1
|
Ebina T, Sasagawa A, Hong D, Setsuie R, Obara K, Masamizu Y, Kondo M, Terada SI, Ozawa K, Uemura M, Takaji M, Watakabe A, Kobayashi K, Ohki K, Yamamori T, Murayama M, Matsuzaki M. Dynamics of directional motor tuning in the primate premotor and primary motor cortices during sensorimotor learning. Nat Commun 2024; 15:7127. [PMID: 39164245 PMCID: PMC11336224 DOI: 10.1038/s41467-024-51425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Sensorimotor learning requires reorganization of neuronal activity in the premotor cortex (PM) and primary motor cortex (M1). To reveal PM- and M1-specific reorganization in a primate, we conducted calcium imaging in common marmosets while they learned a two-target reaching (pull/push) task after mastering a one-target reaching (pull) task. Throughout learning of the two-target reaching task, the dorsorostral PM (PMdr) showed peak activity earlier than the dorsocaudal PM (PMdc) and M1. During learning, the reaction time in pull trials increased and correlated strongly with the peak timing of PMdr activity. PMdr showed decreasing representation of newly introduced (push) movement, whereas PMdc and M1 maintained high representation of pull and push movements. Many task-related neurons in PMdc and M1 exhibited a strong preference to either movement direction. PMdc neurons dynamically switched their preferred direction depending on their performance in push trials in the early learning stage, whereas M1 neurons stably retained their preferred direction and high similarity of preferred direction between neighbors. These results suggest that in primate sensorimotor learning, dynamic directional motor tuning in PMdc converts the sensorimotor association formed in PMdr to the stable and specific motor representation of M1.
Collapse
Grants
- JP19dm0207069 Japan Agency for Medical Research and Development (AMED)
- JP19dm0107150 Japan Agency for Medical Research and Development (AMED)
- JP19dm0207085 Japan Agency for Medical Research and Development (AMED)
- JP19dm0207085 Japan Agency for Medical Research and Development (AMED)
- JP15dm0207001 Japan Agency for Medical Research and Development (AMED)
- JP15dm0207001 Japan Agency for Medical Research and Development (AMED)
- 22H05160 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H00388 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H00302 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04977 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H03546 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 17H04982 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Teppei Ebina
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akitaka Sasagawa
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Dokyeong Hong
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rieko Setsuie
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Keitaro Obara
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Yoshito Masamizu
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Masashi Kondo
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Terada
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuya Ozawa
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Masato Uemura
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masafumi Takaji
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, Japan
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Aichi, Japan
| | - Kenichi Ohki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, Japan
- Central Institute of Experimental Animals, Kanagawa, Japan
| | - Masanori Murayama
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Falaki A, Quessy S, Dancause N. Differential Modulation of Local Field Potentials in the Primary and Premotor Cortices during Ipsilateral and Contralateral Reach to Grasp in Macaque Monkeys. J Neurosci 2024; 44:e1161232024. [PMID: 38589229 PMCID: PMC11112639 DOI: 10.1523/jneurosci.1161-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
Hand movements are associated with modulations of neuronal activity across several interconnected cortical areas, including the primary motor cortex (M1) and the dorsal and ventral premotor cortices (PMd and PMv). Local field potentials (LFPs) provide a link between neuronal discharges and synaptic inputs. Our current understanding of how LFPs vary in M1, PMd, and PMv during contralateral and ipsilateral movements is incomplete. To help reveal unique features in the pattern of modulations, we simultaneously recorded LFPs in these areas in two macaque monkeys performing reach and grasp movements with either the right or left hand. The greatest effector-dependent differences were seen in M1, at low (≤13 Hz) and γ frequencies. In premotor areas, differences related to hand use were only present in low frequencies. PMv exhibited the greatest increase in low frequencies during instruction cues and the smallest effector-dependent modulation during movement execution. In PMd, δ oscillations were greater during contralateral reach and grasp, and β activity increased during contralateral grasp. In contrast, β oscillations decreased in M1 and PMv. These results suggest that while M1 primarily exhibits effector-specific LFP activity, premotor areas compute more effector-independent aspects of the task requirements, particularly during movement preparation for PMv and production for PMd. The generation of precise hand movements likely relies on the combination of complementary information contained in the unique pattern of neural modulations contained in each cortical area. Accordingly, integrating LFPs from premotor areas and M1 could enhance the performance and robustness of brain-machine interfaces.
