1
|
Kumamoto E. Anesthetic- and Analgesic-Related Drugs Modulating Both Voltage-Gated Na + and TRP Channels. Biomolecules 2024; 14:1619. [PMID: 39766326 PMCID: PMC11727300 DOI: 10.3390/biom14121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na+ channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission. There is much evidence demonstrating that chemical compounds involved in Na+ channel (or nerve AP conduction) inhibition modify TRP channel functions. Among these compounds are local anesthetics, anti-epileptics, α2-adrenoceptor agonists, antidepressants (all of which are used as analgesic adjuvants), general anesthetics, opioids, non-steroidal anti-inflammatory drugs and plant-derived compounds, many of which are involved in antinociception. This review mentions the modulation of Na+ channels and TRP channels including TRPV1, TRPA1 and TRPM8, both of which modulations are produced by pain-related compounds.
Collapse
Affiliation(s)
- Eiichi Kumamoto
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
2
|
Rhyu MR, Ozdener MH, Lyall V. Differential Effect of TRPV1 Modulators on Neural and Behavioral Responses to Taste Stimuli. Nutrients 2024; 16:3858. [PMID: 39599644 PMCID: PMC11597080 DOI: 10.3390/nu16223858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
In our diet, we ingest a variety of compounds that are TRPV1 modulators. It is important to understand if these compounds alter neural and behavioral responses to taste stimuli representing all taste qualities. Here, we will summarize the effects of capsaicin, resiniferatoxin, cetylpyridinium chloride, ethanol, nicotine, N-geranyl cyclopropylcarboxamide, Kokumi taste peptides, pH, and temperature on neural and behavioral responses to taste stimuli in rodent models and on human taste perception. The above TRPV1 agonists produced characteristic biphasic effects on chorda tympani taste nerve responses to NaCl in the presence of amiloride, an epithelial Na+ channel blocker, at low concentrations enhancing and at high concentrations inhibiting the response. Biphasic responses were also observed with KCl, NH4Cl, and CaCl2. In the presence of multiple stimuli, the effect is additive. These responses are blocked by TRPV1 antagonists and are not observed in TRPV1 knockout mice. Some TRPV1 modulators also increase neural responses to glutamate but at concentrations much above the concentrations that enhance salt responses. These modulators also alter human salt and glutamate taste perceptions at different concentration ranges. Glutamate responses are TRPV1-independent. Sweet and bitter responses are TRPV1-independent but the off-taste of sweeteners is TRPV1-dependent. Aversive responses to acids and ethanol are absent in animals in which both the taste system and the TRPV1-trigeminal system are eliminated. Thus, TRPV1 modulators differentially alter responses to taste stimuli.
Collapse
Affiliation(s)
- Mee-Ra Rhyu
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | | | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
3
|
Cheeks SN, Buzzi B, Valdez A, Mogul AS, Damaj MI, Fowler CD. Cannabidiol as a potential cessation therapeutic: Effects on intravenous nicotine self-administration and withdrawal symptoms in mice. Neuropharmacology 2024; 246:109833. [PMID: 38176534 PMCID: PMC10958588 DOI: 10.1016/j.neuropharm.2023.109833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Cigarette smoking remains a leading cause of preventable disease and death worldwide. Due to the devastating negative health effects of smoking, many users attempt to quit, but few are successful in the long-term. Thus, there is a critical need for novel therapeutic approaches. In these investigations, we sought to examine whether cannabidiol (CBD) has the potential to be repurposed as a nicotine cessation therapeutic. In the first study, male and female mice were trained to respond for intravenous nicotine infusions at either a low or moderate nicotine dose and then were pretreated with CBD prior to their drug-taking session. We found that CBD produced a significant decrease in the number of nicotine rewards earned, and this effect was evidenced across CBD doses and with both the low and moderate levels of nicotine intake. These effects on drug intake were not due to general motor-related effects, since mice self-administering food pellets did not alter their behavior with CBD administration. The potential effects of CBD in mitigating nicotine withdrawal symptoms were then investigated. We found that CBD attenuated the somatic signs of nicotine withdrawal and prevented nicotine's hyperalgesia-inducing effects. Taken together, these results demonstrate that modulation of cannabinoid signaling may be a viable therapeutic option as a smoking cessation aid.
Collapse
Affiliation(s)
- Samantha N Cheeks
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Belle Buzzi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ashley Valdez
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Allison S Mogul
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Andrei C, Zanfirescu A, Nițulescu GM, Olaru OT, Negreș S. Natural Active Ingredients and TRPV1 Modulation: Focus on Key Chemical Moieties Involved in Ligand-Target Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:339. [PMID: 36679051 PMCID: PMC9860573 DOI: 10.3390/plants12020339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Diseases such as cancer, neurological pathologies and chronic pain represent currently unmet needs. The existing pharmacotherapeutic options available for treating these conditions are limited by lack of efficiency and/or side effects. Transient receptor potential vanilloid 1 ion channel emerged as an attractive therapeutic target for developing new analgesic, anti-cancer and antiepileptic agents. Furthermore, various natural ingredients were shown to have affinity for this receptor. The aim of this narrative review was to summarize the diverse natural scaffolds of TRPV1 modulators based on their agonistic/antagonistic properties and to analyze the structure-activity relationships between the ligands and molecular targets based on the results of the existing molecular docking, mutagenesis and in vitro studies. We present here an exhaustive collection of TRPV1 modulators grouped by relevant chemical features: vanilloids, guaiacols, phenols, alkylbenzenes, monoterpenes, sesquiterpenoids, alkaloids, etc. The information herein is useful for understanding the key structural elements mediating the interaction with TRPV1 and how their structural variation impacts the interaction between the ligand and receptor. We hope this data will contribute to the design of novel effective and safe TRPV1 modulators, to help overcome the lack of effective therapeutic agents against pathologies with high morbidity and mortality.
Collapse
|
5
|
Arendt-Nielsen L, Carstens E, Proctor G, Boucher Y, Clavé P, Albin Nielsen K, Nielsen TA, Reeh PW. The Role of TRP Channels in Nicotinic Provoked Pain and Irritation from the Oral Cavity and Throat: Translating Animal Data to Humans. Nicotine Tob Res 2022; 24:1849-1860. [PMID: 35199839 PMCID: PMC9653082 DOI: 10.1093/ntr/ntac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 01/19/2022] [Accepted: 02/22/2022] [Indexed: 01/03/2023]
Abstract
Tobacco smoking-related diseases are estimated to kill more than 8 million people/year and most smokers are willing to stop smoking. The pharmacological approach to aid smoking cessation comprises nicotine replacement therapy (NRT) and inhibitors of the nicotinic acetylcholine receptor, which is activated by nicotine. Common side effects of oral NRT products include hiccoughs, gastrointestinal disturbances and, most notably, irritation, burning and pain in the mouth and throat, which are the most common reasons for premature discontinuation of NRT and termination of cessation efforts. Attempts to reduce the unwanted sensory side effects are warranted, and research discovering the most optimal masking procedures is urgently needed. This requires a firm mechanistic understanding of the neurobiology behind the activation of sensory nerves and their receptors by nicotine. The sensory nerves in the oral cavity and throat express the so-called transient receptor potential (TRP) channels, which are responsible for mediating the nicotine-evoked irritation, burning and pain sensations. Targeting the TRP channels is one way to modulate the unwanted sensory side effects. A variety of natural (Generally Recognized As Safe [GRAS]) compounds interact with the TRP channels, thus making them interesting candidates as safe additives to oral NRT products. The present narrative review will discuss (1) current evidence on how nicotine contributes to irritation, burning and pain in the oral cavity and throat, and (2) options to modulate these unwanted side-effects with the purpose of increasing adherence to NRT. Nicotine provokes irritation, burning and pain in the oral cavity and throat. Managing these side effects will ensure better compliance to oral NRT products and hence increase the success of smoking cessation. A specific class of sensory receptors (TRP channels) are involved in mediating nicotine's sensory side effects, making them to potential treatment targets. Many natural (Generally Recognized As Safe [GRAS]) compounds are potentially beneficial modulators of TRP channels.
Collapse
Affiliation(s)
- Lars Arendt-Nielsen
- Corresponding Author: Lars Arendt-Nielsen PhD, Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark. Telephone: +45 99408831; E-mail:
| | - Earl Carstens
- Neurobiology, Physiology and Behavior, University of California, Davis
| | - Gordon Proctor
- Centre for Host-Microbiome Interactions, Professor of Salivary Biology, King´s CollegeLondon, UK
| | - Yves Boucher
- Laboratory of Orofacial Neurobiology, Paris Diderot University, Paris, France
| | - Pere Clavé
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Hospital de Mataró, Universitat Autònoma de Barcelona, Mataró, Barcelona, Spain
| | | | - Thomas A Nielsen
- Mech-Sense & Centre for Pancreatic Diseases, Department of Gastroenterology & Hepatology, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | - Peter W Reeh
- Institute Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Aloum L, Alefishat E, Shaya J, Petroianu GA. Remedia Sternutatoria over the Centuries: TRP Mediation. Molecules 2021; 26:1627. [PMID: 33804078 PMCID: PMC7998681 DOI: 10.3390/molecules26061627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants.
