1
|
Sermon JJ, Wiest C, Tan H, Denison T, Duchet B. Evoked resonant neural activity long-term dynamics can be reproduced by a computational model with vesicle depletion. Neurobiol Dis 2024; 199:106565. [PMID: 38880431 PMCID: PMC11300885 DOI: 10.1016/j.nbd.2024.106565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024] Open
Abstract
Subthalamic deep brain stimulation (DBS) robustly generates high-frequency oscillations known as evoked resonant neural activity (ERNA). Recently the importance of ERNA has been demonstrated through its ability to predict the optimal DBS contact in the subthalamic nucleus in patients with Parkinson's disease. However, the underlying mechanisms of ERNA are not well understood, and previous modelling efforts have not managed to reproduce the wealth of published data describing the dynamics of ERNA. Here, we aim to present a minimal model capable of reproducing the characteristics of the slow ERNA dynamics published to date. We make biophysically-motivated modifications to the Kuramoto model and fit its parameters to the slow dynamics of ERNA obtained from data. Our results demonstrate that it is possible to reproduce the slow dynamics of ERNA (over hundreds of seconds) with a single neuronal population, and, crucially, with vesicle depletion as one of the key mechanisms behind the ERNA frequency decay in our model. We further validate the proposed model against experimental data from Parkinson's disease patients, where it captures the variations in ERNA frequency and amplitude in response to variable stimulation frequency, amplitude, and to stimulation pulse bursting. We provide a series of predictions from the model that could be the subject of future studies for further validation.
Collapse
Affiliation(s)
- James J Sermon
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK; MRC Brain Networks Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Christoph Wiest
- MRC Brain Networks Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Huiling Tan
- MRC Brain Networks Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Timothy Denison
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK; MRC Brain Networks Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Benoit Duchet
- MRC Brain Networks Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Xu W, Wang J, Li XN, Liang J, Song L, Wu Y, Liu Z, Sun B, Li WG. Neuronal and synaptic adaptations underlying the benefits of deep brain stimulation for Parkinson's disease. Transl Neurodegener 2023; 12:55. [PMID: 38037124 PMCID: PMC10688037 DOI: 10.1186/s40035-023-00390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Deep brain stimulation (DBS) is a well-established and effective treatment for patients with advanced Parkinson's disease (PD), yet its underlying mechanisms remain enigmatic. Optogenetics, primarily conducted in animal models, provides a unique approach that allows cell type- and projection-specific modulation that mirrors the frequency-dependent stimulus effects of DBS. Opto-DBS research in animal models plays a pivotal role in unraveling the neuronal and synaptic adaptations that contribute to the efficacy of DBS in PD treatment. DBS-induced neuronal responses rely on a complex interplay between the distributions of presynaptic inputs, frequency-dependent synaptic depression, and the intrinsic excitability of postsynaptic neurons. This orchestration leads to conversion of firing patterns, enabling both antidromic and orthodromic modulation of neural circuits. Understanding these mechanisms is vital for decoding position- and programming-dependent effects of DBS. Furthermore, patterned stimulation is emerging as a promising strategy yielding long-lasting therapeutic benefits. Research on the neuronal and synaptic adaptations to DBS may pave the way for the development of more enduring and precise modulation patterns. Advanced technologies, such as adaptive DBS or directional electrodes, can also be integrated for circuit-specific neuromodulation. These insights hold the potential to greatly improve the effectiveness of DBS and advance PD treatment to new levels.
Collapse
Affiliation(s)
- Wenying Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jingxue Liang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Duchet B, Sermon JJ, Weerasinghe G, Denison T, Bogacz R. How to entrain a selected neuronal rhythm but not others: open-loop dithered brain stimulation for selective entrainment. J Neural Eng 2023; 20:10.1088/1741-2552/acbc4a. [PMID: 36880684 PMCID: PMC7614323 DOI: 10.1088/1741-2552/acbc4a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Objective.While brain stimulation therapies such as deep brain stimulation for Parkinson's disease (PD) can be effective, they have yet to reach their full potential across neurological disorders. Entraining neuronal rhythms using rhythmic brain stimulation has been suggested as a new therapeutic mechanism to restore neurotypical behaviour in conditions such as chronic pain, depression, and Alzheimer's disease. However, theoretical and experimental evidence indicate that brain stimulation can also entrain neuronal rhythms at sub- and super-harmonics, far from the stimulation frequency. Crucially, these counterintuitive effects could be harmful to patients, for example by triggering debilitating involuntary movements in PD. We therefore seek a principled approach to selectively promote rhythms close to the stimulation frequency, while avoiding potential harmful effects by preventing entrainment at sub- and super-harmonics.Approach.Our open-loop approach to selective entrainment, dithered stimulation, consists in adding white noise to the stimulation period.Main results.We theoretically establish the ability of dithered stimulation to selectively entrain a given brain rhythm, and verify its efficacy in simulations of uncoupled neural oscillators, and networks of coupled neural oscillators. Furthermore, we show that dithered stimulation can be implemented in neurostimulators with limited capabilities by toggling within a finite set of stimulation frequencies.Significance.Likely implementable across a variety of existing brain stimulation devices, dithering-based selective entrainment has potential to enable new brain stimulation therapies, as well as new neuroscientific research exploiting its ability to modulate higher-order entrainment.
Collapse
Affiliation(s)
- Benoit Duchet
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - James J Sermon
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, United Kingdom
| | - Gihan Weerasinghe
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Timothy Denison
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, United Kingdom
| | - Rafal Bogacz
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
de A Marcelino AL, Gray O, Al-Fatly B, Gilmour W, Douglas Steele J, Kühn AA, Gilbertson T. Pallidal neuromodulation of the explore/exploit trade-off in decision-making. eLife 2023; 12:79642. [PMID: 36727860 PMCID: PMC9940911 DOI: 10.7554/elife.79642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Every decision that we make involves a conflict between exploiting our current knowledge of an action's value or exploring alternative courses of action that might lead to a better, or worse outcome. The sub-cortical nuclei that make up the basal ganglia have been proposed as a neural circuit that may contribute to resolving this explore-exploit 'dilemma'. To test this hypothesis, we examined the effects of neuromodulating the basal ganglia's output nucleus, the globus pallidus interna, in patients who had undergone deep brain stimulation (DBS) for isolated dystonia. Neuromodulation enhanced the number of exploratory choices to the lower value option in a two-armed bandit probabilistic reversal-learning task. Enhanced exploration was explained by a reduction in the rate of evidence accumulation (drift rate) in a reinforcement learning drift diffusion model. We estimated the functional connectivity profile between the stimulating DBS electrode and the rest of the brain using a normative functional connectome derived from heathy controls. Variation in the extent of neuromodulation induced exploration between patients was associated with functional connectivity from the stimulation electrode site to a distributed brain functional network. We conclude that the basal ganglia's output nucleus, the globus pallidus interna, can adaptively modify decision choice when faced with the dilemma to explore or exploit.
Collapse
Affiliation(s)
- Ana Luisa de A Marcelino
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus MitteBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Core Facility GenomicsBerlinGermany
| | - Owen Gray
- Division of Imaging Science and Technology, Medical School, University of DundeeDundeeUnited Kingdom
| | - Bassam Al-Fatly
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus MitteBerlinGermany
| | - William Gilmour
- Division of Imaging Science and Technology, Medical School, University of DundeeDundeeUnited Kingdom
| | - J Douglas Steele
- Division of Imaging Science and Technology, Medical School, University of DundeeDundeeUnited Kingdom
| | - Andrea A Kühn
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus MitteBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Core Facility GenomicsBerlinGermany
- Berlin School of Mind and Brain, Charité - University Medicine BerlinBerlinGermany
- NeuroCure, Charité - University Medicine BerlinBerlinGermany
- DZNE, German Centre for Degenerative DiseasesBerlinGermany
| | - Tom Gilbertson
- Division of Imaging Science and Technology, Medical School, University of DundeeDundeeUnited Kingdom
- Department of Neurology, Ninewells Hospital & Medical SchoolDundeeUnited Kingdom
| |
Collapse
|
5
|
Ozturk M, Viswanathan A, Sheth SA, Ince NF. Electroceutically induced subthalamic high-frequency oscillations and evoked compound activity may explain the mechanism of therapeutic stimulation in Parkinson's disease. Commun Biol 2021; 4:393. [PMID: 33758361 PMCID: PMC7988171 DOI: 10.1038/s42003-021-01915-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Despite having remarkable utility in treating movement disorders, the lack of understanding of the underlying mechanisms of high-frequency deep brain stimulation (DBS) is a main challenge in choosing personalized stimulation parameters. Here we investigate the modulations in local field potentials induced by electrical stimulation of the subthalamic nucleus (STN) at therapeutic and non-therapeutic frequencies in Parkinson's disease patients undergoing DBS surgery. We find that therapeutic high-frequency stimulation (130-180 Hz) induces high-frequency oscillations (~300 Hz, HFO) similar to those observed with pharmacological treatment. Along with HFOs, we also observed evoked compound activity (ECA) after each stimulation pulse. While ECA was observed in both therapeutic and non-therapeutic (20 Hz) stimulation, the HFOs were induced only with therapeutic frequencies, and the associated ECA were significantly more resonant. The relative degree of enhancement in the HFO power was related to the interaction of stimulation pulse with the phase of ECA. We propose that high-frequency STN-DBS tunes the neural oscillations to their healthy/treated state, similar to pharmacological treatment, and the stimulation frequency to maximize these oscillations can be inferred from the phase of ECA waveforms of individual subjects. The induced HFOs can, therefore, be utilized as a marker of successful re-calibration of the dysfunctional circuit generating PD symptoms.
