1
|
Kozma MT, Ngo-Vu H, Rump MT, Bobkov YV, Ache BW, Derby CD. Single cell transcriptomes reveal expression patterns of chemoreceptor genes in olfactory sensory neurons of the Caribbean spiny lobster, Panulirus argus. BMC Genomics 2020; 21:649. [PMID: 32962631 PMCID: PMC7510291 DOI: 10.1186/s12864-020-07034-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Crustaceans express several classes of receptor genes in their antennules, which house olfactory sensory neurons (OSNs) and non-olfactory chemosensory neurons. Transcriptomics studies reveal that candidate chemoreceptor proteins include variant Ionotropic Receptors (IRs) including both co-receptor IRs and tuning IRs, Transient Receptor Potential (TRP) channels, Gustatory Receptors, epithelial sodium channels, and class A G-protein coupled receptors (GPCRs). The Caribbean spiny lobster, Panulirus argus, expresses in its antennules nearly 600 IRs, 17 TRP channels, 1 Gustatory Receptor, 7 epithelial sodium channels, 81 GPCRs, 6 G proteins, and dozens of enzymes in signaling pathways. However, the specific combinatorial expression patterns of these proteins in single sensory neurons are not known for any crustacean, limiting our understanding of how their chemosensory systems encode chemical quality. RESULTS The goal of this study was to use transcriptomics to describe expression patterns of chemoreceptor genes in OSNs of P. argus. We generated and analyzed transcriptomes from 7 single OSNs, some of which were shown to respond to a food odor, as well as an additional 7 multicell transcriptomes from preparations containing few (2-4), several (ca. 15), or many (ca. 400) OSNs. We found that each OSN expressed the same 2 co-receptor IRs (IR25a, IR93a) but not the other 2 antennular coIRs (IR8a, IR76b), 9-53 tuning IRs but only one to a few in high abundance, the same 5 TRP channels plus up to 5 additional TRPs, 12-17 GPCRs including the same 5 expressed in every single cell transcriptome, the same 3 G proteins plus others, many enzymes in the signaling pathways, but no Gustatory Receptors or epithelial sodium channels. The greatest difference in receptor expression among the OSNs was the identity of the tuning IRs. CONCLUSIONS Our results provide an initial view of the combinatorial expression patterns of receptor molecules in single OSNs in one species of decapod crustacean, including receptors directly involved in olfactory transduction and others likely involved in modulation. Our results also suggest differences in receptor expression in OSNs vs. other chemosensory neurons.
Collapse
Affiliation(s)
- Mihika T Kozma
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Hanh Ngo-Vu
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Matthew T Rump
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Yuriy V Bobkov
- Whitney Laboratory, University of Florida, St. Augustine, Florida, 32084, USA
| | - Barry W Ache
- Whitney Laboratory, University of Florida, St. Augustine, Florida, 32084, USA
| | - Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
2
|
Kozma MT, Schmidt M, Ngo-Vu H, Sparks SD, Senatore A, Derby CD. Chemoreceptor proteins in the Caribbean spiny lobster, Panulirus argus: Expression of Ionotropic Receptors, Gustatory Receptors, and TRP channels in two chemosensory organs and brain. PLoS One 2018; 13:e0203935. [PMID: 30240423 PMCID: PMC6150509 DOI: 10.1371/journal.pone.0203935] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
The spiny lobster, Panulirus argus, has two classes of chemosensilla representing “olfaction” and “distributed chemoreception,” as is typical for decapod crustaceans. Olfactory sensilla are found exclusively on antennular lateral flagella and are innervated only by olfactory receptor neurons (ORNs) that project into olfactory lobes organized into glomeruli in the brain. Distributed chemoreceptor sensilla are found on all body surfaces including the antennular lateral flagella (LF) and walking leg dactyls (dactyls), and are innervated by both chemoreceptor neurons (CRNs) and mechanoreceptor neurons that project into somatotopically organized neuropils. Here, we examined expression of three classes of chemosensory genes in transcriptomes of the LF (with ORNs and CRNs), dactyls (with only CRNs), and brain of P. argus: Ionotropic Receptors (IRs), which are related to ionotropic glutamate receptors and found in all protostomes including crustaceans; Gustatory Receptors (GRs), which are ionotropic receptors that are abundantly expressed in insects but more restricted in crustaceans; and Transient Receptor Potential (TRP) channels, a diverse set of sensor-channels that include several chemosensors in diverse animals. We identified 108 IRs, one GR, and 18 homologues representing all seven subfamilies of TRP channels. The number of IRs expressed in the LF is far greater than in dactyls, possibly reflecting the contribution of receptor proteins associated with the ORNs beyond those associated with CRNs. We found co-receptor IRs (IR8a, IR25a, IR76b, IR93a) and conserved IRs (IR21a, IR40a) in addition to the numerous divergent IRs in the LF, dactyl, and brain. Immunocytochemistry showed that IR25a is expressed in ORNs, CRNs, and a specific type of cell located in the brain near the olfactory lobes. While the function of IRs, TRP channels, and the GR was not explored, our results suggest that P. argus has an abundance of diverse putative chemoreceptor proteins that it may use in chemoreception.