Collapse
Affiliation(s)
- Ali Falaki
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Stephan Quessy
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Center interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
3
|
Hurtubise JM, Gorbet DJ, Hynes L, Macpherson AK, Sergio LE. Cortical and cerebellar structural correlates of cognitive-motor integration performance in females with and without persistent concussion symptoms. Brain Inj 2023; 37:397-411. [PMID: 36548113 DOI: 10.1080/02699052.2022.2158231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Fifteen percent of individuals who sustain a concussion develop persistent concussion symptoms (PCS). Recent literature has demonstrated atrophy of the frontal, parietal, and cerebellar regions following acute concussive injury. The frontoparietal-cerebellar network is essential for the performance of visuomotor transformation tasks requiring cognitive-motor integration (CMI), important for daily function. PURPOSE We investigated cortical and subcortical structural differences and how these differences are associated with CMI performance in those with PCS versus healthy controls. METHODS Twenty-six age-matched female participants (13 PCS, 13 healthy) completed four visuomotor tasks. Additionally, MR-images were analyzed for cortical thickness and volume, and cerebellar lobule volume. RESULTS No statistically significant group differences were found in CMI performance. However, those with PCS demonstrated a significantly thicker and larger precuneus, and significantly smaller cerebellar lobules (VIIIa, VIIIb, X) compared to controls. When groups were combined, volumes of both the cerebellar lobules and cortical regions were associated with CMI task performance. CONCLUSION The lack of behavioral differences combined with the structural differences may reflect a compensatory mechanism for those with PCS. In addition, this study highlights the effectiveness of CMI tasks in estimating the structural integrity of the frontoparietal-cerebellar network and is among the first to demonstrate structural correlates of PCS.
Collapse
Affiliation(s)
- Johanna M Hurtubise
- School of Kinesiology and Health Science, York University, Toronto, Canada
- Centre for Sport and Exercise Education, Camosun College, Victoria, Canada
| | - Diana J Gorbet
- School of Kinesiology and Health Science, York University, Toronto, Canada
| | - Loriann Hynes
- School of Kinesiology and Health Science, York University, Toronto, Canada
| | | | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, Toronto, Canada
| |
Collapse
|
4
|
Le DT, Ogawa H, Tsuyuhara M, Watanabe K, Watanabe T, Ochi R, Nishijo H, Mihara M, Fujita N, Urakawa S. Coupled versus decoupled visuomotor feedback: Differential frontoparietal activity during curved reach planning on simultaneous functional near-infrared spectroscopy and electroencephalography. Brain Behav 2022; 12:e2681. [PMID: 35701382 PMCID: PMC9304848 DOI: 10.1002/brb3.2681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Interacting with the environment requires the planning and execution of reach-to-target movements along given reach trajectory paths. Human neural mechanisms for the motor planning of linear, or point-to-point, reaching movements are relatively well studied. However, the corresponding representations for curved and more complex reaching movements require further investigation. Additionally, the visual and proprioceptive feedback of hand positioning can be spatially and sequentially coupled in alignment (e.g., directly reaching for an object), termed coupled visuomotor feedback, or spatially decoupled (e.g., dragging the computer mouse forward to move the cursor upward), termed decoupled visuomotor feedback. During reach planning, visuomotor processing routes may differ across feedback types. METHODS We investigated the involvement of the frontoparietal regions, including the superior parietal lobule (SPL), dorsal premotor cortex (PMd), and dorsolateral prefrontal cortex (dlPFC), in curved reach planning under different feedback conditions. Participants engaged in two delayed-response reaching tasks with identical starting and target position sets but different reach trajectory paths (linear or curved) under two feedback conditions (coupled or decoupled). Neural responses in frontoparietal regions were analyzed using a combination of functional near-infrared spectroscopy and electroencephalography. RESULTS The results revealed that, regarding the cue period, curved reach planning had a higher hemodynamic response in the left SPL and bilateral PMd and a smaller high-beta power in the left parietal regions than linear reach planning. Regarding the delay period, higher hemodynamic responses during curved reach planning were observed in the right dlPFC for decoupled feedback than those for coupled feedback. CONCLUSION These findings suggest the crucial involvement of both SPL and PMd activities in trajectory-path processing for curved reach planning. Moreover, the dlPFC may be especially involved in the planning of curved reaching movements under decoupled feedback conditions. Thus, this study provides insight into the neural mechanisms underlying reaching function via different feedback conditions.
