob J MacLennan
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, OK, USA
| | - David Ogilvie
- School of Kinesiology & Physical Therapy, University of Central Florida, Orlando, FL, USA.,Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| | - John McDorman
- School of Kinesiology & Physical Therapy, University of Central Florida, Orlando, FL, USA.,Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| | - Ernest Vargas
- School of Kinesiology & Physical Therapy, University of Central Florida, Orlando, FL, USA.,Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| | - Arielle R Grusky
- School of Kinesiology & Physical Therapy, University of Central Florida, Orlando, FL, USA.,Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| | - Youngdeok Kim
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Jeanette M Garcia
- Department of Health Sciences, University of Central Florida, Orlando, FL, USA
| | - Matt S Stock
- School of Kinesiology & Physical Therapy, University of Central Florida, Orlando, FL, USA.,Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
29
|
Maestroni L, Read P, Bishop C, Turner A. Strength and Power Training in Rehabilitation: Underpinning Principles and Practical Strategies to Return Athletes to High Performance. Sports Med 2020; 50:239-252. [PMID: 31559567 DOI: 10.1007/s40279-019-01195-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Injuries have a detrimental impact on team and individual athletic performance. Deficits in maximal strength, rate of force development (RFD), and reactive strength are commonly reported following several musculoskeletal injuries. This article first examines the available literature to identify common deficits in fundamental physical qualities following injury, specifically strength, rate of force development and reactive strength. Secondly, evidence-based strategies to target a resolution of these residual deficits will be discussed to reduce the risk of future injury. Examples to enhance practical application and training programmes have also been provided to show how these can be addressed.
Collapse
Affiliation(s)
- Luca Maestroni
- Smuoviti, Viale Giulio Cesare, 29, 24121, Bergamo, BG, Italy.
- StudioErre, Via della Badia, 18, 25127, Brescia, BS, Italy.
| | - Paul Read
- Athlete Health and Performance Research Center, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Chris Bishop
- London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK
| | - Anthony Turner
- London Sport Institute, School of Science and Technology, Middlesex University, Greenlands Lane, London, UK
| |
Collapse
|
30
|
Paravlic AH, Tod D, Milanovic Z. Mental Simulation Practice Has Beneficial Effects on Patients' Physical Function Following Lower Limb Arthroplasty: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2020; 101:1447-1461. [PMID: 32437689 DOI: 10.1016/j.apmr.2020.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To determine the effectiveness of mental simulation practice (MSP) on measures of physical function recovery in patients who have undergone a joint replacement surgery of lower limbs. DATA SOURCES A systematic review was conducted using CINAHL, PubMed/MEDLINE, Embase, SPORTDiscus, PEDro, Cochrane Register of Controlled Trials, and Google Scholar from the earliest record until August 16, 2019. STUDY SELECTION The following inclusion criteria were used to determine eligibility for studies: (1) randomized and matched controlled trials recruiting men and women who underwent primary unilateral joint arthroplasty; (2) the study examined the effects of MSP intervention on measures of physical function recovery (both performance-based and patient self-reported); and (3) measures of interest were compared between MSP and control groups. A total of 8 papers (7 studies) met the inclusion criteria and were included. DATA EXTRACTION Data were extracted by 1 reviewer and checked by a second reviewer, independently. DATA SYNTHESIS When compared with standard physical therapy (SPT), MSP showed an effect on physical function in general (effect size [ES], 0.67; 95% confidence interval [CI], 0.38-0.96; n=7), maximal voluntary strength of knee extensor muscles of the affected leg (ES, 1.41; 95% CI, 0.64-2.18; n=2), brisk walking speed (ES, 1.20; 95% CI, 0.58-1.83; n=2), brisk walking speed with dual task (ES, 1.02; 95% CI, 0.41-1.63; n=2), timed up-to go test (ES, 0.96; 95% CI, 0.15-1.77; n=3), and active flexion of the affected leg (ES, 0.70; 95% CI, 0.29-1.11; n=4). Finally, meta-regression analysis revealed that the effects of MSP were significantly predicted only by total number of training sessions per study. CONCLUSIONS The present meta-analysis demonstrated that MSP intervention has multiple positive effects on measures of physical function recovery in patients who have undergone total knee or hip replacement surgery in comparison with SPT. Thus, MSP can be applied as an effective complementary therapy to SPT in physical rehabilitation of this specific population, especially in the early postacute and acute phase.
Collapse
Affiliation(s)
- Armin H Paravlic
- Science and Research Centre, Institute for Kinesiology Research, Koper, Slovenia.