Collapse
Affiliation(s)
- Mihika T. Kozma
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Manfred Schmidt
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Hanh Ngo-Vu
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Shea D. Sparks
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Charles D. Derby
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| |
Collapse
|
3
|
Northcutt AJ, Lett KM, Garcia VB, Diester CM, Lane BJ, Marder E, Schulz DJ. Deep sequencing of transcriptomes from the nervous systems of two decapod crustaceans to characterize genes important for neural circuit function and modulation. BMC Genomics 2016; 17:868. [PMID: 27809760 PMCID: PMC5096308 DOI: 10.1186/s12864-016-3215-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Crustaceans have been studied extensively as model systems for nervous system function from single neuron properties to behavior. However, lack of molecular sequence information and tools have slowed the adoption of these physiological systems as molecular model systems. In this study, we sequenced and performed de novo assembly for the nervous system transcriptomes of two decapod crustaceans: the Jonah crab (Cancer borealis) and the American lobster (Homarus americanus). RESULTS Forty-two thousand, seven hundred sixty-six and sixty thousand, two hundred seventy-three contigs were assembled from C. borealis and H. americanus respectively, representing 9,489 and 11,061 unique coding sequences. From these transcripts, genes associated with neural function were identified and manually curated to produce a characterization of multiple gene families important for nervous system function. This included genes for 34 distinct ion channel types, 17 biogenic amine and 5 GABA receptors, 28 major transmitter receptor subtypes including glutamate and acetylcholine receptors, and 6 gap junction proteins - the Innexins. CONCLUSION With this resource, crustacean model systems are better poised for incorporation of modern genomic and molecular biology technologies to further enhance the interrogation of fundamentals of nervous system function.
Collapse
Affiliation(s)
- Adam J. Northcutt
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Kawasi M. Lett
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Virginia B. Garcia
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Clare M. Diester
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Brian J. Lane
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA USA
| | - David J. Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| |
Collapse
|
4
|
Yu Y, Boyer NP, Zhang C. Three structurally similar odorants trigger distinct signaling pathways in a mouse olfactory neuron. Neuroscience 2014; 275:194-210. [PMID: 24929067 DOI: 10.1016/j.neuroscience.2014.05.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/08/2014] [Accepted: 05/22/2014] [Indexed: 12/20/2022]
Abstract
In the mammalian olfactory system, one olfactory sensory neuron (OSN) expresses a single olfactory receptor gene. By calcium imaging of individual OSNs in intact mouse olfactory turbinates, we observed that a subset of OSNs (Ho-OSNs) located in the most ventral olfactory receptor zone can mediate distinct signaling pathways when activated by structurally similar ligands. Calcium imaging showed that Ho-OSNs were highly sensitive to 2-heptanone, heptaldehyde and cis-4-heptenal. 2-heptanone-evoked intracellular calcium elevation was mediated by cAMP signaling while heptaldehyde triggered the diacylglycerol pathway. An increase of intracellular calcium evoked by cis-4-heptenal was due to a combination of activation mediated by the adenylate cyclase pathway and suppression generated by phospholipase C signaling. Pharmacological studies demonstrated that novel mechanisms were involved in the phospholipase C-mediated intracellular calcium changes. Binary-mixture studies and cross-adaptation data indicate that three odorants acted on the same olfactory receptor. The feature that an olfactory receptor mediates multiple signaling pathways was specific for Ho-OSNs and not established in another population of OSNs characterized. Our study suggests that distinct signaling pathways triggered by ligand-induced conformational changes of an olfactory receptor constitute a complex information process mechanism in olfactory transduction. This study has important implications beyond olfaction in that it provides insights of plasticity and complexity of G-protein-coupled receptor activation and signal transduction.
Collapse
Affiliation(s)
- Y Yu
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, IL 60616, USA
| | - N P Boyer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - C Zhang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, IL 60616, USA.
| |
Collapse
|
5
|
Yu Y, Zhang C. Purinergic signaling negatively regulates activity of an olfactory receptor in an odorant-dependent manner. Neuroscience 2014; 275:89-101. [PMID: 24928349 DOI: 10.1016/j.neuroscience.2014.05.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/08/2014] [Accepted: 05/28/2014] [Indexed: 01/06/2023]
Abstract
Extracellular purines and pyrimidines are important signaling molecules that mediate diverse biological functions via cell surface purinergic receptors. Although purinergic modulation to olfactory activity has been reported, cell-specific expression and action of purinergic receptors deserve further exploration. We physiologically characterized expression of purinergic receptors in a set of olfactory sensory neurons that are responsive to both acetophenone and benzaldehyde (AB-OSNs). Sparsely distributed in the most ventral olfactory receptor zone, AB-OSNs were activated by P2 purinergic receptor agonists but not by P1 purinergic receptor agonist adenosine. Both P2X-selective agonist α,β-methylene ATP and P2Y-selective agonist uridine 5'-triphosphate (UTP) were stimulatory to AB-OSNs, indicating expression of both P2X and P2Y purinergic receptors in AB-OSNs. Pharmacological characterization of receptor specificity using various P2X and P2Y agonists and antagonists illustrated that P2X1 and P2Y2 receptors played major roles in purinergic signaling in AB-OSNs. Interestingly, the results of purinergic modulation to acetophenone-evoked responses were different from those to benzaldehyde-evoked responses within the same neurons. Activation of P2X1 receptors had more profound inhibitory effects on benzaldehyde-evoked intracellular calcium elevation than on acetophenone-evoked responses within the same neurons, and the reverse was true when P2Y2 receptors were activated. Cross-adaptation data showed that acetophenone and benzaldehyde bound to the same olfactory receptor. Thus, our study has demonstrated that purinergic signaling of P2X and P2Y receptors has different effects on olfactory transduction mediated by a defined olfactory receptor and the consequences of purinergic modulation of olfactory activity might depend on stereotypic structures of the odorant-receptor complex.