Collapse
Affiliation(s)
- Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan
| | - Janah Shaya
- Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
| | - Georg A. Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| |
Collapse
|
7
|
Modulation of TRPV1 channel function by natural products in the treatment of pain. Chem Biol Interact 2020; 330:109178. [DOI: 10.1016/j.cbi.2020.109178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/22/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023]
|
8
|
Neuropsychiatric implications of transient receptor potential vanilloid (TRPV) channels in the reward system. Neurochem Int 2019; 131:104545. [PMID: 31494132 DOI: 10.1016/j.neuint.2019.104545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
Neuropsychiatric disorders (NPDs) exert a devastating impact on an individual's personal and social well-being, encompassing various conditions and brain anomalies that influence affect, cognition, and behavior. Because the pathophysiology of NPDs is multifactorial, the precise mechanisms underlying the development of such disorders remain unclear, representing a unique challenge in current neuropsychopharmacotherapy. Transient receptor potential vanilloid (TRPV) type channels are a family of ligand-gated ion channels that mainly include sensory receptors that respond to thermal, mechanical and chemical stimuli. TRPV channels are abundantly present in dopaminergic neurons, thus playing a pivotal role in the modulation of the reward system and in pathophysiology of diseases such as stress, anxiety, depression, schizophrenia, neurodegenerative disorders and substance abuse/addiction. Recent evidence has highlighted TRPV channels as potential targets for understanding modulation of the reward system and various forms of addiction (opioids, cocaine, amphetamines, alcohol, nicotine, cannabis). In this review, we discuss the distribution, physiological roles, ligands and therapeutic importance of TRPV channels with regard to NPDs and addiction biology.
Collapse
|
9
|
Abstract
Many people avidly consume foods and drinks containing caffeine, despite its bitter taste. Here, we review what is known about caffeine as a bitter taste stimulus. Topics include caffeine's action on the canonical bitter taste receptor pathway and caffeine's action on noncanonical receptor-dependent and -independent pathways in taste cells. Two conclusions are that (1) caffeine is a poor prototypical bitter taste stimulus because it acts on bitter taste receptor-independent pathways, and (2) caffeinated products most likely stimulate "taste" receptors in nongustatory cells. This review is relevant for taste researchers, manufacturers of caffeinated products, and caffeine consumers.
Collapse
Affiliation(s)
- Rachel L Poole
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | | |
Collapse
|
10
|
Xu Y, Cardell LO. Long-term nicotine exposure dampens LPS-induced nerve-mediated airway hyperreactivity in murine airways. Am J Physiol Lung Cell Mol Physiol 2017; 313:L516-L523. [PMID: 28546155 DOI: 10.1152/ajplung.00222.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Nicotine is a major component of cigarette smoke. It causes addiction and is used clinically to aid smoke cessation. The aim of the present study is to investigate the effect of nicotine on lipopolysaccharide (LPS)-induced airway hyperreactivity (AHR) and to explore the potential involvement of neuronal mechanisms behind nicotine's effects in murine models in vivo and in vitro. BALB/c mice were exposed to nicotine in vivo via subcutaneous Alzet osmotic minipumps containing nicotine tartate salt solution (24 mg·kg-1·day-1) for 28 days. LPS (0.1 mg/ml, 20 µl) was administered intranasally for 3 consecutive days during the end of this period. Lung functions were measured with flexiVent. For the in vitro experiments, mice tracheae were organcultured with either nicotine (10 μM) or vehicle (DMSO, 0.1%) for 4 days. Contractile responses of the tracheal segments were measured in myographs following electric field stimulation (EFS; increasing frequencies of 0.2 to 12.8 Hz) before and after incubation with 10 µg/ml LPS for 1 h. Results showed that LPS induced AHR to methacholine in vivo and increased contractile responses to EFS in vitro. Interestingly, long-term nicotine exposure markedly dampened this LPS-induced AHR both in vitro and in vivo. Tetrodotoxin (TTX) inhibited LPS-induced AHR but did not further inhibit nicotine-suppressed AHR in vivo. In conclusion, long-term nicotine exposure dampened LPS-induced AHR. The effect of nicotine was mimicked by TTX, suggesting the involvement of neuronal mechanisms. This information might be used for evaluating the long-term effects of nicotine and further exploring of how tobacco products interact with bacterial airway infections.
Collapse
Affiliation(s)
- Yuan Xu
- Division of Ear, Nose, and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; and .,Department of Ear, Nose, and Throat Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Lars-Olaf Cardell
- Division of Ear, Nose, and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; and.,Department of Ear, Nose, and Throat Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Zhao L, Zhuang J, Zang N, Lin Y, Lee LY, Xu F. Prenatal nicotinic exposure upregulates pulmonary C-fiber NK1R expression to prolong pulmonary C-fiber-mediated apneic response. Toxicol Appl Pharmacol 2016; 290:107-15. [PMID: 26524655 PMCID: PMC4732869 DOI: 10.1016/j.taap.2015.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 09/06/2015] [Accepted: 10/29/2015] [Indexed: 01/15/2023]
Abstract
Prenatal nicotinic exposure (PNE) prolongs bronchopulmonary C-fiber (PCF)-mediated apneic response to intra-atrial bolus injection of capsaicin in rat pups. The relevant mechanisms remain unclear. Pulmonary substance P and adenosine and their receptors (neurokinin-A receptor, NK1R and ADA1 receptor, ADA1R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) expressed on PCFs are critical for PCF sensitization and/or activation. Here, we compared substance P and adenosine in BALF and NK1R, ADA1R, and TRPV1 expression in the nodose/jugular (N/J) ganglia (vagal pulmonary C-neurons retrogradely labeled) between Ctrl and PNE pups. We found that PNE failed to change BALF substance P and adenosine content, but significantly upregulated both mRNA and protein TRPV1 and NK1R in the N/J ganglia and only NK1R mRNA in pulmonary C-neurons. To define the role of NK1R in the PNE-induced PCF sensitization, the apneic response to capsaicin (i.v.) without or with pretreatment of SR140333 (a peripheral and selective NK1R antagonist) was compared and the prolonged apnea by PNE significantly shortened by SR140333. To clarify if the PNE-evoked responses depended on action of nicotinic acetylcholine receptors (nAChRs), particularly α7nAChR, mecamylamine or methyllycaconitine (a general nAChR or a selective α7nAChR antagonist) was administrated via another mini-pump over the PNE period. Mecamylamine or methyllycaconitine eliminated the PNE-evoked mRNA and protein responses. Our data suggest that PNE is able to elevate PCF NK1R expression via activation of nAChRs, especially α7nAChR, which likely contributes to sensitize PCFs and prolong the PCF-mediated apneic response to capsaicin.
Collapse
MESH Headings
- Adenosine/pharmacology
- Animals
- Animals, Newborn
- Apnea/drug therapy
- Bronchoalveolar Lavage Fluid
- Capsaicin/pharmacology
- Female
- Ganglia/drug effects
- Ganglia/metabolism
- Lung/drug effects
- Male
- Nerve Fibers, Unmyelinated/drug effects
- Nerve Fibers, Unmyelinated/metabolism
- Nicotine/blood
- Nicotine/toxicity
- Pregnancy
- Prenatal Exposure Delayed Effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/metabolism
- Receptors, Neurokinin-2/genetics
- Receptors, Neurokinin-2/metabolism
- Substance P/pharmacology
- TRPV Cation Channels/genetics
- TRPV Cation Channels/metabolism
- Up-Regulation
- Vagus Nerve/drug effects
- Vagus Nerve/metabolism
Collapse
Affiliation(s)
- Lei Zhao
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Jianguo Zhuang
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Na Zang
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Yong Lin
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Fadi Xu
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
12
|
Kichko TI, Kobal G, Reeh PW. Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx. Am J Physiol Lung Cell Mol Physiol 2015; 309:L812-20. [PMID: 26472811 PMCID: PMC4609941 DOI: 10.1152/ajplung.00164.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/16/2015] [Indexed: 02/08/2023] Open
Abstract
Cigarette smoke (CS) exposes chemosensory nerves in the airways to a multitude of chemicals, some acting through the irritant receptors TRPV1 and TRPA1 but potentially also through nicotinic acetylcholine receptors (nAChR). Our aim was to characterize the differences in sensory neuronal effects of CS, gas phase, and particulate matter as well as of typical constituents, such as nicotine and reactive carbonyls. Isolated mouse trachea and larynx were employed to measure release of calcitonin gene-related peptide (CGRP) as an index of sensory neuron activation evoked by CS, by filtered CS gas phase essentially free of nicotine, and by dilute total particulate matter (TPM) containing defined nicotine concentrations. With CS stimulation of the superfused trachea, TRPV1 null mutants showed about the same large responses as wild-type mice, whereas both TRPA1(-/-) and double knockouts exhibited 80% reduction; the retained 20% response was abolished by mecamylamine (10 μM), indicating a distinct contribution of nAChRs. These phenotypes were accentuated by using TPM to stimulate the immersed trachea; 50% of response was retained in TRPA1(-/-) and abolished by mecamylamine. In contrast, the gas phase acted like a sheer TRPA1 agonist, consistent with its composition, among other compounds, of volatile reactive carbonyls like formaldehyde and acrolein. In the trachea, the gas phase and CS were equally effective in releasing CGRP, whereas the larynx showed much larger CS than gas phase responses. Thus nicotinic receptors contribute to the sensory effects of cigarette smoke on the trachea, which are dominated by TRPA1. How this translates to human perception affords future research.