Collapse
Affiliation(s)
- Musa Ozturk
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Ashwin Viswanathan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Nuri F Ince
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
6
|
Schwab BC, Kase D, Zimnik A, Rosenbaum R, Codianni MG, Rubin JE, Turner RS. Neural activity during a simple reaching task in macaques is counter to gating and rebound in basal ganglia-thalamic communication. PLoS Biol 2020; 18:e3000829. [PMID: 33048920 PMCID: PMC7584254 DOI: 10.1371/journal.pbio.3000829] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/23/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
Task-related activity in the ventral thalamus, a major target of basal ganglia output, is often assumed to be permitted or triggered by changes in basal ganglia activity through gating- or rebound-like mechanisms. To test those hypotheses, we sampled single-unit activity from connected basal ganglia output and thalamic nuclei (globus pallidus-internus [GPi] and ventrolateral anterior nucleus [VLa]) in monkeys performing a reaching task. Rate increases were the most common peri-movement change in both nuclei. Moreover, peri-movement changes generally began earlier in VLa than in GPi. Simultaneously recorded GPi-VLa pairs rarely showed short-time-scale spike-to-spike correlations or slow across-trials covariations, and both were equally positive and negative. Finally, spontaneous GPi bursts and pauses were both followed by small, slow reductions in VLa rate. These results appear incompatible with standard gating and rebound models. Still, gating or rebound may be possible in other physiological situations: simulations show how GPi-VLa communication can scale with GPi synchrony and GPi-to-VLa convergence, illuminating how synchrony of basal ganglia output during motor learning or in pathological conditions may render this pathway effective. Thus, in the healthy state, basal ganglia-thalamic communication during learned movement is more subtle than expected, with changes in firing rates possibly being dominated by a common external source.
Collapse
Affiliation(s)
- Bettina C. Schwab
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Technical Medical Center, University of Twente, Enschede, the Netherlands
| | - Daisuke Kase
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andrew Zimnik
- Department of Neuroscience, Columbia University Medical Center, New York, New York, United States of America
| | - Robert Rosenbaum
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, Indiana, United States of America
| | - Marcello G. Codianni
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jonathan E. Rubin
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert S. Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
7
|
Abstract
Rhythms are a fundamental and defining feature of neuronal activity in animals including humans. This rhythmic brain activity interacts in complex ways with rhythms in the internal and external environment through the phenomenon of 'neuronal entrainment', which is attracting increasing attention due to its suggested role in a multitude of sensory and cognitive processes. Some senses, such as touch and vision, sample the environment rhythmically, while others, like audition, are faced with mostly rhythmic inputs. Entrainment couples rhythmic brain activity to external and internal rhythmic events, serving fine-grained routing and modulation of external and internal signals across multiple spatial and temporal hierarchies. This interaction between a brain and its environment can be experimentally investigated and even modified by rhythmic sensory stimuli or invasive and non-invasive neuromodulation techniques. We provide a comprehensive overview of the topic and propose a theoretical framework of how neuronal entrainment dynamically structures information from incoming neuronal, bodily and environmental sources. We discuss the different types of neuronal entrainment, the conceptual advances in the field, and converging evidence for general principles.
Collapse
Affiliation(s)
- Peter Lakatos
- Translational Neuroscience Laboratories, Nathan Kline Institute, Old Orangeburg Road 140, Orangeburg, New York 10962, USA; Department of Psychiatry, New York University School of Medicine, One, 8, Park Ave, New York, NY 10016, USA.
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149 Muenster, Germany; Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| | - Gregor Thut
- Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| |
Collapse
|
8
|
Optimal open-loop desynchronization of neural oscillator populations. J Math Biol 2020; 81:25-64. [PMID: 32418056 DOI: 10.1007/s00285-020-01501-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Deep brain stimulation (DBS) is an increasingly used medical treatment for various neurological disorders. While its mechanisms are not fully understood, experimental evidence suggests that through application of periodic electrical stimulation DBS may act to desynchronize pathologically synchronized populations of neurons resulting desirable changes to a larger brain circuit. However, the underlying mathematical mechanisms by which periodic stimulation can engender desynchronization in a coupled population of neurons is not well understood. In this work, a reduced phase-amplitude reduction framework is used to characterize the desynchronizing influence of periodic stimulation on a population of coupled oscillators. Subsequently, optimal control theory allows for the design of periodic, open-loop stimuli with the capacity to destabilize completely synchronized solutions while simultaneously stabilizing rotating block solutions. This framework exploits system nonlinearities in order to strategically modify unstable Floquet exponents. In the limit of weak neural coupling, it is shown that this method only requires information about the phase response curves of the individual neurons. The effects of noise and heterogeneity are also considered and numerical results are presented. This framework could ultimately be used to inform the design of more efficient deep brain stimulation waveforms for the treatment of neurological disease.
Collapse
|
9
|
Wilson D. Stabilization of Weakly Unstable Fixed Points as a Common Dynamical Mechanism of High-Frequency Electrical Stimulation. Sci Rep 2020; 10:5922. [PMID: 32246051 PMCID: PMC7125125 DOI: 10.1038/s41598-020-62839-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
While high-frequency electrical stimulation often used to treat various biological diseases, it is generally difficult to understand its dynamical mechanisms of action. In this work, high-frequency electrical stimulation is considered in the context of neurological and cardiological systems. Despite inherent differences between these systems, results from both theory and computational modeling suggest identical dynamical mechanisms responsible for desirable qualitative changes in behavior in response to high-frequency stimuli. Specifically, desynchronization observed in a population of periodically firing neurons and reversible conduction block that occurs in cardiomyocytes both result from bifurcations engendered by stimulation that modifies the stability of unstable fixed points. Using a reduced order phase-amplitude modeling framework, this phenomenon is described in detail from a theoretical perspective. Results are consistent with and provide additional insight for previously published experimental observations. Also, it is found that sinusoidal input is energy-optimal for modifying the stability of weakly unstable fixed points using periodic stimulation.