| | - David Tod
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Zoran Milanovic
- Science and Research Centre, Institute for Kinesiology Research, Koper, Slovenia; Faculty of Sport and Physical Education, University of Niš, Niš, Serbia
| |
Collapse
|
31
|
Van Weehaeghe D, Devrome M, Schramm G, De Vocht J, Deckers W, Baete K, Van Damme P, Koole M, Van Laere K. Combined brain and spinal FDG PET allows differentiation between ALS and ALS mimics. Eur J Nucl Med Mol Imaging 2020; 47:2681-2690. [PMID: 32314027 DOI: 10.1007/s00259-020-04786-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder with on average a 1-year delay between symptom onset and diagnosis. Studies have demonstrated the value of [18F]-FDG PET as a sensitive diagnostic biomarker, but the discriminatory potential to differentiate ALS from patients with symptoms mimicking ALS has not been investigated. We investigated the combination of brain and spine [18F]-FDG PET-CT for differential diagnosis between ALS and ALS mimics in a real-life clinical diagnostic setting. METHODS Patients with a suspected diagnosis of ALS (n = 98; 64.8 ± 11 years; 61 M) underwent brain and spine [18F]-FDG PET-CT scans. In 62 patients, ALS diagnosis was confirmed (67.8 ± 10 years; 35 M) after longitudinal follow-up (average 18.1 ± 8.4 months). In 23 patients, another disease was diagnosed (ALS mimics, 60.9 ± 12.9 years; 17 M) and 13 had a variant motor neuron disease, primary lateral sclerosis (PLS; n = 4; 53.6 ± 2.5 years; 2 M) and progressive muscular atrophy (PMA; n = 9; 58.4 ± 7.3 years; 7 M). Spine metabolism was determined after manual and automated segmentation. VOI- and voxel-based comparisons were performed. Moreover, a support vector machine (SVM) approach was applied to investigate the discriminative power of regional brain metabolism, spine metabolism and the combination of both. RESULTS Brain metabolism was very similar between ALS mimics and ALS, whereas cervical and thoracic spine metabolism was significantly different (in standardised uptake values; cervical: ALS 2.1 ± 0.5, ALS mimics 1.9 ± 0.4; thoracic: ALS 1.8 ± 0.3, ALS mimics 1.5 ± 0.3). As both brain and spine metabolisms were very similar between ALS mimics and PLS/PMA, groups were pooled for accuracy analyses. Mean discrimination accuracy was 65.4%, 80.0% and 81.5%, using only brain metabolism, using spine metabolism and using both, respectively. CONCLUSION The combination of brain and spine FDG PET-CT with SVM classification is useful as discriminative biomarker between ALS and ALS mimics in a real-life clinical setting.
Collapse
Affiliation(s)
- Donatienne Van Weehaeghe
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
- Division of Nuclear Medicine, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Martijn Devrome
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Georg Schramm
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Joke De Vocht
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Wies Deckers
- Division of Nuclear Medicine, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Kristof Baete
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB and KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
32
|
Abstract
BACKGROUND Muscle strength loss following immobilisation has been predominantly attributed to rapid muscle atrophy. However, this cannot fully explain the magnitude of muscle strength loss, so changes in neuromuscular function (NMF) may be involved. OBJECTIVES We systematically reviewed literature that quantified changes in muscle strength, size and NMF following periods of limb immobilisation in vivo in humans. METHODS Studies were identified following systematic searches, assessed for inclusion, data extracted and quality appraised by two reviewers. Data were tabulated and reported narratively. RESULTS Forty eligible studies were included, 22 immobilised lower and 18 immobilised upper limbs. Limb immobilisation ranged from 12 h to 56 days. Isometric muscle strength and muscle size declined following immobilisation; however, change magnitude was greater for strength than size. Evoked resting twitch force decreased for lower but increased for upper limbs. Rate of force development either remained unchanged or slowed for lower and typically slowed for upper limbs. Twitch relaxation rate slowed for both lower and upper limbs. Central motor drive typically decreased for both locations, while electromyography amplitude during maximum voluntary contractions decreased for the lower and presented mixed findings for the upper limbs. Trends imply faster rates of NMF loss relative to size earlier in immobilisation periods for all outcomes. CONCLUSIONS Limb immobilisation results in non-uniform loss of isometric muscle strength, size and NMF over time. Different outcomes between upper and lower limbs could be attributed to higher degrees of central neural control of upper limb musculature. Future research should focus on muscle function losses and mechanisms following acute immobilisation. REGISTRATION PROSPERO reference: CRD42016033692.
Collapse
|
33
|
Bell ZW, Wong V, Spitz RW, Chatakondi RN, Viana R, Abe T, Loenneke JP. The contraction history of the muscle and strength change: lessons learned from unilateral training models. Physiol Meas 2020; 41:01TR01. [PMID: 31652423 DOI: 10.1088/1361-6579/ab516c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Participation in resistance exercise is encouraged throughout the lifetime, offering such benefits as improved strength and muscle mass accretion. Considerable research has been completed on this topic within the past several decades, with the current narrative dictating that increased muscle size yields further increases in muscle strength. However, there remain unanswered questions relating to the observation that certain training interventions yield only one specific adaptation (strength or size). Studies investigating resistance training often include either bilateral or unilateral exercise programs. Unilateral exercise programs are often used as they allow for comparison between two separate training interventions within the same individual. This is viewed as an advantage, relating to statistical power, but a limitation insofar as one intervention could be confounded by the intervention within the opposing limb. For example, when only one limb is trained both limbs often get stronger (albeit to differing magnitudes), termed the cross-education effect. However, we propose that when both limbs are trained that the cross-education effect may not occur and that the adaptations produced are reflective of the contraction history of the muscle. Herein, we discuss ways to test the idea that strength change may be dictated by the contraction history of the muscle. If each limb responds only to the contraction history within each limb (as opposed to the opposite limb), then this would have immediate ramifications for research design. Furthermore, this would certainly be of importance among injured populations undergoing rehabilitation, seeking to find the most efficacious exercise regimens.