Collapse
Affiliation(s)
- Tatjana I Kichko
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany; and
| | - Gerd Kobal
- Altria Client Services Inc., Richmond, Virginia
| | - Peter W Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany; and
| |
Collapse
|
13
|
Zhuang J, Zhao L, Zang N, Xu F. Prenatal nicotinic exposure augments cardiorespiratory responses to activation of bronchopulmonary C-fibers. Am J Physiol Lung Cell Mol Physiol 2015; 308:L922-30. [PMID: 25747962 PMCID: PMC4421788 DOI: 10.1152/ajplung.00241.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/01/2015] [Indexed: 12/26/2022] Open
Abstract
Rat pups prenatally exposed to nicotine (PNE) present apneic (lethal ventilatory arrest) responses during severe hypoxia. To clarify whether these responses are of central origin, we tested PNE effects on ventilation and diaphragm electromyography (EMGdi) during hypoxia in conscious rat pups. PNE produced apnea (lethal ventilatory arrest) identical to EMGdi silencing during hypoxia, indicating a central origin of this apneic response. We further asked whether PNE would sensitize bronchopulmonary C-fibers (PCFs), a key player in generating central apnea, with increase of the density and transient receptor potential cation channel subfamily V member 1 (TRPV1) expression of C-fibers/neurons in the nodose/jugular (N/J) ganglia and neurotrophic factors in the airways and lungs. We compared 1) ventilatory and pulmonary C-neural responses to right atrial bolus injection of capsaicin (CAP, 0.5 μg/kg), 2) bronchial substance P-immunoreactive (SP-IR) fiber density, 3) gene and protein expressions of TRPV1 in the ganglia, and 4) nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) protein in bronchoalveolar lavage fluid (BALF) and TrkA and TrkB genes in the ganglia between control and PNE pups. PNE markedly strengthened the PCF-mediated apneic response to CAP via increasing pulmonary C-neural sensitivity. PNE also enhanced bronchial SP-IR fiber density and N/J ganglia neural TRPV1 expression associated with increased gene expression of TrkA in the N/G ganglia and decreased NGF and BDNF in BALF. Our results suggest that PNE enhances PCF sensitivity likely through increasing PCF density and TRPV1 expression via upregulation of neural TrkA and downregulation of pulmonary BDNF, which may contribute to the PNE-promoted central apnea (lethal ventilatory arrest) during hypoxia.
Collapse
Affiliation(s)
- Jianguo Zhuang
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Lei Zhao
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Na Zang
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Fadi Xu
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
14
|
Poliacek I, Rose MJ, Pitts TE, Mortensen A, Corrie LW, Davenport PW, Bolser DC. Central administration of nicotine suppresses tracheobronchial cough in anesthetized cats. J Appl Physiol (1985) 2014; 118:265-72. [PMID: 25477349 DOI: 10.1152/japplphysiol.00075.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We tested the hypothesis that nicotine, which acts peripherally to promote coughing, might inhibit reflex cough at a central site. Nicotine was administered via the vertebral artery [intra-arterial (ia)] to the brain stem circulation and by microinjections into a restricted area of the caudal ventral respiratory column in 33 pentobarbital anesthetized, spontaneously breathing cats. The number of coughs induced by mechanical stimulation of the tracheobronchial airways; amplitudes of the diaphragm, abdominal muscle, and laryngeal muscles EMGs; and several temporal characteristics of cough were analyzed after administration of nicotine and compared with those during control and recovery period. (-)Nicotine (ia) reduced cough number, cough expiratory efforts, blood pressure, and heart rate in a dose-dependent manner. (-)Nicotine did not alter temporal characteristics of the cough motor pattern. Pretreatment with mecamylamine prevented the effect of (-)nicotine on blood pressure and heart rate, but did not block the antitussive action of this drug. (+)Nicotine was less potent than (-)nicotine for inhibition of cough. Microinjections of (-)nicotine into the caudal ventral respiratory column produced similar inhibitory effects on cough as administration of this isomer by the ia route. Mecamylamine microinjected in the region just before nicotine did not significantly reduce the cough suppressant effect of nicotine. Nicotinic acetylcholine receptors significantly modulate functions of brain stem and in particular caudal ventral respiratory column neurons involved in expression of the tracheobronchial cough reflex by a mecamylamine-insensitive mechanism.
Collapse
Affiliation(s)
- I Poliacek
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Martin, Slovak Republic
| | - M J Rose
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - T E Pitts
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - A Mortensen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - L W Corrie
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - P W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - D C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| |
Collapse
|
15
|
Abstract
TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca(2+) release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Ave., Miami, FL, 33136, USA,
| |
Collapse
|
16
|
Electrophysiological changes in laterodorsal tegmental neurons associated with prenatal nicotine exposure: implications for heightened susceptibility to addict to drugs of abuse. J Dev Orig Health Dis 2014; 6:182-200. [PMID: 25339425 DOI: 10.1017/s204017441400049x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prenatal nicotine exposure (PNE) is a risk factor for developing an addiction to nicotine at a later stage in life. Understanding the neurobiological changes in reward related circuitry induced by exposure to nicotine prenatally is vital if we are to combat the heightened addiction liability in these vulnerable individuals. The laterodorsal tegmental nucleus (LDT), which is comprised of cholinergic, GABAergic and glutamatergic neurons, is importantly involved in reward mediation via demonstrated excitatory projections to dopamine-containing ventral tegmental neurons. PNE could lead to alterations in LDT neurons that would be expected to alter responses to later-life nicotine exposure. To examine this issue, we monitored nicotine-induced responses of LDT neurons in brain slices of PNE and drug naive mice using calcium imaging and whole-cell patch clamping. Nicotine was found to induce rises in calcium in a smaller proportion of LDT cells in PNE mice aged 7-15 days and smaller rises in calcium in PNE animals from postnatal ages 11-21 days when compared with age-matched control animals. While inward currents induced by nicotine were not found to be different, nicotine did induce larger amplitude excitatory postsynaptic currents in PNE animals in the oldest age group when compared with amplitudes induced in similar-aged control animals. Immunohistochemically identified cholinergic LDT cells from PNE animals exhibited slower spike rise and decay slopes, which likely contributed to the wider action potential observed. Further, PNE was associated with a more negative action potential afterhyperpolarization in cholinergic cells. Interestingly, the changes found in these parameters in animals exposed prenatally to nicotine were age related, in that they were not apparent in animals from the oldest age group examined. Taken together, our data suggest that PNE induces changes in cholinergic LDT cells that would be expected to alter cellular excitability. As the changes are age related, these PNE-associated alterations could contribute differentially across ontogeny to nicotine-mediated reward and may contribute to the particular susceptibility of in utero nicotine exposed individuals to addict to nicotine upon nicotine exposure in the juvenile period.
Collapse
|
17
|
Bigiani A. Amiloride-sensitive sodium currents in fungiform taste cells of rats chronically exposed to nicotine. Neuroscience 2014; 284:180-191. [PMID: 25305667 DOI: 10.1016/j.neuroscience.2014.09.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/17/2014] [Accepted: 09/30/2014] [Indexed: 01/18/2023]
Abstract
Many studies have demonstrated that chronic exposure to nicotine, one of the main components of tobacco smoke, has profound effects on the functionality of the mammalian taste system. However, the mechanisms underlying nicotine action are poorly understood. In particular no information is available on the chronic effect of nicotine on the functioning of taste cells, the peripheral detectors which transduce food chemicals into electrical signals to the brain. To address this issue, I studied the membrane properties of rat fungiform taste cells and evaluated the effect of long-term exposure to nicotine on the amiloride-sensitive sodium currents (ASSCs). These currents are mediated by the epithelial sodium channels (ENaC) thought to be important, at least in part, in the transduction of salty stimuli. Patch-clamp recording data indicated that ASSCs in taste cells from rats chronically treated with nicotine had a reduced amplitude compared to controls. The pharmacological and biophysical analysis of ASSCs revealed that amplitude reduction was not dependent on changes in amiloride sensitivity or channel ionic permeability, but likely derived from a decrease in the activity of ENaCs. Since these channels are considered to be sodium receptors in taste cells, my results suggest that chronic exposure to nicotine hampers the capability of these cells to respond to sodium ions. This might represent a possible cellular mechanism underlying the reduced taste sensitivity to salt typically found in smokers.