Collapse
Affiliation(s)
- Duc Trung Le
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroki Ogawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masato Tsuyuhara
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuki Watanabe
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsunori Watanabe
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryosuke Ochi
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Masahito Mihara
- Department of Neurology, Kawasaki Medical School, Okayama, Japan
| | - Naoto Fujita
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Susumu Urakawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Phillips B, Adkins JC, Jones BD, Dalecki M. Prolonged eye-hand decoupling deficits in young adults with a history of concussion from adolescence. Eur J Sport Sci 2022; 23:1036-1046. [PMID: 35722908 DOI: 10.1080/17461391.2022.2085186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Previous studies reported that adolescents with a sport-related concussion history showed prolonged visuomotor deficits during an eye-hand decoupling task until around 1.5-2 years post-event. The present study expands this work, examining whether such deficits do or do not emerge when testing individuals in young adulthood, i.e. later post-event. Twenty-one non-athlete college students with sport-related concussion history from adolescence (CH; M = 21 yrs.; M = 46 months post-concussion, range 10-90 months) and twenty controls with no history of concussion (NoH; M = 21 yrs.) performed two touchscreen-based visuomotor tasks. It included a coupled task where eyes and hand moved in similar directions, and decoupled-task with eyes and hand going to different directions. Movement planning (e.g. reaction time, initial direction error) and execution (e.g. movement time, path length) related variables were analyzed in both groups and conditions. Movement execution measures were similar for both groups and conditions (all p > 0.05). However, movement planning was impaired in the CH participants in the eye-hand decoupling condition (p < 0.05). CH's initial direction error was larger (i.e. worse spatial movement planning) than in the NoH group. Although movement execution deficits shown in earlier work in youth were not present in young adults, the present results suggest that a sport-related concussion sustained in adolescence can lead to prolonged deficits with spatial movement planning processes while performing eye-hand decoupling tasks about four years post-injury. Further research should investigate whether these deficits continue into adulthood and expand control on time since concussion and number of concussion metrics.Highlights Young adult college students with a history of a sport-related concussion from adolescence, tested about four years post-incident, showed spatial movement preparation deficits during an eye-hand decoupling visuomotor task.Eye-hand reversal decoupling errors also correlated with time since concussion in those with concussion history.These prolonged eye-hand decoupling deficits may emerge with ongoing time post-event, as comparable deficits were absent in previous work where youth were tested sooner post-injury.Our current findings point towards long-lasting performance impairments in young adult non-athletes after a sport-related concussion from adolescence.
Collapse
Affiliation(s)
- Brandon Phillips
- School of Kinesiology, Louisiana State University, Baton Rouge, LA
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY
| | - Jaxon C. Adkins
- School of Kinesiology, Louisiana State University, Baton Rouge, LA
| | - Briasha D. Jones
- School of Kinesiology, Louisiana State University, Baton Rouge, LA
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Marc Dalecki
- School of Kinesiology, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
6
|
Smeha N, Kalkat R, Sergio LE, Hynes LM. Sex-related differences in visuomotor skill recovery following concussion in working-aged adults. BMC Sports Sci Med Rehabil 2022; 14:72. [PMID: 35443693 PMCID: PMC9022305 DOI: 10.1186/s13102-022-00466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/06/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The ability to perform visually-guided motor tasks requires the transformation of visual information into programmed motor outputs. When the guiding visual information does not align spatially with the motor output, the brain processes rules to integrate somatosensory information into an appropriate motor response. Performance on such rule-based, "cognitive-motor integration" tasks is affected in concussion. Here, we investigate the relationship between visuomotor skill performance, concussion history, and sex during the course of a post-concussion management program. METHODS Fifteen acutely concussed working-aged adults, 11 adults with a history of concussion, and 17 healthy controls all completed a recovery program over the course of 4 weeks. Prior to, mid-way, and following the program, all participants were tested on their visuomotor skills. RESULTS We observed an overall change in visuomotor behaviour in all groups, as participants completed the tasks faster and more accurately. Specifically, we observed significant visuomotor skill improvement between the first and final sessions in participants with a concussion history compared to no-concussion-history controls. Notably, we observed a stronger recovery of these skills in females. CONCLUSIONS Our findings indicate that (1) concussion impairs visuomotor skill performance, (2) the performance of complex, rule-based tasks showed improvement over the course of a recovery program, and (3) stronger recovery in females suggests sex-related differences in the brain networks controlling skilled performance, and the effect of injury on these networks.
