1
|
Datta D, Yang S, Joyce MKP, Woo E, McCarroll SA, Gonzalez-Burgos G, Perone I, Uchendu S, Ling E, Goldman M, Berretta S, Murray J, Morozov Y, Arellano J, Duque A, Rakic P, O’Dell R, van Dyck CH, Lewis DA, Wang M, Krienen FM, Arnsten AFT. Key Roles of CACNA1C/Cav1.2 and CALB1/Calbindin in Prefrontal Neurons Altered in Cognitive Disorders. JAMA Psychiatry 2024; 81:870-881. [PMID: 38776078 PMCID: PMC11112502 DOI: 10.1001/jamapsychiatry.2024.1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/14/2024] [Indexed: 05/25/2024]
Abstract
Importance The risk of mental disorders is consistently associated with variants in CACNA1C (L-type calcium channel Cav1.2) but it is not known why these channels are critical to cognition, and whether they affect the layer III pyramidal cells in the dorsolateral prefrontal cortex that are especially vulnerable in cognitive disorders. Objective To examine the molecular mechanisms expressed in layer III pyramidal cells in primate dorsolateral prefrontal cortices. Design, Setting, and Participants The design included transcriptomic analyses from human and macaque dorsolateral prefrontal cortex, and connectivity, protein expression, physiology, and cognitive behavior in macaques. The research was performed in academic laboratories at Yale, Harvard, Princeton, and the University of Pittsburgh. As dorsolateral prefrontal cortex only exists in primates, the work evaluated humans and macaques. Main Outcomes and Measures Outcome measures included transcriptomic signatures of human and macaque pyramidal cells, protein expression and interactions in layer III macaque pyramidal cells using light and electron microscopy, changes in neuronal firing during spatial working memory, and working memory performance following pharmacological treatments. Results Layer III pyramidal cells in dorsolateral prefrontal cortex coexpress a constellation of calcium-related proteins, delineated by CALB1 (calbindin), and high levels of CACNA1C (Cav1.2), GRIN2B (NMDA receptor GluN2B), and KCNN3 (SK3 potassium channel), concentrated in dendritic spines near the calcium-storing smooth endoplasmic reticulum. L-type calcium channels influenced neuronal firing needed for working memory, where either blockade or increased drive by β1-adrenoceptors, reduced neuronal firing by a mean (SD) 37.3% (5.5%) or 40% (6.3%), respectively, the latter via SK potassium channel opening. An L-type calcium channel blocker or β1-adrenoceptor antagonist protected working memory from stress. Conclusions and Relevance The layer III pyramidal cells in the dorsolateral prefrontal cortex especially vulnerable in cognitive disorders differentially express calbindin and a constellation of calcium-related proteins including L-type calcium channels Cav1.2 (CACNA1C), GluN2B-NMDA receptors (GRIN2B), and SK3 potassium channels (KCNN3), which influence memory-related neuronal firing. The finding that either inadequate or excessive L-type calcium channel activation reduced neuronal firing explains why either loss- or gain-of-function variants in CACNA1C were associated with increased risk of cognitive disorders. The selective expression of calbindin in these pyramidal cells highlights the importance of regulatory mechanisms in neurons with high calcium signaling, consistent with Alzheimer tau pathology emerging when calbindin is lost with age and/or inflammation.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Shengtao Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Mary Kate P. Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Elizabeth Woo
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Steven A. McCarroll
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | | | - Isabella Perone
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Stacy Uchendu
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Emi Ling
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Melissa Goldman
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Sabina Berretta
- Basic Neuroscience Division, McLean Hospital, Belmont, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - John Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Yury Morozov
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Jon Arellano
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Alvaro Duque
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Ryan O’Dell
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher H. van Dyck