Collapse
Affiliation(s)
- Dan Wilson
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
10
|
Bologna M, Paparella G, Fasano A, Hallett M, Berardelli A. Evolving concepts on bradykinesia. Brain 2020; 143:727-750. [PMID: 31834375 PMCID: PMC8205506 DOI: 10.1093/brain/awz344] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Bradykinesia is one of the cardinal motor symptoms of Parkinson's disease and other parkinsonisms. The various clinical aspects related to bradykinesia and the pathophysiological mechanisms underlying bradykinesia are, however, still unclear. In this article, we review clinical and experimental studies on bradykinesia performed in patients with Parkinson's disease and atypical parkinsonism. We also review studies on animal experiments dealing with pathophysiological aspects of the parkinsonian state. In Parkinson's disease, bradykinesia is characterized by slowness, the reduced amplitude of movement, and sequence effect. These features are also present in atypical parkinsonisms, but the sequence effect is not common. Levodopa therapy improves bradykinesia, but treatment variably affects the bradykinesia features and does not significantly modify the sequence effect. Findings from animal and patients demonstrate the role of the basal ganglia and other interconnected structures, such as the primary motor cortex and cerebellum, as well as the contribution of abnormal sensorimotor processing. Bradykinesia should be interpreted as arising from network dysfunction. A better understanding of bradykinesia pathophysiology will serve as the new starting point for clinical and experimental purposes.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto, Ontario, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
11
|
Guo Z, Feng Z, Wang Y, Wei X. Simulation Study of Intermittent Axonal Block and Desynchronization Effect Induced by High-Frequency Stimulation of Electrical Pulses. Front Neurosci 2018; 12:858. [PMID: 30524231 PMCID: PMC6262085 DOI: 10.3389/fnins.2018.00858] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022] Open
Abstract
Deep brain stimulation (DBS) has been successfully used in treating neural disorders in brain, such as Parkinson’s disease and epilepsy. However, the precise mechanisms of DBS remain unclear. Regular DBS therapy utilizes high-frequency stimulation (HFS) of electrical pulses. Among all of neuronal elements, axons are mostly inclined to be activated by electrical pulses. Therefore, the response of axons may play an important role in DBS treatment. To study the axonal responses during HFS, we developed a computational model of myelinated axon to simulate sequences of action potentials generated in single and multiple axons (an axon bundle) by stimulations. The stimulations are applied extracellularly by a point source of current pulses with a frequency of 50–200 Hz. Additionally, our model takes into account the accumulation of potassium ions in the peri-axonal spaces. Results show that the increase of extracellular potassium generates intermittent depolarization block in the axons during HFS. Under the state of alternate block and recovery, axons fire action potentials at a rate far lower than the frequency of stimulation pulses. In addition, the degree of axonal block is highly related to the distance between the axons and the stimulation point. The differences in the degree of block for individual axons in a bundle result in desynchronized firing among the axons. Stimulations with higher frequency and/or greater intensity can induce axonal block faster and increase the desynchronization effect on axonal firing. Presumably, the desynchronized axonal activity induced by HFS could generate asynchronous activity in the population of target neurons downstream thereby suppressing over-synchronized firing of neurons in pathological conditions. The desynchronization effect generated by intermittent activation of axons may be crucial for DBS therapy. The present study provides new insights into the mechanisms of DBS, which is significant for advancing the application of DBS.
Collapse
Affiliation(s)
- Zheshan Guo
- Key Lab of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhouyan Feng
- Key Lab of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yang Wang
- Key Lab of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xuefeng Wei
- Department of Biomedical Engineering, The College of New Jersey, Ewing, NJ, United States
| |
Collapse
|
12
|
Long-Lasting Electrophysiological After-Effects of High-Frequency Stimulation in the Globus Pallidus: Human and Rodent Slice Studies. J Neurosci 2018; 38:10734-10746. [PMID: 30373767 DOI: 10.1523/jneurosci.0785-18.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/28/2018] [Accepted: 10/24/2018] [Indexed: 11/21/2022] Open
Abstract
Deep-brain stimulation (DBS) of the globus pallidus pars interna (GPi) is a highly effective therapy for movement disorders, yet its mechanism of action remains controversial. Inhibition of local neurons because of release of GABA from afferents to the GPi is a proposed mechanism in patients. Yet, high-frequency stimulation (HFS) produces prolonged membrane depolarization mediated by cholinergic neurotransmission in endopeduncular nucleus (EP, GPi equivalent in rodent) neurons. We applied HFS while recording neuronal firing from an adjacent electrode during microelectrode mapping of GPi in awake patients (both male and female) with Parkinson disease (PD) and dystonia. Aside from after-suppression and no change in neuronal firing, high-frequency microstimulation induced after-facilitation in 38% (26/69) of GPi neurons. In neurons displaying after-facilitation, 10 s HFS led to an immediate decrease of bursting in PD, but not dystonia patients. Moreover, the changes of bursting patterns in neurons with after-suppression or no change after HFS, were similar in both patient groups. To explore the mechanisms responsible, we applied HFS in EP brain slices from rats of either sex. As in humans, HFS in EP induced two subtypes of after-excitation: excitation or excitation with late inhibition. Pharmacological experiments determined that the excitation subtype, induced by lower charge density, was dependent on glutamatergic transmission. HFS with higher charge density induced excitation with late inhibition, which involved cholinergic modulation. Therefore HFS with different charge density may affect the local neurons through multiple synaptic mechanisms. The cholinergic system plays a role in mediating the after-facilitatory effects in GPi neurons, and because of their modulatory nature, may provide a basis for both the immediate and delayed effects of GPi-DBS. We propose a new model to explain the mechanisms of DBS in GPi.SIGNIFICANCE STATEMENT Deep-brain stimulation (DBS) in the globus pallidus pars interna (GPi) improves Parkinson disease (PD) and dystonia, yet its mechanisms in GPi remain controversial. Inhibition has been previously described and thought to indicate activation of GABAergic synaptic terminals, which dominate in GPi. Here we report that 10 s high-frequency microstimulation induced after-facilitation of neural firing in a substantial proportion of GPi neurons in humans. The neurons with after-facilitation, also immediately reduced their bursting activities after high-frequency stimulation in PD, but not dystonia patients. Based on these data and further animal experiments, a mechanistic hypothesis involving glutamatergic, GABAergic, and cholinergic synaptic transmission is proposed to explain both short- and longer-term therapeutic effects of DBS in GPi.
Collapse
|
13
|
Müller EJ, Robinson PA. Quantitative theory of deep brain stimulation of the subthalamic nucleus for the suppression of pathological rhythms in Parkinson's disease. PLoS Comput Biol 2018; 14:e1006217. [PMID: 29813060 PMCID: PMC5993558 DOI: 10.1371/journal.pcbi.1006217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/08/2018] [Accepted: 05/21/2018] [Indexed: 11/28/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is modeled to explore the mechanisms of this effective, but poorly understood, treatment for motor symptoms of drug-refractory Parkinson's disease and dystonia. First, a neural field model of the corticothalamic-basal ganglia (CTBG) system is developed that reproduces key clinical features of Parkinson's disease, including its characteristic 4-8 Hz and 13-30 Hz electrophysiological signatures. Deep brain stimulation of the STN is then modeled and shown to suppress the pathological 13-30 Hz (beta) activity for physiologically realistic and optimized stimulus parameters. This supports the idea that suppression of abnormally coherent activity in the CTBG system is a major factor in DBS therapy for Parkinson's disease, by permitting normal dynamics to resume. At high stimulus intensities, nonlinear effects in the target population mediate wave-wave interactions between resonant beta activity and the stimulus pulse train, leading to complex spectral structure that shows remarkable similarity to that seen in steady-state evoked potential experiments.
Collapse
Affiliation(s)
- Eli J. Müller
- School of Physics, The University of Sydney, Sydney, New South Wales, Australia
- Center for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter A. Robinson
- School of Physics, The University of Sydney, Sydney, New South Wales, Australia
- Center for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Amengual JL, Vernet M, Adam C, Valero-Cabré A. Local entrainment of oscillatory activity induced by direct brain stimulation in humans. Sci Rep 2017; 7:41908. [PMID: 28256510 PMCID: PMC5335652 DOI: 10.1038/srep41908] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/03/2017] [Indexed: 11/28/2022] Open
Abstract
In a quest for direct evidence of oscillation entrainment, we analyzed intracerebral electroencephalographic recordings obtained during intracranial electrical stimulation in a cohort of three medication-resistant epilepsy patients tested pre-surgically. Spectral analyses of non-epileptogenic cerebral sites stimulated directly with high frequency electrical bursts yielded episodic local enhancements of frequency-specific rhythmic activity, phase-locked to each individual pulse. These outcomes reveal an entrainment of physiological oscillatory activity within a frequency band dictated by the rhythm of the stimulation source. Our results support future uses of rhythmic stimulation to elucidate the causal contributions of synchrony to specific aspects of human cognition and to further develop the therapeutic manipulation of dysfunctional rhythmic activity subtending the symptoms of some neuropsychiatric conditions.