Collapse
Affiliation(s)
- Zachary W Bell
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, United States of America
| | | | | | | | | | | | | |
Collapse
|
34
|
MacLennan RJ, Sahebi M, Becker N, Davis E, Garcia JM, Stock MS. Declines in skeletal muscle quality vs. size following two weeks of knee joint immobilization. PeerJ 2020; 8:e8224. [PMID: 31976172 PMCID: PMC6964688 DOI: 10.7717/peerj.8224] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/15/2019] [Indexed: 12/27/2022] Open
Abstract
Background Disuse of a muscle group, which occurs during bedrest, spaceflight, and limb immobilization, results in atrophy. It is unclear, however, if the magnitude of decline in skeletal muscle quality is similar to that for muscle size. The purpose of this study was to examine the effects of two weeks of knee joint immobilization on vastus lateralis and rectus femoris echo intensity and cross-sectional area. Methods Thirteen females (mean ± SD age = 21 ± 2 years) underwent two weeks of left knee joint immobilization via ambulating on crutches and use of a brace. B-mode ultrasonography was utilized to obtain transverse plane images of the immobilized and control vastus lateralis and rectus femoris at pretest and following immobilization. Effect size statistics and two-way repeated measures analyses of variance were used to interpret the data. Results No meaningful changes were demonstrated for the control limb and the rectus femoris of the immobilized limb. Analyses showed a large increase in vastus lateralis echo intensity (i.e., decreased muscle quality) for the immobilized limb (p = .006, Cohen’s d = .918). For vastus lateralis cross-sectional area, no time × limb interaction was observed (p = .103), but the effect size was moderate (d = .570). There was a significant association between the increase in vastus lateralis echo intensity and the decrease in cross-sectional area (r = − .649, p = .016). Conclusion In female participants, two weeks of knee joint immobilization resulted in greater deterioration of muscle quality than muscle size. Echo intensity appears to be an attractive clinical tool for monitoring muscle quality during disuse.
Collapse
Affiliation(s)
- Rob J MacLennan
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, United States of America
| | - Michael Sahebi
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, United States of America
| | - Nathan Becker
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, United States of America
| | - Ethan Davis
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, United States of America
| | - Jeanette M Garcia
- Department of Health Sciences, University of Central Florida, Orlando, FL, United States of America
| | - Matt S Stock
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, United States of America
| |
Collapse
|
35
|
Di Rienzo F, Joassy P, Kanthack T, MacIntyre TE, Debarnot U, Blache Y, Hautier C, Collet C, Guillot A. Effects of Action Observation and Action Observation Combined with Motor Imagery on Maximal Isometric Strength. Neuroscience 2019; 418:82-95. [DOI: 10.1016/j.neuroscience.2019.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/03/2023]
|
36
|
Nicholson V, Watts N, Chani Y, Keogh JW. Motor imagery training improves balance and mobility outcomes in older adults: a systematic review. J Physiother 2019; 65:200-207. [PMID: 31521556 DOI: 10.1016/j.jphys.2019.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/20/2023] Open
Abstract
QUESTION Does motor imagery training improve measures of balance, mobility and falls in older adults without a neurological condition? DESIGN Systematic review and meta-analysis of randomised controlled trials. PARTICIPANTS Adults aged at least 60 years and without a neurological condition. INTERVENTION Three or more sessions of motor imagery training. OUTCOME MEASURES The primary outcomes were balance measures (such as single leg stance and Berg Balance scale) and mobility measures (such as gait speed and the Timed Up and Go test). Falls were a secondary outcome measure. Risk of bias was evaluated using the PEDro Scale, and overall quality of evidence was assessed using the Grades of Research, Assessment, Development and Evaluation (GRADE) approach. RESULTS Twelve trials including 356 participants were included in the systematic review and 10 trials (316 participants) were included in the meta-analyses. All trials included either apparently healthy participants or older adults after orthopaedic surgery. There was evidence that motor imagery training can significantly improve balance (SMD 1.03, 95% CI 0.25 to 1.82), gait speed (MD 0.13 m/s, 95% CI 0.04 to 0.22) and Timed Up and Go (MD 1.64 seconds, 95% CI 0.79 to 2.49) in older adults; however, the quality of evidence was very low to low. No data regarding falls were identified. CONCLUSION Motor imagery training improves balance and mobility in older adults who do not have a neurological condition. These results suggest that motor imagery training could be an adjunct to standard physiotherapy care in older adults, although it is unclear whether or not the effects are clinically worthwhile. TRIAL REGISTRATION PROSPERO CRD42017069954.
Collapse
Affiliation(s)
- Vaughan Nicholson
- School of Allied Health, Australian Catholic University, Brisbane, Australia.
| | - Naomi Watts
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | - Yannick Chani
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | - Justin Wl Keogh
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia; Human Potential Centre, AUT University, Auckland, New Zealand; Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
37
|
Swafford AP, Kwon DP, MacLennan RJ, Fukuda DH, Stout JR, Stock MS. No acute effects of placebo or open-label placebo treatments on strength, voluntary activation, and neuromuscular fatigue. Eur J Appl Physiol 2019; 119:2327-2338. [PMID: 31468171 DOI: 10.1007/s00421-019-04219-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/25/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Recent evidence suggests that deception may not be necessary for placebos to improve clinical outcomes. We tested the hypothesis that placebo and open-label placebo (OLP) treatments would acutely improve strength and voluntary activation, as well as minimize neuromuscular fatigue, in untrained participants. METHODS Twenty-one males (n = 11) and females (n = 10) visited the laboratory on three occasions (placebo, OLP, control) to receive each treatment in a randomized, counter-balanced manner. Trials involved a pretest, a 15-min intervention, and posttests. For the placebo trial, participants were informed that they would be ingesting a capsule that would improve their performance and make them feel more energetic. For the OLP intervention, participants were told that the capsules would have no effects. In "Experiment #1", knee extensor maximal voluntary contraction (MVC) peak torque and percent voluntary activation were evaluated. In "Experiment #2", participants performed 20 consecutive MVCs while surface electromyographic signals were detected from the vastus lateralis. Subjective assessments of energy and perceived exertion were examined. RESULTS The interventions had no effect on strength or voluntary activation, but energy levels increased following treatments (p = 0.016, η2 = 0.257). Neither treatment influenced neuromuscular fatigue. Though some variables showed moderate-to-large effect sizes, these results were consistent for individuals with lower voluntary activation. CONCLUSION Placebo and OLP treatments had minimal influence on strength, voluntary activation, and fatigue resistance. As these findings differ from recent reports, we speculate that placebos and OLPs are more likely to enhance muscle function in patient populations seeking medical care.