Collapse
Affiliation(s)
- Y Yu
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101S Dearborn Street, Chicago, IL 60616, USA
| | - C Zhang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101S Dearborn Street, Chicago, IL 60616, USA.
| |
Collapse
|
6
|
Intermittency coding in the primary olfactory system: a neural substrate for olfactory scene analysis. J Neurosci 2014; 34:941-52. [PMID: 24431452 DOI: 10.1523/jneurosci.2204-13.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The spatial and temporal characteristics of the visual and acoustic sensory input are indispensable attributes for animals to perform scene analysis. In contrast, research in olfaction has focused almost exclusively on how the nervous system analyzes the quality and quantity of the sensory signal and largely ignored the spatiotemporal dimension especially in longer time scales. Yet, detailed analyses of the turbulent, intermittent structure of water- and air-borne odor plumes strongly suggest that spatio-temporal information in longer time scales can provide major cues for olfactory scene analysis for animals. We show that a bursting subset of primary olfactory receptor neurons (bORNs) in lobster has the unexpected capacity to encode the temporal properties of intermittent odor signals. Each bORN is tuned to a specific range of stimulus intervals, and collectively bORNs can instantaneously encode a wide spectrum of intermittencies. Our theory argues for the existence of a novel peripheral mechanism for encoding the temporal pattern of odor that potentially serves as a neural substrate for olfactory scene analysis.
Collapse
|
7
|
Röllecke K, Werner M, Ziemba PM, Neuhaus EM, Hatt H, Gisselmann G. Amiloride derivatives are effective blockers of insect odorant receptors. Chem Senses 2013; 38:231-6. [PMID: 23329732 DOI: 10.1093/chemse/bjs140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heteromeric insect odorant receptors (ORs) form ligand-activated nonselective cation channels in recombinant expression systems. We performed a pharmacological characterization of Drosophila melanogaster and Bombyx mori ORs expressed in the Xenopus laevis oocyte expression system and characterized them using the 2-electrode voltage clamp. We identified amiloride derivatives as high-affinity blockers, which inhibit the ion current through the channel in a low micromolar range. For the heteromeric Drosophila Or47a + DmelOrco receptor, the potency sequence (IC(50)) is HMA [5-(N,N-hexamethylene)amiloride] (3.9 µM), MIA [5-(N-methyl-N-isobutyl)amiloride] (11.0 µM), and DMA [5-(N,N-dimethyl)amiloride] (113.3 µM). Amiloride itself is nearly ineffective. Other tested insect ORs (Drosophila Or49b + DmelOrco, B. mori BmorOr1 + BmorOrco) were blocked in a similar fashion suggesting that the amiloride derivatives were potential general blockers of all receptor combinations. Our results suggest that pyrazine derivatives of amiloride are useful probes to study the mechanism of chemosensory transduction in insects in more detail.
Collapse
Affiliation(s)
- Katharina Röllecke
- Lehrstuhl für Zellphysiologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Bobkov Y, Park I, Ukhanov K, Principe J, Ache B. Cellular basis for response diversity in the olfactory periphery. PLoS One 2012; 7:e34843. [PMID: 22514675 PMCID: PMC3325939 DOI: 10.1371/journal.pone.0034843] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
An emerging idea in olfaction is that temporal coding of odor specificity can be intrinsic to the primary olfactory receptor neurons (ORNs). As a first step towards understanding whether lobster ORNs are capable of generating odor-specific temporal activity and what mechanisms underlie any such heterogeneity in discharge pattern, we characterized different patterns of activity in lobster ORNs individually and ensemble using patch-clamp recording and calcium imaging. We demonstrate that lobster ORNs show tonic excitation, tonic inhibition, phaso-tonic excitation, and bursting, and that these patterns are faithfully reflected in the calcium signal. We then demonstrate that the various dynamic patterns of response are inherent in the cells, and that this inherent heterogeneity is largely determined by heterogeneity in the underlying intrinsic conductances.