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - David A. Lewis
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Fenna M. Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Amy F. T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
2
|
Shahoha M, Cohen R, Ben-Simon Y, Ashery U. cAMP-Dependent Synaptic Plasticity at the Hippocampal Mossy Fiber Terminal. Front Synaptic Neurosci 2022; 14:861215. [PMID: 35444523 PMCID: PMC9013808 DOI: 10.3389/fnsyn.2022.861215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a crucial second messenger involved in both pre- and postsynaptic plasticity in many neuronal types across species. In the hippocampal mossy fiber (MF) synapse, cAMP mediates presynaptic long-term potentiation and depression. The main cAMP-dependent signaling pathway linked to MF synaptic plasticity acts via the activation of the protein kinase A (PKA) molecular cascade. Accordingly, various downstream putative synaptic PKA target proteins have been linked to cAMP-dependent MF synaptic plasticity, such as synapsin, rabphilin, synaptotagmin-12, RIM1a, tomosyn, and P/Q-type calcium channels. Regulating the expression of some of these proteins alters synaptic release probability and calcium channel clustering, resulting in short- and long-term changes to synaptic efficacy. However, despite decades of research, the exact molecular mechanisms by which cAMP and PKA exert their influences in MF terminals remain largely unknown. Here, we review current knowledge of different cAMP catalysts and potential downstream PKA-dependent molecular cascades, in addition to non-canonical cAMP-dependent but PKA-independent cascades, which might serve as alternative, compensatory or competing pathways to the canonical PKA cascade. Since several other central synapses share a similar form of presynaptic plasticity with the MF, a better description of the molecular mechanisms governing MF plasticity could be key to understanding the relationship between the transcriptional and computational levels across brain regions.
Collapse
Affiliation(s)
- Meishar Shahoha
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ronni Cohen
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yoav Ben-Simon
- Department of Neurophysiology, Vienna Medical University, Vienna, Austria
- *Correspondence: Yoav Ben-Simon,
| | - Uri Ashery
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Uri Ashery,
| |
Collapse
|
3
|
Nakamura M, Jang IS, Yamaga T, Kotani N, Akaike N. Effects of nitrous oxide on glycinergic transmission in rat spinal neurons. Brain Res Bull 2020; 162:191-198. [PMID: 32599127 DOI: 10.1016/j.brainresbull.2020.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022]
Abstract
We investigated the effects of nitrous oxide (N2O) on glycinergic inhibitory whole-cell and synaptic responses using a "synapse bouton preparation," dissociated mechanically from rat spinal sacral dorsal commissural nucleus (SDCN) neurons. This technique can evaluate pure single- or multi-synaptic responses from native functional nerve endings and enable us to accurately quantify how N2O influences pre- and postsynaptic transmission. We found that 70 % N2O enhanced exogenous glycine-induced whole-cell currents (IGly) at glycine concentrations lower than 3 × 10-5 M, but did not affect IGly at glycine concentrations higher than 10-4 M. N2O did not affect the amplitude and 1/e decay-time of both spontaneous and miniature glycinergic inhibitory postsynaptic currents recorded in the absence and presence of tetrodotoxin (sIPSCs and mIPSCs, respectively). The decrease in frequency induced by N2O was observed in sIPSCs but not in mIPSCs, which was recorded in the presence of both tetrodotoxin and Cd2+, which block voltage-gated Na+ and Ca2+ channels, respectively. N2O also decreased the amplitude and increased the failure rate and paired-pulse ratio of action potential-evoked glycinergic inhibitory postsynaptic currents. N2O slightly decreased the Ba2+ currents mediated by voltage-gated Ca2+ channels in SDCN neurons. We found that N2O suppresses glycinergic responses at synaptic levels with presynaptic effect having much more predominant role. The difference between glycinergic whole-cell and synaptic responses suggests that extrasynaptic responses seriously modulate whole-cell currents. Our results strongly suggest that these responses may thus in part explain analgesic effects of N2O via marked glutamatergic inhibition by glycinergic responses in the spinal cord.
