1
|
Guan WX, Lan Z, Wang QC, Wa HR, Muren H, Bai LL, Men SR, Liu GQ, Gao JX, Bai CX. Effects of Prolonged Cold Stress on Vascular Function in Guinea Pigs With Atherosclerosis. J Cardiovasc Pharmacol 2025; 85:63-74. [PMID: 39591604 DOI: 10.1097/fjc.0000000000001645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/10/2024] [Indexed: 11/28/2024]
Abstract
RESEARCH OBJECTIVE This study explored the effects of long-term cold stress (CS) on aortic vascular function in guinea pigs. RESEARCH METHODS Hartley guinea pigs (n = 32) were divided into the following groups: atherosclerosis (AS), CS, and menthol-stimulated (M), and control (C). On days 1, 15, 30, 45, and 60, guinea pigs in the AS, CS, and M groups were intraperitoneally injected with bovine serum albumin. The C group was provided with maintenance feed and room temperature water. The AS group was provided with a high-fat diet and room temperature water. The CS group was maintained in a refrigerator at 4°C, while providing a high-fat diet and iced water. The M group was administered menthol solution, and provided with a high-fat diet and room temperature water. The modeling period lasted for 120 days. On day 121, abdominal aortic sera and aortic samples were obtained after intraperitoneal injection of sodium pentobarbital. Blood rheology tests were conducted to assess blood adhesion, biochemical tests to assess lipid levels, and enzyme-linked immunosorbent assays to detect serum nuclear factor-κB, tumor necrosis factor-α, and interleukin-1β, and endothelial nitric oxide synthase, nitric oxide, and endothelin-1 (ET-1) in aortic tissue. Hematoxylin and eosin and oil red O staining were used to examine pathologic changes in the aorta, Western blotting to detect transient receptor potential melastatin 8 and protein kinase G protein expression, quantitative polymerase chain reaction was used to measure VCAM-1 mRNA expression level. RESEARCH FINDINGS Prolonged exposure to CS exacerbated lipid-metabolism disorders in guinea pigs fed a high-fat diet, increased aortic vascular cell adhesion, and exacerbated vascular inflammation, leading to endothelial injury, ultimately worsening pathologic changes associated with aortic atherosclerosis.
Collapse
Affiliation(s)
| | - Zhuo Lan
- Institute of Chinese and Mongolian Medicine, Inner Mongolia Autonomous Region, Hohhot, China
| | - Qing-Chun Wang
- Institute of Chinese and Mongolian Medicine, Inner Mongolia Autonomous Region, Hohhot, China
| | - Hao Ri Wa
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Huhe Muren
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Li-Li Bai
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Si Ri Men
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Guo-Qing Liu
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Jing-Xian Gao
- Inner Mongolia Medical University, Hohhot, China ; and
| | - Chang-Xi Bai
- Inner Mongolia Medical University, Hohhot, China ; and
| |
Collapse
|
2
|
Arcas JM, Oudaha K, González A, Fernández-Trillo J, Peralta FA, Castro-Marsal J, Poyraz S, Taberner F, Sala S, de la Peña E, Gomis A, Viana F. The ion channel TRPM8 is a direct target of the immunosuppressant rapamycin in primary sensory neurons. Br J Pharmacol 2024; 181:3192-3214. [PMID: 38741464 DOI: 10.1111/bph.16402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The mechanistic target of rapamycin (mTOR) signalling pathway is a key regulator of cell growth and metabolism. Its deregulation is implicated in several diseases. The macrolide rapamycin, a specific inhibitor of mTOR, has immunosuppressive, anti-inflammatory and antiproliferative properties. Recently, we identified tacrolimus, another macrolide immunosuppressant, as a novel activator of TRPM8 ion channels, involved in cold temperature sensing, thermoregulation, tearing and cold pain. We hypothesized that rapamycin may also have agonist activity on TRPM8 channels. EXPERIMENTAL APPROACH Using calcium imaging and electrophysiology in transfected HEK293 cells and wildtype or Trpm8 KO mouse DRG neurons, we characterized rapamycin's effects on TRPM8 channels. We also examined the effects of rapamycin on tearing in mice. KEY RESULTS Micromolar concentrations of rapamycin activated rat and mouse TRPM8 channels directly and potentiated cold-evoked responses, effects also observed in human TRPM8 channels. In cultured mouse DRG neurons, rapamycin increased intracellular calcium levels almost exclusively in cold-sensitive neurons. Responses were markedly decreased in Trpm8 KO mice or by TRPM8 channel antagonists. Cutaneous cold thermoreceptor endings were also activated by rapamycin. Topical application of rapamycin to the eye surface evokes tearing in mice by a TRPM8-dependent mechanism. CONCLUSION AND IMPLICATIONS These results identify TRPM8 cationic channels in sensory neurons as novel molecular targets of the immunosuppressant rapamycin. These findings may help explain some of its therapeutic effects after topical application to the skin and the eye surface. Moreover, rapamycin could be used as an experimental tool in the clinic to explore cold thermoreceptors.
Collapse
Affiliation(s)
- José Miguel Arcas
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Khalid Oudaha
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Alejandro González
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Jorge Fernández-Trillo
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | | | - Júlia Castro-Marsal
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Seyma Poyraz
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Francisco Taberner
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Salvador Sala
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Elvira de la Peña
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Ana Gomis
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Félix Viana
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| |
Collapse
|
3
|
Vydra Bousova K, Zouharova M, Jiraskova K, Vetyskova V. Interaction of Calmodulin with TRPM: An Initiator of Channel Modulation. Int J Mol Sci 2023; 24:15162. [PMID: 37894842 PMCID: PMC10607381 DOI: 10.3390/ijms242015162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Transient receptor potential melastatin (TRPM) channels, a subfamily of the TRP superfamily, constitute a diverse group of ion channels involved in mediating crucial cellular processes like calcium homeostasis. These channels exhibit complex regulation, and one of the key regulatory mechanisms involves their interaction with calmodulin (CaM), a cytosol ubiquitous calcium-binding protein. The association between TRPM channels and CaM relies on the presence of specific CaM-binding domains in the channel structure. Upon CaM binding, the channel undergoes direct and/or allosteric structural changes and triggers down- or up-stream signaling pathways. According to current knowledge, ion channel members TRPM2, TRPM3, TRPM4, and TRPM6 are directly modulated by CaM, resulting in their activation or inhibition. This review specifically focuses on the interplay between TRPM channels and CaM and summarizes the current known effects of CaM interactions and modulations on TRPM channels in cellular physiology.
Collapse
|
4
|
Thiel G, Rössler OG. Calmodulin Regulates Transient Receptor Potential TRPM3 and TRPM8-Induced Gene Transcription. Int J Mol Sci 2023; 24:ijms24097902. [PMID: 37175607 PMCID: PMC10178570 DOI: 10.3390/ijms24097902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Calmodulin is a small protein that binds Ca2+ ions via four EF-hand motifs. The Ca2+/calmodulin complex as well as Ca2+-free calmodulin regulate the activities of numerous enzymes and ion channels. Here, we used genetic and pharmacological tools to study the functional role of calmodulin in regulating signal transduction of TRPM3 and TRPM8 channels. Both TRPM3 and TRPM8 are important regulators of thermosensation. Gene transcription triggered by stimulation of TRPM3 or TRPM8 channels was significantly impaired in cells expressing a calmodulin mutant with mutations in all four EF-hand Ca2+ binding motifs. Similarly, incubation of cells with the calmodulin inhibitor ophiobolin A reduced TRPM3 and TRPM8-induced signaling. The Ca2+/calmodulin-dependent protein phosphatase calcineurin was shown to negatively regulate TRPM3-induced gene transcription. Here, we show that TRPM8-induced transcription is also regulated by calcineurin. We propose that calmodulin plays a dual role in regulating TRPM3 and TRPM8 functions. Calmodulin is required for the activation of TRPM3 and TRPM8-induced intracellular signaling, most likely through a direct interaction with the channels. Ca2+ influx through TRPM3 and TRPM8 feeds back to TRPM3 and TRPM8-induced signaling by activation of the calmodulin-regulated enzyme calcineurin, which acts as a negative feedback loop for both TRPM3 and TRPM8 channel signaling.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany
| |
Collapse
|
5
|
Plaza‐Cayón A, González‐Muñiz R, Martín‐Martínez M. Mutations of TRPM8 channels: Unraveling the molecular basis of activation by cold and ligands. Med Res Rev 2022; 42:2168-2203. [PMID: 35976012 PMCID: PMC9805079 DOI: 10.1002/med.21920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 01/09/2023]
Abstract
The cation nonselective channel TRPM8 is activated by multiple stimuli, including moderate cold and various chemical compounds (i.e., menthol and icilin [Fig. 1], among others). While research continues growing on the understanding of the physiological involvement of TRPM8 channels and their role in various pathological states, the information available on its activation mechanisms has also increased, supported by mutagenesis and structural studies. This review compiles known information on specific mutations of channel residues and their consequences on channel viability and function. Besides, the comparison of sequence of animals living in different environments, together with chimera and mutagenesis studies are helping to unravel the mechanism of adaptation to different temperatures. The results of mutagenesis studies, grouped by different channel regions, are compared with the current knowledge of TRPM8 structures obtained by cryo-electron microscopy. Trying to make this review self-explicative and highly informative, important residues for TRPM8 function are summarized in a figure, and mutants, deletions and chimeras are compiled in a table, including also the observed effects by different methods of activation and the corresponding references. The information provided by this review may also help in the design of new ligands for TRPM8, an interesting biological target for therapeutic intervention.