Collapse
Affiliation(s)
- Yuriy Bobkov
- Whitney Laboratory, Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America.
| | | | | | | | | |
Collapse
|
9
|
Ukhanov K, Bobkov Y, Ache BW. Imaging ensemble activity in arthropod olfactory receptor neurons in situ. Cell Calcium 2011; 49:100-7. [PMID: 21232792 DOI: 10.1016/j.ceca.2010.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
Abstract
We show that lobster olfactory receptor neurons (ORNs), much like their vertebrate counterparts, generate a transient elevation of intracellular calcium (Ca(i)) in response to odorant activation that can be used to monitor ensemble ORN activity. This is done in antennal slice preparation in situ maintaining the polarity of the cells and the normal micro-environment of the olfactory cilia. The Ca(i) signal is ligand-specific and increases in a dose-dependent manner in response to odorant stimulation. Saturating stimulation elicits a robust increase of up to 1 μM free Ca(i) within 1-2s of stimulation. The odor-induced Ca(i) response closely follows the discharge pattern of extracellular spikes elicited by odorant application, with the maximal rise in Ca(i) matching the peak of the spike generation. The Ca(i) signal can be used to track neuronal activity in a functional subpopulation of rhythmically active ORNs and discriminate it from that of neighboring tonically active ORNs. Being able to record from many ORNs simultaneously over an extended period of time not only allows more accurate estimates of neuronal population activity but also dramatically improves the ability to identify potential new functional subpopulations of ORNs, especially those with more subtle differences in responsiveness, ligand specificity, and/or transduction mechanisms.
Collapse
Affiliation(s)
- K Ukhanov
- Whitney Laboratory, Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
10
|
Bobkov YV, Corey EA, Ache BW. The pore properties of human nociceptor channel TRPA1 evaluated in single channel recordings. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1120-8. [PMID: 21195050 DOI: 10.1016/j.bbamem.2010.12.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/14/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
Abstract
TRPA channels detect stimuli of different sensory modalities, including a broad spectrum of chemosensory stimuli, noxious stimuli associated with tissue damage and inflammation, mechanical stimuli, and thermal stimuli. Despite a growing understanding of potential modulators, agonists, and antagonists for these channels, the exact mechanisms of channel regulation and activation remain mostly unknown or controversial and widely debated. Relatively little is also known about the basic biophysical parameters of both native and heterologously expressed TRPA channels. Here we use conventional single channel inside-out and outside-out patch recording from the human TRPA1 channel transiently expressed in human embryonic kidney 293T cells to characterize the selectivity of the channel for inorganic mono-/divalent and organic monovalent cations in the presence of allylisothiocyanate (AITC). We show the relative permeability of the hTRPA1 channel to inorganic cations to be:and to organic cations:Na(+)(1.0)≥ dimethylamine (0.99)>trimethylamine (0.7)>tetramethylammonium (0.4)>N-methyl-d-glucamine (0.1). Activation of the hTRPA1 channels by AITC appears to recruit the channels to a conformational state with an increased permeability to large organic cations. The pore of the channels in this state can be characterized as dilated by approximately 1-2.5 Å. These findings provide important insight into the basic fundamental properties and function of TRPA1 channels in general and human TRPA1 channel in particular.
Collapse
Affiliation(s)
- Y V Bobkov
- Whitney Laboratory, Center for Smell and Taste, St. Augustine, FL, USA.
| | | | | |
Collapse
|
11
|
Solari P, Masala C, Falchi AM, Sollai G, Liscia A. The sense of water in the blowfly Protophormia terraenovae. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1825-1833. [PMID: 20705072 DOI: 10.1016/j.jinsphys.2010.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/30/2010] [Accepted: 08/03/2010] [Indexed: 05/29/2023]
Abstract
The gustatory system of the blowfly, Protophormia terraenovae, is a relatively simple biological model for studies on chemosensory input and behavioral output. It appears to have renewed interest as a model for studies on the role of water channels, namely aquaporins or aquaglyceroporins, in water detection. To this end, we investigated the presence of water channels, their role in "water" and "salt" cell responsiveness and the transduction mechanism involved. For the first time our electrophysiological results point to the presence of an aquaglyceroporin in the chemoreceptor membrane of the "water" cell in the blowfly taste chemosensilla whose transduction mechanism ultimately involves an intracellular calcium increase and consequently cell depolarization. This hypothesis is also supported by calcium imaging data following proper stimulation. This mechanism is triggered by "water" cell stimulation with hypotonic solutions and/or solutes such as glycerol which crosses the membrane by way of aquaglyceroporins. Behavioral output indicates that the "sense" of water in blowflies is definitely not dependent on the "water" cell only, but also on the "salt" cell sensitivity. These findings also hypothesize a new role for aquaglyceroporin in spiking cell excitability.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Experimental Biology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato (CA), Italy
| | | | | | | | | |
Collapse
|
12
|
Bobkov YV, Pezier A, Corey EA, Ache BW. Phosphatidylinositol 4,5-bisphosphate-dependent regulation of the output in lobster olfactory receptor neurons. ACTA ACUST UNITED AC 2010; 213:1417-24. [PMID: 20400625 DOI: 10.1242/jeb.037234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transient receptor potential (TRP) channels often play a role in sensory transduction, including chemosensory transduction. TRP channels, a common downstream target of phosphoinositide (PI) signaling, can be modulated by exogenous phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and/or diacylglycerol (DAG). Lobster olfactory receptor neurons (ORNs) express a TRP-related, non-selective, calcium/magnesium-permeable, sodium/calcium-gated cation (SGC) channel. Here we report that PIs regulate the function of the calcium-activated form of the lobster channel. Sequestering of endogenous PI(4,5)P2, either with an anti-PI(4,5)P2 antibody or by electrostatic screening with polyvalent cations, blocks the channel. Exogenous PI(3,4,5)P3 activates the channel independently of intracellular sodium and/or calcium. Exogenous non-hydrolysable DAG analogs fail to change the gating parameters of the channel, suggesting the channel is insensitive to DAG. Electrophysiological recording from lobster ORNs in situ using a panel of pharmacological tools targeting the key components of both PI and DAG metabolism (phospholipase C, phosphoinositide 4-kinase and DAG kinase) extend these findings to the intact ORN. PI(4,5)P2 depletion suppresses both the odorant-evoked discharge and whole-cell current of the cells, and does so possibly independently of DAG production. Collectively, our results argue that PIs can regulate output in lobster ORNs, at least in part through their action on the lobster SGC channel.