Collapse
Affiliation(s)
- Nicole Smeha
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,Centre for Vision Research, York University, Toronto, Canada
| | - Ravneet Kalkat
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada. .,York University Sport Medicine Team, York University, Toronto, Canada. .,Centre for Vision Research, York University, Toronto, Canada.
| | - Loriann M Hynes
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,York University Sport Medicine Team, York University, Toronto, Canada
| |
Collapse
|
7
|
Rogojin A, Gorbet DJ, Hawkins KM, Sergio LE. Cognitive-Motor Integration Performance Is Affected by Sex, APOE Status, and Family History of Dementia. J Alzheimers Dis 2019; 71:685-701. [DOI: 10.3233/jad-190403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alica Rogojin
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Diana J. Gorbet
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Kara M. Hawkins
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Lauren E. Sergio
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Gorbet DJ, Sergio LE. Looking up while reaching out: the neural correlates of making eye and arm movements in different spatial planes. Exp Brain Res 2018; 237:57-70. [DOI: 10.1007/s00221-018-5395-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
|
9
|
Neromyliotis E, Moschovakis AK. Response properties of saccade-related neurons of the post-arcuate premotor cortex. J Neurophysiol 2018. [DOI: 10.1152/jn.00669.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the phasic saccade-related discharges of single neurons (S neurons) of the premotor cortex of female rhesus monkeys, mostly in the caudal bank of the arcuate sulcus. As described in previous work from our laboratory (Neromyliotis E, Moschovakis AK. Front Behav Neurosci 11: 1–21, 2017), some of these cells emitted phasic discharges for coordinated movements of the eyes and hand as well as for movements of either effector executed in isolation (motor equivalence, Meq). Other cells (S) did not emit phasic discharges for hand movements unaccompanied by saccades. In contrast to frontal eye field (FEF) neurons, but similar to forelimb-related neurons (H neurons) and Meq cells, the discharges of S cells did not display contralateral bias; their on-directions were as likely to be ipsiversive as contraversive. Because the onset of their discharge preceded that of FEF neurons, S cells are unlikely to convey to their targets corollary discharges of the FEF. We also encountered a small number of neurons that could function as logic gates: cells that discharged for saccades if they were not accompanied by hand movements, cells that discharged for saccades or movements of the hand but not for coordinated movements of both effectors, and cells that discharged only for coordinated movements of the eyes and the hand but not when one of the effectors moved unaccompanied by the other. Our findings are discussed in terms of sequences of decision processes stitching effector-specific motor plans onto effector-invariant movement primitives. NEW & NOTEWORTHY The premotor cortex, traditionally associated with skeletomotor control, is shown to contain cells that emit strong discharges time-linked to saccades but not for hand movements unaccompanied by saccades (S cells). Unlike frontal eye field (FEF) neurons, the S cells of the premotor cortex did not display contralateral bias, and because their presaccadic discharges preceded those of FEF neurons, they are unlikely to serve as conveyors of FEF efferent discharges.
Collapse
Affiliation(s)
- E. Neromyliotis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology–Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - A. K. Moschovakis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology–Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
10
|
de Haan MJ, Brochier T, Grün S, Riehle A, Barthélemy FV. Real-time visuomotor behavior and electrophysiology recording setup for use with humans and monkeys. J Neurophysiol 2018; 120:539-552. [PMID: 29718806 PMCID: PMC6139457 DOI: 10.1152/jn.00262.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large-scale network dynamics in multiple visuomotor areas is of great interest in the study of eye-hand coordination in both human and monkey. To explore this, it is essential to develop a setup that allows for precise tracking of eye and hand movements. It is desirable that it is able to generate mechanical or visual perturbations of hand trajectories so that eye-hand coordination can be studied in a variety of conditions. There are simple solutions that satisfy these requirements for hand movements performed in the horizontal plane while visual stimuli and hand feedback are presented in the vertical plane. However, this spatial dissociation requires cognitive rules for eye-hand coordination different from eye-hand movements performed in the same space, as is the case in most natural conditions. Here we present an innovative solution for the precise tracking of eye and hand movements in a single reference frame. Importantly, our solution allows behavioral explorations under normal and perturbed conditions in both humans and monkeys. It is based on the integration of two noninvasive commercially available systems to achieve online control and synchronous recording of eye (EyeLink) and hand (KINARM) positions during interactive visuomotor tasks. We also present an eye calibration method compatible with different eye trackers that compensates for nonlinearities caused by the system's geometry. Our setup monitors the two effectors in real time with high spatial and temporal resolution and simultaneously outputs behavioral and neuronal data to an external data acquisition system using a common data format. NEW & NOTEWORTHY We developed a new setup for studying eye-hand coordination in humans and monkeys that monitors the two effectors in real time in a common reference frame. Our eye calibration method allows us to track gaze positions relative to visual stimuli presented in the horizontal workspace of the hand movements. This method compensates for nonlinearities caused by the system’s geometry and transforms kinematics signals from the eye tracker into the same coordinate system as hand and targets.