Collapse
|
6
|
Jahanfar F, Sadofsky L, Morice A, D’Amico M. Nebivolol as a Potent TRPM8 Channel Blocker: A Drug-Screening Approach through Automated Patch Clamping and Ligand-Based Virtual Screening. MEMBRANES 2022; 12:954. [PMID: 36295712 PMCID: PMC9609861 DOI: 10.3390/membranes12100954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Transient Receptor Potential Melastatin 8 (TRPM8) from the melastatin TRP channel subfamily is a non-selective Ca2+-permeable ion channel with multimodal gating which can be activated by low temperatures and cooling compounds, such as menthol and icilin. Different conditions such as neuropathic pain, cancer, overactive bladder syndrome, migraine, and chronic cough have been linked to the TRPM8 mode of action. Despite the several potent natural and synthetic inhibitors of TRPM8 that have been identified, none of them have been approved for clinical use. The aim of this study was to discover novel blocking TRPM8 agents using automated patch clamp electrophysiology combined with a ligand-based virtual screening based on the SwissSimilarity platform. Among the compounds we have tested, nebivolol and carvedilol exhibited the greatest inhibitory effect, with an IC50 of 0.97 ± 0.15 µM and 9.1 ± 0.6 µM, respectively. This study therefore provides possible candidates for future drug repurposing and suggests promising lead compounds for further optimization as inhibitors of the TRPM8 ion channel.
Collapse
Affiliation(s)
- Farhad Jahanfar
- Di.V.A.L. Toscana S.r.l., Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Laura Sadofsky
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Alyn Morice
- Respiratory Research Group, Hull York Medical School, Castle Hill Hospital, Cottingham HU16 5JQ, UK
| | - Massimo D’Amico
- Di.V.A.L. Toscana S.r.l., Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Benzalkonium chloride, a common ophthalmic preservative, compromises rat corneal cold sensitive nerve activity. Ocul Surf 2022; 26:88-96. [DOI: 10.1016/j.jtos.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022]
|
8
|
Koren TDT, Shrivastava R, Siddiqui SI, Ghosh S. Calmodulin Modulates the Gating Properties of Voltage-Dependent Anion Channel from Rat Brain Mitochondria. J Phys Chem B 2022; 126:4857-4871. [PMID: 35758767 DOI: 10.1021/acs.jpcb.1c10322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calmodulin (CaM) is a key signaling protein that plays a decisive role in mitochondrial Ca2+ homeostasis and signaling and modulates the mitochondrial membrane properties. We propose that voltage-dependent anion channel 1 (VDAC1), one of the most abundant outer mitochondrial membrane (OMM) proteins, could be its possible target or site of action. VDAC1 is known to play a crucial role in the mitochondrial Ca2+ signaling mechanism. Bilayer electrophysiology experiments show that CaM significantly reduces VDAC1's conductivity and modulates its gating as well as permeability properties. Also, spectrofluorimetric analysis indicates the possibility of binding CaM with VDAC1. Theoretical analysis of fluorescence data shows that the aforementioned protein-protein interaction is not linear, but rather it is a complex nonlinear process. In VDAC1, CaM binding site has been predicted using various bioinformatics tools. It is proposed that CaM could interact with VDAC1's outer-loop region and regulate its gating properties. Our findings suggest that VDAC1-CaM interaction could play a crucial role in the transport of ions and metabolites through the OMM and the regulation of the mitochondrial Ca2+ signaling mechanism through alteration of VDAC1's gating and conductive properties.
Collapse
Affiliation(s)
| | - Rajan Shrivastava
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | | | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
9
|
Hilfiger L, Triaux Z, Marcic C, Héberlé E, Emhemmed F, Darbon P, Marchioni E, Petitjean H, Charlet A. Anti-Hyperalgesic Properties of Menthol and Pulegone. Front Pharmacol 2021; 12:753873. [PMID: 34916937 PMCID: PMC8670501 DOI: 10.3389/fphar.2021.753873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
Context: Menthol, the main monoterpene found in Mentha piperita L. (M. piperita) is known to modulate nociceptive threshold and is present in different curative preparations that reduce sensory hypersensitivities in pain conditions. While for pulegone, a menthol-like monoterpene, only a limited number of studies focus on its putative analgesic effects, pulegone is the most abundant monoterpene present in Calamintha nepeta (L.) Savi (C. nepeta), a plant of the Lamiaceae family used in traditional medicine to alleviate rheumatic disorders, which counts amongst chronic inflammatory diseases. Objectives: Here, we analyzed the monoterpenes composition of C. nepeta and M. piperita. We then compared the putative anti-hyperalgesic effects of the main monoterpenes found, menthol and pulegone, in acute inflammatory pain conditions. Methods:C. nepeta and M. piperita extracts were obtained through pressurized liquid extraction and analyzed by gas chromatography-mass spectrometry. The in vitro anti-inflammatory activity of menthol or pulegone was evaluated by measuring the secretion of the tumour necrosis factor alpha (TNF α) from LPS-stimulated THP-1 cells. The in vivo anti-hyperalgesic effects of menthol and pulegone were tested on a rat inflammatory pain model. Results: Pulegone and menthol are the most abundant monoterpene found in C. nepeta (49.41%) and M. piperita (42.85%) extracts, respectively. In vitro, both pulegone and menthol act as strong anti-inflammatory molecules, with EC50 values of 1.2 ± 0.2 and 1.5 ± 0.1 mM, respectively, and exert cytotoxicity with EC50 values of 6.6 ± 0.3 and 3.5 ± 0.2 mM, respectively. In vivo, 100 mg/kg pulegone exerts a transient anti-hyperalgesic effect on both mechanical (pulegone: 274.25 ± 68.89 g, n = 8; vehicle: 160.88 ± 35.17 g, n = 8, p < 0.0001), thermal heat (pulegone: 4.09 ± 0.62 s, n = 8; vehicle: 2.25 ± 0.34 s, n = 8, p < 0.0001), and cold (pulegone: 2.25 ± 1.28 score, n = 8; vehicle: 4.75 ± 1.04 score, n = 8, p = 0.0003). In a similar way, 100 mg/kg menthol exerts a transient anti-hyperalgesic effect on both mechanical (mechanical: menthol: 281.63 ± 45.52 g, n = 8; vehicle: 166.25 ± 35.4 g, n = 8, p < 0.0001) and thermal heat (menthol: 3.65 ± 0.88 s, n = 8; vehicle: 2.19 ± 0.26 s, n = 8, <0.0001). Conclusion: Here, we show that both pulegone and menthol are anti-inflammatory and anti-hyperalgesic monoterpenes. These results might open the path towards new compound mixes to alleviate the pain sensation.
Collapse
Affiliation(s)
- Louis Hilfiger
- Benephyt, Strasbourg, France.,Centre National de la Recherche Scientifique, University of Strasbourg, Institute of Cellular and Integrative Neurosciences, INCI UPR3212, Strasbourg, France
| | - Zélie Triaux
- Benephyt, Strasbourg, France.,Centre National de la Recherche Scientifique, University of Strasbourg, Institut Pluridisciplinaire Hubert Curien, IPHC UMR, Strasbourg, France
| | - Christophe Marcic
- Centre National de la Recherche Scientifique, University of Strasbourg, Institut Pluridisciplinaire Hubert Curien, IPHC UMR, Strasbourg, France
| | | | - Fathi Emhemmed
- Centre National de la Recherche Scientifique, University of Strasbourg, Institut Pluridisciplinaire Hubert Curien, IPHC UMR, Strasbourg, France
| | - Pascal Darbon
- Centre National de la Recherche Scientifique, University of Strasbourg, Institute of Cellular and Integrative Neurosciences, INCI UPR3212, Strasbourg, France
| | - Eric Marchioni
- Centre National de la Recherche Scientifique, University of Strasbourg, Institut Pluridisciplinaire Hubert Curien, IPHC UMR, Strasbourg, France
| | | | - Alexandre Charlet
- Centre National de la Recherche Scientifique, University of Strasbourg, Institute of Cellular and Integrative Neurosciences, INCI UPR3212, Strasbourg, France
| |
Collapse
|
10
|
Abstract
Transient receptor potential melastatin 8 (TRPM8) channels play a central role in the detection of environmental cold temperatures in the somatosensory system. TRPM8 is found in a subset of unmyelinated (C-type) afferents located in the dorsal root (DRG) and trigeminal ganglion (TG). Cold hypersensitivity is a common symptom of neuropathic pain conditions caused by cancer therapy, spinal cord injury, viral infection, multiple sclerosis, diabetes, or withdrawal symptoms associated with chronic morphine treatment. Therefore, TRPM8 has received great attention as a therapeutic target. However, as the activity of TRPM8 is unique in sensing cool temperature as well as warming, it is critical to understand the signaling transduction pathways that control modality-specific activity of TRPM8 in healthy versus pathological settings. This review summarizes recent advances in our understanding of the mechanisms involved in the regulation of the TRPM8 activity.