Collapse
Affiliation(s)
- Alina P Swafford
- School of Kinesiology and Physical Therapy, College of Health Professions and Sciences, University of Central Florida, 12805 Pegasus Drive, HPA 1, Room 258, Orlando, FL, 32816-2205, USA
| | - Dennis P Kwon
- School of Kinesiology and Physical Therapy, College of Health Professions and Sciences, University of Central Florida, 12805 Pegasus Drive, HPA 1, Room 258, Orlando, FL, 32816-2205, USA
| | - Rob J MacLennan
- School of Kinesiology and Physical Therapy, College of Health Professions and Sciences, University of Central Florida, 12805 Pegasus Drive, HPA 1, Room 258, Orlando, FL, 32816-2205, USA
| | - David H Fukuda
- School of Kinesiology and Physical Therapy, College of Health Professions and Sciences, University of Central Florida, 12805 Pegasus Drive, HPA 1, Room 258, Orlando, FL, 32816-2205, USA
| | - Jeffrey R Stout
- School of Kinesiology and Physical Therapy, College of Health Professions and Sciences, University of Central Florida, 12805 Pegasus Drive, HPA 1, Room 258, Orlando, FL, 32816-2205, USA
| | - Matt S Stock
- School of Kinesiology and Physical Therapy, College of Health Professions and Sciences, University of Central Florida, 12805 Pegasus Drive, HPA 1, Room 258, Orlando, FL, 32816-2205, USA.
| |
Collapse
|
38
|
Mason J, Frazer AK, Pearce AJ, Goodwill AM, Howatson G, Jaberzadeh S, Kidgell DJ. Determining the early corticospinal-motoneuronal responses to strength training: a systematic review and meta-analysis. Rev Neurosci 2019; 30:463-476. [DOI: 10.1515/revneuro-2018-0054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022]
Abstract
Abstract
Several studies have used transcranial magnetic stimulation to probe the corticospinal-motoneuronal responses to a single session of strength training; however, the findings are inconsistent. This systematic review and meta-analysis examined whether a single bout of strength training affects the excitability and inhibition of intracortical circuits of the primary motor cortex (M1) and the corticospinal-motoneuronal pathway. A systematic review was completed, tracking studies between January 1990 and May 2018. The methodological quality of studies was determined using the Downs and Black quality index. Data were synthesised and interpreted from meta-analysis. Nine studies (n=107) investigating the acute corticospinal-motoneuronal responses to strength training met the inclusion criteria. Meta-analyses detected that after strength training compared to control, corticospinal excitability [standardised mean difference (SMD), 1.26; 95% confidence interval (CI), 0.88, 1.63; p<0.0001] and intracortical facilitation (ICF) (SMD, 1.60; 95% CI, 0.18, 3.02; p=0.003) were increased. The duration of the corticospinal silent period was reduced (SMD, −17.57; 95% CI, −21.12, −14.01; p=0.00001), but strength training had no effect on the excitability of the intracortical inhibitory circuits [short-interval intracortical inhibition (SICI) SMD, 1.01; 95% CI, −1.67, 3.69; p=0.46; long-interval intracortical inhibition (LICI) SMD, 0.50; 95% CI, −1.13, 2.13; p=0.55]. Strength training increased the excitability of corticospinal axons (SMD, 4.47; 95% CI, 3.45, 5.49; p<0.0001). This systematic review and meta-analyses revealed that the acute neural changes to strength training involve subtle changes along the entire neuroaxis from the M1 to the spinal cord. These findings suggest that strength training is a clinically useful tool to modulate intracortical circuits involved in motor control.
Collapse
|
39
|
Shimada K, Onishi T, Ogawa Y, Yamauchi J, Kawada S. Effects of motor imagery combined with action observation training on the lateral specificity of muscle strength in healthy subjects. Biomed Res 2019; 40:107-113. [PMID: 31231093 DOI: 10.2220/biomedres.40.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Unilateral training of both lateral limbs increases unilateral muscle strength, whereas bilateral training increases bilateral muscle strength, a phenomenon known as lateral specificity in resistance training. Although motor imagery (MI) combined with action observation (AO) (i.e., MI + AO) training increases muscle strength, it is not completely understood whether such training increases the lateral specificity of muscle strength in a way resistance training does. To investigate whether MI + AO induces lateral specificity of muscle strength increase, 18 healthy subjects were divided into groups: MI + AO and the control groups. The control group watched a movie of natural sceneries for ten minutes per day five times a week for three weeks, whereas the MI + AO group imagined bilateral shoulder flexion while watching a movie of athletes performing bilateral shoulder flexion with barbells or dumbbells, with the same time schedule. The MI + AO group alone showed a significant increase in bilateral shoulder strength at three weeks after the intervention compared with the baseline. Unilateral shoulder strength was not significantly altered. These results suggest that MI + AO training increases muscle strength, providing evidence that similar to resistance training, lateral specificity also exists in MI + AO training.