Collapse
Affiliation(s)
- Michiko Nakamura
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 700-412, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 700-412, Republic of Korea
| | - Toshitaka Yamaga
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto 861-5598, Japan
| | - Naoki Kotani
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama 343-0821, Japan
| | - Norio Akaike
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama 343-0821, Japan; Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto 860-8518, Japan.
| |
Collapse
|
4
|
Yang D, Ding C, Qi G, Feldmeyer D. Cholinergic and Adenosinergic Modulation of Synaptic Release. Neuroscience 2020; 456:114-130. [PMID: 32540364 DOI: 10.1016/j.neuroscience.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/14/2023]
Abstract
In this review we will discuss the effect of two neuromodulatory transmitters, acetylcholine (ACh) and adenosine, on the synaptic release probability and short-term synaptic plasticity. ACh and adenosine differ fundamentally in the way they are released into the extracellular space. ACh is released mostly from synaptic terminals and axonal bouton of cholinergic neurons in the basal forebrain (BF). Its mode of action on synaptic release probability is complex because it activate both ligand-gated ion channels, so-called nicotinic ACh receptors and G-protein coupled muscarinic ACh receptors. In contrast, adenosine is released from both neurons and glia via nucleoside transporters or diffusion over the cell membrane in a non-vesicular, non-synaptic fashion; its receptors are exclusively G-protein coupled receptors. We show that ACh and adenosine effects are highly specific for an identified synaptic connection and depend mostly on the presynaptic but also on the postsynaptic receptor type and discuss the functional implications of these differences.
Collapse
Affiliation(s)
- Danqing Yang
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Chao Ding
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Guanxiao Qi
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Dirk Feldmeyer
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany; RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, Germany; Jülich-Aachen Research Alliance Brain - JARA Brain, Germany.
| |
Collapse
|
5
|
Jang IS, Nakamura M, Kubota H, Noda M, Akaike N. Extracellular pH modulation of excitatory synaptic transmission in hippocampal CA3 neurons. J Neurophysiol 2020; 123:2426-2436. [PMID: 32401126 DOI: 10.1152/jn.00013.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, the effect of extracellular pH on glutamatergic synaptic transmission was examined in mechanically dissociated rat hippocampal CA3 pyramidal neurons using a whole-cell patch-clamp technique under voltage-clamp conditions. Native synaptic boutons were isolated without using any enzymes, using a so-called "synapse bouton preparation," and preserved for the electrical stimulation of single boutons. Both the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) were found to decrease and increase in response to modest acidic (~pH 6.5) and basic (~pH 8.5) solutions, respectively. These changes in sEPSC frequency were not affected by the addition of TTX but completely disappeared by successive addition of Cd2+. However, changes in sEPSC amplitude induced by acidic and basic extracellular solutions were not affected by the addition of neither TTX nor Cd2+. The glutamate-induced whole-cell currents were decreased and increased by acidic and basic solutions, respectively. Acidic pH also decreased the amplitude and increased the failure rate (Rf) and paired-pulse rate (PPR) of glutamatergic electrically evoked excitatory postsynaptic currents (eEPSCs), while a basic pH increased the amplitude and decreased both the Rf and PPR of eEPSCs. The kinetics of the currents were not affected by changes in pH. Acidic and basic solutions decreased and increased voltage-gated Ca2+ but not Na+ channel currents in the dentate gyrus granule cell bodies. Our results indicate that extracellular pH modulates excitatory transmission via both pre- and postsynaptic sites, with the presynaptic modulation correlated to changes in voltage-gated Ca2+ channel currents.NEW & NOTEWORTHY The effects of external pH changes on spontaneous, miniature, and evoked excitatory synaptic transmission in CA3 hippocampal synapses were examined using the isolated nerve bouton preparation, which allowed for the accurate regulation of extracellular pH at the synapses. Acidification generally reduced transmission, partly via effects on presynaptic Ca2+ channel currents, while alkalization generally enhanced transmission. Both pre- and postsynaptic sites contributed to these effects.