Collapse
Affiliation(s)
- Mircea Iftinca
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary , Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary , Calgary, Alberta, Canada
| |
Collapse
|
11
|
Sensitization of knee-innervating sensory neurons by tumor necrosis factor-α-activated fibroblast-like synoviocytes: an in vitro, coculture model of inflammatory pain. Pain 2021; 161:2129-2141. [PMID: 32332252 PMCID: PMC7431145 DOI: 10.1097/j.pain.0000000000001890] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
ABSTRACT Pain is a principal contributor to the global burden of arthritis with peripheral sensitization being a major cause of arthritis-related pain. Within the knee joint, distal endings of dorsal root ganglion neurons (knee neurons) interact with fibroblast-like synoviocytes (FLS) and the inflammatory mediators they secrete, which are thought to promote peripheral sensitization. Correspondingly, RNA sequencing has demonstrated detectable levels of proinflammatory genes in FLS derived from arthritis patients. This study confirms that stimulation with tumor necrosis factor (TNF-α) results in expression of proinflammatory genes in mouse and human FLS (derived from osteoarthritis and rheumatoid arthritis patients), as well as increased secretion of cytokines from mouse TNF-α-stimulated FLS (TNF-FLS). Electrophysiological recordings from retrograde labelled knee neurons cocultured with TNF-FLS, or supernatant derived from TNF-FLS, revealed a depolarized resting membrane potential, increased spontaneous action potential firing, and enhanced TRPV1 function, all consistent with a role for FLS in mediating the sensitization of pain-sensing nerves in arthritis. Therefore, data from this study demonstrate the ability of FLS activated by TNF-α to promote neuronal sensitization, results that highlight the importance of both nonneuronal and neuronal cells to the development of pain in arthritis.
Collapse
|
12
|
Rimola V, Osthues T, Königs V, Geißlinger G, Sisignano M. Oxaliplatin Causes Transient Changes in TRPM8 Channel Activity. Int J Mol Sci 2021; 22:4962. [PMID: 34066977 PMCID: PMC8125753 DOI: 10.3390/ijms22094962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
Oxaliplatin is a third-generation platinum-based anticancer drug that is widely used as first-line treatment for colorectal carcinoma. Patients treated with oxaliplatin develop an acute peripheral pain several hours after treatment, mostly characterized by cold allodynia as well as a long-term chronic neuropathy. These two phenomena seem to be causally connected. However, the underlying mechanisms that trigger the acute peripheral pain are still poorly understood. Here we show that the activity of the transient receptor potential melastatin 8 (TRPM8) channel but not the activity of any other member of the TRP channel family is transiently increased 1 h after oxaliplatin treatment and decreased 24 h after oxaliplatin treatment. Mechanistically, this is connected with activation of the phospholipase C (PLC) pathway and depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) after oxaliplatin treatment. Inhibition of the PLC pathway can reverse the decreased TRPM8 activity as well as the decreased PIP2-concentrations after oxaliplatin treatment. In summary, these results point out transient changes in TRPM8 activity early after oxaliplatin treatment and a later occurring TRPM8 channel desensitization in primary sensory neurons. These mechanisms may explain the transient cold allodynia after oxaliplatin treatment and highlight an important role of TRPM8 in oxaliplatin-induced acute and neuropathic pain.
Collapse
Affiliation(s)
- Vittoria Rimola
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (V.R.); (G.G.)
| | - Tabea Osthues
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (T.O.); (V.K.)
| | - Vanessa Königs
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (T.O.); (V.K.)
| | - Gerd Geißlinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (V.R.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (T.O.); (V.K.)
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590 Frankfurt am Main, Germany; (V.R.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (T.O.); (V.K.)
| |
Collapse
|
13
|
Zhang Z, Engel MA, Koch E, Reeh PW, Khalil M. Menthacarin induces calcium ion influx in sensory neurons, macrophages and colonic organoids of mice. Life Sci 2020; 264:118682. [PMID: 33127519 DOI: 10.1016/j.lfs.2020.118682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 02/08/2023]
Abstract
AIMS Menthacarin is a herbal combination that is clinically used for the treatment of functional gastrointestinal disorders (FGIDs). In several clinical studies, Menthacarin reduced visceral hypersensitivity-related symptoms. Pathogenesis of visceral hypersensitivity is multifactorial. This involves several cell types and different transient receptor potential ion channels (TRPs); these ion channels are highly conductive for calcium ions. Since transient changes in cytosolic calcium levels are crucial for many functions of living cells, we investigated if Menthacarin can induce calcium influx in sensory, largely nociceptive, neurons from dorsal root ganglia (DRG), peritoneal macrophages (PMs) and colonic organoids. MAIN METHODS We employed the calcium imaging technique on sensory neurons from DRG, PMs and colonic organoids isolated from mice. All cells were superfused by Menthacarin at several concentrations (600, 1200, 1800 μg/ml) during the experiments, followed by calcium ionophor ionomycin (Iono., 1 μM) as a positive control. KEY FINDINGS Menthacarin induced concentration-dependent calcium ion influx in all investigated cell types. Furthermore, repeated applications of Menthacarin induced tachyphylaxis (desensitisation) of calcium responses in sensory neurons and colonic organoids. SIGNIFICANCE Menthacarin-induced calcium influx into sensory neurons, macrophages and colonic organoids is probably related to its clinical desensitising effects in patients with FGIDs.
Collapse
Affiliation(s)
- Z Zhang
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - M A Engel
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany.
| | - E Koch
- Preclinical Research, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | - P W Reeh
- Institute of Physiology und Pathophysiology, Friedrich-Alexander-Universität Erlangen, Erlangen, Germany
| | - M Khalil
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
14
|
Iftinca M, Basso L, Flynn R, Kwok C, Roland C, Hassan A, Defaye M, Ramachandran R, Trang T, Altier C. Chronic morphine regulates TRPM8 channels via MOR-PKCβ signaling. Mol Brain 2020; 13:61. [PMID: 32290846 PMCID: PMC7155267 DOI: 10.1186/s13041-020-00599-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/02/2020] [Indexed: 02/05/2023] Open
Abstract
Postoperative shivering and cold hypersensitivity are major side effects of acute and chronic opioid treatments respectively. TRPM8 is a cold and menthol-sensitive channel found in a subset of dorsal root ganglion (DRG) nociceptors. Deletion or inhibition of the TRPM8 channel was found to prevent the cold hyperalgesia induced by chronic administration of morphine. Here, we examined the mechanisms by which morphine was able to promote cold hypersensitivity in DRG neurons and transfected HEK cells. Mice daily injected with morphine for 5 days developed cold hyperalgesia. Treatment with morphine did not alter the expressions of cold sensitive TREK-1, TRAAK and TRPM8 in DRGs. However, TRPM8-expressing DRG neurons isolated from morphine-treated mice exhibited hyperexcitability. Sustained morphine treatment in vitro sensitized TRPM8 responsiveness to cold or menthol and reduced activation-evoked desensitization of the channel. Blocking phospholipase C (PLC) as well as protein kinase C beta (PKCβ), but not protein kinase A (PKA) or Rho-associated protein kinase (ROCK), restored channel desensitization. Identification of two PKC phosphorylation consensus sites, S1040 and S1041, in the TRPM8 and their site-directed mutation were able to prevent the MOR-induced reduction in TRPM8 desensitization. Our results show that activation of MOR by morphine 1) promotes hyperexcitability of TRPM8-expressing neurons and 2) induces a PKCβ-mediated reduction of TRPM8 desensitization. This MOR-PKCβ dependent modulation of TRPM8 may underlie the onset of cold hyperalgesia caused by repeated administration of morphine. Our findings point to TRPM8 channel and PKCβ as important targets for opioid-induced cold hypersensitivity.