Collapse
Affiliation(s)
- Kensuke Shimada
- Department of Sport and Medical Science, Faculty of Medical Technology, Teikyo University
| | - Tomo Onishi
- Teikyo University Institute of Sports Science & Medicine
| | - Yoshiko Ogawa
- Department of Sport and Medical Science, Faculty of Medical Technology, Teikyo University
| | - Junichiro Yamauchi
- Graduate School of Human Health Sciences, Tokyo Metropolitan University.,Research Center in Back, Neck, Other Joint Pain and Human Performance (BNOJPH), Khon Kaen University
| | - Shigeo Kawada
- Department of Sport and Medical Science, Faculty of Medical Technology, Teikyo University
| |
Collapse
|
40
|
Szynkiewicz SH, Nobriga CV, O'Donoghue CR, Becerra BJ, LaForge G. Motor Imagery Practice and Increased Tongue Strength: A Case Series Feasibility Report. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:1676-1684. [PMID: 31112668 DOI: 10.1044/2019_jslhr-s-18-0128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Purpose The aim of the study was to determine the effects of a 6-week progressive resistance tongue exercise protocol in mental practice form on tongue strength. Investigation begins in typically aging adults, a population susceptible to reduced tongue strength and dysphagia secondary to age-related changes in the swallowing mechanism. It was hypothesized that typically aging adults who perform a 6-week progressive resistance tongue exercise protocol in mental practice form would increase tongue strength. Method A prospective, case series intervention study was used. Six healthy women aged 53-78 years completed a 6-week mental practice tongue resistance exercise program utilizing motor imagery to imagine completion of tongue exercises. The main outcome was mean isometric maximum tongue pressures (tongue strength), which were collected at baseline and Weeks 2, 4, and 6 using the Iowa Oral Performance Instrument ( IOPI Medical, 2013 ). Results By Week 6 of the study, all participants had significantly increased their tongue strength compared to baseline. Conclusions The findings indicate that mental practice using motor imagery for tongue exercise may improve tongue strength in healthy individuals at risk for dysphagia and may thus represent a promising direction warranting further investigation in typically aging individuals and patients with dysphagia and decreased tongue strength.
Collapse
Affiliation(s)
- Sarah H Szynkiewicz
- College of Science and Mathematics, University of South Florida Sarasota-Manatee
| | - Christina V Nobriga
- Department of Communication Sciences and Disorders, Loma Linda University, CA
| | - Cynthia R O'Donoghue
- Department of Communication Sciences and Disorders, James Madison University, Harrisonburg, VA
| | | | - Garret LaForge
- College of Science and Mathematics, University of South Florida Sarasota-Manatee
| |
Collapse
|
41
|
Kyriazis M. Ageing Throughout History: The Evolution of Human Lifespan. J Mol Evol 2019; 88:57-65. [PMID: 31197416 DOI: 10.1007/s00239-019-09896-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Abstract
It is not surprising that one of the most complex phenomena in nature is that of ageing. It does not only bear biological interest, but it is also associated with cultural, psychological, social and even philosophical issues. It is therefore to be expected that a great deal of research is being performed in order to study the evolution of ageing and, more specifically, the evolution of human ageing. Historical aspects of this evolution will be discussed. Evidence from a variety of sources shows that the human lifespan is increasing, and may well continue to increase to levels that are difficult to predict. In addition, the most important theories about ageing based on evolutionary principles will be examined. Examples are mutation accumulation, antagonistic pleiotropy and the disposable soma theory. Finally, a section about future evolution of human ageing, based upon newly emerging research, will shed some light and provide speculative-provocative ideas about the future of ageing in humans.
Collapse
|
42
|
Yoshida A, Kurimoto S, Iwatsuki K, Saeki M, Nishizuka T, Nakano T, Yoneda H, Onishi T, Yamamoto M, Tatebe M, Hirata H. Upper extremity disability is associated with pain intensity and grip strength in women with bilateral idiopathic carpal tunnel syndrome. NeuroRehabilitation 2019; 44:199-205. [PMID: 30856127 DOI: 10.3233/nre-182589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The upper extremity disability in patients with carpal tunnel syndrome (CTS) is related to dysfunction due to the median nerve damage. However, there is no report on which dysfunctions affect the upper extremity disability. PURPOSE This study aimed to investigate which clinical factors influence upper extremity disability in women with CTS. METHODS We analyzed 60 hands of women with bilateral idiopathic CTS. Upper extremity disability was assessed using Hand10, a validated and self-administered tool. Pain intensity was measured using the Japanese version of the Short-Form McGill Pain Questionnaire (SF-MPQ-J). We performed nerve conduction studies, assessed physical and psychological parameters, and collected demographic data. Physical parameters comprised grip strength, pinch strength, tactile threshold, static 2-point discrimination sensation, and severity of numbness. Psychological parameters include depression, pain anxiety, and distress. RESULTS The bivariate analysis revealed that Hand10 was significantly correlated with age, symptom duration, SF-MPQ-J, grip strength, pain anxiety, and distress. Multiple regression analysis demonstrated that SF-MPQ-J and grip strength were related to Hand10 score. CONCLUSIONS Pain intensity and grip strength were dysfunctions affecting the upper extremity disability in women with bilateral idiopathic CTS. Rehabilitation approaches for CTS should be considered based on the adaptive activities of the neural networks.