Collapse
Affiliation(s)
- Marcel Jan de Haan
- Institut de Neurosciences de la Timone, Centre National de la Recherche Scientifique-Aix-Marseille Université, UMR7289, Marseille , France.,Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Brain Institute I (INM-10), Forschungszentrum Jülich, Jülich , Germany
| | - Thomas Brochier
- Institut de Neurosciences de la Timone, Centre National de la Recherche Scientifique-Aix-Marseille Université, UMR7289, Marseille , France
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Brain Institute I (INM-10), Forschungszentrum Jülich, Jülich , Germany.,RIKEN Brain Science Institute, Hirosawa, Wako-Shi, Saitama , Japan.,Theoretical Systems Neurobiology, RWTH Aachen University , Aachen , Germany
| | - Alexa Riehle
- Institut de Neurosciences de la Timone, Centre National de la Recherche Scientifique-Aix-Marseille Université, UMR7289, Marseille , France.,Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Brain Institute I (INM-10), Forschungszentrum Jülich, Jülich , Germany
| | - Frédéric V Barthélemy
- Institut de Neurosciences de la Timone, Centre National de la Recherche Scientifique-Aix-Marseille Université, UMR7289, Marseille , France.,Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Brain Institute I (INM-10), Forschungszentrum Jülich, Jülich , Germany
| |
Collapse
|
11
|
Sayegh PF, Gorbet DJ, Hawkins KM, Hoffman KL, Sergio LE. The Contribution of Different Cortical Regions to the Control of Spatially Decoupled Eye-Hand Coordination. J Cogn Neurosci 2017; 29:1194-1211. [PMID: 28253075 DOI: 10.1162/jocn_a_01111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our brain's ability to flexibly control the communication between the eyes and the hand allows for our successful interaction with the objects located within our environment. This flexibility has been observed in the pattern of neural responses within key regions of the frontoparietal reach network. More specifically, our group has shown how single-unit and oscillatory activity within the dorsal premotor cortex (PMd) and the superior parietal lobule (SPL) change contingent on the level of visuomotor compatibility between the eyes and hand. Reaches that involve a coupling between the eyes and hand toward a common spatial target display a pattern of neural responses that differ from reaches that require eye-hand decoupling. Although previous work examined the altered spiking and oscillatory activity that occurs during different types of eye-hand compatibilities, they did not address how each of these measures of neurological activity interacts with one another. Thus, in an effort to fully characterize the relationship between oscillatory and single-unit activity during different types of eye-hand coordination, we measured the spike-field coherence (SFC) within regions of macaque SPL and PMd. We observed stronger SFC within PMdr and superficial regions of SPL (areas 5/PEc) during decoupled reaches, whereas PMdc and regions within SPL surrounding medial intrapareital sulcus had stronger SFC during coupled reaches. These results were supported by meta-analysis on human fMRI data. Our results support the proposal of altered cortical control during complex eye-hand coordination and highlight the necessity to account for the different eye-hand compatibilities in motor control research.
Collapse
Affiliation(s)
| | - Diana J Gorbet
- 1 York University, Toronto, Ontario, Canada.,2 Canadian Action and Perception Network, Toronto, Ontario, Canada
| | | | - Kari L Hoffman
- 1 York University, Toronto, Ontario, Canada.,2 Canadian Action and Perception Network, Toronto, Ontario, Canada
| | - Lauren E Sergio
- 1 York University, Toronto, Ontario, Canada.,2 Canadian Action and Perception Network, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Hurtubise J, Gorbet D, Hamandi Y, Macpherson A, Sergio L. The effect of concussion history on cognitive-motor integration in elite hockey players. Concussion 2016; 1:CNC17. [PMID: 30202559 PMCID: PMC6093836 DOI: 10.2217/cnc-2016-0006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/03/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To observe the effects of concussion history on cognitive-motor integration in elite-level athletes. METHODS The study included 102 National Hockey League draft prospects (n = 51 concussion history [CH]; n = 51 no history [NC]). Participants completed two computer-based visuomotor tasks, one involved 'standard' visuomotor mapping and one involved 'nonstandard' mapping in which vision and action were decoupled. RESULTS We observed a significant effect of group on reaction time (CH slower) and accuracy (CH worse), but a group by condition interaction only for reaction time (p < 0.05). There were no other deficits found. We discussed these findings in comparison to our previous work with non-elite athletes. CONCLUSION Previously concussed elite-level athletes may have lingering neurological deficits that are not detected using standard clinical assessments.