Collapse
Affiliation(s)
- Julià L Amengual
- CNRS UMR 7225, Institut du Cerveau et de la Moelle Epinière, Cerebral Dynamics, Plasticity and Rehabilitaion Group, Frontlab, Paris, France
| | - Marine Vernet
- CNRS UMR 7225, Institut du Cerveau et de la Moelle Epinière, Cerebral Dynamics, Plasticity and Rehabilitaion Group, Frontlab, Paris, France
| | - Claude Adam
- Epilepsy Unit, Dept. of Neurology, Pitié-Salpêtrière Hospital, APHP, Paris, France
| | - Antoni Valero-Cabré
- CNRS UMR 7225, Institut du Cerveau et de la Moelle Epinière, Cerebral Dynamics, Plasticity and Rehabilitaion Group, Frontlab, Paris, France.,Department of Anatomy and Neurobiology, Laboratory of Cerebral Dynamics, Boston University School of Medicine, Boston, MA, USA.,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
| |
Collapse
|
15
|
High frequency stimulation of afferent fibers generates asynchronous firing in the downstream neurons in hippocampus through partial block of axonal conduction. Brain Res 2017; 1661:67-78. [PMID: 28213155 DOI: 10.1016/j.brainres.2017.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/25/2017] [Accepted: 02/10/2017] [Indexed: 01/30/2023]
Abstract
Deep brain stimulation (DBS) is effective for treating neurological disorders in clinic. However, the therapeutic mechanisms of high-frequency stimulation (HFS) of DBS have not yet been elucidated. Previous studies have suggested that HFS-induced changes in axon conduction could have important contributions to the DBS effects and desiderate further studies. To investigate the effects of prolonged HFS of afferent axons on the firing of downstream neurons, HFS trains of 100 and 200Hz were applied on the Schaffer collaterals of the hippocampal CA1 region in anaesthetized rats. Single unit activity of putative pyramidal cells and interneurons in the downstream region was analyzed during the late periods of prolonged HFS when the axonal conduction was blocked. The results show that the firing rates of both pyramidal cells and interneurons increased rather than decreased during the period of axon block. However, the firing rates were far smaller than the stimulation frequency of HFS. In addition, the firing pattern of pyramidal cells changed from typical bursts during baseline recordings into regular single spikes during HFS periods. Furthermore, the HFS produced asynchronous firing in the downstream neurons in contrast to the synchronous firing induced by single pulses. Presumably, the HFS-induced block of axonal conduction was not complete. During the period of partial block, individual axons could recover intermittently and independently, and drive the downstream neurons to fire in an asynchronous pattern. This axonal mechanism of HFS provides a novel explanation for how DBS could replace an original pattern of neuronal activity by a HFS-modulated asynchronous firing in the target region thereby generating the therapeutic effects of DBS.
Collapse
|
16
|
Fang JY, Tolleson C. The role of deep brain stimulation in Parkinson's disease: an overview and update on new developments. Neuropsychiatr Dis Treat 2017; 13:723-732. [PMID: 28331322 PMCID: PMC5349504 DOI: 10.2147/ndt.s113998] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of neuronal dopamine production in the brain. Oral therapies primarily augment the dopaminergic pathway. As the disease progresses, more continuous delivery of therapy is commonly needed. Deep brain stimulation (DBS) has become an effective therapy option for several different neurologic and psychiatric conditions, including PD. It currently has US Food and Drug Administration approval for PD and essential tremor, as well as a humanitarian device exception for dystonia and obsessive-compulsive disorder. For PD treatment, it is currently approved specifically for those patients suffering from complications of pharmacotherapy, including motor fluctuations or dyskinesias, and a disease process of at least 4 years of duration. Studies have demonstrated superiority of DBS and medical management compared to medical management alone in selected PD patients. Optimal patient selection criteria, choice of target, and programming methods for PD and the other indications for DBS are important topics that continue to be explored and remain works in progress. In addition, new hardware options, such as different types of leads, and different software options have recently become available, increasing the potential for greater efficacy and/or reduced side effects. This review gives an overview of therapeutic management in PD, specifically highlighting DBS and some of the recent changes with surgical therapy.
Collapse
Affiliation(s)
- John Y Fang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher Tolleson
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Arbuthnott GW, Garcia-Munoz M. Are the Symptoms of Parkinsonism Cortical in Origin? Comput Struct Biotechnol J 2016; 15:21-25. [PMID: 28694933 PMCID: PMC5484763 DOI: 10.1016/j.csbj.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
We present three reasons to suspect that the major deleterious consequence of dopamine loss from the striatum is a cortical malfunction. We suggest that it is cortex, rather than striatum, that should be considered as the source of the debilitating symptoms of Parkinson's disease (PD) since:Cortical synapses onto striatal dendritic spines are lost in PD. All known treatments of the symptoms of PD disrupt beta oscillations. Oscillations that are also disrupted following antidromic activation of cortical neurons. The final output of basal ganglia directly modulates thalamic connections to layer I of frontal cortical areas, regions intimately associated with motor behaviour.
These three reasons combined with evidence that the current summary diagram of the basal ganglia involvement in PD is imprecise at best, suggest that a re-orientation of the treatment strategies towards cortical, rather than striatal malfunction, is overdue. Suggested experimental contributions support the proposal of a cortical participation in PD. DBS produces antidromic activation of motor cortex and desynchronizes beta oscillations. Loss of dopamine decreases dendritic spines in the striatal D2 projection neurons. Motor thalamus distributes terminals into frontal cortex layer I. Thalamocortical-layer I activity increases with locomotion.
Collapse
Affiliation(s)
- Gordon W Arbuthnott
- OIST Graduate University, Brain Mechanisms for Behaviour Unit, Okinawa, Japan
| | | |
Collapse
|
18
|
Modulation of Neuronal Activity in the Motor Thalamus during GPi-DBS in the MPTP Nonhuman Primate Model of Parkinson's Disease. Brain Stimul 2016; 10:126-138. [PMID: 27839724 DOI: 10.1016/j.brs.2016.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 10/05/2016] [Accepted: 10/08/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The motor thalamus is a key nodal point in the pallidothalamocortical "motor" circuit, which has been implicated in the pathogenesis of Parkinson's disease (PD) and other movement disorders. Although a critical structure in the motor circuit, the role of the motor thalamus in mediating the therapeutic effects of deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) is not fully understood. OBJECTIVE To characterize the changes in neuronal activity in the pallidal (ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)) and cerebellar (ventralis posterior lateralis pars oralis (VPLo)) receiving areas of the motor thalamus during therapeutic GPi DBS. METHODS Neuronal activity from the VA/VLo (n = 134) and VPLo (n = 129) was recorded from two non-human primates made parkinsonian using the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. For each isolated unit, one minute of data was recorded before, during and after DBS; a pulse width of 90 µs and a frequency of 135 Hz were used for DBS to replicate commonly used clinical settings. Stimulation amplitude was determined based on the parameters required to improve motor signs. Severity of motor signs was assessed using the UPDRS modified for nonhuman primates. Discharge rate, presence and characteristics of bursts, and oscillatory activity were computed and compared across conditions (pre-, during, and post-stimulation). RESULTS Neurons in both the pallidal and cerebellar receiving areas demonstrated significant changes in their pattern of activity during therapeutic GPi DBS. A majority of the neurons in each nucleus were inhibited during DBS (VA/VLo: 47% and VPLo: 49%), while a smaller subset was excited (VA/VLo: 21% and VPLo: 17%). Bursts changed in structure, becoming longer in duration and both intra-burst and inter-spike intervals and variability were increased in both subnuclei. High frequency oscillatory activity was significantly increased during stimulation with 33% of VA/VLo (likelihood ratio: p < 0.0001) and 34% of VPLo (p < 0.0001) neurons entrained to the stimulation pulse train. CONCLUSIONS Therapeutic GPi DBS produced a significant change in neuronal activity in both pallidal and cerebellar receiving areas of the motor thalamus. DBS suppressed activity in the majority of neurons, changed the structure of bursting activity and locked the neuronal response of one-third of cells to the stimulation pulse, leading to an increase in the power of gamma oscillations. These data support the hypothesis that stimulation activates output from the stimulated structure and that GPi DBS produces network-wide changes in neuronal activity that includes both the pallidal and cerebellar thalamo-cortical circuits.
Collapse
|
19
|
Electrophysiological interpretations of the clinical response to stimulation parameters of pallidal deep brain stimulation for cervical dystonia. Acta Neurochir (Wien) 2016; 158:2029-38. [PMID: 27562682 DOI: 10.1007/s00701-016-2942-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/17/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) at the posterolateral ventral portion of the globus pallidus internus (GPi) has been regarded as a good therapeutic modality. Because the theoretical principle behind the stimulation parameters is yet to be determined, this study aimed to interpret analyses of the stimulation parameters used in our department based on an electrophysiological review. METHODS Nineteen patients with medically refractory idiopathic cervical dystonia who underwent GPi DBS were enrolled. The baseline and follow-up parameters were analyzed according to their dependence on time after DBS. The pattern of changes in the stimulation parameters over time, the differences across the four active contacts, and the relationship between the stimulation parameters and clinical benefits were evaluated. RESULTS Mean age and disease duration were 50.9 years and 54.7 months, respectively. Mean follow-up duration was 22.6 months. The amplitude and frequency exhibited significant increasing temporal patterns, i.e., a mean amplitude and frequency of 3.1 V and 132.2 Hz at the initial setting and 4.0 V and 142.6 Hz at the last follow-up, respectively. The better clinical response group (clinical improvement rate of 65-100 %) used a narrower pulse width (mean value of 78.4 μs) than the worse clinical response group (clinical improvement rate of 5-60 %, mean of value of 88.6 μs). Active contact at the GPe was used more often in the worse clinical response group than in the better response group. CONCLUSIONS Based on electrophysiological considerations, these patterns of stimulation parameters could be interpreted. This interpretation was based on a theoretical understanding of the mechanisms of action of DBS, i.e., that the abnormal neural signal is substituted by an induced neural signal, which is generated by therapeutic DBS.