Collapse
Affiliation(s)
- Akihito Yoshida
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan
| | - Shigeru Kurimoto
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Katsuyuki Iwatsuki
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Masaomi Saeki
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Takanobu Nishizuka
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Tomonori Nakano
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hidemasa Yoneda
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Tetsurou Onishi
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Michiro Yamamoto
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Masahiro Tatebe
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
43
|
Guillot A, Debarnot U. Benefits of Motor Imagery for Human Space Flight: A Brief Review of Current Knowledge and Future Applications. Front Physiol 2019; 10:396. [PMID: 31031635 PMCID: PMC6470189 DOI: 10.3389/fphys.2019.00396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
Motor imagery (MI) is arguably one of the most remarkable capacities of the human mind. There is now strong experimental evidence that MI contributes to substantial improvements in motor learning and performance. The therapeutic benefits of MI in promoting motor recovery among patients with motor impairments have also been reported. Despite promising theoretical and experimental findings, the utility of MI in adapting to unusual conditions, such as weightlessness during space flight, has received far less attention. In this review, we consider how, why, where, and when MI might be used by astronauts, and further evaluate the optimum MI content. Practically, we suggest that MI might be performed before, during, and after exposure to microgravity, respectively, to prepare for the rapid changes in gravitational forces after launch and to reduce the adverse effects of weightlessness exposition. Moreover, MI has potential role in facilitating re-adaptation when returning to Earth after long exposure to microgravity. Suggestions for further research include a focus on the multi-sensory aspects of MI, the requirement to use temporal characteristics as a measurement tool, and to account for the knowledge-base or metacognitive processes underlying optimal MI implementation.
Collapse
Affiliation(s)
- Aymeric Guillot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, Villeurbanne, France.,Institut Universitaire de France, Paris, France
| | - Ursula Debarnot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
44
|
Canu MH, Fourneau J, Coq JO, Dannhoffer L, Cieniewski-Bernard C, Stevens L, Bastide B, Dupont E. Interplay between hypoactivity, muscle properties and motor command: How to escape the vicious deconditioning circle? Ann Phys Rehabil Med 2018; 62:122-127. [PMID: 30394346 DOI: 10.1016/j.rehab.2018.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/24/2018] [Accepted: 09/30/2018] [Indexed: 10/28/2022]
Abstract
Activity-dependent processes addressing the central nervous system (CNS) and musculoskeletal structures are critical for maintaining motor performance. Chronic reduction in activity, whether due to a sedentary lifestyle or extended bed rest, results in impaired performance in motor tasks and thus decreased quality of life. In the first part of this paper, we give a narrative review of the effects of hypoactivity on the neuromuscular system and behavioral outcomes. Motor impairments arise from a combination of factors including altered muscle properties, impaired afferent input, and plastic changes in neural structure and function throughout the nervous system. There is a reciprocal interplay between the CNS and muscle properties, and these sensorimotor loops are essential for controlling posture and movement. As a result, patients under hypoactivity experience a self-perpetuating cycle, in with sedentarity leading to decreased motor activity and thus a progressive worsening of a situation, and finally deconditioning. Various rehabilitation strategies have been studied to slow down or reverse muscle alteration and altered motor performance. In the second part of the paper, we review representative protocols directed toward the muscle, the sensory input and/or the cerebral cortex. Improving an understanding of the loss of motor function under conditions of disuse (such as extended bed rest) as well as identifying means to slow this decline may lead to therapeutic strategies to preserve quality of life for a range of individuals. The most efficient strategies seem multifactorial, using a combination of approaches targeting different levels of the neuromuscular system.
Collapse
Affiliation(s)
- Marie-Hélène Canu
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France.
| | - Julie Fourneau
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Jacques-Olivier Coq
- UMR 7289, CNRS, institut de neurosciences de la Timone, Aix-Marseille université, 13385 Marseille, France
| | - Luc Dannhoffer
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Caroline Cieniewski-Bernard
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Laurence Stevens
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Bruno Bastide
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Erwan Dupont
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| |
Collapse
|
45
|
Frazer AK, Pearce AJ, Howatson G, Thomas K, Goodall S, Kidgell DJ. Determining the potential sites of neural adaptation to cross-education: implications for the cross-education of muscle strength. Eur J Appl Physiol 2018; 118:1751-1772. [PMID: 29995227 DOI: 10.1007/s00421-018-3937-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
Cross-education describes the strength gain in the opposite, untrained limb following a unilateral strength training program. Since its discovery in 1894, several studies now confirm the existence of cross-education in contexts that involve voluntary dynamic contractions, eccentric contraction, electrical stimulation, whole-body vibration and, more recently, following mirror feedback training. Although many aspects of cross-education have been established, the mediating neural mechanisms remain unclear. Overall, the findings of this review show that the neural adaptations to cross-education of muscle strength most likely represent a continuum of change within the central nervous system that involves both structural and functional changes within cortical motor and non-motor regions. Such changes are likely to be the result of more subtle changes along the entire neuroaxis which include, increased corticospinal excitability, reduced cortical inhibition, reduced interhemispheric inhibition, changes in voluntary activation and new regions of cortical activation. However, there is a need to widen the breadth of research by employing several neurophysiological techniques (together) to better understand the potential mechanisms mediating cross-education. This fundamental step is required in order to better prescribe targeted and effective guidelines for the clinical practice of cross-education. There is a need to determine whether similar cortical responses also occur in clinical populations where, perhaps, the benefits of cross-education could be best observed.