Collapse
Affiliation(s)
- Yuriy V Bobkov
- Whitney Laboratory, Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
13
|
Corey EA, Bobkov Y, Pezier A, Ache BW. Phosphoinositide 3-kinase mediated signaling in lobster olfactory receptor neurons. J Neurochem 2010; 113:341-50. [PMID: 20132480 DOI: 10.1111/j.1471-4159.2010.06597.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vertebrates and some invertebrates, odorant molecules bind to G protein-coupled receptors on olfactory receptor neurons (ORNs) to initiate signal transduction. Phosphoinositide 3-kinase (PI3K) activity has been implicated physiologically in olfactory signal transduction, suggesting a potential role for a G protein-coupled receptor-activated class I PI3K. Using isoform-specific antibodies, we identified a protein in the olfactory signal transduction compartment of lobster ORNs that is antigenically similar to mammalian PI3Kgamma and cloned a gene for a PI3K with amino acid homology with PI3Kbeta. The lobster olfactory PI3K co-immunoprecipitates with the G protein alpha and beta subunits, and an odorant-evoked increase in phosphatidylinositol (3,4,5)-trisphosphate can be detected in the signal transduction compartment of the ORNs. PI3Kgamma and beta isoform-specific inhibitors reduce the odorant-evoked output of lobster ORNs in vivo. Collectively, these findings provide evidence that PI3K is indeed activated by odorant receptors in lobster ORNs and further support the potential involvement of G protein activated PI3K signaling in olfactory transduction.
Collapse
Affiliation(s)
- Elizabeth A Corey
- Whitney Laboratory, Center for Smell and Taste, McKnight Brain Institute, University of Florida, Gainesville, Florida 32080-8610, USA.
| | | | | | | |
Collapse
|
14
|
A voltage-dependent Ca2+ influx pathway regulates the Ca2+-dependent Cl(-) conductance of renal IMCD-3 cells. J Membr Biol 2009; 230:57-68. [PMID: 19562244 DOI: 10.1007/s00232-009-9186-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 06/11/2009] [Indexed: 01/26/2023]
Abstract
We have previously shown that the membrane conductance of mIMCD-3 cells at a holding potential of 0 mV is dominated by a Ca2+-dependent Cl(-) current (I(CLCA)). Here we report that I(CLCA) activity is also voltage dependent and that this dependence on voltage is linked to the opening of a novel Al3+-sensitive, voltage-dependent, Ca2+ influx pathway. Using whole-cell patch-clamp recordings at a physiological holding potential (-60 mV), ICLCA was found to be inactive and resting currents were predominantly K+ selective. However, membrane depolarization to 0 mV resulted in a slow, sigmoidal, activation of ICLCA (T(0.5) approximately 500 s), while repolarization in turn resulted in a monoexponential decay in I(CLCA) (T (0.5) approximately 100 s). The activation of I(CLCA) by depolarization was reduced by lowering extracellular Ca2+ and completely inhibited by buffering cytosolic Ca2+ with EGTA, suggesting a role for Ca2+ influx in the activation of I(CLCA). However, raising bulk cytosolic Ca2+ at -60 mV did not produce sustained I(CLCA) activity. Therefore I(CLCA) is dependent on both an increase in intracellular Ca2+ and depolarization to be active. We further show that membrane depolarization is coupled to opening of a Ca2+ influx pathway that displays equal permeability to Ca2+ and Ba2+ ions and that is blocked by extracellular Al3+ and La3+. Furthermore, Al3+ completely and reversibly inhibited depolarization-induced activation of ICLCA, thereby directly linking Ca2+ influx to activation of I(CLCA). We speculate that during sustained membrane depolarization, calcium influx activates ICLCA which functions to modulate NaCl transport across the apical membrane of IMCD cells.