Collapse
|
20
|
Ross SE, Lehmann Levin E, Itoga CA, Schoen CB, Selmane R, Aldridge JW. Deep brain stimulation in the central nucleus of the amygdala decreases 'wanting' and 'liking' of food rewards. Eur J Neurosci 2016; 44:2431-2445. [PMID: 27422085 DOI: 10.1111/ejn.13342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 11/28/2022]
Abstract
We investigated the potential of deep brain stimulation (DBS) in the central nucleus of the amygdala (CeA) in rats to modulate functional reward mechanisms. The CeA is the major output of the amygdala with direct connections to the hypothalamus and gustatory brainstem, and indirect connections with the nucleus accumbens. Further, the CeA has been shown to be involved in learning, emotional integration, reward processing, and regulation of feeding. We hypothesized that DBS, which is used to treat movement disorders and other brain dysfunctions, might block reward motivation. In rats performing a lever-pressing task to obtain sugar pellet rewards, we stimulated the CeA and control structures, and compared stimulation parameters. During CeA stimulation, animals stopped working for rewards and rejected freely available rewards. Taste reactivity testing during DBS exposed aversive reactions to normally liked sucrose tastes and even more aversive taste reactions to normally disliked quinine tastes. Interestingly, given the opportunity, animals implanted in the CeA would self-stimulate with 500 ms trains of stimulation at the same frequency and current parameters as continuous stimulation that would stop reward acquisition. Neural recordings during DBS showed that CeA neurons were still active and uncovered inhibitory-excitatory patterns after each stimulus pulse indicating possible entrainment of the neural firing with DBS. In summary, DBS modulation of CeA may effectively usurp normal neural activity patterns to create an 'information lesion' that not only decreased motivational 'wanting' of food rewards, but also blocked 'liking' of rewards.
Collapse
Affiliation(s)
- Shani E Ross
- Biomedical Engineering Department, Ann Arbor, MI, USA
| | | | | | - Chelsea B Schoen
- Department of Psychology, 530 Church Street, Ann Arbor, MI, 48109-1043, USA
| | - Romeissa Selmane
- Department of Psychology, 530 Church Street, Ann Arbor, MI, 48109-1043, USA.,Department of Biology, University of Michigan, Ann Arbor, MI, USA
| | - J Wayne Aldridge
- Department of Neurosurgery, Ann Arbor, MI, USA. .,Department of Psychology, 530 Church Street, Ann Arbor, MI, 48109-1043, USA.
| |
Collapse
|
21
|
Burchiel KJ. Deep Brain Stimulation Targets, Technology, and Trials: Two Decades of Progress. Neurosurgery 2016; 63 Suppl 1:6-9. [PMID: 27399357 DOI: 10.1227/neu.0000000000001303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ABBREVIATIONS AD, Alzheimer diseaseDBS, Deep brain stimulationFDA, Food and Drug AdministrationMER, Microelectrode recording.
Collapse
Affiliation(s)
- Kim J Burchiel
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
22
|
Wang J, Nebeck S, Muralidharan A, Johnson MD, Vitek JL, Baker KB. Coordinated Reset Deep Brain Stimulation of Subthalamic Nucleus Produces Long-Lasting, Dose-Dependent Motor Improvements in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Non-Human Primate Model of Parkinsonism. Brain Stimul 2016; 9:609-17. [PMID: 27151601 DOI: 10.1016/j.brs.2016.03.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/25/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Novel deep brain stimulation (DBS) paradigms are being explored in an effort to further optimize therapeutic outcome for patients with Parkinson's disease (PD). One approach, termed 'Coordinated Reset' (CR) DBS, was developed to target pathological oscillatory network activity. with desynchronizing effects and associated therapeutic benefit hypothesized to endure beyond cessation of stimulus delivery. OBJECTIVE To characterize the acute and carry-over effects of low-intensity CR DBS versus traditional DBS (tDBS) in the region of the subthalamic nucleus (STN). METHODS A within-subject, block treatment design involving the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) non-human primate model of parkinsonism was used. Each treatment block consisted of five days of daily DBS delivery followed by a one week minimum post-treatment observation window. Motor behavior was quantified using a modified rating scale for both animals combined with an objective, upper-extremity reach task in one animal. RESULTS Both animals demonstrated significant motor improvements during acute tDBS; however, within-session and post-treatment carry-over was limited. Acute motor improvements were also observed in response to low-intensity CR DBS; however, both within- and between-session therapeutic carry-over enhanced progressively following each daily treatment. Moreover, in contrast to tDBS, five consecutive days of CR DBS treatment yielded carry-over benefits that persisted for up to two weeks without additional intervention. Notably, the magnitude and time-course of CR DBS' effects on each animal varied with daily dose-duration, pointing to possible interaction effects involving baseline parkinsonian severity. CONCLUSION Our results support the therapeutic promise of CR DBS for PD, including its potential to induce carryover while reducing both side effect risk and hardware power consumption.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shane Nebeck
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kenneth B Baker
- Department of Neuroscience, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA.
| |
Collapse
|
23
|
Hartmann CJ, Groiss SJ, Vesper J, Schnitzler A, Wojtecki L. Brain stimulation in Huntington's disease. Neurodegener Dis Manag 2016; 6:223-36. [DOI: 10.2217/nmt-2016-0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder which is associated with severe disturbances of motor function, especially choreatic movements, cognitive decline and psychiatric symptoms. Various brain stimulation methods have been used to study brain function in patients with HD. Moreover, brain stimulation has evolved as an alternative or additive treatment option, besides current symptomatic medical treatment. This article summarizes the results of brain stimulation to better understand the characteristics of cortical excitability and plasticity in HD and gives a perspective on the therapeutic role for noninvasive and invasive neuromodulatory brain stimulation methods.
Collapse
Affiliation(s)
- Christian Johannes Hartmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Institute of Clinical Neuroscience & Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Stefan Jun Groiss
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Institute of Clinical Neuroscience & Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Jan Vesper
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Institute of Clinical Neuroscience & Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Lars Wojtecki
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Institute of Clinical Neuroscience & Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|
24
|
Madrazo I, Magallón E, Zamorano C, Jiménez F, Ysunza A, Grijalva I, Franco-Bourland R, Guízar-Sahagún G. Immediate recovery of neurological function in response to deep brain stimulation of the globus pallidus internus in a patient with idiopathic camptocormia. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2016. [DOI: 10.1016/j.hgmx.2015.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Dupré DA, Tomycz N, Oh MY, Whiting D. Deep brain stimulation for obesity: past, present, and future targets. Neurosurg Focus 2016; 38:E7. [PMID: 26030707 DOI: 10.3171/2015.3.focus1542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The authors review the history of deep brain stimulation (DBS) in patients for treating obesity, describe current DBS targets in the brain, and discuss potential DBS targets and nontraditional stimulation parameters that may improve the effectiveness of DBS for ameliorating obesity. Deep brain stimulation for treating obesity has been performed both in animals and in humans with intriguing preliminary results. The brain is an attractive target for addressing obesity because modulating brain activity may permit influencing both sides of the energy equation--caloric intake and energy expenditure.
Collapse
Affiliation(s)
- Derrick A Dupré
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Nestor Tomycz
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Michael Y Oh
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Donald Whiting
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Bailey J, Taylor K. Non-human primates in neuroscience research: The case against its scientific necessity. Altern Lab Anim 2016; 44:43-69. [PMID: 27031602 DOI: 10.1177/026119291604400101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Public opposition to non-human primate (NHP) experiments is significant, yet those who defend them cite minimal harm to NHPs and substantial human benefit. Here we review these claims of benefit, specifically in neuroscience, and show that: a) there is a default assumption of their human relevance and benefit, rather than robust evidence; b) their human relevance and essential contribution and necessity are wholly overstated; c) the contribution and capacity of non-animal investigative methods are greatly understated; and d) confounding issues, such as species differences and the effects of stress and anaesthesia, are usually overlooked. This is the case in NHP research generally, but here we specifically focus on the development and interpretation of functional magnetic resonance imaging (fMRI), deep brain stimulation (DBS), the understanding of neural oscillations and memory, and investigation of the neural control of movement and of vision/binocular rivalry. The increasing power of human-specific methods, including advances in fMRI and invasive techniques such as electrocorticography and single-unit recordings, is discussed. These methods serve to render NHP approaches redundant. We conclude that the defence of NHP use is groundless, and that neuroscience would be more relevant and successful for humans, if it were conducted with a direct human focus. We have confidence in opposing NHP neuroscience, both on scientific as well as on ethical grounds.