Collapse
Affiliation(s)
- Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Michiko Nakamura
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hisahiko Kubota
- Department of Pharmacology, Faculty of Medicine, Saga University, Saga, Japan
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Norio Akaike
- Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, Kumamoto, Japan.,Research Division of Neurophysiology, Kitamoto Hospital, Saitama, Japan
| |
Collapse
|
6
|
Kubota H, Akaike H, Okamitsu N, Jang IS, Nonaka K, Kotani N, Akaike N. Xenon modulates the GABA and glutamate responses at genuine synaptic levels in rat spinal neurons. Brain Res Bull 2020; 157:51-60. [PMID: 31987927 DOI: 10.1016/j.brainresbull.2020.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/11/2023]
Abstract
Effects of xenon (Xe) on whole-cell currents induced by glutamate (Glu), its three ionotropic subtypes, and GABA, as well as on the fast synaptic glutamatergic and GABAergic transmissions, were studied in the mechanically dissociated "synapse bouton preparation" of rat spinal sacral dorsal commissural nucleus (SDCN) neurons. This technique evaluates pure single or multi-synapse responses from native functional nerve endings and enables us to quantify how Xe influences pre- and postsynaptic transmissions accurately. Effects of Xe on glutamate (Glu)-, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-, kainate (KA)- and N-methyl-d-aspartate (NMDA)- and GABAA receptor-mediated whole-cell currents were investigated by the conventional whole-cell patch configuration. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) were measured as spontaneous (s) and evoked (e) EPSCs and IPSCs. Evoked synaptic currents were elicited by paired-pulse focal electric stimulation. Xe decreased Glu, AMPA, KA, and NMDA receptor-mediated whole-cell currents but did not change GABAA receptor-mediated whole-cell currents. Xe decreased the frequency and amplitude but did not affect the 1/e decay time of the glutamatergic sEPSCs. Xe decreased the frequency without affecting the amplitude and 1/e decay time of GABAergic sIPSCs. Xe decreased the amplitude and increased the failure rate (Rf) and paired-pulse ratio (PPR) without altering the 1/e decay time of both eEPSC and eIPSC, suggesting that Xe acts on the presynaptic side of the synapse. The presynaptic inhibition was greater in eEPSCs than in eIPSCs. We conclude that Xe decreases glutamatergic and GABAergic spontaneous and evoked transmissions at the presynaptic level. The glutamatergic presynaptic responses are the main target of anesthesia-induced neuronal responses. In contrast, GABAergic responses minimally contribute to Xe anesthesia.
Collapse
Affiliation(s)
- Hisahiko Kubota
- Department of Pharmacology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Hironari Akaike
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Nobuharu Okamitsu
- Department of Electrics and Computer Engineering, Faculty of Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima, 731-5193, Japan
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 700-412, Republic of Korea
| | - Kiku Nonaka
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto, 861-5598, Japan
| | - Naoki Kotani
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama, 343-0821, Japan
| | - Norio Akaike
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama, 343-0821, Japan; Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto, 860-8518, Japan.
| |
Collapse
|
7
|
Nonaka K, Kotani N, Akaike H, Shin MC, Yamaga T, Nagami H, Akaike N. Xenon modulates synaptic transmission to rat hippocampal CA3 neurons at both pre- and postsynaptic sites. J Physiol 2019; 597:5915-5933. [PMID: 31598974 DOI: 10.1113/jp278762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/07/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Xenon (Xe) non-competitively inhibited whole-cell excitatory glutamatergic current (IGlu ) and whole-cell currents gated by ionotropic glutamate receptors (IAMPA , IKA , INMDA ), but had no effect on inhibitory GABAergic whole-cell current (IGABA ). Xe decreased only the frequency of glutamatergic spontaneous and miniature excitatory postsynaptic currents and GABAergic spontaneous inhibitory postsynaptic currents without changing the amplitude or decay times of these synaptic responses. Xe decreased the amplitude of both the action potential-evoked excitatory and the action potential-evoked inhibitory postsynaptic currents (eEPSCs and eIPSCs, respectively) via a presynaptic inhibition in transmitter release. We conclude that the main site of action of Xe is presynaptic in both excitatory and inhibitory synapses, and that the Xe inhibition is much greater for eEPSCs than for eIPSCs. ABSTRACT To clarify how xenon (Xe) modulates