Collapse
Affiliation(s)
- Mircea Iftinca
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Lilian Basso
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Robyn Flynn
- Hotchkiss Brain Institute. Cumming School of Medicine. University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Charlie Kwok
- Hotchkiss Brain Institute. Cumming School of Medicine. University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Corinne Roland
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Ahmed Hassan
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology. Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Tuan Trang
- Hotchkiss Brain Institute. Cumming School of Medicine. University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
15
|
Sisco NJ, Luu DD, Kim M, Van Horn WD. PIRT the TRP Channel Regulating Protein Binds Calmodulin and Cholesterol-Like Ligands. Biomolecules 2020; 10:E478. [PMID: 32245175 PMCID: PMC7175203 DOI: 10.3390/biom10030478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 01/04/2023] Open
Abstract
Transient receptor potential (TRP) ion channels are polymodal receptors that have been implicated in a variety of pathophysiologies, including pain, obesity, and cancer. The capsaicin and heat sensor TRPV1, and the menthol and cold sensor TRPM8, have been shown to be modulated by the membrane protein PIRT (Phosphoinositide-interacting regulator of TRP). The emerging mechanism of PIRT-dependent TRPM8 regulation involves a competitive interaction between PIRT and TRPM8 for the activating phosphatidylinositol 4,5-bisphosphate (PIP2) lipid. As many PIP2 modulated ion channels also interact with calmodulin, we investigated the possible interaction between PIRT and calmodulin. Using microscale thermophoresis (MST), we show that calmodulin binds to the PIRT C-terminal α-helix, which we corroborate with a pull-down experiment, nuclear magnetic resonance-detected binding study, and Rosetta-based computational studies. Furthermore, we identify a cholesterol-recognition amino acid consensus (CRAC) domain in the outer leaflet of the first transmembrane helix of PIRT, and with MST, show that PIRT specifically binds to a number of cholesterol-derivatives. Additional studies identified that PIRT binds to cholecalciferol and oxytocin, which has mechanistic implications for the role of PIRT regulation of additional ion channels. This is the first study to show that PIRT specifically binds to a variety of ligands beyond TRP channels and PIP2.
Collapse
Affiliation(s)
- Nicholas J. Sisco
- The School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Dustin D. Luu
- The School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Minjoo Kim
- The School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Wade D. Van Horn
- The School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
16
|
Noyer L, Lemonnier L, Mariot P, Gkika D. Partners in Crime: Towards New Ways of Targeting Calcium Channels. Int J Mol Sci 2019; 20:ijms20246344. [PMID: 31888223 PMCID: PMC6940757 DOI: 10.3390/ijms20246344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
The characterization of calcium channel interactome in the last decades opened a new way of perceiving ion channel function and regulation. Partner proteins of ion channels can now be considered as major components of the calcium homeostatic mechanisms, while the reinforcement or disruption of their interaction with the channel units now represents an attractive target in research and therapeutics. In this review we will focus on the targeting of calcium channel partner proteins in order to act on the channel activity, and on its consequences for cell and organism physiology. Given the recent advances in the partner proteins’ identification, characterization, as well as in the resolution of their interaction domain structures, we will develop the latest findings on the interacting proteins of the following channels: voltage-dependent calcium channels, transient receptor potential and ORAI channels, and inositol 1,4,5-trisphosphate receptor.
Collapse
Affiliation(s)
- Lucile Noyer
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France; (L.N.); (L.L.); (P.M.)
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Loic Lemonnier
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France; (L.N.); (L.L.); (P.M.)
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Pascal Mariot
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France; (L.N.); (L.L.); (P.M.)
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Dimitra Gkika
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France; (L.N.); (L.L.); (P.M.)
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, 59655 Villeneuve d’Ascq, France
- Correspondence: ; Tél.: +33-(0)3-2043-6838
| |
Collapse
|
17
|
Sisco NJ, Helsell CVM, Van Horn WD. Competitive Interactions between PIRT, the Cold Sensing Ion Channel TRPM8, and PIP 2 Suggest a Mechanism for Regulation. Sci Rep 2019; 9:14128. [PMID: 31575973 PMCID: PMC6773951 DOI: 10.1038/s41598-019-49912-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/02/2019] [Indexed: 01/18/2023] Open
Abstract
TRPM8 is a member of the transient receptor potential ion channel family where it functions as a cold and pain sensor in humans and other higher organisms. Previous studies show that TRPM8 requires the signaling phosphoinositide lipid PIP2 to function. TRPM8 function is further regulated by other diverse mechanisms, including the small modulatory membrane protein PIRT (phosphoinositide regulator of TRP). Like TRPM8, PIRT also binds PIP2 and behavioral studies have shown that PIRT is required for normal TRPM8-mediated cold-sensing. To better understand the molecular mechanism of PIRT regulation of TRPM8, solution nuclear magnetic resonance (NMR) spectroscopy was used to assign the backbone resonances of full-length human PIRT and investigate the direct binding of PIRT to PIP2 and the human TRPM8 S1-S4 transmembrane domain. Microscale thermophoresis (MST) binding studies validate the NMR results and identify a competitive PIRT interaction between PIP2 and the TRPM8 S1-S4 domain. Computational PIP2 docking to a human TRPM8 comparative model was performed to help localize where PIRT may bind TRPM8. Taken together, our data suggest a mechanism where TRPM8, PIRT, and PIP2 form a regulatory complex and PIRT modulation of TRPM8 arises, at least in part, by regulating local concentrations of PIP2 accessible to TRPM8.
Collapse
Affiliation(s)
- Nicholas J Sisco
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
- The Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85281, USA
- The Magnetic Resonance Research Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Cole V M Helsell
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
- The Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85281, USA
- The Magnetic Resonance Research Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Wade D Van Horn
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA.
- The Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85281, USA.
- The Magnetic Resonance Research Center, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
18
|
Diver MM, Cheng Y, Julius D. Structural insights into TRPM8 inhibition and desensitization. Science 2019; 365:1434-1440. [PMID: 31488702 PMCID: PMC7262954 DOI: 10.1126/science.aax6672] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022]
Abstract
The transient receptor potential melastatin 8 (TRPM8) ion channel is the primary detector of environmental cold and an important target for treating pathological cold hypersensitivity. Here, we present cryo-electron microscopy structures of TRPM8 in ligand-free, antagonist-bound, or calcium-bound forms, revealing how robust conformational changes give rise to two nonconducting states, closed and desensitized. We describe a malleable ligand-binding pocket that accommodates drugs of diverse chemical structures, and we delineate the ion permeation pathway, including the contribution of lipids to pore architecture. Furthermore, we show that direct calcium binding mediates stimulus-evoked desensitization, clarifying this important mechanism of sensory adaptation. We observe large rearrangements within the S4-S5 linker that reposition the S1-S4 and pore domains relative to the TRP helix, leading us to propose a distinct model for modulation of TRPM8 and possibly other TRP channels.
Collapse
Affiliation(s)
- Melinda M Diver
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
19
|
Liang R, Kawabata Y, Kawabata F, Nishimura S, Tabata S. Differences in the acidic sensitivity of transient receptor potential vanilloid 1 (TRPV1) between chickens and mice. Biochem Biophys Res Commun 2019; 515:386-393. [PMID: 31155288 DOI: 10.1016/j.bbrc.2019.05.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/19/2019] [Indexed: 11/16/2022]
Abstract
Chickens, one of the most important industrial animals, are a biological animal model. Here we focused on the transient receptor potential vanilloid 1 (TRPV1) to understand the pain system for acidic stimuli in chickens compared with mice. By using a whole-cell patch clamp system, we confirmed that acidic stimuli activate both chicken TRPV1 (cTRPV1) and mouse TRPV1 (mTRPV1), but the peak current of cTRPV1 is lower than that of mTRPV1, and it is difficult to desensitize cTRPV1 with an acidic stimulus compared to mTRPV1. Since the C-terminal of the calmodulin (CaM) binding site in TRPV1 was reported as one of the important structures for TRPV1 desensitization, we made chimeric cTRPV1 in which the CaM binding site of chicken is changed to that of mouse (cTRPV1-mCaM). We also compared the acidic responses of native chicken dorsal root ganglion (DRG) cells with that of mouse DRG cells. The TRPV1-mCaM results showed that the desensitization of mutant cTRPV1 was similar to that of mTRPV1, and that the basal activities of mutant cTRPV1 were significantly higher than those of cTRPV1. It was also difficult to desensitize the chicken DRG cells with an acidic stimulus, unlike the mouse DRG cells. These results suggest that there are differences in the pain transduction systems for acidic stimuli between chickens and mice that are caused by the dysfunction of the C-terminal CaM biding site of cTRPV1. These results imply that chickens repeatedly feel weak pain from an acidic stimulus, without desensitization.