Collapse
|
27
|
Yu Y, Feng Z, Cao J, Guo Z, Wang Z, Hu N, Wei X. Modulation of local field potentials by high-frequency stimulation of afferent axons in the hippocampal CA1 region. J Integr Neurosci 2016; 15:1-17. [DOI: 10.1142/s0219635216500011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Wilson D, Moehlis J. Clustered Desynchronization from High-Frequency Deep Brain Stimulation. PLoS Comput Biol 2015; 11:e1004673. [PMID: 26713619 PMCID: PMC4694718 DOI: 10.1371/journal.pcbi.1004673] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/25/2015] [Indexed: 11/18/2022] Open
Abstract
While high-frequency deep brain stimulation is a well established treatment for Parkinson’s disease, its underlying mechanisms remain elusive. Here, we show that two competing hypotheses, desynchronization and entrainment in a population of model neurons, may not be mutually exclusive. We find that in a noisy group of phase oscillators, high frequency perturbations can separate the population into multiple clusters, each with a nearly identical proportion of the overall population. This phenomenon can be understood by studying maps of the underlying deterministic system and is guaranteed to be observed for small noise strengths. When we apply this framework to populations of Type I and Type II neurons, we observe clustered desynchronization at many pulsing frequencies. While high-frequency deep brain stimulation (DBS) is a decades old treatment for alleviating the motor symptoms Parkinsons disease, the way in which it alleviates these symptoms is not well understood. Making matters more complicated, some experimental results suggest that DBS works by making neurons fire more regularly, while other seemingly contradictory results suggest that DBS works by making neural firing patterns less synchronized. Here we present theoretical and numerical results with the potential to merge these competing hypotheses. For predictable DBS pulsing rates, in the presence of a small amount of noise, a population of neurons will split into distinct clusters, each containing a nearly identical proportion of the overall population. When we observe this clustering phenomenon, on a short time scale, neurons are entrained to high-frequency DBS pulsing, but on a long time scale, they desynchronize predictably.
Collapse
Affiliation(s)
- Dan Wilson
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, Calfornia, United States of America
- * E-mail:
| | - Jeff Moehlis
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, Calfornia, United States of America
| |
Collapse
|
29
|
Bailey J. Reply on Monkey-based Research on Human Disease: The Implications of Genetic Differences. Altern Lab Anim 2015; 43:206-7. [PMID: 26359522 DOI: 10.1177/026119291504300310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
McCairn KW, Iriki A, Isoda M. Common therapeutic mechanisms of pallidal deep brain stimulation for hypo- and hyperkinetic movement disorders. J Neurophysiol 2015; 114:2090-104. [PMID: 26180116 PMCID: PMC4595610 DOI: 10.1152/jn.00223.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
Abnormalities in cortico-basal ganglia (CBG) networks can cause a variety of movement disorders ranging from hypokinetic disorders, such as Parkinson's disease (PD), to hyperkinetic conditions, such as Tourette syndrome (TS). Each condition is characterized by distinct patterns of abnormal neural discharge (dysrhythmia) at both the local single-neuron level and the global network level. Despite divergent etiologies, behavioral phenotypes, and neurophysiological profiles, high-frequency deep brain stimulation (HF-DBS) in the basal ganglia has been shown to be effective for both hypo- and hyperkinetic disorders. The aim of this review is to compare and contrast the electrophysiological hallmarks of PD and TS phenotypes in nonhuman primates and discuss why the same treatment (HF-DBS targeted to the globus pallidus internus, GPi-DBS) is capable of ameliorating both symptom profiles. Recent studies have shown that therapeutic GPi-DBS entrains the spiking of neurons located in the vicinity of the stimulating electrode, resulting in strong stimulus-locked modulations in firing probability with minimal changes in the population-scale firing rate. This stimulus effect normalizes/suppresses the pathological firing patterns and dysrhythmia that underlie specific phenotypes in both the PD and TS models. We propose that the elimination of pathological states via stimulus-driven entrainment and suppression, while maintaining thalamocortical network excitability within a normal physiological range, provides a common therapeutic mechanism through which HF-DBS permits information transfer for purposive motor behavior through the CBG while ameliorating conditions with widely different symptom profiles.
Collapse
Affiliation(s)
- Kevin W McCairn
- Systems Neuroscience and Movement Disorders Laboratory, Korea Brain Research Institute, Daegu, Republic of Korea;
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan; and
| | - Masaki Isoda
- Department of Physiology, Kansai Medical University School of Medicine, Hirakata, Osaka, Japan
| |
Collapse
|
31
|
Tronnier VM, Domingo A, Moll CK, Rasche D, Mohr C, Rosales R, Capetian P, Jamora RD, Lee LV, Münchau A, Diesta CC, Tadic V, Klein C, Brüggemann N, Moser A. Biochemical mechanisms of pallidal deep brain stimulation in X-linked dystonia parkinsonism. Parkinsonism Relat Disord 2015; 21:954-9. [PMID: 26093890 DOI: 10.1016/j.parkreldis.2015.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/17/2015] [Accepted: 06/08/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Invasive techniques such as in-vivo microdialysis provide the opportunity to directly assess neurotransmitter levels in subcortical brain areas. METHODS Five male Filipino patients (mean age 42.4, range 34-52 years) with severe X-linked dystonia-parkinsonism underwent bilateral implantation of deep brain leads into the internal part of the globus pallidus (GPi). Intraoperative microdialysis and measurement of gamma aminobutyric acid and glutamate was performed in the GPi in three patients and globus pallidus externus (GPe) in two patients at baseline for 25/30 min and during 25/30 min of high-frequency GPi stimulation. RESULTS While the gamma-aminobutyric acid concentration increased in the GPi during high frequency stimulation (231 ± 102% in comparison to baseline values), a decrease was observed in the GPe (22 ± 10%). Extracellular glutamate levels largely remained unchanged. CONCLUSIONS Pallidal microdialysis is a promising intraoperative monitoring tool to better understand pathophysiological implications in movement disorders and therapeutic mechanisms of high frequency stimulation. The increased inhibitory tone of GPi neurons and the subsequent thalamic inhibition could be one of the key mechanisms of GPi deep brain stimulation in dystonia. Such a mechanism may explain how competing (dystonic) movements can be suppressed in GPi/thalamic circuits in favour of desired motor programs.
Collapse
Affiliation(s)
- V M Tronnier
- Department of Neurosurgery, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - A Domingo
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany
| | - C K Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - D Rasche
- Department of Neurosurgery, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - C Mohr
- Department of Neuroradiology, University Hospital Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - R Rosales
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines; Department of Neurology and Psychiatry, Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - P Capetian
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany; Department of Neurology, University Hospital Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - R D Jamora
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines; Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - L V Lee
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines
| | - A Münchau
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany
| | - C C Diesta
- XDP Study Group, Philippine Children's Medical Center, Quezon City, Philippines
| | - V Tadic
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany
| | - C Klein
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany
| | - N Brüggemann
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, D-23562 Lübeck, Germany; Department of Neurology, University Hospital Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - A Moser
- Department of Neurology, University Hospital Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| |
Collapse
|
32
|
Gong CSA, Lai HY, Huang SH, Lo YC, Lee N, Chen PY, Tu PH, Yang CY, Lin JCC, Chen YY. A programmable high-voltage compliance neural stimulator for deep brain stimulation in vivo. SENSORS 2015; 15:12700-19. [PMID: 26029954 PMCID: PMC4507613 DOI: 10.3390/s150612700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 12/03/2022]
Abstract
Deep brain stimulation (DBS) is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design.
Collapse
Affiliation(s)
- Cihun-Siyong Alex Gong
- Department of Electrical Engineering, Chang Gung University, No. 259 Wen-Hwa 1st Rd., Guishan Township, Taoyuan County 333, Taiwan.
- Portable Energy System Group, Green Technology Research Center, College of Engineering, Chang Gung University, No. 259 Wen-Hwa 1st Rd., Guishan Township, Taoyuan County 333, Taiwan.
| | - Hsin-Yi Lai
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, Zhouyiqing Building, Yuquan Campus, Zhejiang University, Hangzhou 310027, China.