Collapse
|
15
|
Chouquet B, Debernard S, Bozzolan F, Solvar M, Maïbèche-Coisné M, Lucas P. A TRP channel is expressed in Spodoptera littoralis antennae and is potentially involved in insect olfactory transduction. INSECT MOLECULAR BIOLOGY 2009; 18:213-222. [PMID: 19191929 DOI: 10.1111/j.1365-2583.2008.00857.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The molecular characterization of post-receptor actors involved in insect olfactory transduction has yet to be understood. We have investigated the presence of a Transient Receptor Potential (TRP) channel in the peripheral olfactory system of the moth Spodoptera littoralis. A cDNA encoding a Lepidopteran TRP channel (TRPgamma) was identified by analysis of a male-antennal EST database and subsequently cloned by RACE PCR. In adult males, the TRPgamma transcript was detected in antennae, at the base of olfactory sensilla. Moreover, TRPgamma was observed in antennae in both pupal and adult stages. This work is the first step in understanding the involvement of TRPgamma in signalling pathways involved in the development and function of the insect olfactory system.
Collapse
Affiliation(s)
- B Chouquet
- UMR Physiologie de l'Insecte: Signalisation et Communication, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
16
|
Ardón F, Rodríguez-Miranda E, Beltrán C, Hernández-Cruz A, Darszon A. Mitochondrial inhibitors activate influx of external Ca2+ in sea urchin sperm. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:15-24. [DOI: 10.1016/j.bbabio.2008.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 09/16/2008] [Accepted: 10/09/2008] [Indexed: 01/01/2023]
|
17
|
Pezier A, Bobkov YV, Ache BW. The Na+/Ca2+ exchanger inhibitor, KB-R7943, blocks a nonselective cation channel implicated in chemosensory transduction. J Neurophysiol 2008; 101:1151-9. [PMID: 19118110 DOI: 10.1152/jn.90903.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanism(s) of olfactory transduction in invertebrates remains to be fully understood. In lobster olfactory receptor neurons (ORNs), a nonselective sodium-gated cation (SGC) channel, a presumptive transient receptor potential (TRP)C channel homolog, plays a crucial role in olfactory transduction, at least in part by amplifying the primary transduction current. To better determine the functional role of the channel, it is important to selectively block the channel independently of other elements of the transduction cascade, causing us to search for specific pharmacological blockers of the SGC channel. Given evidence that the Na(+)/Ca(2+) exchange inhibitor, KB-R7943, blocks mammalian TRPC channels, we studied this probe as a potential blocker of the lobster SGC channel. KB-R7943 reversibly blocked the SGC current in both inside- and outside-out patch recordings in a dose- and voltage-dependent manner. KB-R7943 decreased the channel open probability without changing single channel amplitude. KB-R7943 also reversibly and in a dose-dependent manner inhibited both the odorant-evoked discharge of lobster ORNs and the odorant-evoked whole cell current. Our findings strongly imply that KB-R7943 potently blocks the lobster SGC channel and likely does so directly and not through its ability to block the Na(+)/Ca(2+) exchanger.
Collapse
Affiliation(s)
- A Pezier
- Whitney Laboratory for Marine Bioscience, Center for Smell and Taste, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | | |
Collapse
|
18
|
Cummins SF, De Vries MR, Hill KS, Boehning D, Nagle GT. Gene identification and evidence for expression of G protein alpha subunits, phospholipase C, and an inositol 1,4,5-trisphosphate receptor in Aplysia californica rhinophore. Genomics 2007; 90:110-20. [PMID: 17498918 DOI: 10.1016/j.ygeno.2007.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2007] [Revised: 03/28/2007] [Accepted: 03/28/2007] [Indexed: 11/29/2022]
Abstract
In the marine mollusk Aplysia californica, waterborne protein pheromones that are released during egg laying act in concert to stimulate mate attraction. However, molecular information concerning the cellular receptors and signaling mechanisms that may be involved in waterborne peptide and protein pheromonal communication is lacking. As a first step toward examining whether members of the G protein family and phosphoinositide signaling pathway are present in the primary peripheral chemosensory organs (i.e., rhinophores), we isolated five full-length cDNA clones from an A. californica central nervous system cDNA library. These clones encoded (1) the G protein alpha subunits of the Gq, Gi, and Go families, (2) a protein with homology to phospholipase C (PLC) isoforms, and (3) an inositol 1,4,5-trisphosphate receptor (IP3R). The expression of these genes was examined using laser capture microdissection/reverse transcription-polymerase chain reaction and in situ hybridization. All of them are expressed in the rhinophore sensory epithelium, suggesting that Galphaq, Galphai, Galphao, PLC-like protein, and IP3R may be involved in waterborne protein pheromone detection in Aplysia-possibly via a phosphoinositide signaling mechanism.