excitatory and inhibitory whole-cell and synaptic responses, we conducted an electrophysiological experiment using the 'synapse bouton preparation' dissociated mechanically from the rat hippocampal CA3 region. This technique can evaluate pure single- or multi-synapse responses and enabled us to accurately quantify how Xe influences pre- and postsynaptic aspects of synaptic transmission. Xe inhibited whole-cell glutamatergic current (IGlu ) and whole-cell currents gated by the three subtypes of glutamate receptor (IAMPA , IKA and INMDA ). Inhibition of these ionotropic currents occurred in a concentration-dependent, non-competitive and voltage-independent manner. Xe markedly depressed the slow steady current component of IAMPA almost without altering the fast phasic IAMPA component non-desensitized by cyclothiazide. It decreased current frequency without affecting the amplitude and current kinetics of glutamatergic spontaneous excitatory postsynaptic currents and miniature excitatory postsynaptic currents. It decreased the amplitude, increasing the failure rate (Rf) and paired-pulse rate (PPR) without altering the current kinetics of glutamatergic action potential-evoked excitatory postsynaptic currents. Thus, Xe has a clear presynaptic effect on excitatory synaptic transmission. Xe did not alter the GABA-induced whole-cell current (IGABA ). It decreased the frequency of GABAergic spontaneous inhibitory postsynaptic currents without changing the amplitude and current kinetics. It decreased the amplitude and increased the PPR and Rf of the GABAergic action potential-evoked inhibitory postsynaptic currents without altering the current kinetics. Thus, Xe acts exclusively at presynaptic sites at the GABAergic synapse. In conclusion, our data indicate that a presynaptic decrease of excitatory transmission is likely to be the major mechanism by which Xe induces anaesthesia, with little contribution of effects on GABAergic synapses.
Collapse
Affiliation(s)
- Kiku Nonaka
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto, 861-5598, Japan
| | - Naoki Kotani
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama, 343-0821, Japan
| | - Hironari Akaike
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Min-Chul Shin
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto, 861-5598, Japan
| | - Toshitaka Yamaga
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto, 861-5598, Japan
| | - Hideaki Nagami
- Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto, 860-8518, Japan
| | - Norio Akaike
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama, 343-0821, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto, 860-8518, Japan
| |
Collapse
|
8
|
Yabuki Y, Wu L, Fukunaga K. Cognitive enhancer ST101 improves schizophrenia-like behaviors in neonatal ventral hippocampus-lesioned rats in association with improved CaMKII/PKC pathway. J Pharmacol Sci 2019; 140:263-272. [PMID: 31474557 DOI: 10.1016/j.jphs.2019.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 12/31/2022] Open
Abstract
Atypical antipsychotics improve positive and negative symptoms but are not effective for treating cognitive impairments in patients with schizophrenia. We previously reported that cognitive impairments in neonatal ventral hippocampus (NVH)-lesioned rats show resistance to atypical antipsychotics risperidone and are associated with reduced calcium/calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) signaling in memory-related regions. The cognitive enhancer ST101 (spiro[imi-dazo[1,2-a]pyridine-3,2-indan]-2(3H)-one) stimulates CaMKII activity in the hippocampus and medial prefrontal cortex (mPFC). We thus tested ST101 on cognitive impairments in NVH-lesioned rats. Chronic ST101 administration (0.1 and/or 0.5 mg/kg, p.o.) significantly improved deficits in prepulse inhibition (PPI), social interaction, and cognitive function in NVH-lesioned rats. ST101 administration (0.5 mg/kg, p.o.) significantly restored the decreased CaMKII autophosphorylation (Thr-286) in the mPFC and hippocampal CA1 regions of NVH-lesioned rats when assessed by immunohistochemistry. Chronic ST101 administration (0.1 mg/kg, p.o.) improved the decline in phosphorylation levels of CaMKII (Thr-286), PKCα (Ser-657), α-amino-3-hydroxy-5-methyl-4-isoxazol- propionic acid (AMPA)-type glutamate receptor subunit 1 (GluA1: Ser-831), and N-methyl-d-aspartate (NMDA) receptor subunit 1 (GluN1: Ser-896) in the mPFC and hippocampal CA1 regions. Taken together, these results suggest that ST101 improves schizophrenia-like behaviors and cognitive impairment by enhancing CaMKII/PKCα signaling in the mPFC and hippocampus in NVH-lesioned rats.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Lei Wu
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|