Collapse
Affiliation(s)
- Ruojun Liang
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yuko Kawabata
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Fuminori Kawabata
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Shotaro Nishimura
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shoji Tabata
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Cortés-Montero E, Sánchez-Blázquez P, Onetti Y, Merlos M, Garzón J. Ligands Exert Biased Activity to Regulate Sigma 1 Receptor Interactions With Cationic TRPA1, TRPV1, and TRPM8 Channels. Front Pharmacol 2019; 10:634. [PMID: 31249525 PMCID: PMC6582314 DOI: 10.3389/fphar.2019.00634] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/17/2019] [Indexed: 11/13/2022] Open
Abstract
The sigma 1 receptor (σ1R) and the mu-opioid receptor (MOR) regulate the transient receptor potential (TRP) V1 calcium channel. A series of proteins are involved in the cross-regulation between MORs and calcium channels like the glutamate N-methyl-D-aspartate receptor (NMDAR), including the histidine triad nucleotide-binding protein 1 (HINT1), calmodulin (CaM), and the σ1R. Thus, we assessed whether similar mechanisms also apply to the neural TRP ankyrin member 1 (TRPA1), TRP vanilloid member 1 (TRPV1), and TRP melastatin member 8 (TRPM8). Our results indicate that σ1R and CaM bound directly to cytosolic regions of these TRPs, and this binding increased in the presence of calcium. By contrast, the association of HINT1 with these TRPs was moderately dependent on calcium. The σ1R always competed with CaM for binding to the TRPs, except for its binding to the TRPA1 C-terminal where σ1R binding cooperated with that of CaM. However, σ1R dampened HINT1 binding to the TRPA1 N-terminal. When the effect of σ1R ligands was addressed, the σ1R agonists PRE084 and pregnenolone sulfate enhanced the association of the σ1R with the TRPM8 N-terminal and TRPV1 C-terminal in the presence of physiological calcium, as seen for the σ1R-NMDAR interactions. However, these agonists dampened σ1R binding to the TRPA1 and TRPV1 N-terminal domains, and also to the TRPA1 C-terminal, as seen for σ1R-binding immunoglobulin protein (BiP) interactions in the endoplasmic reticulum (ER). By contrast, the σ1R antagonists progesterone and S1RA reduced the association of σ1R with TRPA1 and TRPV1 C-terminal regions, as seen for the σ1R-NMDAR interactions. Conversely, they enhanced the σ1R interaction with the TRPA1 N-terminal, as seen for σ1R-BiP interactions, whereas they barely affected the association of σ1R with the TRPV1 N-terminal. Thus, depending on the calcium channel and the cytosolic region examined, the σ1R agonists pregnenolone sulfate and PRE084 opposed or collaborated with the σ1R antagonists progesterone and S1RA to disrupt or promote such interactions. Through the use of cloned cytosolic regions of selected TRP calcium channels, we were able to demonstrate that σ1R ligands exhibit biased activity to regulate particular σ1R interactions with other proteins. Since σ1Rs are implicated in essential physiological processes, exploiting such ligand biases may represent a means to develop more selective and efficacious pharmacological interventions.
Collapse
Affiliation(s)
- Elsa Cortés-Montero
- Neuropharmacology, Department of Translational Neuroscience, Cajal Institute, CSIC, Madrid, Spain
| | - Pilar Sánchez-Blázquez
- Neuropharmacology, Department of Translational Neuroscience, Cajal Institute, CSIC, Madrid, Spain
| | - Yara Onetti
- Neuropharmacology, Department of Translational Neuroscience, Cajal Institute, CSIC, Madrid, Spain
| | - Manuel Merlos
- Drug Discovery & Preclinical Development, Esteve, Barcelona, Spain
| | - Javier Garzón
- Neuropharmacology, Department of Translational Neuroscience, Cajal Institute, CSIC, Madrid, Spain
| |
Collapse
|
21
|
Hossain MZ, Ando H, Unno S, Masuda Y, Kitagawa J. Activation of TRPV1 and TRPM8 Channels in the Larynx and Associated Laryngopharyngeal Regions Facilitates the Swallowing Reflex. Int J Mol Sci 2018; 19:E4113. [PMID: 30567389 PMCID: PMC6321618 DOI: 10.3390/ijms19124113] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
The larynx and associated laryngopharyngeal regions are innervated by the superior laryngeal nerve (SLN) and are highly reflexogenic. Transient receptor potential (TRP) channels have recently been detected in SLN innervated regions; however, their involvement in the swallowing reflex has not been fully elucidated. Here, we explore the contribution of two TRP channels, TRPV1 and TRPM8, located in SLN-innervated regions to the swallowing reflex. Immunohistochemistry identified TRPV1 and TRPM8 on cell bodies of SLN afferents located in the nodose-petrosal-jugular ganglionic complex. The majority of TRPV1 and TRPM8 immunoreactivity was located on unmyelinated neurons. Topical application of different concentrations of TRPV1 and TRPM8 agonists modulated SLN activity. Application of the agonists evoked a significantly greater number of swallowing reflexes compared with the number evoked by distilled water. The interval between the reflexes evoked by the agonists was shorter than that produced by distilled water. Prior topical application of respective TRPV1 or TRPM8 antagonists significantly reduced the number of agonist-evoked reflexes. The findings suggest that the activation of TRPV1 and TRPM8 channels present in the swallowing-related regions can facilitate the evoking of swallowing reflex. Targeting the TRP channels could be a potential therapeutic strategy for the management of dysphagia.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Yuji Masuda
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|
22
|
Viatchenko-Karpinski V, Gu JG. Effects of cooling temperatures and low pH on membrane properties and voltage-dependent currents of rat nociceptive-like trigeminal ganglion neurons. Mol Pain 2018; 14:1744806918814350. [PMID: 30380987 PMCID: PMC6249654 DOI: 10.1177/1744806918814350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cooling temperatures and low pH have profound effects on somatosensory functions including nociception. The effects not only can be mediated by cooling temperature transducers and proton transducers expressed in subpopulations of somatosensory neurons but may also be mediated by ion channels involving membrane excitability such as voltage-dependent K+ channels in somatosensory neurons. In the present study, we performed the in situ patch-clamp recordings from nociceptive-like trigeminal ganglion neurons in ex vivo trigeminal ganglion preparations of adult rats. We determined effects of cooling temperatures and low pH on membrane properties and voltage-dependent currents in nociceptive-like trigeminal ganglion neurons. Action potential rheobase levels were decreased when nociceptive trigeminal ganglion neurons were cooled from 24°C down to 12°C or when extracellular pH levels were reduced from 7.3 to 6. This indicates that the excitability of nociceptive-like trigeminal ganglion neurons was increased at the cooling temperatures and low pH. The decreases of action potential rheobase levels were accompanied by increases of trigeminal ganglion neuron input resistances at cooling temperatures and low pH, suggesting a possible involvement of background K+ channels. Cooling temperatures and low pH suppressed voltage-activated inward Na+ currents and also voltage-dependent outward K+ currents in nociceptive-like trigeminal ganglion neurons. Voltage-dependent outward K+ currents in nociceptive-like trigeminal ganglion neurons consist of inactivating A-type K+ currents and non-inactivating type K+ currents, and the former were more sensitive to cooling temperatures and low pH. Collectively, suppressing multiple types of K+ channels may be associated with the enhanced excitability of nociceptive trigeminal ganglion neurons by cooling temperatures and low pH.
Collapse
Affiliation(s)
- Viacheslav Viatchenko-Karpinski
- 1 Department of Anesthesiology and Perioperative Medicine, College of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianguo G Gu
- 1 Department of Anesthesiology and Perioperative Medicine, College of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
23
|
Schrapers KT, Sponder G, Liebe F, Liebe H, Stumpff F. The bovine TRPV3 as a pathway for the uptake of Na +, Ca 2+, and NH 4+. PLoS One 2018; 13:e0193519. [PMID: 29494673 PMCID: PMC5832270 DOI: 10.1371/journal.pone.0193519] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 02/13/2018] [Indexed: 12/22/2022] Open
Abstract
Absorption of ammonia from the gastrointestinal tract results in problems that range from hepatic encephalopathy in humans to poor nitrogen efficiency of cattle with consequences for the global climate. Previous studies on epithelia and cells from the native ruminal epithelium suggest functional involvement of the bovine homologue of TRPV3 (bTRPV3) in ruminal NH4+ transport. Since the conductance of TRP channels to NH4+ has never been studied, bTRPV3 was overexpressed in HEK-293 cells and investigated using the patch-clamp technique and intracellular calcium imaging. Control cells contained the empty construct. Divalent cations blocked the conductance for monovalent cations in both cell types, with effects higher in cells expressing bTRPV3. In bTRPV3 cells, but not in controls, menthol, thymol, carvacrol, or 2-APB stimulated whole cell currents mediated by Na+, Cs+, NH4+, and K+, with a rise in intracellular Ca2+ observed in response to menthol. While only 25% of control patches showed single-channel events (with a conductance of 40.8 ± 11.9 pS for NH4+ and 25.0 ± 5.8 pS for Na+), 90% of bTRPV3 patches showed much larger conductances of 127.8 ± 4.2 pS for Na+, 240.1 ± 3.6 pS for NH4+, 34.0 ± 1.7 pS for Ca2+, and ~ 36 pS for NMDG+. Open probability, but not conductance, rose with time after patch excision. In conjunction with previous research, we suggest that bTRPV3 channels may play a role in the transport of Na+, K+, Ca2+ and NH4+ across the rumen with possible repercussions for understanding the function of TRPV3 in other epithelia.