Collapse
Affiliation(s)
- Johanna Hurtubise
- School of Kinesiology & Health Science, York University, Toronto, ON, M3J 1P3, Canada
- York University Sports Medicine Team, York University Department of Athletics and Recreation, York University, Toronto, ON, M3J 1P3, Canada
| | - Diana Gorbet
- School of Kinesiology & Health Science, York University, Toronto, ON, M3J 1P3, Canada
- Center for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| | - Yehyah Hamandi
- School of Kinesiology & Health Science, York University, Toronto, ON, M3J 1P3, Canada
| | - Alison Macpherson
- School of Kinesiology & Health Science, York University, Toronto, ON, M3J 1P3, Canada
- York University Sports Medicine Team, York University Department of Athletics and Recreation, York University, Toronto, ON, M3J 1P3, Canada
| | - Lauren Sergio
- School of Kinesiology & Health Science, York University, Toronto, ON, M3J 1P3, Canada
- York University Sports Medicine Team, York University Department of Athletics and Recreation, York University, Toronto, ON, M3J 1P3, Canada
- Center for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
13
|
Dalecki M, Albines D, Macpherson A, Sergio LE. Prolonged cognitive-motor impairments in children and adolescents with a history of concussion. Concussion 2016; 1:CNC14. [PMID: 30202556 PMCID: PMC6094154 DOI: 10.2217/cnc-2016-0001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/26/2016] [Indexed: 01/01/2023] Open
Abstract
Aim: We investigated whether children and adolescents with concussion history show cognitive–motor integration (CMI) deficits. Method: Asymptomatic children and adolescents with concussion history (n = 50; mean 12.84 years) and no history (n = 49; mean: 11.63 years) slid a cursor to targets using their finger on a dual-touch-screen laptop; target location and motor action were not aligned in the CMI task. Results: Children and adolescents with concussion history showed prolonged CMI deficits, in that their performance did not match that of no history controls until nearly 2 years postevent. Conclusion: These CMI deficits may be due to disruptions in fronto-parietal networks, contributing to an increased vulnerability to further injury. Current return-to-play assessments that do not test CMI may not fully capture functional abilities postconcussion.
Collapse
Affiliation(s)
- Marc Dalecki
- School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada.,School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - David Albines
- School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada
| | - Alison Macpherson
- School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,York University Sport Medicine Team, York University, Toronto, Ontario, Canada.,School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,York University Sport Medicine Team, York University, Toronto, Ontario, Canada
| | - Lauren E Sergio
- School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada.,York University Sport Medicine Team, York University, Toronto, Ontario, Canada.,School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada.,York University Sport Medicine Team, York University, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Gorbet DJ, Sergio LE. Don't watch where you're going: The neural correlates of decoupling eye and arm movements. Behav Brain Res 2015; 298:229-40. [PMID: 26589804 DOI: 10.1016/j.bbr.2015.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
"Standard" visually-guided reaching movements consist of a saccade and an arm movement to the same target location. In the current study, functional magnetic resonance imaging was used to contrast brain activity during standard visually-guided reaches with activity during a "non-standard" visuomotor mapping where the targets of the saccade and arm movement were spatially decoupled. Multi-voxel pattern analysis approaches showed discrimination of standard versus non-standard visuomotor mapping in the cuneus and medial premotor regions without accompanying task-related differences in MRI signal amplitude in these areas. Contrasts of signal amplitude did reveal greater activity associated with the non-standard task relative to the standard task in the right inferior parietal lobule and a portion of the left superior posterior cerebellum. The findings of this study shed light on brain regions involved in overcoming our default tendency to spatially couple eye and arm movements during visually-guided reaching. Further, the results suggest that the regions reported here may be important in neurological disorders such as optic ataxia, Alzheimer's disease, and mild cognitive impairment, which are associated with deficits in producing non-standard visuomotor mappings while leaving standard visuomotor mapping relatively intact.