Collapse
Affiliation(s)
- A Bigiani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Sezione di Fisiologia e Neuroscienze, Università di Modena e Reggio Emilia, via G. Campi 287, 41125 Modena, Italy.
| |
Collapse
|
18
|
Zhang Y, Xie H, Lei G, Li F, Pan J, Liu C, Liu Z, Liu L, Cao X. Regulatory effects of anandamide on intracellular Ca(2+) concentration increase in trigeminal ganglion neurons. Neural Regen Res 2014; 9:878-87. [PMID: 25206906 PMCID: PMC4146256 DOI: 10.4103/1673-5374.131607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2014] [Indexed: 12/20/2022] Open
Abstract
Activation of cannabinoid receptor type 1 on presynaptic neurons is postulated to suppress neurotransmission by decreasing Ca2+ influx through high voltage-gated Ca2+ channels. However, recent studies suggest that cannabinoids which activate cannabinoid receptor type 1 can increase neurotransmitter release by enhancing Ca2+ influx in vitro. The aim of the present study was to investigate the modulation of intracellular Ca2+ concentration by the cannabinoid receptor type 1 agonist anandamide, and its underlying mechanisms. Using whole cell voltage-clamp and calcium imaging in cultured trigeminal ganglion neurons, we found that anandamide directly caused Ca2+ influx in a dose-dependent manner, which then triggered an increase of intracellular Ca2+ concentration. The cyclic adenosine and guanosine monophosphate-dependent protein kinase systems, but not the protein kinase C system, were involved in the increased intracellular Ca2+ concentration by anandamide. This result showed that anandamide increased intracellular Ca2+ concentration and inhibited high voltage-gated Ca2+ channels through different signal transduction pathways.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Xie
- Jingzhou Central Hospital, Jingzhou, Hubei Province, China
| | - Gang Lei
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fen Li
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jianping Pan
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Changjin Liu
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhiguo Liu
- Department of Bioengineering, Wuhan Institute of Engineering, Wuhan, Hubei Province, China
| | - Lieju Liu
- Department of Bioengineering, Wuhan Institute of Engineering, Wuhan, Hubei Province, China
| | - Xuehong Cao
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China ; Department of Bioengineering, Wuhan Institute of Engineering, Wuhan, Hubei Province, China
| |
Collapse
|
19
|
Christensen MH, Ishibashi M, Nielsen ML, Leonard CS, Kohlmeier KA. Age-related changes in nicotine response of cholinergic and non-cholinergic laterodorsal tegmental neurons: implications for the heightened adolescent susceptibility to nicotine addiction. Neuropharmacology 2014; 85:263-83. [PMID: 24863041 DOI: 10.1016/j.neuropharm.2014.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023]
Abstract
The younger an individual starts smoking, the greater the likelihood that addiction to nicotine will develop, suggesting that neurobiological responses vary across age to the addictive component of cigarettes. Cholinergic neurons of the laterodorsal tegmental nucleus (LDT) are importantly involved in the development of addiction, however, the effects of nicotine on LDT neuronal excitability across ontogeny are unknown. Nicotinic effects on LDT cells across different age groups were examined using calcium imaging and whole-cell patch clamping. Within the youngest age group (P7-P15), nicotine induced larger intracellular calcium transients and inward currents. Nicotine induced a greater number of excitatory synaptic currents in the youngest animals, whereas larger amplitude inhibitory synaptic events were induced in cells from the oldest animals (P15-P34). Nicotine increased neuronal firing of cholinergic cells to a greater degree in younger animals, possibly linked to development associated differences found in nicotinic effects on action potential shape and afterhyperpolarization. We conclude that in addition to age-associated alterations of several properties expected to affect resting cell excitability, parameters affecting cell excitability are altered by nicotine differentially across ontogeny. Taken together, our data suggest that nicotine induces a larger excitatory response in cholinergic LDT neurons from the youngest animals, which could result in a greater excitatory output from these cells to target regions involved in development of addiction. Such output would be expected to be promotive of addiction; therefore, ontogenetic differences in nicotine-mediated increases in the excitability of the LDT could contribute to the differential susceptibility to nicotine addiction seen across age.
Collapse
Affiliation(s)
- Mark H Christensen
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health Sciences, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Masaru Ishibashi
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | - Michael L Nielsen
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health Sciences, Universitetsparken 2, Copenhagen 2100, Denmark
| | | | - Kristi A Kohlmeier
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health Sciences, Universitetsparken 2, Copenhagen 2100, Denmark.
| |
Collapse
|
20
|
Albers KM, Zhang XL, Diges CM, Schwartz ES, Yang CI, Davis BM, Gold MS. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons. Mol Pain 2014; 10:31. [PMID: 24886596 PMCID: PMC4036648 DOI: 10.1186/1744-8069-10-31] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023] Open
Abstract
Background Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) subunits, suggesting these ion channels contribute to Artn-induced sensitivity. Here we have used gene expression, immunolabeling, patch clamp electrophysiology and behavioral testing assays to investigate the link between Artn, nicotinic subunit expression and thermal hypersensitivity. Results Reverse transcriptase-PCR validation showed increased levels of mRNAs encoding the nAChR subunits α3 (13.3-fold), β3 (4-fold) and β4 (7.7-fold) in trigeminal ganglia and α3 (4-fold) and β4 (2.8-fold) in dorsal root ganglia (DRG) of ART-OE mice. Sensory ganglia of ART-OE mice had increased immunoreactivity for nAChRα3 and exhibited increased overlap in labeling with GFRα3-positive neurons. Patch clamp analysis of back-labeled cutaneous afferents showed that while the majority of nicotine-evoked currents in DRG neurons had biophysical and pharmacological properties of α7-subunit containing nAChRs, the Artn-induced increase in α3 and β4 subunits resulted in functional channels. Behavioral analysis of ART-OE and wildtype mice showed that Artn-induced thermal hyperalgesia can be blocked by mecamylamine or hexamethonium. Complete Freund’s adjuvant (CFA) inflammation of paw skin, which causes an increase in Artn in the skin, also increased the level of nAChR mRNAs in DRG. Finally, the increase in nAChRs transcription was not dependent on the Artn-induced increase in TRPV1 or TRPA1 in ART-OE mice since nAChRs were elevated in ganglia of TRPV1/TRPA1 double knockout mice. Conclusions These findings suggest that Artn regulates the expression and composition of nAChRs in GFRα3 nociceptors and that these changes contribute to the thermal hypersensitivity that develops in response to Artn injection and perhaps to inflammation.
Collapse
Affiliation(s)
- Kathryn M Albers
- Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Schreiner BS, Lehmann R, Thiel U, Ziemba PM, Beltrán LR, Sherkheli MA, Jeanbourquin P, Hugi A, Werner M, Gisselmann G, Hatt H. Direct action and modulating effect of (+)- and (−)-nicotine on ion channels expressed in trigeminal sensory neurons. Eur J Pharmacol 2014; 728:48-58. [DOI: 10.1016/j.ejphar.2014.01.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 01/06/2023]
|
22
|
Gees M, Alpizar YA, Luyten T, Parys JB, Nilius B, Bultynck G, Voets T, Talavera K. Differential Effects of Bitter Compounds on the Taste Transduction Channels TRPM5 and IP3 Receptor Type 3. Chem Senses 2014; 39:295-311. [DOI: 10.1093/chemse/bjt115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
23
|
Abstract
The use of medicinal plants or other naturally derived products to relieve illness can be traced back over several millennia, and these natural products are still extensively used nowadays. Studies on natural products have, over the years, enormously contributed to the development of therapeutic drugs used in modern medicine. By means of the use of these substances as selective agonists, antagonists, enzyme inhibitors or activators, it has been possible to understand the complex function of many relevant targets. For instance, in an attempt to understand how pepper species evoke hot and painful actions, the pungent and active constituent capsaicin (from Capsicum sp.) was isolated in 1846 and the receptor for the biological actions of capsaicin was cloned in 1997, which is now known as TRPV1 (transient receptor potential vanilloid 1). Thus, TRPV1 agonists and antagonists have currently been tested in order to find new drug classes to treat different disorders. Indeed, the transient receptor potential (TRP) proteins are targets for several natural compounds, and antagonists of TRPs have been synthesised based on the knowledge of naturally derived products. In this context, this chapter focuses on naturally derived compounds (from plants and animals) that are reported to be able to modulate TRP channels. To clarify and make the understanding of the modulatory effects of natural compounds on TRPs easier, this chapter is divided into groups according to TRP subfamilies: TRPV (TRP vanilloid), TRPA (TRP ankyrin), TRPM (TRP melastatin), TRPC (TRP canonical) and TRPP (TRP polycystin). A general overview on the naturally derived compounds that modulate TRPs is depicted in Table 1.