Collapse
Affiliation(s)
- Scott F Cummins
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | | | |
Collapse
|
19
|
Lin W, Margolskee R, Donnert G, Hell SW, Restrepo D. Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc Natl Acad Sci U S A 2007; 104:2471-6. [PMID: 17267604 PMCID: PMC1892929 DOI: 10.1073/pnas.0610201104] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the main olfactory epithelium respond to environmental odorants. Recent studies reveal that these OSNs also respond to semiochemicals such as pheromones and that main olfactory input modulates animal reproduction, but the transduction mechanism for these chemosignals is not fully understood. Previously, we determined that responses to putative pheromones in the main olfactory system were reduced but not eliminated in mice defective for the canonical cAMP transduction pathway, and we suggested, on the basis of pharmacology, an involvement of phospholipase C. In the present study, we find that a downstream signaling component of the phospholipase C pathway, the transient receptor potential channel M5 (TRPM5), is coexpressed with the cyclic nucleotide-gated channel subunit A2 in a subset of mature OSNs. These neurons project axons primarily to the ventral olfactory bulb, where information from urine and other socially relevant signals is processed. We find that these chemosignals activate a subset of glomeruli targeted by TRPM5-expressing OSNs. Our data indicate that TRPM5-expressing OSNs that project axons to glomeruli in the ventral area of the main olfactory bulb are involved in processing of information from semiochemicals.
Collapse
Affiliation(s)
- Weihong Lin
- *Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Robert Margolskee
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Gerald Donnert
- Department of Biophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany; and
| | - Stefan W. Hell
- Department of Biophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany; and
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program, and Rocky Mountain Taste and Smell Center, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
- To whom correspondence should be addressed at:
Department of Cell and Developmental Biology, University of Colorado at Denver and Health Sciences Center at Fitzsimons, Mail Stop 8108, Building RC1, Room L18-11119, 12801 East 17th Avenue, P.O. Box 6511, Aurora, CO 80045. E-mail:
| |
Collapse
|
20
|
Abstract
Rhythmically bursting neurons are fundamental to neuronal network function but typically are not considered in the context of primary sensory signaling. We now report intrinsically bursting lobster primary olfactory receptor neurons that respond to odors with a phase-dependent burst of action potentials. Rhythmic odor input as might be generated by sniffing entrains the intrinsic bursting rhythm in a concentration-dependent manner and presumably synchronizes the ensemble of bursting cells. We suggest such intrinsically bursting olfactory receptor cells provide a novel way for encoding odor information.
Collapse
Affiliation(s)
- Y V Bobkov
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd., Saint Augustine, FL 32080, USA.
| | | |
Collapse
|
21
|
Stepanyan R, Day K, Urban J, Hardin DL, Shetty RS, Derby CD, Ache BW, McClintock TS. Gene expression and specificity in the mature zone of the lobster olfactory organ. Physiol Genomics 2006; 25:224-33. [PMID: 16614458 DOI: 10.1152/physiolgenomics.00276.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lobster olfactory organ is an important model for investigating many aspects of the olfactory system. To facilitate study of the molecular basis of olfaction in lobsters, we made a subtracted cDNA library from the mature zone of the olfactory organ of Homarus americanus, the American lobster. Sequencing of the 5′-end of 5,184 cDNA clones produced 2,389 distinct high-quality sequences consisting of 1,944 singlets and 445 contigs. Matches to known sequences corresponded with the types of cells present in the olfactory organ, including specific markers of olfactory sensory neurons, auxiliary cells, secretory cells of the aesthetasc tegumental gland, and epithelial cells. The wealth of neuronal mRNAs represented among the sequences reflected the preponderance of neurons in the tissue. The sequences identified candidate genes responsible for known functions and suggested new functions not previously recognized in the olfactory organ. A cDNA microarray was designed and tested by assessing mRNA abundance differences between two of the lobster's major chemosensory structures: the mature zone of the olfactory organ and the dactyl of the walking legs, a taste organ. The 115 differences detected again emphasized the abundance of neurons in the olfactory organ, especially a cluster of mRNAs encoding cytoskeletal-associated proteins and cell adhesion molecules such as 14-3-3ζ, actins, tubulins, trophinin, Fax, Yel077cp, suppressor of profilin 2, and gelsolin.
Collapse
Affiliation(s)
- Ruben Stepanyan
- Department of Physiology, Cellular and Molecular Neuroscience of Sensory Systems Training Program, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Treviño CL, De la Vega-Beltrán JL, Nishigaki T, Felix R, Darszon A. Maitotoxin potently promotes Ca2+ influx in mouse spermatogenic cells and sperm, and induces the acrosome reaction. J Cell Physiol 2006; 206:449-56. [PMID: 16155908 DOI: 10.1002/jcp.20487] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Maitotoxin (MTX), a potent marine toxin, activates Ca2+ entry via nonselective cation channels in a wide variety of cells. The identity of the channels involved in MTX action remains unknown. In mammalian sperm, Ca2+ entry through store-operated channels regulates a number of physiological events including the acrosome reaction (AR). Here we report that MTX produced an increase in the intracellular concentration of Ca2+ ([Ca2+]i) in spermatogenic cells that depended on extracellular Ca2+. Ni2+ and SKF96365 diminished the MTX-activated Ca2+ uptake, at concentrations they inhibit store-operated channels, and in a similar manner as they inhibit the Ca2+ influx activated following depletion of intracellular stores by thapsigargin (Tpg). In addition, MTX significantly increased [Ca2+]i in single mature sperm and effectively induced the AR with a half-maximal concentration (ED50) of approximately 1.1 nM. Notably, SKF96365 similarly inhibited the MTX-induced increase in sperm [Ca2+]i and the AR triggered by the toxin, Tpg and zona pellucida. These results suggest that putative MTX-activated channels may be involved in the Ca2+ influx required for mouse sperm AR.