Collapse
Affiliation(s)
- D J Gorbet
- School of Kinesiology and Health Science, Centre for Vision Research, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada.
| | - L E Sergio
- School of Kinesiology and Health Science, Centre for Vision Research, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
15
|
Brown JA, Dalecki M, Hughes C, Macpherson AK, Sergio LE. Cognitive-motor integration deficits in young adult athletes following concussion. BMC Sports Sci Med Rehabil 2015; 7:25. [PMID: 26491541 PMCID: PMC4612424 DOI: 10.1186/s13102-015-0019-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/09/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND The ability to perform visually-guided motor tasks requires the transformation of visual information into programmed motor outputs. When the guiding visual information does not align spatially with the motor output, the brain processes rules to integrate the information for an appropriate motor response. Here, we look at how performance on such tasks is affected in young adult athletes with concussion history. METHODS Participants displaced a cursor from a central to peripheral targets on a vertical display by sliding their finger along a touch sensitive screen in one of two spatial planes. The addition of a memory component, along with variations in cursor feedback increased task complexity across conditions. RESULTS Significant main effects between participants with concussion history and healthy controls without concussion history were observed in timing and accuracy measures. Importantly, the deficits were distinctly more pronounced for participants with concussion history compared to healthy controls, especially when the brain had to control movements having two levels of decoupling between vision and action. A discriminant analysis correctly classified athletes with a history of concussion based on task performance with an accuracy of 94 %, despite the majority of these athletes being rated asymptomatic by current standards. CONCLUSIONS These findings correspond to our previous work with adults at risk of developing dementia, and support the use of cognitive motor integration as an enhanced assessment tool for those who may have mild brain dysfunction. Such a task may provide a more sensitive metric of performance relevant to daily function than what is currently in use, to assist in return to play/work/learn decisions.
Collapse
Affiliation(s)
- Jeffrey A Brown
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, M3J 1P3 ON Canada
| | - Marc Dalecki
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, M3J 1P3 ON Canada ; Centre for Vision Research, York University, Toronto, Canada
| | - Cindy Hughes
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, M3J 1P3 ON Canada ; York University Sport Medicine Team, York University, Toronto, Canada
| | - Alison K Macpherson
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, M3J 1P3 ON Canada ; York University Sport Medicine Team, York University, Toronto, Canada
| | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, M3J 1P3 ON Canada ; Centre for Vision Research, York University, Toronto, Canada ; York University Sport Medicine Team, York University, Toronto, Canada ; Southlake Regional Health Centre, Newmarket, ON Canada
| |
Collapse
|
16
|
Granek JA, Sergio LE. Evidence for distinct brain networks in the control of rule-based motor behavior. J Neurophysiol 2015; 114:1298-309. [PMID: 26133796 DOI: 10.1152/jn.00233.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/30/2015] [Indexed: 11/22/2022] Open
Abstract
Reach guidance when the spatial location of the viewed target and hand movement are incongruent (i.e., decoupled) necessitates use of explicit cognitive rules (strategic control) or implicit recalibration of gaze and limb position (sensorimotor recalibration). In a patient with optic ataxia (OA) and bilateral superior parietal lobule damage, we recently demonstrated an increased reliance on strategic control when the patient performed a decoupled reach (Granek JA, Pisella L, Stemberger J, Vighetto A, Rossetti Y, Sergio LE. PLoS One 8: e86138, 2013). To more generally understand the fundamental mechanisms of decoupled visuomotor control and to more specifically test whether we could distinguish these two modes of movement control, we tested healthy participants in a cognitively demanding dual task. Participants continuously counted backward while simultaneously reaching toward horizontal (left or right) or diagonal (equivalent to top-left or top-right) targets with either veridical or rotated (90°) cursor feedback. By increasing the overall neural load and selectively compromising potentially overlapping neural circuits responsible for strategic control, the complex dual task served as a noninvasive means to disrupt the integration of a cognitive rule into a motor action. Complementary to our previous results observed in patients with optic ataxia, here our dual task led to greater performance deficits during movements that required an explicit rule, implying a selective disruption of strategic control in decoupled reaching. Our results suggest that distinct neural processing is required to control these different types of reaching because in considering the current results and previous patient results together, the two classes of movement could be differentiated depending on the type of interference.