- School of Medicine, Chang Gung University, No. 259 Wen-Hwa 1st Rd., Guishan Township, Taoyuan County 333, Taiwan.
| | - Sy-Han Huang
- Department of Biomedical Engineering, National Yang Ming University, No.155, Sec.2, Linong St., Taipei 112, Taiwan.
| | - Yu-Chun Lo
- Center for Optoelectronic Medicine, National Taiwan University College of Medicine, No.1 Jen Ai Rd. Sec. 1. Taipei 100, Taiwan.
| | - Nicole Lee
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive #0412, La Jolla, CA 92093, USA.
| | - Pin-Yuan Chen
- Department of Neurosurgery, Chang Gung University and Memorial Hospital at Linkou, No.5, Fuxing St., Guishan Township, Taoyuan County 333, Taiwan.
| | - Po-Hsun Tu
- Department of Neurosurgery, Chang Gung University and Memorial Hospital at Linkou, No.5, Fuxing St., Guishan Township, Taoyuan County 333, Taiwan.
| | - Chia-Yen Yang
- Department of Biomedical Engineering, Ming-Chuan University, 5 De Ming Rd., Guishan Township, Taoyuan County 333, Taiwan.
| | - James Chang-Chieh Lin
- Department of Electrical Engineering, Chang Gung University, No. 259 Wen-Hwa 1st Rd., Guishan Township, Taoyuan County 333, Taiwan.
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, No.155, Sec.2, Linong St., Taipei 112, Taiwan.
| |
Collapse
|
33
|
Zimnik AJ, Nora GJ, Desmurget M, Turner RS. Movement-related discharge in the macaque globus pallidus during high-frequency stimulation of the subthalamic nucleus. J Neurosci 2015; 35:3978-89. [PMID: 25740526 PMCID: PMC4348192 DOI: 10.1523/jneurosci.4899-14.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/21/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) has largely replaced ablative therapies for Parkinson's disease. Because of the similar efficacies of the two treatments, it has been proposed that DBS acts by creating an "informational lesion," whereby pathologic neuronal firing patterns are replaced by low-entropy, stimulus-entrained firing patterns. The informational lesion hypothesis, in its current form, states that DBS blocks the transmission of all information from the basal ganglia, including both pathologic firing patterns and normal, task-related modulations in activity. We tested this prediction in two healthy rhesus macaques by recording single-unit spiking activity from the globus pallidus (232 neurons) while the animals completed choice reaction time reaching movements with and without STN-DBS. Despite strong effects of DBS on the activity of most pallidal cells, reach-related modulations in firing rate were equally prevalent in the DBS-on and DBS-off states. This remained true even when the analysis was restricted to cells affected significantly by DBS. In addition, the overall form and timing of perimovement modulations in firing rate were preserved between DBS-on and DBS-off states in the majority of neurons (66%). Active movement and DBS had largely additive effects on the firing rate of most neurons, indicating an orthogonal relationship in which both inputs contribute independently to the overall firing rate of pallidal neurons. These findings suggest that STN-DBS does not act as an indiscriminate informational lesion but rather as a filter that permits task-related modulations in activity while, presumably, eliminating the pathological firing associated with parkinsonism.
Collapse
Affiliation(s)
- Andrew J Zimnik
- Department of Neurobiology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and
| | - Gerald J Nora
- Department of Neurobiology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and
| | - Michel Desmurget
- Centre for Cognitive Neuroscience, UMR5229, CNRS, 67 Boulevard Pinel 69500 Bron, France
| | - Robert S Turner
- Department of Neurobiology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and
| |
Collapse
|
34
|
Cook RJ, Jones L, Fracchia G, Anderson N, Miu J, Meagher LJ, Silburn PA, Silberstein P. Globus pallidus internus deep brain stimulation as rescue therapy for refractory dyskinesias following effective subthalamic nucleus stimulation. Stereotact Funct Neurosurg 2015; 93:25-9. [PMID: 25613902 DOI: 10.1159/000365223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/13/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) at the subthalamic nucleus (STN) or globus pallidus internus (GPi) can effectively treat the motor symptoms of Parkinson's disease, but dual implantation is rare. We report the first cases of additional GPi stimulation as rescue therapy for disabling dyskinesias following successful STN stimulation. METHODS Two patients, initially treated with bilateral STN DBS, underwent subsequent bilateral GPi DBS after the development of refractory dyskinesias within 1 and 6 years of STN surgery. Patients were evaluated with the Unified Parkinson's Disease Rating Scale (UPDRS) before and after surgeries for STN and GPi DBS. RESULTS GPi DBS effectively suppressed dyskinesias in these patients and improved their quality of life, as demonstrated by their videos and UPDRS scores. CONCLUSIONS Additional bilateral GPi DBS may be considered in the rare instance of patients who develop refractory dyskinesias early or late after bilateral STN DBS.
Collapse
Affiliation(s)
- Raymond J Cook
- Sydney DBS, North Shore Private Hospital, St. Leonards, N.S.W., Australia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lobb CJ, Jaeger D. Bursting activity of substantia nigra pars reticulata neurons in mouse parkinsonism in awake and anesthetized states. Neurobiol Dis 2015; 75:177-85. [PMID: 25576395 DOI: 10.1016/j.nbd.2014.12.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/20/2014] [Accepted: 12/24/2014] [Indexed: 01/24/2023] Open
Abstract
Electrophysiological changes in basal ganglia neurons are hypothesized to underlie motor dysfunction in Parkinson's disease (PD). Previous results in head-restrained MPTP-treated non-human primates have suggested that increased bursting within the basal ganglia and related thalamic and cortical areas may be a hallmark of pathophysiological activity. In this study, we investigated whether there is increased bursting in substantia nigra pars reticulata (SNpr) output neurons in anesthetized and awake, head-restrained unilaterally lesioned 6-OHDA mice when compared to control mice. Confirming previous studies, we show that there are significant changes in the firing rate and pattern in SNpr neuron activity under urethane anesthesia. The regular firing pattern of control urethane-anesthetized SNpr neurons was not present in the 6-OHDA-lesioned group, as the latter neurons instead became phase locked with cortical slow wave activity (SWA). Next, we examined whether such robust electrophysiological changes between groups carried over to the awake state. SNpr neurons from both groups fired at much higher frequencies in the awake state than in the anesthetized state and surprisingly showed only modest changes between awake control and 6-OHDA groups. While there were no differences in firing rate between groups in the awake state, an increase in the coefficient of variation (CV) was observed in the 6-OHDA group. Contrary to the bursting hypothesis, this increased CV was not due to changes in bursting but was instead due to a mild increase in pausing. Together, these results suggest that differences in SNpr activity between control and 6-OHDA lesioned mice may be strongly influenced by changes in network activity during different arousal and behavioral states.
Collapse
Affiliation(s)
- C J Lobb
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - D Jaeger
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
36
|
McCracken CB, Kiss ZHT. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation. PLoS One 2014; 9:e102576. [PMID: 25029468 PMCID: PMC4100931 DOI: 10.1371/journal.pone.0102576] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/20/2014] [Indexed: 11/18/2022] Open
Abstract
High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS), is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP), the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD). We performed simultaneous multi-site local field potential (LFP) recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective), low-frequency (LF, 15 Hz; ineffective) and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR), ventroanterior thalamus (VA), primary motor cortex (M1), and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic effects of GPi DBS for conditions such as PD and dystonia.
Collapse
Affiliation(s)
- Clinton B. McCracken
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Zelma H. T. Kiss
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
37
|
Ellens DJ, Leventhal DK. Review: electrophysiology of basal ganglia and cortex in models of Parkinson disease. JOURNAL OF PARKINSONS DISEASE 2014; 3:241-54. [PMID: 23948994 DOI: 10.3233/jpd-130204] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Incomplete understanding of the systems-level pathophysiology of Parkinson Disease (PD) remains a significant barrier to improving its treatment. Substantial progress has been made, however, due to the availability of neurotoxins that selectively target monoaminergic (in particular, dopaminergic) neurons. This review discusses the in vivo electrophysiology of basal ganglia (BG), thalamic, and cortical regions after dopamine-depleting lesions. These include firing rate changes, neuronal burst-firing, neuronal oscillations, and neuronal synchrony that result from a combination of local microanatomic changes and network-level interactions. While much is known of the clinical and electrophysiological phenomenology of dopamine loss, a critical gap in our conception of PD pathophysiology is the link between them. We discuss potential mechanisms by which these systems-level electrophysiological changes may emerge, as well as how they may relate to clinical parkinsonism. Proposals for an updated understanding of BG function are reviewed, with an emphasis on how emerging frameworks will guide future research into the pathophysiology and treatment of PD.