Collapse
Affiliation(s)
- Flavia Carla Meotti
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | | | | |
Collapse
|
24
|
Luo YL, Li PB, Zhang CC, Zheng YF, Wang S, Nie YC, Zhang KJ, Su WW. Effects of four antitussives on airway neurogenic inflammation in a guinea pig model of chronic cough induced by cigarette smoke exposure. Inflamm Res 2013; 62:1053-61. [PMID: 24085318 DOI: 10.1007/s00011-013-0664-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/27/2013] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The effects of four antitussives, including codeine phosphate (CP), moguisteine, levodropropizine (LVDP) and naringin, on airway neurogenic inflammation and enhanced cough were investigated in guinea pig model of chronic cough. METHODS Guinea pigs were exposed to CS for 8 weeks. At the 7th and 8th week, the animals were treated with vehicle, CP (4.8 mg/kg), moguisteine (24 mg/kg), LVDP (14 mg/kg) and naringin (18.4 mg/kg) respectively. Then the cough and the time-enhanced pause area under the curve (Penh-AUC) during capsaicin challenge were recorded. The substance P (SP) content, NK-1 receptor expression and neutral endopeptidase (NEP) activity in lung were determined. RESULTS Chronic CS exposure induced a bi-phase time course of cough responsiveness to capsaicin. Eight weeks of CS exposure significantly enhanced the airway neurogenic inflammation and cough response in guinea pigs. Two weeks of treatment with CP, moguisteine, LVDP or naringin effectively attenuated the chronic CS-exposure enhanced cough. Only naringin exerted significant effect on inhibiting Penh-AUC, SP content and NK-1 receptor expression, as well as preventing the declining of NEP activity in lung. CONCLUSIONS Chronic CS-exposed guinea pig is suitable for studying chronic pathological cough, in which naringin is effective on inhibiting both airway neurogenic inflammation and enhanced cough.
Collapse
Affiliation(s)
- Yu-long Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No.135, Xingangxi Street, Guangzhou, 510275, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kichko TI, Lennerz J, Eberhardt M, Babes RM, Neuhuber W, Kobal G, Reeh PW. Bimodal concentration-response of nicotine involves the nicotinic acetylcholine receptor, transient receptor potential vanilloid type 1, and transient receptor potential ankyrin 1 channels in mouse trachea and sensory neurons. J Pharmacol Exp Ther 2013; 347:529-39. [PMID: 23926288 DOI: 10.1124/jpet.113.205971] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High concentrations of nicotine, as in the saliva of oral tobacco consumers or in smoking cessation aids, have been shown to sensitize/activate recombinant transient receptor potential vanilloid type 1 (rTRPV1) and mouse TRPA1 (mTRPA1) channels. By measuring stimulated calcitonin gene-related peptide (CGRP) release from the isolated mouse trachea, we established a bimodal concentration-response relationship with a threshold below 10 µM (-)-nicotine, a maximum at 100 µM, an apparent nadir between 0.5 and 10 mM, and a renewed increase at 20 mM. The first peak was unchanged in TRPV1/A1 double-null mutants as compared with wild-types and was abolished by specific nicotinic acetylcholine receptor (nAChR) inhibitors and by camphor, discovered to act as nicotinic antagonist. The nicotine response at 20 mM was strongly pHe-dependent, - five times greater at pH 9.0 than 7.4, indicating that intracellular permeation of the (uncharged) alkaloid was required to reach the TRPV1/A1 binding sites. The response was strongly reduced in both null mutants, and more so in double-null mutants. Upon measuring calcium transients in nodose/jugular and dorsal root ganglion neurons in response to 100 µM nicotine, 48% of the vagal (but only 14% of the somatic) sensory neurons were activated, the latter very weakly. However, nicotine 20 mM at pH 9.0 repeatedly activated almost every single cultured neuron, partly by releasing intracellular calcium and independent of TRPV1/A1 and nAChRs. In conclusion, in mouse tracheal sensory nerves nAChRs are 200-fold more sensitive to nicotine than TRPV1/A1; they are widely coexpressed with the capsaicin receptor among vagal sensory neurons and twice as abundant as TRPA1. Nicotine is the major stimulant in tobacco, and its sensory impact through nAChRs should not be disregarded.
Collapse
Affiliation(s)
- Tatjana I Kichko
- Institute of Physiology and Pathophysiology (T.I.K., J.L., M.E., R.M.B., P.W.R.) and Institute of Anatomy I (W.N.), Friedrich-Alexander-University, Erlangen, Germany; Institute of Pathology, University of Ulm, Ulm, Germany (J.L.); Department of Biophysics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania (R.M.B.); Department of Anesthesiology and Intensive Care, Hannover Medical School, Hannover, Germany (M.E.); and Altria Client Services, Inc., Richmond, Virginia (G.K.)
| | | | | | | | | | | | | |
Collapse
|
26
|
Richardson EJ, Richards JS, Stewart CC, Ness TJ. Effects of nicotine on spinal cord injury pain: a randomized, double-blind, placebo controlled crossover trial. Top Spinal Cord Inj Rehabil 2013; 18:101-5. [PMID: 23459459 DOI: 10.1310/sci1802-101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND One factor affecting spinal cord injury (SCI)-related pain may be nicotine. Case reports have described a worsening of neuropathic pain from smoking and relief from abstinence. Neurobiological correlates also implicate the potential effect of nicotine on SCI-related pain. METHOD The current study employed a randomized, placebo-controlled crossover design to examine the effect of nicotine exposure on subtypes of SCI-related pain among smokers and nonsmokers. RESULTS Whereas nonsmokers with SCI showed a reduction in mixed forms of pain following nicotine exposure, smokers with SCI showed a converse increase in pain with regard to both mixed and neuropathic forms of pain. The exacerbation of pain in chronic nicotine or tobacco users may not only elucidate possible pain mechanisms but may also be of use in smoking cessation counseling among those with SCI.
Collapse
Affiliation(s)
- Elizabeth J Richardson
- Department of Physical Medicine and Rehabilitation , University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | |
Collapse
|
27
|
Effects of Nicotine on Spinal Cord Injury Pain Vary Among Subtypes of Pain and Smoking Status: Results From a Randomized, Controlled Experiment. THE JOURNAL OF PAIN 2012; 13:1206-14. [DOI: 10.1016/j.jpain.2012.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/24/2012] [Accepted: 09/17/2012] [Indexed: 01/11/2023]
|
28
|
When a TRP goes bad: transient receptor potential channels in addiction. Life Sci 2012; 92:410-4. [PMID: 22820171 DOI: 10.1016/j.lfs.2012.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 07/04/2012] [Accepted: 07/07/2012] [Indexed: 12/22/2022]
Abstract
Drug addiction is a psychiatric disease state, wherein a drug is impulsively and compulsively self-administered despite negative consequences. This repeated administration results in permanent changes to nervous system physiology and architecture. The molecular pathways affected by addictive drugs are complex and inter-dependent on each other. Recently, various new proteins and protein families have been discovered to play a role in drug abuse. Emerging players in this phenomenon include TRP (Transient Receptor Potential) family channels, which are primarily known to function in sensory systems. Several TRP family channels identified in both vertebrates and invertebrates are involved in psychostimulant-induced plasticity, suggesting their involvement in drug dependence. This review summarizes various observations, both from studies in humans and other organisms, which support a role for these channels in the development of drug-related behaviors.
Collapse
|
29
|
Costa R, Motta EM, Manjavachi MN, Cola M, Calixto JB. Activation of the alpha-7 nicotinic acetylcholine receptor (α7 nAchR) reverses referred mechanical hyperalgesia induced by colonic inflammation in mice. Neuropharmacology 2012; 63:798-805. [PMID: 22722030 DOI: 10.1016/j.neuropharm.2012.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/10/2012] [Accepted: 06/05/2012] [Indexed: 01/26/2023]
Abstract
In the current study, we investigated the effect of the activation of the alpha-7 nicotinic acetylcholine receptor (α7 nAchR) on dextran sulphate sodium (DSS)-induced colitis and referred mechanical hyperalgesia in mice. Colitis was induced in CD1 male mice through the intake of 4% DSS in tap water for 7 days. Control mice received unadulterated water. Referred mechanical hyperalgesia was evaluated for 7 days after the beginning of 4% DSS intake. Referred mechanical hyperalgesia started within 1 day after beginning DSS drinking, peaked at 3 days and persisted for 7 days. This time course profile perfectly matched with the appearance of signs of colitis. Both acute and chronic oral treatments with nicotine (0.1-1.0 mg/kg, p.o.) were effective in inhibiting the established referred mechanical hyperalgesia. The antinociceptive effect of nicotine was completely abrogated by cotreatment with the selective α7 nAchR antagonist methyllycaconitine (MLA) (1.0 mg/kg). Consistent with these results, i.p. treatment with the selective α7 nAchR agonist PNU 282987 (0.1-1.0 mg/kg) reduced referred mechanical hyperalgesia at all periods of evaluation. Despite their antinociceptive effects, nicotinic agonists did not affect DSS-induced colonic damage or inflammation. Taken together, the data generated in the present study show the potential relevance of using α7 nAchR agonists to treat referred pain and discomfort associated with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Robson Costa
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, 88049-900 Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
30
|
Gyekis JP, Dingman MA, Revitsky AR, Bryant BP, Vandenbergh DJ, Frank ME, Blizard DA. Gustatory, trigeminal, and olfactory aspects of nicotine intake in three mouse strains. Behav Genet 2012; 42:820-9. [PMID: 22618163 DOI: 10.1007/s10519-012-9546-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/05/2012] [Indexed: 12/16/2022]
Abstract
Studies of nicotine consumption in rodents often intend to investigate nicotine's post-absorptive effects, yet little is known about the pre-absorptive sensory experience of nicotine drinking, including gustatory, trigeminal, and olfactory influences. We conditioned taste aversion (CTA) to nicotine in males of 3 inbred mouse strains: C57BL/6J, DBA/2J, and 129X1/SvJ by repeatedly pairing 150 μg/ml nicotine drinking with lithium chloride injections. Generalization to a variety of bitter, sour, sweet, salty, and irritant solutions and to nicotine odor was then examined. Nicotine CTA generalized to the bitter stimulus quinine hydrochloride and the chemosensory irritant spilanthol in all strains. It also showed strain specificity, generalizing to hydrogen peroxide (an activator of TRPA1) in C57BL/6J mice and to the olfactory cue of nicotine in DBA/2J mice. These behavioral assays demonstrate that the sensory properties of nicotine are complex and include multiple gustatory, irritant, and olfactory components. How these qualities combine at the level of perception remains to be assessed, but sensory factors clearly exert an important influence on nicotine ingestion and their contribution to net intake of nicotine should not be neglected in animal or human studies.