Collapse
Affiliation(s)
- Katharina T. Schrapers
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Gerhard Sponder
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Franziska Liebe
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Hendrik Liebe
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Friederike Stumpff
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
24
|
Bousova K, Herman P, Vecer J, Bednarova L, Monincova L, Majer P, Vyklicky L, Vondrasek J, Teisinger J. Shared CaM‐ and S100A1‐binding epitopes in the distal
TRPM
4 N terminus. FEBS J 2017; 285:599-613. [DOI: 10.1111/febs.14362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/31/2017] [Accepted: 12/08/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Kristyna Bousova
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
- Institute of Physiology Czech Academy of Sciences Prague Czech Republic
| | - Petr Herman
- Faculty of Mathematics and Physics Charles University Prague Czech Republic
| | - Jaroslav Vecer
- Faculty of Mathematics and Physics Charles University Prague Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Lenka Monincova
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology Czech Academy of Sciences Prague Czech Republic
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Jan Teisinger
- Institute of Physiology Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
25
|
Signaling Pathways Relevant to Nerve Growth Factor-induced Upregulation of Transient Receptor Potential M8 Expression. Neuroscience 2017; 367:178-188. [DOI: 10.1016/j.neuroscience.2017.10.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/06/2017] [Accepted: 10/24/2017] [Indexed: 12/29/2022]
|
26
|
Synthesis, high-throughput screening and pharmacological characterization of β-lactam derivatives as TRPM8 antagonists. Sci Rep 2017; 7:10766. [PMID: 28883526 PMCID: PMC5589751 DOI: 10.1038/s41598-017-10913-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/16/2017] [Indexed: 01/19/2023] Open
Abstract
The mammalian transient receptor potential melastatin channel 8 (TRPM8), highly expressed in trigeminal and dorsal root ganglia, mediates the cooling sensation and plays an important role in the cold hypersensitivity characteristic of some types of neuropathic pain, as well as in cancer. Consequently, the identification of selective and potent ligands for TRPM8 is of great interest. Here, a series of compounds, having a β-lactam central scaffold, were prepared to explore the pharmacophore requirements for TRPM8 modulation. Structure-activity studies indicate that the minimal requirements for potent β-lactam-based TRPM8 blockers are hydrophobic groups (benzyl preferentially or tBu) on R1, R2, R3 and R5 and a short N-alkyl chain (≤3 carbons). The best compounds in the focused library (41 and 45) showed IC50 values of 46 nM and 83 nM, respectively, in electrophysiology assays. These compounds selectively blocked all modalities of TRPM8 activation, i.e. menthol, voltage, and temperature. Molecular modelling studies using a homology model of TRPM8 identified two putative binding sites, involving networks of hydrophobic interactions, and suggesting a negative allosteric modulation through the stabilization of the closed state. Thus, these β-lactams provide a novel pharmacophore scaffold to evolve TRPM8 allosteric modulators to treat TRPM8 channel dysfunction.
Collapse
|
27
|
Yudin Y, Lutz B, Tao YX, Rohacs T. Phospholipase C δ4 regulates cold sensitivity in mice. J Physiol 2016; 594:3609-28. [PMID: 27062607 DOI: 10.1113/jp272321] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/05/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS The cold- and menthol-activated transient receptor potential melastatin 8 (TRPM8) channels are thought to be regulated by phospholipase C (PLC), but neither the specific PLC isoform nor the in vivo relevance of this regulation has been established. Here we identify PLCδ4 as the key PLC isoform involved in regulation of TRPM8 channels in vivo. We show that in small PLCδ4(-/-) TRPM8-positive dorsal root ganglion neurons cold, menthol and WS-12, a selective TRPM8 agonist, evoked significantly larger currents than in wild-type neurons, and action potential frequencies induced by menthol or by current injections were also higher in PLCδ4(-/-) neurons. PLCδ4(-/-) mice showed increased behavioural responses to evaporative cooling, and this effect was inhibited by a TRPM8 antagonist; behavioural responses to heat and mechanical stimuli were not altered. We provide evidence for the involvement of a specific PLC isoform in the regulation of cold sensitivity in mice by regulating TRPM8 activity. ABSTRACT The transient receptor potential melastatin 8 (TRPM8) ion channel is a major sensor of environmental low temperatures. Ca(2+) -induced activation of phospholipase C (PLC) has been implied in the regulation of TRPM8 channels during menthol- and cold-induced desensitization in vitro. Here we identify PLCδ4 as the key PLC isoform involved in regulation of TRPM8 in sensory dorsal root ganglion (DRG) neurons. We identified two TRPM8-positive neuronal subpopulations, based on their cell body size. Most TRPM8-positive small neurons also responded to capsaicin, and had significantly larger menthol-induced inward current densities than medium-large cells, most of which did not respond to capsaicin. Small, but not medium-large, PLCδ4(-/-) neurons showed significantly larger currents induced by cold, menthol or WS-12, a specific TRPM8 agonist, compared to wild-type (WT) neurons, but TRPM8 protein levels were not different between the two groups. In current-clamp experiments small neurons had more depolarized resting membrane potentials, and required smaller current injections to generate action potentials (APs) than medium-large cells. In small PLCδ4(-/-) neurons, menthol application induced larger depolarizations and generation of APs with frequencies significantly higher compared to WT neurons. In behavioural experiments PLCδ4(-/-) mice showed greater sensitivity to evaporative cooling by acetone than control animals. Pretreatment with the TRPM8 antagonist PBMC reduced cold-induced responses, and the effect was more pronounced in the PLCδ4(-/-) group. Heat and mechanical sensitivity of the PLCδ4(-/-) mice was not different from WT animals. Our data support the involvement of PLCδ4 in the regulation of TRPM8 channel activity in vivo.
Collapse
Affiliation(s)
- Yevgen Yudin
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ, USA
| | - Brianna Lutz
- Department of Anesthesiology, Rutgers, New Jersey Medical School, Newark, NJ, USA
| | - Yuan-Xiang Tao
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ, USA.,Department of Anesthesiology, Rutgers, New Jersey Medical School, Newark, NJ, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
28
|
Calcium Entry Through Thermosensory Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:265-304. [PMID: 27161233 DOI: 10.1007/978-3-319-26974-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ThermoTRPs are unique channels that mediate Na(+) and Ca(2+) currents in response to changes in ambient temperature. In combination with their activation by other physical and chemical stimuli, they are considered key integrators of environmental cues into neuronal excitability. Furthermore, roles of thermoTRPs in non-neuronal tissues are currently emerging such as insulin secretion in pancreatic β-cells, and links to cancer. Calcium permeability through thermoTRPs appears a central hallmark for their physiological and pathological activities. Moreover, it is currently being proposed that beyond working as a second messenger, Ca(2+) can function locally by acting on protein complexes near the membrane. Interestingly, thermoTRPs can enhance and expand the inherent plasticity of signalplexes by conferring them temperature, pH and lipid regulation through Ca(2+) signalling. Thus, unveiling the local role of Ca(2+) fluxes induced by thermoTRPs on the dynamics of membrane-attached signalling complexes as well as their significance in cellular processes, are central issues that will expand the opportunities for therapeutic intervention in disorders involving dysfunction of thermoTRP channels.