Collapse
Affiliation(s)
- Damien J Ellens
- Department of Neurology, University of Michigan Medical School, MI, USA
| | | |
Collapse
|
38
|
Abstract
Despite remarkable advances in Parkinson's disease (PD) research, the pathophysiological mechanisms causing motor dysfunction remain unclear, possibly delaying the advent of new and improved therapies. Several such mechanisms have been proposed including changes in neuronal firing rates, the emergence of pathological oscillatory activity, increased neural synchronization, and abnormal bursting. This review focuses specifically on the role of abnormal bursting of basal ganglia neurons in PD, where a burst is a physiologically-relevant, transient increase in neuronal firing over some reference period or activity. After reviewing current methods for how bursts are detected and what the functional role of bursts may be under normal conditions, existing studies are reviewed that suggest that bursting is abnormally increased in PD and that this increases with worsening disease. Finally, the influence of therapeutic approaches for PD such as dopamine-replacement therapy with levodopa or dopamine agonists, lesions, or deep brain stimulation on bursting is discussed. Although there is insufficient evidence to conclude that increased bursting causes motor dysfunction in PD, current evidence suggests that targeted investigations into the role of bursting in PD may be warranted.
Collapse
Affiliation(s)
- Cj Lobb
- Dept. of Biology, Emory University, Atlanta GA 30322
| |
Collapse
|
39
|
Dorval AD, Grill WM. Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA rat model of parkinsonism. J Neurophysiol 2014; 111:1949-59. [PMID: 24554786 DOI: 10.1152/jn.00713.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pathophysiological activity of basal ganglia neurons accompanies the motor symptoms of Parkinson's disease. High-frequency (>90 Hz) deep brain stimulation (DBS) reduces parkinsonian symptoms, but the mechanisms remain unclear. We hypothesize that parkinsonism-associated electrophysiological changes constitute an increase in neuronal firing pattern disorder and a concomitant decrease in information transmission through the ventral basal ganglia, and that effective DBS alleviates symptoms by decreasing neuronal disorder while simultaneously increasing information transfer through the same regions. We tested these hypotheses in the freely behaving, 6-hydroxydopamine-lesioned rat model of hemiparkinsonism. Following the onset of parkinsonism, mean neuronal firing rates were unchanged, despite a significant increase in firing pattern disorder (i.e., neuronal entropy), in both the globus pallidus and substantia nigra pars reticulata. This increase in neuronal entropy was reversed by symptom-alleviating DBS. Whereas increases in signal entropy are most commonly indicative of similar increases in information transmission, directed information through both regions was substantially reduced (>70%) following the onset of parkinsonism. Again, this decrease in information transmission was partially reversed by DBS. Together, these results suggest that the parkinsonian basal ganglia are rife with entropic activity and incapable of functional information transmission. Furthermore, they indicate that symptom-alleviating DBS works by lowering the entropic noise floor, enabling more information-rich signal propagation. In this view, the symptoms of parkinsonism may be more a default mode, normally overridden by healthy basal ganglia information. When that information is abolished by parkinsonian pathophysiology, hypokinetic symptoms emerge.
Collapse
Affiliation(s)
- Alan D Dorval
- Department of Bioengineering and Brain Institute, University of Utah, Salt Lake City, Utah;
| | - Warren M Grill
- Departments of Biomedical Engineering and Electrical and Computer Engineering, Duke University, Durham, North Carolina; and Departments of Neurobiology and Surgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
40
|
Abstract
This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role--Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function.
Collapse
|
41
|
Karas PJ, Mikell CB, Christian E, Liker MA, Sheth SA. Deep brain stimulation: a mechanistic and clinical update. Neurosurg Focus 2013; 35:E1. [DOI: 10.3171/2013.9.focus13383] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Deep brain stimulation (DBS), the practice of placing electrodes deep into the brain to stimulate subcortical structures with electrical current, has been increasing as a neurosurgical procedure over the past 15 years. Originally a treatment for essential tremor, DBS is now used and under investigation across a wide spectrum of neurological and psychiatric disorders. In addition to applying electrical stimulation for clinical symptomatic relief, the electrodes implanted can also be used to record local electrical activity in the brain, making DBS a useful research tool. Human single-neuron recordings and local field potentials are now often recorded intraoperatively as electrodes are implanted. Thus, the increasing scope of DBS clinical applications is being matched by an increase in investigational use, leading to a rapidly evolving understanding of cortical and subcortical neurocircuitry. In this review, the authors discuss recent innovations in the clinical use of DBS, both in approved indications as well as in indications under investigation. Deep brain stimulation as an investigational tool is also reviewed, paying special attention to evolving models of basal ganglia and cortical function in health and disease. Finally, the authors look to the future across several indications, highlighting gaps in knowledge and possible future directions of DBS treatment.
Collapse
Affiliation(s)
- Patrick J. Karas
- 1Department of Neurosurgery, The Neurological Institute, Columbia University Medical Center, New York, New York; and
| | - Charles B. Mikell
- 1Department of Neurosurgery, The Neurological Institute, Columbia University Medical Center, New York, New York; and
| | - Eisha Christian
- 2Department of Neurosurgery, Keck Hospital of the University of Southern California, Los Angeles, California
| | - Mark A. Liker
- 2Department of Neurosurgery, Keck Hospital of the University of Southern California, Los Angeles, California
| | - Sameer A. Sheth
- 1Department of Neurosurgery, The Neurological Institute, Columbia University Medical Center, New York, New York; and
| |
Collapse
|
42
|
Rosenbaum R, Zimnik A, Zheng F, Turner RS, Alzheimer C, Doiron B, Rubin JE. Axonal and synaptic failure suppress the transfer of firing rate oscillations, synchrony and information during high frequency deep brain stimulation. Neurobiol Dis 2013; 62:86-99. [PMID: 24051279 DOI: 10.1016/j.nbd.2013.09.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/01/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022] Open
Abstract
High frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used treatment for Parkinson's disease, but its effects on neural activity in basal ganglia circuits are not fully understood. DBS increases the excitation of STN efferents yet decouples STN spiking patterns from the spiking patterns of STN synaptic targets. We propose that this apparent paradox is resolved by recent studies showing an increased rate of axonal and synaptic failures in STN projections during DBS. To investigate this hypothesis, we combine in vitro and in vivo recordings to derive a computational model of axonal and synaptic failure during DBS. Our model shows that these failures induce a short term depression that suppresses the synaptic transfer of firing rate oscillations, synchrony and rate-coded information from STN to its synaptic targets. In particular, our computational model reproduces the widely reported suppression of parkinsonian β oscillations and synchrony during DBS. Our results support the idea that short term depression is a therapeutic mechanism of STN DBS that works as a functional lesion by decoupling the somatic spiking patterns of STN neurons from spiking activity in basal ganglia output nuclei.
Collapse
Affiliation(s)
- Robert Rosenbaum
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
| | - Andrew Zimnik
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Robert S Turner
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Brent Doiron
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Agnesi F, Connolly AT, Baker KB, Vitek JL, Johnson MD. Deep brain stimulation imposes complex informational lesions. PLoS One 2013; 8:e74462. [PMID: 23991221 PMCID: PMC3753277 DOI: 10.1371/journal.pone.0074462] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/01/2013] [Indexed: 12/21/2022] Open
Abstract
Deep brain stimulation (DBS) therapy has become an essential tool for treating a range of brain disorders. In the resting state, DBS is known to regularize spike activity in and downstream of the stimulated brain target, which in turn has been hypothesized to create informational lesions. Here, we specifically test this hypothesis using repetitive joint articulations in two non-human Primates while recording single-unit activity in the sensorimotor globus pallidus and motor thalamus before, during, and after DBS in the globus pallidus (GP) GP-DBS resulted in: (1) stimulus-entrained firing patterns in globus pallidus, (2) a monophasic stimulus-entrained firing pattern in motor thalamus, and (3) a complete or partial loss of responsiveness to joint position, velocity, or acceleration in globus pallidus (75%, 12/16 cells) and in the pallidal receiving area of motor thalamus (ventralis lateralis pars oralis, VLo) (38%, 21/55 cells). Despite loss of kinematic tuning, cells in the globus pallidus (63%, 10/16 cells) and VLo (84%, 46/55 cells) still responded to one or more aspects of joint movement during GP-DBS. Further, modulated kinematic tuning did not always necessitate modulation in firing patterns (2/12 cells in globus pallidus; 13/23 cells in VLo), and regularized firing patterns did not always correspond to altered responses to joint articulation (3/4 cells in globus pallidus, 11/33 cells in VLo). In this context, DBS therapy appears to function as an amalgam of network modulating and network lesioning therapies.
Collapse
Affiliation(s)
- Filippo Agnesi
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Allison T. Connolly
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kenneth B. Baker
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Matthew D. Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|