Collapse
Affiliation(s)
- Joseph P Gyekis
- Department of Biobehavioral Health, Pennsylvania State University, 201 Research Building D, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Renner B, Schreiber K. Olfactory and trigeminal interaction of menthol and nicotine in humans. Exp Brain Res 2012; 219:13-26. [PMID: 22434343 PMCID: PMC3338917 DOI: 10.1007/s00221-012-3063-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/02/2012] [Indexed: 12/27/2022]
Abstract
The purpose of the study was to investigate the interactions between two stimuli—menthol and nicotine—both of which activate the olfactory and the trigeminal system. More specifically, we wanted to know whether menthol at different concentrations modulates the perception of burning and stinging pain induced by nicotine stimuli in the human nose. The study followed an eightfold randomized, double-blind, cross-over design including 20 participants. Thirty phasic nicotine stimuli at one of the two concentrations (99 and 134 ng/mL) were applied during the entire experiment every 1.5 min for 1 s; tonic menthol stimulation at one of the three concentrations (0.8, 1.5 and 3.4 μg/mL) or no-menthol (placebo control conditions) was introduced after the 15th nicotine stimulus. The perceived intensities of nicotine’s burning and stinging pain sensations, as well as perceived intensities of menthol’s odor, cooling and pain sensations, were estimated using visual analog scales. Recorded estimates of stinging and burning sensations induced by nicotine initially decreased (first half of the experiment) probably due to adaptation/habituation. Tonic menthol stimulation did not change steady-state nicotine pain intensity estimates, neither for burning nor for stinging pain. Menthol-induced odor and cooling sensations were concentration dependent when combined with low-intensity nicotine stimuli. Surprisingly, this dose dependency was eliminated when combining menthol stimuli with high-intensity nicotine stimuli. There was no such nicotine effect on menthol’s pain sensation. In summary, we detected interactions caused by nicotine on menthol perception for odor and cooling but no effect was elicited by menthol on nicotine pain sensation.
Collapse
Affiliation(s)
- Bertold Renner
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | |
Collapse
|
32
|
Abstract
Natural product ligands have contributed significantly to the deorphanisation of TRP ion channels. Furthermore, natural product ligands continue to provide valuable leads for the identification of ligands acting at "orphan" TRP channels. Additional naturally occurring modulators at TRP channels can be expected to be discovered in future, aiding in our understanding of not only their pharmacology and physiology, but also the therapeutic potential of this fascinating family of ion channels.
Collapse
|
33
|
Xu S, Ono K, Inenaga K. Electrophysiological and chemical properties in subclassified acutely dissociated cells of rat trigeminal ganglion by current signatures. J Neurophysiol 2010; 104:3451-61. [PMID: 20573966 DOI: 10.1152/jn.00336.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the present study, we subclassified acutely dissociated trigeminal ganglion (TRG) cells of rats using a current signature method in whole cell patch-clamp recordings. Using modified criteria for cell classification for the dorsal root ganglion (DRG), TRG cells were subclassified into nine cell types: 1-5, 7-9, and 13. Types 1, 3, and 7 were in the small cell groups (15-24 μm); types 4, 5, and 8-13 were in the medium cell groups (25-38 μm); and type 2 was a mixed group of both cell sizes. Types 1-3, 5, and 7 showed high-input resistance and types 1, 2, and 7 showed more depolarized resting membrane potentials. Types 1, 2, and 5-13 expressed long-duration action potentials (APs), but types 3 and 4 expressed short-duration APs. Sensitivities to capsaicin, protons, and adenosine 5'-triphosphate (ATP) in TRG cell types largely corresponded to DRG cell types. However, different from the matched DRG types, half of TRG type 1 cells were capsaicin insensitive, showing desensitizing proton-induced currents, and types 5, 7, and 9 exhibited slow-desensitizing ATP-induced currents. Types 4, 5, and 8-13 had nicotine sensitivity, but the other cell types were insensitive. These results indicate that the "current signatures" classification is a useful means to separate TRG cells into internally homogeneous subpopulations that were distinct from other cell types. Furthermore, the data suggest some specific differences in the chemical responsiveness of some cell types between the TRG and DRG.
Collapse
Affiliation(s)
- Shenghong Xu
- Kyushu Dental College, Department of Biosciences, 2-6-1, Manazuru, Kokurakitaku, Kitakyushu, 803-8580, Japan
| | | | | |
Collapse
|
34
|
Xia L, Leiter J, Bartlett D. Gestational nicotine exposure exaggerates hyperthermic enhancement of laryngeal chemoreflex in rat pups. Respir Physiol Neurobiol 2010; 171:17-21. [DOI: 10.1016/j.resp.2010.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/22/2009] [Accepted: 01/15/2010] [Indexed: 11/25/2022]
|
35
|
Logan HL, Fillingim RB, Bartoshuk LM, Sandow P, Tomar SL, Werning JW, Mendenhall WM. Smoking status and pain level among head and neck cancer patients. THE JOURNAL OF PAIN 2009; 11:528-34. [PMID: 20015696 DOI: 10.1016/j.jpain.2009.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 08/13/2009] [Accepted: 09/09/2009] [Indexed: 01/21/2023]
Abstract
UNLABELLED Smoking is a risk factor for cancer of the upper aerodigestive tract with recidivism rates high even after diagnosis. Nicotine, a major product in tobacco, is a complex drug with multiple characteristics including analgesic properties. The goal of the study was to examine pain levels in the context of smoking status among patients recently diagnosed with cancer of the upper aerodigestive tract who have not yet received any treatment including radiation, surgery, or chemotherapy. A convenience sample of 112 newly diagnosed head and neck cancer patients (78 men and 34 women) was recruited from clinics at the University of Florida. Smoking rates were: 32% never smoked, 34% former smokers, 34% current smokers. Among current smokers, 62% reported plans to quit in the next 3 months and 38% had tried to quit more than 3 times in the past 5 years. Current smokers reported higher general (sensory and affective) and oral pain levels (spontaneous and functional) and pain-related interference than did never and former smokers (all F's > 8. and P's < .0001) even after controlling for stage of diagnosis. In addition, current smokers reported significantly greater interference from the pain (F(2,73) = 10.5 P < .0001). PERSPECTIVE This study highlights the importance of understanding self-reported pain in cancer patients who continue to smoke. When pain is elevated, smokers may be motivated to use tobacco as a means of reducing pain, which in turn reinforces smoking behavior. Tobacco cessation programs should include pain management as a component of treatment.
Collapse
Affiliation(s)
- Henrietta L Logan
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Effect of smoking on cough reflex sensitivity: basic and preclinical studies. Lung 2009; 188 Suppl 1:S23-7. [PMID: 19844757 DOI: 10.1007/s00408-009-9191-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/24/2009] [Indexed: 12/27/2022]
Abstract
In healthy nonsmokers, inhalation of one single puff of cigarette smoke immediately evoked airway irritation and cough, which were either prevented or markedly diminished after premedication with hexamethonium. Single-fiber recording experiments performed in anesthetized animals showed that both C fibers and rapidly adapting receptors in the lungs and airways were stimulated by inhalation of one breath of cigarette smoke. Application of nicotine evoked an inward current and triggered depolarization and action potentials in a concentration-dependent manner in a subset of isolated vagal pulmonary sensory neurons. Taken together, these studies showed that activation of the nicotinic acetylcholine receptors expressed on airway sensory nerves is mainly responsible for the acute airway irritation and cough reflex elicited by inhaled cigarette smoke. Chronic exposure to cigarette smoke consistently induces enhanced cough responses to various inhaled tussive agents in guinea pigs. The increased cough sensitivity involves primarily an elevated sensitivity of cough sensors and also an enhanced synaptic transmission of their afferent signals at the nucleus tractus solitaries. In contrast to the observations in animal studies, both enhanced and diminished cough sensitivities to tussive agents have been reported in chronic smokers. This discrepancy is probably related to the history of chronic smoking of the individual smokers and the severity of existing airway inflammation and dysfunction. Furthermore, several other factors possibly contributing to the regulation of cough receptor sensitivity in chronic smokers should also be considered.