Collapse
Affiliation(s)
- Ashlyn K Frazer
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, PO Box 527, Frankston, Melbourne, VIC, 3199, Australia.
| | - Alan J Pearce
- Discipline of Exercise Science, School of Allied Health, La Trobe University, Melbourne, Australia
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK.,Water Research Group, School of Biological Sciences, North West University, Potchefstroom, South Africa
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK
| | - Dawson J Kidgell
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, PO Box 527, Frankston, Melbourne, VIC, 3199, Australia
| |
Collapse
|
46
|
Losana-Ferrer A, Manzanas-López S, Cuenca-Martínez F, Paris-Alemany A, La Touche R. Effects of motor imagery and action observation on hand grip strength, electromyographic activity and intramuscular oxygenation in the hand gripping gesture: A randomized controlled trial. Hum Mov Sci 2018; 58:119-131. [PMID: 29408163 DOI: 10.1016/j.humov.2018.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/06/2018] [Accepted: 01/21/2018] [Indexed: 01/24/2023]
Abstract
The aim of this study was to evaluate the effects of motor imagery and action observation combined with a hand grip strength program on the forearm muscles. Sixty subjects were selected and randomized into three groups: motor imagery (n = 20), action observation (n = 20), or a control group (n = 20). Outcome measures included hand grip strength, electromyographical activity and intramuscular oxygenation. The hand grip strength significantly increased in the motor imagery (p < .001) and action observation (p < .001) groups compared with the control group, although there were no differences between the both groups (p = .30). In the electromyographical activity, intra-group significant differences were found in motor imagery (p = .002) and action observation (p = .003) groups, although there were no differences between the both groups (p = 1.00) Intramuscular oxygenation results did not show any statistically significant differences between any of the study groups (p > .05). Our results suggest that both motor imagery and action observation training, combined with a hand grip strength program, present a significant strength gain and significant change in the strength and electromyographical activity of the forearm muscles, however no change was found in intramuscular oxygenation.
Collapse
Affiliation(s)
- Alejandro Losana-Ferrer
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Spain
| | - Sergio Manzanas-López
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Spain
| | - Ferran Cuenca-Martínez
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Spain; Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Spain
| | - Alba Paris-Alemany
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Spain; Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Spain; Instituto de Neurociencia y Dolor Craneofacial (INDCRAN), Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Roy La Touche
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Spain; Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Spain; Instituto de Neurociencia y Dolor Craneofacial (INDCRAN), Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain.
| |
Collapse
|
47
|
Ho CF, Jiao Y, Wei B, Yang Z, Wang HY, Wu YY, Yang C, Tseng KW, Huang CY, Chen CY, Kuo CH. Protein supplementation enhances cerebral oxygenation during exercise in elite basketball players. Nutrition 2018; 53:34-37. [PMID: 29631106 DOI: 10.1016/j.nut.2018.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/25/2017] [Accepted: 01/02/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The aim of the present study was to examine cerebral oxygenation during high-intensity exercise in elite basketball players who consumed supplements with different whey protein contents after a short postexercise recovery to determine whether changing whey protein content in carbohydrate-based supplementation influences cerebral hemodynamic response when the supplement was consumed during a 2-h recovery after a 1-h exercise challenge. METHODS This was a randomized, counterbalanced crossover study. Fifteen Division 1 collegiate basketball players (18-20 y) consumed 6.25 kcal/kg of either high-protein (36% protein in total calorie) or an isocaloric low-protein (12% protein in total calorie) control supplement in a carbohydrate-based drink immediately after a 1-h cycling (70% of maximal oxygen consumption [VO2max]). After a 2-h rest, the athletes were challenged on a cycloergometer at 80% VO2max. Blood perfusion (total hemoglobin) and oxygen saturation of frontal brain were continuously measured by near-infrared spectroscopy during the cycling. RESULTS Before the cycloergometer test, high-protein supplementation increased peak insulin response and lowered glucose increases during the recovery compared with the low-protein trial. High-protein supplementation enhanced increases in cerebral oxygen saturation (P < 0.01) and attenuated increases in cerebral blood perfusion (total hemoglobin; P < 0.01) during the cycloergometer exercise; and resulted in a 16% longer cycling time (from 474 ± 49 s to 553 ± 78 s, P < 0.05), compared with the low-protein trial. CONCLUSION Enhanced fatigue recovery after consumption of a high-protein supplement is associated with enhanced cerebral oxygenation against exercise challenge, which spares brain blood demand for periphery.