Collapse
Affiliation(s)
- Joshua A Granek
- School of Kinesiology and Health Science, Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Lauren E Sergio
- School of Kinesiology and Health Science, Centre for Vision Research, York University, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Sayegh PF, Hawkins KM, Neagu B, Crawford JD, Hoffman KL, Sergio LE. Decoupling the actions of the eyes from the hand alters beta and gamma synchrony within SPL. J Neurophysiol 2014; 111:2210-21. [PMID: 24598517 DOI: 10.1152/jn.00793.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eye-hand coordination is crucial for our ability to interact with the world around us. However, much of the visually guided reaches that we perform require a spatial decoupling between gaze direction and hand orientation. These complex decoupled reaching movements are in contrast to more standard eye and hand reaching movements in which the eyes and the hand are coupled. The superior parietal lobule (SPL) receives converging eye and hand signals; however, what is yet to be understood is how the activity within this region is modulated during decoupled eye and hand reaches. To address this, we recorded local field potentials within SPL from two rhesus macaques during coupled vs. decoupled eye and hand movements. Overall we observed a distinct separation in synchrony within the lower 10- to 20-Hz beta range from that in the higher 30- to 40-Hz gamma range. Specifically, within the early planning phase, beta synchrony dominated; however, the onset of this sustained beta oscillation occurred later during eye-hand decoupled vs. coupled reaches. As the task progressed, there was a switch to low-frequency and gamma-dominated responses, specifically for decoupled reaches. More importantly, we observed local field potential activity to be a stronger task (coupled vs. decoupled) and state (planning vs. execution) predictor than that of single units alone. Our results provide further insight into the computations of SPL for visuomotor transformations and highlight the necessity of accounting for the decoupled eye-hand nature of a motor task when interpreting movement control research data.
Collapse
Affiliation(s)
- Patricia F Sayegh
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; Centre for Vision Research, York University, Toronto, Ontario, Canada; Canadian Action and Perception Network, Toronto, Ontario, Canada; and
| | - Kara M Hawkins
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; Centre for Vision Research, York University, Toronto, Ontario, Canada; Canadian Action and Perception Network, Toronto, Ontario, Canada; and
| | - Bogdan Neagu
- Canadian Action and Perception Network, Toronto, Ontario, Canada; and Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - J Douglas Crawford
- Centre for Vision Research, York University, Toronto, Ontario, Canada; Department of Psychology, York University, Toronto, Ontario, Canada; Canadian Action and Perception Network, Toronto, Ontario, Canada; and
| | - Kari L Hoffman
- Centre for Vision Research, York University, Toronto, Ontario, Canada; Department of Psychology, York University, Toronto, Ontario, Canada; Canadian Action and Perception Network, Toronto, Ontario, Canada; and
| | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; Centre for Vision Research, York University, Toronto, Ontario, Canada; Canadian Action and Perception Network, Toronto, Ontario, Canada; and
| |
Collapse
|
18
|
Decoupled visually-guided reaching in optic ataxia: differences in motor control between canonical and non-canonical orientations in space. PLoS One 2013; 8:e86138. [PMID: 24392035 PMCID: PMC3877394 DOI: 10.1371/journal.pone.0086138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 12/05/2013] [Indexed: 11/25/2022] Open
Abstract
Guiding a limb often involves situations in which the spatial location of the target for gaze and limb movement are not congruent (i.e. have been decoupled). Such decoupled situations involve both the implementation of a cognitive rule (i.e. strategic control) and the online monitoring of the limb position relative to gaze and target (i.e. sensorimotor recalibration). To further understand the neural mechanisms underlying these different types of visuomotor control, we tested patient IG who has bilateral caudal superior parietal lobule (SPL) damage resulting in optic ataxia (OA), and compared her performance with six age-matched controls on a series of center-out reaching tasks. The tasks comprised 1) directing a cursor that had been rotated (180° or 90°) within the same spatial plane as the visual display, or 2) moving the hand along a different spatial plane than the visual display (horizontal or para-sagittal). Importantly, all conditions were performed towards visual targets located along either the horizontal axis (left and right; which can be guided from strategic control) or the diagonal axes (top-left and top-right; which require on-line trajectory elaboration and updating by sensorimotor recalibration). The bilateral OA patient performed much better in decoupled visuomotor control towards the horizontal targets, a canonical situation in which well-categorized allocentric cues could be utilized (i.e. guiding cursor direction perpendicular to computer monitor border). Relative to neurologically intact adults, IG's performance suffered towards diagonal targets, a non-canonical situation in which only less-categorized allocentric cues were available (i.e. guiding cursor direction at an off-axis angle to computer monitor border), and she was therefore required to rely on sensorimotor recalibration of her decoupled limb. We propose that an intact caudal SPL is crucial for any decoupled visuomotor control, particularly when relying on the realignment between vision and proprioception without reliable allocentric cues towards non-canonical orientations in space.
Collapse
|