Collapse
|
37
|
Nicotine activates the chemosensory cation channel TRPA1. Nat Neurosci 2009; 12:1293-9. [PMID: 19749751 DOI: 10.1038/nn.2379] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 07/06/2009] [Indexed: 02/08/2023]
Abstract
Topical application of nicotine, as used in nicotine replacement therapies, causes irritation of the mucosa and skin. This reaction has been attributed to activation of nicotinic acetylcholine receptors (nAChRs) in chemosensory neurons. In contrast with this view, we found that the chemosensory cation channel transient receptor potential A1 (TRPA1) is crucially involved in nicotine-induced irritation. We found that micromolar concentrations of nicotine activated heterologously expressed mouse and human TRPA1. Nicotine acted in a membrane-delimited manner, stabilizing the open state(s) and destabilizing the closed state(s) of the channel. In the presence of the general nAChR blocker hexamethonium, nociceptive neurons showed nicotine-induced responses that were strongly reduced in TRPA1-deficient mice. Finally, TRPA1 mediated the mouse airway constriction reflex to nasal instillation of nicotine. The identification of TRPA1 as a nicotine target suggests that existing models of nicotine-induced irritation should be revised and may facilitate the development of smoking cessation therapies with less adverse effects.
Collapse
|
38
|
Freysoldt A, Fleckenstein J, Lang PM, Irnich D, Grafe P, Carr RW. Low concentrations of amitriptyline inhibit nicotinic receptors in unmyelinated axons of human peripheral nerve. Br J Pharmacol 2009; 158:797-805. [PMID: 19694730 DOI: 10.1111/j.1476-5381.2009.00347.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Amitriptyline is often prescribed as a first-line treatment for neuropathic pain but its precise mode of analgesic action remains uncertain. Amitriptyline is known to inhibit voltage-dependent ion channels and also to act as an antagonist at ligand-gated ion channels, such as nicotinic acetylcholine receptors (nAChRs). In the present study, we tested the effect of amitriptyline on nicotinic responses of unmyelinated axons in isolated segments of human peripheral nerve. In particular, a comparison was made between the concentrations of amitriptyline necessary for inhibition of nAChRs and those required for inhibition of the compound C-fibre action potential. EXPERIMENTAL APPROACH Isolated axon fascicles were prepared from short segments of human sural nerve, and multiple measures of axonal excitability were recorded using computer-controlled threshold tracking software. KEY RESULTS Amitriptyline (EC(50) 2.6 microM) reduced the nicotine-induced increase in C-fibre excitability but only slightly altered the amplitude and latency to onset of the compound action potential. In contrast, tetrodotoxin produced a clear reduction in the amplitude and a prolongation of action potential onset latency but was without effect on the nicotine-induced increase in axonal excitability. CONCLUSIONS AND IMPLICATIONS These data demonstrate that low concentrations of amitriptyline suppress the response of human peripheral C-type axons to nicotine by directly inhibiting nAChRs. Blockade of tetrodotoxin-sensitive, voltage-dependent sodium channels does not contribute to this effect. An inhibitory action of amitriptyline on nAChRs in unmyelinated nociceptive axons may be an important component of amitriptyline's therapeutic effect in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- A Freysoldt
- Institute of Physiology, University of Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Spector AC, Glendinning JI. Linking peripheral taste processes to behavior. Curr Opin Neurobiol 2009; 19:370-7. [PMID: 19674892 DOI: 10.1016/j.conb.2009.07.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/09/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
The act of eating and drinking brings food-related chemicals into contact with taste cells. Activation of these taste cells, in turn, engages neural circuits in the central nervous system that help animals identify foods and fluids, determine what and how much to eat, and prepare the body for digestion and assimilation. Analytically speaking, these neural processes can be divided into at least three categories: stimulus identification, ingestive motivation, and digestive preparation. This review will discuss recent advances in peripheral gustatory mechanisms, primarily from rodent models, in the context of these three major categories of taste function.
Collapse
Affiliation(s)
- Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | | |
Collapse
|
40
|
Colsoul B, Nilius B, Vennekens R. On the putative role of transient receptor potential cation channels in asthma. Clin Exp Allergy 2009; 39:1456-66. [PMID: 19624522 DOI: 10.1111/j.1365-2222.2009.03315.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The mammalian transient receptor potential (TRP) superfamily consists of 28 mammalian TRP cation channels, which can be subdivided into six main subfamilies: the TRPC ('Canonical'), TRPV ('Vanilloid'), TRPM ('Melastatin'), TRPP ('Polycystin'), TRPML ('Mucolipin') and the TRPA ('Ankyrin') groups. Increasing evidence has accumulated during the previous few years that links TRP channels to the cause of several diseases or to critically influence and/or determine their progress. This review focuses on the possible role of TRP channels in the aetiology of asthmatic lung disease.
Collapse
Affiliation(s)
- B Colsoul
- Laboratory Ion Channel Research, Department of Molecular Cell Biology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
41
|
Abstract
Cigarette smoke is undoubtedly one of the most common inhaled irritants in the human respiratory tract, and invariably evokes coughing in both smokers and nonsmokers. Results obtained from the studies in human volunteers and from single-fiber recording of vagal bronchopulmonary afferents in animals clearly indicate that nicotine is primarily responsible for the airway irritation and coughing caused by inhalation of cigarette smoke. Furthermore, both nicotine and acetylcholine can evoke inward current, membrane depolarization, and action potentials in isolated pulmonary sensory neurons, and these responses are blocked by hexamethonium. Taken together, these findings suggest that the tussive effect of nicotine is probably mediated through an activation of nicotinic acetylcholine receptors (nAChRs) expressed on the sensory terminals of cough receptors located in the airway mucosa. Indeed, the expressions of alpha4-alpha7 and beta2-beta4 subunits of nAChR transcripts in pulmonary sensory neurons have lent further support to this conclusion. The specific subtypes of the neuronal nAChRs and their subunit compositions expressed on the cough sensors remain to be determined.
Collapse
Affiliation(s)
- L-Y Lee
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
42
|
|
43
|
Abstract
Gustatory perception is inherently multimodal, since approximately the same time that intra-oral stimuli activate taste receptors, somatosensory information is concurrently sent to the CNS. We review evidence that gustatory perception is intrinsically linked to concurrent somatosensory processing. We will show that processing of multisensory information can occur at the level of the taste cells through to the gustatory cortex. We will also focus on the fact that the same chemical and physical stimuli that activate the taste system also activate the somatosensory system (SS), but they may provide different types of information to guide behavior.
Collapse
|
44
|
Abstract
The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease.
Collapse
|
45
|
Carstens E, Albin KC, Simons CT, Carstens MI. Time course of self-desensitization of oral irritation by nicotine and capsaicin. Chem Senses 2007; 32:811-6. [PMID: 17641107 DOI: 10.1093/chemse/bjm048] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nicotine contacting mucous membranes elicits irritation that decreases with repeated exposures (self-desensitization). We investigated the time course of nicotine self-desensitization and compared it with that of capsaicin. Nicotine (300 mM, 10 microl) was applied to one-half of the dorsal tongue and vehicle to the other. Following a rest period ranging from 0.5 to 48 h, nicotine (5 microl) was reapplied to each side of the tongue and subjects indicated on which side they experienced stronger irritation and separately rated the intensity of the sensation on each side. After intervals of 0.5, 1, and 24 h, a significant majority of subjects chose the vehicle-treated side as having stronger irritation and assigned significantly higher intensity ratings to that side, indicating self-desensitization. The effect was not present after 48 h. By comparison, 10 parts per million (ppm) (33 microM) capsaicin induced significant self-desensitization at 1 but not 24 h, whereas a higher concentration of capsaicin (100 ppm, 330 microM) induced significant self-desensitization at intervals of 1, 24, and 48 h. These results indicate that initial exposure to nicotine or capsaicin can markedly attenuate irritant sensations elicited by subsequent exposure to these irritants hours to days later.
Collapse
Affiliation(s)
- E Carstens
- Section of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
46
|
Lyall V, Phan THT, Mummalaneni S, Mansouri M, Heck GL, Kobal G, DeSimone JA. Effect of nicotine on chorda tympani responses to salty and sour stimuli. J Neurophysiol 2007; 98:1662-74. [PMID: 17615133 DOI: 10.1152/jn.00366.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The effect of nicotine on the benzamil (Bz)-insensitive (transient receptor potential vanilloid-1 variant cation channel, TRPV1t) and the Bz-sensitive (epithelial Na(+) channel, ENaC) salt taste receptors and sour taste was investigated by monitoring intracellular Na(+) and H(+) activity (pH(i)) in polarized fungiform taste receptor cells (TRCs) and the chorda tympani (CT) nerve responses to NaCl, KCl, and HCl. CT responses in Sprague-Dawley rats and both wildtype and TRPV1 knockout (KO) mice were recorded in the presence and absence of agonists [resiniferatoxin (RTX) and elevated temperature] and an antagonist (SB-366791) of TRPV1t, the ENaC blocker (Bz), and varying apical pH (pH(o)). At concentrations <0.015 M, nicotine enhanced and at >0.015 M, it inhibited CT responses to KCl and NaCl. Nicotine produced maximum enhancement in the Bz-insensitive NaCl CT response at pH(o) between 6 and 7. RTX and elevated temperature increased the sensitivity of the CT response to nicotine in salt-containing media, and SB-366791 inhibited these effects. TRPV1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to nicotine, RTX, and elevated temperature. We conclude that nicotine modulates salt responses by direct interaction with TRPV1t. At pH(o) >8, the apical membrane permeability of nicotine was increased significantly, resulting in increase in TRC pH(i) and volume, activation of ENaC, and enhancement of the Bz-sensitive NaCl CT response. At pH(o) >8, nicotine also inhibited the phasic component of the HCl CT response. We conclude that the effects of nicotine on ENaC and the phasic HCl CT response arise from increases in TRC pH(i) and volume.