Collapse
|
29
|
|
30
|
Ciobanu A, Selescu T, Gasler I, Soltuzu L, Babes A. Glycolytic metabolite methylglyoxal inhibits cold and menthol activation of the transient receptor potential melastatin type 8 channel. J Neurosci Res 2015; 94:282-94. [DOI: 10.1002/jnr.23700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 12/28/2022]
Affiliation(s)
- A.C. Ciobanu
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - T. Selescu
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - I. Gasler
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - L. Soltuzu
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - A. Babes
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| |
Collapse
|
31
|
Olivares E, Salgado S, Maidana JP, Herrera G, Campos M, Madrid R, Orio P. TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor. PLoS One 2015; 10:e0139314. [PMID: 26426259 PMCID: PMC4591370 DOI: 10.1371/journal.pone.0139314] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/11/2015] [Indexed: 11/30/2022] Open
Abstract
Cold-sensitive nerve terminals (CSNTs) encode steady temperatures with regular, rhythmic temperature-dependent firing patterns that range from irregular tonic firing to regular bursting (static response). During abrupt temperature changes, CSNTs show a dynamic response, transiently increasing their firing frequency as temperature decreases and silencing when the temperature increases (dynamic response). To date, mathematical models that simulate the static response are based on two depolarizing/repolarizing pairs of membrane ionic conductance (slow and fast kinetics). However, these models fail to reproduce the dynamic response of CSNTs to rapid changes in temperature and notoriously they lack a specific cold-activated conductance such as the TRPM8 channel. We developed a model that includes TRPM8 as a temperature-dependent conductance with a calcium-dependent desensitization. We show by computer simulations that it appropriately reproduces the dynamic response of CSNTs from mouse cornea, while preserving their static response behavior. In this model, the TRPM8 conductance is essential to display a dynamic response. In agreement with experimental results, TRPM8 is also needed for the ongoing activity in the absence of stimulus (i.e. neutral skin temperature). Free parameters of the model were adjusted by an evolutionary optimization algorithm, allowing us to find different solutions. We present a family of possible parameters that reproduce the behavior of CSNTs under different temperature protocols. The detection of temperature gradients is associated to a homeostatic mechanism supported by the calcium-dependent desensitization.
Collapse
Affiliation(s)
- Erick Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Simón Salgado
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Jean Paul Maidana
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Gaspar Herrera
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Matías Campos
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodolfo Madrid
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- * E-mail:
| |
Collapse
|
32
|
De Petrocellis L, Ortar G, Schiano Moriello A, Serum EM, Rusterholz DB. Structure-activity relationships of the prototypical TRPM8 agonist icilin. Bioorg Med Chem Lett 2015; 25:2285-90. [PMID: 25935641 DOI: 10.1016/j.bmcl.2015.04.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/10/2015] [Accepted: 04/12/2015] [Indexed: 01/28/2023]
Abstract
A series of structural analogues of the TRPM8 agonist icilin was prepared. The compounds were examined for their ability to exert agonist or antagonist effects in HEK-293 cells expressing the TRPM8 receptor. Most structural modifications of the icilin structure largely met with diminished TRPM8 agonist activity. Cinnamamide 'open-chain' analogs of icilin, however, demonstrated significant antagonistic actions at the TRPM8 receptor. Optimal potency (IC50=73 nM) was observed in the 3-iodo derivative 18l.
Collapse
Affiliation(s)
- Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy.
| | - Giorgio Ortar
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza-Università di Roma, piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Eric M Serum
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, United States
| | - David B Rusterholz
- Department of Chemistry, University of Wisconsin-River Falls, 410 S. Third St., River Falls, WI 54022, United States
| |
Collapse
|
33
|
Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:73-118. [PMID: 25744671 DOI: 10.1016/bs.pmbts.2015.01.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peripheral detection of nociceptive and painful stimuli by sensory neurons involves a complex repertoire of molecular detectors and/or transducers on distinct subsets of nerve fibers. The majority of such molecular detectors/transducers belong to the transient receptor potential (TRP) family of cation channels, which comprise both specific receptors for distinct nociceptive stimuli, as well as for multiple stimuli. This chapter discusses the classification, distribution, and functional properties of individual TRP channel types that have been implicated in various nociceptive and/or painful conditions.
Collapse
Affiliation(s)
- Aaron D Mickle
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew J Shepherd
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Durga P Mohapatra
- Department of Pharmacology, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesia, The University of Iowa Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
34
|
Abstract
Transient Receptor Potential (TRP) channels are activated by stimuli as diverse as heat, cold, noxious chemicals, mechanical forces, hormones, neurotransmitters, spices, and voltage. Besides their presumably similar general architecture, probably the only common factor regulating them is phosphoinositides. The regulation of TRP channels by phosphoinositides is complex. There are a large number of TRP channels where phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2 or PIP2] acts as a positive cofactor, similarly to many other ion channels. In several cases, however, PI(4,5)P2 inhibits TRP channel activity, sometimes even concurrently with the activating effect. This chapter will provide a comprehensive overview of the literature on regulation of TRP channels by membrane phosphoinositides.
Collapse
|
35
|
Veldhuis NA, Poole DP, Grace M, McIntyre P, Bunnett NW. The G Protein–Coupled Receptor–Transient Receptor Potential Channel Axis: Molecular Insights for Targeting Disorders of Sensation and Inflammation. Pharmacol Rev 2014; 67:36-73. [DOI: 10.1124/pr.114.009555] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
36
|
Madrid R, Pertusa M. Intimacies and physiological role of the polymodal cold-sensitive ion channel TRPM8. CURRENT TOPICS IN MEMBRANES 2014; 74:293-324. [PMID: 25366241 DOI: 10.1016/b978-0-12-800181-3.00011-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The detection of environmental temperature is critical for the survival of the most diverse organisms. Thermosensitive transient receptor potential (thermoTRP) channels have evolved as a class of ion channels activated by a wide range of temperatures. These molecular thermal sensors are spread through the different TRP channel subfamilies. Among the Melastatin subfamily of TRP channels, the eighth member, TRPM8, is a calcium-permeable cationic ion channel activated by cold, by substances that evoke cold sensation such as menthol, and by voltage. This channel is considered the main molecular entity responsible for the sensitivity to cold of primary sensory neurons of the somatosensory system. Here we present to the readers a summary of some the most relevant biophysical properties, physiological role, and molecular intimacies of this polymodal thermoTRP channel.
Collapse
Affiliation(s)
- Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - María Pertusa
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
37
|
Abstract
Transient receptor potential melastatin 8 (TRPM8) was originally cloned from prostate tissue. Shortly thereafter, the protein was identified as a cold- and menthol-activated ion channel in peripheral sensory neurons, where it plays a critical role in cold temperature detection. In this chapter, we review our current understanding of the molecular and biophysical properties, the pharmacology, and the modulation by signaling molecules of this TRP channel. Finally, we examine the physiological role of TRPM8 and its emerging link to various human diseases, including pain, prostate cancer, dry eye disease, and metabolic disorders.
Collapse
Affiliation(s)
- Laura Almaraz
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Avenida S. Ramón y Cajal s.n., San Juan de Alicante, 03550, Spain
| | | | | | | |
Collapse
|
38
|
Rohacs T. Regulation of transient receptor potential channels by the phospholipase C pathway. Adv Biol Regul 2013; 53:341-55. [PMID: 23916247 PMCID: PMC3805701 DOI: 10.1016/j.jbior.2013.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/01/2013] [Indexed: 11/21/2022]
Abstract
Transient Receptor Potential (TRP) channels were discovered while analyzing visual mutants in Drosophila. The protein encoded by the transient receptor potential (trp) gene is a Ca(2+) permeable cation channel activated downstream of the phospholipase C (PLC) pathway. While searching for homologs in other organisms, a surprisingly large number of mammalian TRP channels was cloned. The regulation of TRP channels is quite diverse, but many of them are either activated downstream of PLC, or modulated by it. This review will summarize the current knowledge on regulation of TRP channels by PLC, with special focus on TRPC-s, which can be considered as effectors of PLC and the heat- and capsaicin-sensitive TRPV1, which is modulated by the PLC pathway in a complex manner.
Collapse
Affiliation(s)
- Tibor Rohacs
- Rutgers, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
39
|
Selescu T, Ciobanu AC, Dobre C, Reid G, Babes A. Camphor Activates and Sensitizes Transient Receptor Potential Melastatin 8 (TRPM8) to Cooling and Icilin. Chem Senses 2013; 38:563-75. [DOI: 10.1093/chemse/bjt027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Liu XR, Liu Q, Chen GY, Hu Y, Sham JSK, Lin MJ. Down-regulation of TRPM8 in pulmonary arteries of pulmonary hypertensive rats. Cell Physiol Biochem 2013; 31:892-904. [PMID: 23817166 DOI: 10.1159/000350107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is characterized by profound vascular remodeling and alterations in Ca(2+) homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Multiple transient receptor potential melastatin-related (TRPM) subtypes have been identified in vascular tissue. However, the changes in the expression and function of TRPM channels in pulmonary hypertension have not been characterized in detail. METHODS We examined the expression of TRPM channels and characterized the functions of the altered TRPM channels in two widely used rat models of chronic hypoxia (CH)- and monocrotaline (MCT)-induced PH. RESULTS CH-exposed and MCT-treated rats developed severe PH and right ventricular hypertrophy, with a significant decrease in TRPM8 mRNA and protein expression in pulmonary arteries (PAs). The downregulation of TRPM8 was associated with significant reduction in menthol-induced cation-influx. Time-profiles showed that TRPM8 down-regulation occurred prior to the increase of right ventricular systolic pressure (RVSP) and right ventricular mass index (RVMI) in CH-exposed rats, but these changes were delayed in MCT-treated rats. The TRPM8 agonist menthol induced vasorelaxation in phenylephrine-precontracted PAs, and the vasorelaxing effects were significantly attenuated in PAs of both PH rat models, consistent with decreased TRPM8 expression. CONCLUSION Downregulation of TRPM8 may contribute to the enhanced vasoreactivity in PH.