Collapse
Affiliation(s)
- Cheng-Feng Ho
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan; Shih Hsin University, Taipei, Taiwan
| | - Ying Jiao
- Competitor Institute of Sports Nutrition, Beijing, China
| | - Bing Wei
- Competitor Institute of Sports Nutrition, Beijing, China
| | - Zeyi Yang
- Competitor Institute of Sports Nutrition, Beijing, China
| | - Hsuan-Yun Wang
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan; Shih Hsin University, Taipei, Taiwan
| | - Yu-You Wu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chi Yang
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Kuo-Wei Tseng
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yen Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan.
| |
Collapse
|
48
|
Wei CY, Chen CY, Liao YH, Tsai YS, Huang CY, Chaunchaiyakul R, Higgins MF, Kuo CH. Deep Ocean Mineral Supplementation Enhances the Cerebral Hemodynamic Response during Exercise and Decreases Inflammation Postexercise in Men at Two Age Levels. Front Physiol 2017; 8:1016. [PMID: 29311955 PMCID: PMC5733072 DOI: 10.3389/fphys.2017.01016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/23/2017] [Indexed: 11/13/2022] Open
Abstract
Background: Previous studies have consistently shown that oral supplementation of deep ocean minerals (DOM) improves vascular function in animals and enhances muscle power output in exercising humans. Purpose: To examine the effects of DOM supplementation on the cerebral hemodynamic response during physical exertion in young and middle-aged men. Design: Double-blind placebo-controlled crossover studies were conducted in young (N = 12, aged 21.2 ± 0.4 years) and middle-aged men (N = 9, aged 46.8 ± 1.4 years). The counter-balanced trials of DOM and Placebo were separated by a 2-week washout period. DOM and Placebo were orally supplemented in drinks before, during, and after cycling exercise. DOM comprises desalinated minerals and trace elements from seawater collected ~618 m below the earth's surface. Methods: Cerebral hemodynamic response (tissue hemoglobin) was measured during cycling at 75% VO2max using near infrared spectroscopy (NIRS). Results: Cycling time to exhaustion at 75% VO2max and the associated plasma lactate response were similar between the Placebo and DOM trials for both age groups. In contrast, DOM significantly elevated cerebral hemoglobin levels in young men and, to a greater extent, in middle-aged men compared with Placebo. An increased neutrophil to lymphocyte ratio (NLR) was observed in middle-aged men, 2 h after exhaustive cycling, but was attenuated by DOM. Conclusion: Our data suggest that minerals and trace elements from deep oceans possess great promise in developing supplements to increase the cerebral hemodynamic response against a physical challenge and during post-exercise recovery for middle-aged men.
Collapse
Affiliation(s)
- Ching-Yin Wei
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chung-Yu Chen
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Yi-Hung Liao
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Yung-Shen Tsai
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | | | - Matthew F Higgins
- Department of Life Sciences, University of Derby, Derby, United Kingdom
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| |
Collapse
|
49
|
Kalicinski M, Bock O, Schott N. Motor imagery of body movements that can't be executed on Earth. J Vestib Res 2017; 27:217-223. [PMID: 29081428 DOI: 10.3233/ves-170621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Before participating in a space mission, astronauts undergo parabolic-flight and underwater training to facilitate their subsequent adaptation to weightlessness. A quick, simple and inexpensive alternative could be training by motor imagery (MI). OBJECTIVE An important prerequisite for this training approach is that humans are able to imagine movements which are unfamiliar, since they can't be performed in the presence of gravity. Our study addresses this prerequisite. METHODS 68 young subjects completed a modified version of the CMI test (Schott, 2013). With eyes closed, subjects were asked to imagine moving their body according to six consecutive verbal instructions. After the sixth instruction, subjects opened their eyes and arranged the segments of a manikin into the assumed final body configuration. In a first condition, subjects received instructions only for moving individual body segments (CMIground). In a second condition, subjects received instructions for moving body segments or their full body (CMIfloat). After each condition, subjects were asked to rate their subjective visual and kinesthetic vividness of MI. RESULTS Condition differences emerged for the CMI scores and for the duration of correct trials with better performance in the CMIground condition. Condition differences were also represented for the subjective MI performance. CONCLUSION Motor imagery is possible but degraded when subjects are asked to imagine body movements while floating. This confirms that preflight training of MI while floating might be beneficial for astronauts' mission performance.
Collapse
Affiliation(s)
- Michael Kalicinski
- Institute of Physiology and Anatomy, German Sport University Cologne, Cologne, Germany
| | - Otmar Bock
- Institute of Physiology and Anatomy, German Sport University Cologne, Cologne, Germany
| | - Nadja Schott
- Department of Sport and Exercise Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
50
|
Kidgell DJ, Bonanno DR, Frazer AK, Howatson G, Pearce AJ. Corticospinal responses following strength training: a systematic review and meta-analysis. Eur J Neurosci 2017; 46:2648-2661. [DOI: 10.1111/ejn.13710] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Dawson J. Kidgell
- Department of Physiotherapy; School of Primary and Allied Health Care; Faculty of Medicine, Nursing and Health Science; Monash University; Melbourne Vic. 3199 Australia
| | - Daniel R. Bonanno
- Discipline of Podiatry; School of Allied Health; La Trobe University; Melbourne Vic. Australia
- La Trobe Sport and Exercise Medicine Research Centre; School of Allied Health; La Trobe University; Melbourne Vic. Australia
| | - Ashlyn K. Frazer
- Department of Physiotherapy; School of Primary and Allied Health Care; Faculty of Medicine, Nursing and Health Science; Monash University; Melbourne Vic. 3199 Australia
| | - Glyn Howatson
- Faculty of Health and Life Sciences; Northumbria University; Newcastle-upon-Tyne UK
- Water Research Group; School of Environmental Sciences and Development; Northwest University; Potchefstroom South Africa
| | - Alan J. Pearce
- Discipline of Exercise Science; School of Allied Health; La Trobe University; Melbourne Vic. Australia
| |
Collapse
|