Collapse
Affiliation(s)
- Vijay Lyall
- Department of Physiology, Virginia Commonwealth University, Sanger Hall 3010, 1101 E. Marshall St., Richmond, VA 23298-0551, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kim D, Baraniuk JN. Sensing the air around us: the voltage-gated-like ion channel family. Curr Allergy Asthma Rep 2007; 7:85-92. [PMID: 17437677 DOI: 10.1007/s11882-007-0004-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ion channels are a complex set of proteins having many important physiologic and potentially pathologic roles. The flow of ions through these channels and the subsequent cellular depolarization can trigger complex mechanisms such as cardiac rhythm, hormone secretion, and numerous sensory experiences. The transient receptor potential (TRP) channels are an important means for multiple organ systems to interact with their environment. The various TRP channel subfamilies respond to voltage or to ligands such as G-protein coupled receptors. Their ability to sense temperature, pain, stretch, and osmolarity among others enables them to mediate responses such as smooth muscle contraction, cough, or sensation of pain.
Collapse
Affiliation(s)
- Dennis Kim
- Division of Rheumatology, Immunology and Allergy, Room B105, Lower Level Kober-Cogen Building, Georgetown University, 3800 Reservoir Road, NW, Washington, DC 20007-2197, USA
| | | |
Collapse
|
48
|
Cao X, Cao X, Xie H, Yang R, Lei G, Li F, Li A, Liu C, Liu L. Effects of capsaicin on VGSCs in TRPV1-/- mice. Brain Res 2007; 1163:33-43. [PMID: 17632091 DOI: 10.1016/j.brainres.2007.04.085] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 04/26/2007] [Accepted: 04/30/2007] [Indexed: 12/20/2022]
Abstract
Two different mechanisms by which capsaicin blocks voltage-gated sodium channels (VGSCs) were found by using knockout mice for the transient receptor potential V1 (TRPV1(-/-)). Similar with cultured rat trigeminal ganglion (TG) neurons, the amplitude of tetrodotoxin-resistant (TTX-R) sodium current was reduced 85% by 1 muM capsaicin in capsaicin sensitive neurons, while only 6% was blocked in capsaicin insensitive neurons of TRPV1(+/+) mice. The selective effect of low concentration capsaicin on VGSCs was reversed in TRPV1(-/-) mice, which suggested that this effect was dependent on TRPV1 receptor. The blockage effect of high concentration capsaicin on VGSCs in TRPV1(-/-) mice was the same as that in capsaicin insensitive neurons of rats and TRPV1(+/+) mice. It is noted that non-selective effect of capsaicin on VGSCs shares many similarities with local anesthetics. That is, firstly, both blockages are concentration-dependent and revisable. Secondly, being accompanied with the reduction of amplitude, voltage-dependent inactivation curve shifts to hyperpolarizing direction without a shift of activation curve. Thirdly, use-dependent blocks are induced at high stimulus frequency.
Collapse
Affiliation(s)
- Xuehong Cao
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Soares ES, Stapleton JR, Rodriguez A, Fitzsimmons N, Oliveira L, Nicolelis MAL, Simon SA. Behavioral and neural responses to gustatory stimuli delivered non-contingently through intra-oral cannulas. Physiol Behav 2007; 92:629-42. [PMID: 17588623 PMCID: PMC2148501 DOI: 10.1016/j.physbeh.2007.05.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/04/2007] [Accepted: 05/10/2007] [Indexed: 12/23/2022]
Abstract
The act of eating requires a decision by an animal to place food in its mouth. The reasons to eat are varied and include hunger as well as the food's expected reward value. Previous studies of tastant processing in the rat primary gustatory cortex (GC) have used either anesthetized or awake behaving preparations that yield somewhat different results. Here we have developed a new preparation in which we explore the influences of intra-oral and non-contingent tastant delivery on rats' behavior and on their GC neural responses. We recorded single-unit activity in the rat GC during two sequences of tastant deliveries, PRE and POST, which were separated by a waiting period. Six tastants ranging in hedonic value from sucrose to quinine were delivered in the first two protocols called 4TW and L-S. In the third one, the App L-S protocol, only hedonically positive tastants were used. In the 4TW protocol, tastants were delivered in blocks whereas in the two L-S protocols tastants were randomly interleaved. In the 4TW and L-S protocols the probability of ingesting tastants in the PRE sequence decreased exponentially with the trial number. Moreover, in both protocols this decrease was greater in the POST than in the PRE sequence likely because the subjects learned that unpleasant tastants were to be delivered. In the App L-S protocol the decrease in ingestion was markedly slower than in the other protocols, thus supporting the hypothesis that the decrease in appetitive behavior arises from the non-contingent intra-oral delivery of hedonically negative tastants like quinine. Although neuronal responses in the three protocols displayed similar variability levels, significant differences existed between the protocols in the way the variability was partitioned between chemosensory and non-chemosensory neurons. While in the 4TW and L-S protocols the former population displayed more changes than the latter, in the App L-S protocol variability was homogeneously distributed between the two populations. We posit that these tuning changes arise, at least in part, from compounds released upon ingestion, and also from differences in areas of the oral cavity that are bathed as the animals ingest or reject the tastants.
Collapse
Affiliation(s)
- Ernesto S. Soares
- Department of Neurobiology, Duke University, Durham NC, USA
- Evolutionary Systems and Biomedical Engineering Lab, Institute for Systems and Robotics, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon, Portugal
| | | | - Abel Rodriguez
- Institute of Statistics and Decision Sciences, Duke University, Durham NC, USA
| | | | - Laura Oliveira
- Department of Neurobiology, Duke University, Durham NC, USA
| | - Miguel A. L. Nicolelis
- Department of Neurobiology, Duke University, Durham NC, USA
- Dept. of Biomedical Engineering, Duke University, Durham NC, USA
- Center for Neuroengineering, Duke University, Durham NC, USA
- Dept. of Psychological and Brain Sciences, Duke University, Durham NC, USA
| | - Sidney A. Simon
- Department of Neurobiology, Duke University, Durham NC, USA
- Dept. of Biomedical Engineering, Duke University, Durham NC, USA
- Center for Neuroengineering, Duke University, Durham NC, USA
| |
Collapse
|
50
|
Morris CE, Juranka PF. Nav channel mechanosensitivity: activation and inactivation accelerate reversibly with stretch. Biophys J 2007; 93:822-33. [PMID: 17496023 PMCID: PMC1913161 DOI: 10.1529/biophysj.106.101246] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Voltage-gated sodium channels (Nav) are modulated by many bilayer mechanical amphiphiles, but whether, like other voltage-gated channels (Kv, HCN, Cav), they respond to physical bilayer deformations is unknown. We expressed human heart Nav1.5 pore alpha-subunit in oocytes (where, unlike alphaNav1.4, alphaNav1.5 exhibits normal kinetics) and measured small macroscopic currents in cell-attached patches. Pipette pressure was used to reversibly stretch the membrane for comparison of I(Na)(t) before, during, and after stretch. At all voltages, and in a dose-dependent fashion, stretch accelerated the I(Na)(t) time course. The sign of membrane curvature was not relevant. Typical stretch stimuli reversibly accelerated both activation and inactivation by approximately 1.4-fold; normalization of peak I(Na)(t) followed by temporal scaling ( approximately 1.30- to 1.85-fold) resulted in full overlap of the stretch/no-stretch traces. Evidently the rate-limiting outward voltage sensor motion in the Nav1.5 activation path (as in Kv1) accelerated with stretch. Stretch-accelerated inactivation occurred even with activation saturated, so an independently stretch-modulated inactivation transition is also a possibility. Since Nav1.5 channel-stretch modulation was both reliable and reversible, and required stretch stimuli no more intense than what typically activates putative mechanotransducer channels (e.g., stretch-activated TRPC1-based currents), Nav channels join the ranks of putative mechanotransducers. It is noteworthy that at voltages near the activation threshold, moderate stretch increased the peak I(Na) amplitude approximately 1.5-fold. It will be important to determine whether stretch-modulated Nav current contributes to cardiac arrhythmias, to mechanosensory responses in interstitial cells of Cajal, to touch receptor responses, and to neuropathic (i.e., hypermechanosensitive) and/or normal pain reception.
Collapse
Affiliation(s)
- Catherine E Morris
- Neuroscience, Ottawa Health Research Institute, Ottawa, Ontario, Canada.
| | | |
Collapse
|