Collapse
Affiliation(s)
- Xiao-Ru Liu
- Department of Physiology and Pathophysiology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Kurose M, Meng ID. Dry eye modifies the thermal and menthol responses in rat corneal primary afferent cool cells. J Neurophysiol 2013; 110:495-504. [PMID: 23636717 DOI: 10.1152/jn.00222.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dry eye syndrome is a painful condition caused by inadequate or altered tear film on the ocular surface. Primary afferent cool cells innervating the cornea regulate the ocular fluid status by increasing reflex tearing in response to evaporative cooling and hyperosmicity. It has been proposed that activation of corneal cool cells via a transient receptor potential melastatin 8 (TRPM8) channel agonist may represent a potential therapeutic intervention to treat dry eye. This study examined the effect of dry eye on the response properties of corneal cool cells and the ability of the TRPM8 agonist menthol to modify these properties. A unilateral dry eye condition was created in rats by removing the left lacrimal gland. Lacrimal gland removal reduced tears in the dry eye to 35% compared with the contralateral eye and increased the number of spontaneous blinks in the dry eye by over 300%. Extracellular single-unit recordings were performed 8-10 wk following surgery in the trigeminal ganglion of dry eye animals and age-matched controls. Responses of corneal cool cells to cooling were examined after the application of menthol (10 μM-1.0 mM) to the ocular surface. The peak frequency of discharge to cooling was higher and the cooling threshold was warmer in dry eye animals compared with controls. The dry condition also altered the neuronal sensitivity to menthol, causing desensitization to cold-evoked responses at concentrations that produced facilitation in control animals. The menthol-induced desensitization of corneal cool cells would likely result in reduced tearing, a deleterious effect in individuals with dry eye.
Collapse
Affiliation(s)
- Masayuki Kurose
- Division of Oral Physiology, Department of Oral Biological Sciences, Niigata University, Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | |
Collapse
|
42
|
Sarria I, Ling J, Xu GY, Gu JG. Sensory discrimination between innocuous and noxious cold by TRPM8-expressing DRG neurons of rats. Mol Pain 2012; 8:79. [PMID: 23092296 PMCID: PMC3495675 DOI: 10.1186/1744-8069-8-79] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/20/2012] [Indexed: 12/16/2022] Open
Abstract
The TRPM8 channel is a principal cold transducer that is expressed on some primary afferents of the somatic and cranial sensory systems. However, it is uncertain whether TRPM8-expressing afferent neurons have the ability to convey innocuous and noxious cold stimuli with sensory discrimination between the two sub-modalities. Using rat dorsal root ganglion (DRG) neurons and the patch-clamp recording technique, we characterized membrane and action potential properties of TRPM8-expressing DRG neurons at 24°C and 10°C. TRPM8-expressing neurons could be classified into TTX-sensitive (TTXs/TRPM8) and TTX-resistant (TTXr/TRPM8) subtypes based on the sensitivity to tetrodotoxin (TTX) block of their action potentials. These two subtypes of cold-sensing cells displayed different membrane and action potential properties. Voltage-activated inward Na+ currents were highly susceptible to cooling temperature and abolished by ~95% at 10°C in TTXs/TRPM8 DRG neurons, but remained substantially large at 10°C in TTXr/TRPM8 cells. In both TTXs/TRPM8 and TTXr/TRPM8 cells, voltage-activated outward K+ currents were substantially inhibited at 10°C, and the cooling-sensitive outward currents resembled A-type K+ currents. TTXs/TRPM8 neurons and TTXr/TRPM8 neurons were shown to fire action potentials at innocuous and noxious cold temperatures respectively, demonstrating sensory discrimination between innocuous and noxious cold by the two subpopulations of cold-sensing DRG neurons. The effects of cooling temperatures on voltage-gated Na+ channels and A-type K+ currents are likely to be contributing factors to sensory discrimination of cold by TTXs/TRPM8 and TTXr/TRPM8 afferent neurons.
Collapse
Affiliation(s)
- Ignacio Sarria
- Department of Anesthesiology and the Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
43
|
Klein AH, Sawyer CM, Takechi K, Davoodi A, Ivanov MA, Carstens MI, Carstens E. Topical hindpaw application of L-menthol decreases responsiveness to heat with biphasic effects on cold sensitivity of rat lumbar dorsal horn neurons. Neuroscience 2012; 219:234-42. [PMID: 22687951 PMCID: PMC3402706 DOI: 10.1016/j.neuroscience.2012.05.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/25/2012] [Accepted: 05/25/2012] [Indexed: 11/17/2022]
Abstract
Menthol is used in pharmaceutical applications because of its desired cooling and analgesic properties. The neural mechanism by which topical application of menthol decreases heat pain is not fully understood. We investigated the effects of topical menthol application on lumbar dorsal horn wide dynamic range and nociceptive-specific neuronal responses to noxious heat and cooling of glabrous hindpaw cutaneous receptive fields. Menthol increased thresholds for responses to noxious heat in a concentration-dependent manner. Menthol had a biphasic effect on cold-evoked responses, reducing the threshold (to warmer temperatures) at a low (1%) concentration and increasing threshold and reducing response magnitude at high (10%, 40%) concentrations. Menthol had little effect on responses to innocuous or noxious mechanical stimuli, ruling out a local anesthetic action. Application of 40% menthol to the contralateral hindpaw tended to reduce responses to cooling and noxious heat, suggesting a weak heterosegmental inhibitory effect. These results indicate that menthol has an analgesic effect on heat sensitivity of nociceptive dorsal horn neurons, as well as biphasic effects on cold sensitivity, consistent with previous behavioral observations.
Collapse
Affiliation(s)
- Amanda H. Klein
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - Carolyn M. Sawyer
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - Kenichi Takechi
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - Auva Davoodi
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - Margaret A. Ivanov
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - Mirela Iodi Carstens
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| | - E Carstens
- Department of Neurobiology, Physiology and Behavior University of California, Davis 1 Shields Avenue Davis, CA 95616
| |
Collapse
|
44
|
Choveau FS, Abderemane-Ali F, Coyan FC, Es-Salah-Lamoureux Z, Baró I, Loussouarn G. Opposite Effects of the S4-S5 Linker and PIP(2) on Voltage-Gated Channel Function: KCNQ1/KCNE1 and Other Channels. Front Pharmacol 2012; 3:125. [PMID: 22787448 PMCID: PMC3389672 DOI: 10.3389/fphar.2012.00125] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/14/2012] [Indexed: 01/16/2023] Open
Abstract
Voltage-gated potassium (Kv) channels are tetramers, each subunit presenting six transmembrane segments (S1-S6), with each S1-S4 segments forming a voltage-sensing domain (VSD) and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5(L)) and of the S6 C-terminal part (S6(T)) in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5(L) is acting like a ligand binding to S6(T) to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5(L), the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP(2)), stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated) require PIP(2) to function properly, confirming its crucial importance as an ion channel cofactor. This is highlighted in cases in which an altered regulation of ion channels by PIP(2) leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP(2) and S4S5(L)), and assesses their potential physiological and pathophysiological roles.
Collapse
Affiliation(s)
- Frank S Choveau
- UMR 1087, Institut National de la Santé et de la Recherche Médicale Nantes, France
| | | | | | | | | | | |
Collapse
|
45
|
Yudin Y, Rohacs T. Regulation of TRPM8 channel activity. Mol Cell Endocrinol 2012; 353:68-74. [PMID: 22061619 PMCID: PMC3295897 DOI: 10.1016/j.mce.2011.10.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/21/2011] [Accepted: 10/22/2011] [Indexed: 11/28/2022]
Abstract
Transient Receptor Potential Melastatin 8 (TRPM8) is a Ca(2+) permeable non-selective cation channel directly activated by cold temperatures and chemical agonists such as menthol. It is a well established sensor of environmental cold temperatures, found in peripheral sensory neurons, where its activation evokes depolarization and action potentials. The activity of TRPM8 is regulated by a number of cellular signaling pathways, most notably by phosphoinositides and the activation of phospholipase C. This review will summarize current knowledge on the physiological and pathophysiological roles of TRPM8 and its regulation by various intracellular messenger molecules and signaling pathways.
Collapse
Affiliation(s)
- Yevgen Yudin
- Department of Pharmacology and Physiology, UMDNJ - New Jersey Medical School, Newark, NJ 07103, USA
| | | |
Collapse
|