Collapse
Affiliation(s)
- Claudia L Treviño
- Department of Genetics of Development and Molecular Physiology, Institute of Biotechnology, UNAM, Cuernavaca, Mexico
| | | | | | | | | |
Collapse
|
23
|
Stepanyan R, Haley SB, McClintock TS. Olfactory specific chymotrypsin-like serine protease from the aesthetasc tegumental gland of the lobster, Homarus americanus. Cell Tissue Res 2005; 322:321-30. [PMID: 16047165 DOI: 10.1007/s00441-005-0022-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
Numerous proteases and protease inhibitors are expressed in the lobster olfactory organ. One of these proteases, olfactory enriched transcript 03 (OET-03), is particularly interesting because its mRNA is expressed only in one cell type of the olfactory organ of the American lobster, Homarus americanus. We have obtained a full-length cDNA clone of OET-03. The predicted amino acid sequence is equally divided between a novel N-terminal domain and a conserved serine protease catalytic domain at the C-terminus. Heterologous expression in HEK293 cells allowed protease assays demonstrating that OET-03 cleaved a specific serine protease substrate, N-alpha benzoyl-L-arginine p-nitroanilide, but did not cleave a substrate of metalloproteases and cysteine proteases. OET-03 protease activity was significantly inhibited by the chymotrypsin-like protease inhibitor, tosyl-L-phenylalanine chloromethyl ketone, but not by the general protease inhibitor, phenylmethylsulfonyl fluoride. Immunoreactivity for OET-03 was detected only in the cells previously shown to contain OET-03 mRNA. The cytoplasm of these cells was filled with enlarged smooth endoplasmic reticulum (a characteristic of secretory cells) that appeared to expand into large electron-translucent areas at the ventral end of the cell. The ventral ends of these secretory cells were apposed to phalloidin-labeled triangular structures reminiscent of the beginnings of the ducts of crustacean tegumental glands. This putative gland was found only in association with the aesthetasc sensory units of the olfactory organ, hence the name, aesthetasc tegumental gland.
Collapse
Affiliation(s)
- Ruben Stepanyan
- Department of Physiology, Cellular and Molecular Neuroscience of Sensory Systems Training Program, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | |
Collapse
|
24
|
Abstract
Olfaction is a vitally important sense for all animals. There are striking similarities between species in the organization of the olfactory pathway, from the nature of the odorant receptor proteins, to perireceptor processes, to the organization of the olfactory CNS, through odor-guided behavior and memory. These common features span a phylogenetically broad array of animals, implying that there is an optimal solution to the problem of detecting and discriminating odors.
Collapse
Affiliation(s)
- Barry W Ache
- Whitney Lab for Marine Bioscience, Department of Zoology, Center for Smell and Taste and McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA.
| | | |
Collapse
|
25
|
Pinilla PJG, Hernández AT, Camello MC, Pozo MJ, Toescu EC, Camello PJ. Non-stimulated Ca2+ leak pathway in cerebellar granule neurones. Biochem Pharmacol 2005; 70:786-93. [PMID: 16018974 DOI: 10.1016/j.bcp.2005.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/02/2005] [Accepted: 06/02/2005] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate the pathways of calcium influx routes in non-stimulated cerebellar granule neurones by use of standard microspectrofluorimetric techniques. Repetitive application of Ca2+-free solutions for various time intervals induced decreases of resting cytosolic free Ca2+ concentration ([Ca2+]i) which were followed, on Ca2+ readmission, by a full recovery, always to the initial resting [Ca2+]i levels. Use of drugs to deplete calcium stores (thapsigargin, alone or combined with low levels of ionomycin) did not cause release of Ca2+ from the intracellular stores nor enhanced the activity of the Ca2+ entry pathway. This influx was mainly independent of voltage operated calcium channels, since both L-type channel blockers (nitrendipine) and the hyperpolarizing agent pinacidil (a K+-channel opener) were without effect. Contribution from glutamate receptors to this influx was eliminated since a combination of blockers of NMDA and AMPA glutamate receptors (NBQX and D-AP5) did not affect the properties of the Ca2+ response. The Ca2+ leak pathway was sensitive to micromolar levels of lanthanum and gadolinium, and to the compound 2-APB, features shared by several channels of the TRP superfamily. In summary, our results show the presence of a Ca2+ permeable pathway, active and patent in resting conditions in cerebellar granule neurones, and which is different from the voltage-operated calcium channels and not operated by depletion of the stores.
Collapse
Affiliation(s)
- P J Gómez Pinilla
- Department of Physiology, University of Extremadura, Fac Vet Sci and Nursing School, 10071 Cáceres, Spain
| | | | | | | | | | | |
Collapse
|