1
|
Dong G, Boothe K, He L, Shi Y, McCluskey LP. Altered peripheral taste function in a mouse model of inflammatory bowel disease. Sci Rep 2023; 13:18895. [PMID: 37919307 PMCID: PMC10622515 DOI: 10.1038/s41598-023-46244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
Increased sugar intake and taste dysfunction have been reported in patients with inflammatory bowel disease (IBD), a chronic disorder characterized by diarrhea, pain, weight loss and fatigue. It was previously unknown whether taste function changes in mouse models of IBD. Mice consumed dextran sodium sulfate (DSS) during three 7-day cycles to induce chronic colitis. DSS-treated mice displayed signs of disease, including significant weight loss, diarrhea, loss of colon architecture, and inflammation of the colon. After the last DSS cycle we assessed taste function by recording electrophysiological responses from the chorda tympani (CT) nerve, which transmits activity from lingual taste buds to the brain. DSS treatment significantly reduced neural taste responses to natural and artificial sweeteners. Responses to carbohydrate, salt, sour or bitter tastants were unaffected in mice with colitis, but umami responses were modestly elevated. DSS treatment modulated the expression of receptor subunits that transduce sweet and umami stimuli in oral taste buds as a substrate for functional changes. Dysregulated systemic cytokine responses or dysbiosis that occurs during chronic colitis may be upstream from changes in oral taste buds. We demonstrate for the first time that colitis alters taste input to the brain, which could exacerbate malnutrition in IBD patients.
Collapse
Affiliation(s)
- Guangkuo Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street/CA-3016, Augusta, GA, 30912, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Khaylie Boothe
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street/CA-3016, Augusta, GA, 30912, USA
| | - Lianying He
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street/CA-3016, Augusta, GA, 30912, USA
| | - Yang Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street/CA-3016, Augusta, GA, 30912, USA
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Lynnette Phillips McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street/CA-3016, Augusta, GA, 30912, USA.
| |
Collapse
|
2
|
Dong G, Boothe K, He L, Shi Y, McCluskey LP. Altered peripheral taste function in a mouse model of inflammatory bowel disease. RESEARCH SQUARE 2023:rs.3.rs-3304297. [PMID: 37720020 PMCID: PMC10503843 DOI: 10.21203/rs.3.rs-3304297/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Increased sugar intake and taste dysfunction have been reported in patients with inflammatory bowel disease (IBD), a chronic disorder characterized by diarrhea, pain, weight loss and fatigue. It was previously unknown whether taste function changes in mouse models of IBD. Mice consumed dextran sodium sulfate (DSS) during three 7-day cycles to induce chronic colitis. DSS-treated mice displayed signs of disease, including significant weight loss, diarrhea, loss of colon architecture, and inflammation of the colon. After the last DSS cycle we assessed taste function by recording electrophysiological responses from the chorda tympani (CT) nerve, which transmits activity from lingual taste buds to the brain. DSS treatment significantly reduced neural taste responses to natural and artificial sweeteners. Responses to carbohydrate, salt, sour or bitter tastants were unaffected in mice with colitis, but umami responses were modestly elevated. DSS treatment modulated the expression of receptor subunits that transduce sweet and umami stimuli in oral taste buds as a substrate for functional changes. Dysregulated systemic cytokine responses, or dysbiosis that occurs during chronic colitis may be upstream from changes in oral taste buds. We demonstrate for the first time that colitis alters taste input to the brain, which could exacerbate malnutrition in IBD patients.
Collapse
|
3
|
Chen Y, Yu X, Yan Z, Zhang S, Zhang J, Guo W. Role of epithelial sodium channel-related inflammation in human diseases. Front Immunol 2023; 14:1178410. [PMID: 37559717 PMCID: PMC10407551 DOI: 10.3389/fimmu.2023.1178410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a heterotrimer and is widely distributed throughout the kidneys, blood vessels, lungs, colons, and many other organs. The basic role of the ENaC is to mediate the entry of Na+ into cells; the ENaC also has an important regulatory function in blood pressure, airway surface liquid (ASL), and endothelial cell function. Aldosterone, serum/glucocorticoid kinase 1 (SGK1), shear stress, and posttranslational modifications can regulate the activity of the ENaC; some ion channels also interact with the ENaC. In recent years, it has been found that the ENaC can lead to immune cell activation, endothelial cell dysfunction, aggravated inflammation involved in high salt-induced hypertension, cystic fibrosis, pseudohypoaldosteronism (PHA), and tumors; some inflammatory cytokines have been reported to have a regulatory role on the ENaC. The ENaC hyperfunction mediates the increase of intracellular Na+, and the elevated exchange of Na+ with Ca2+ leads to an intracellular calcium overload, which is an important mechanism for ENaC-related inflammation. Some of the research on the ENaC is controversial or unclear; we therefore reviewed the progress of studies on the role of ENaC-related inflammation in human diseases and their mechanisms.
Collapse
Affiliation(s)
- Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Zhiping Yan
- Henan Organ Transplantation Centre, Zhengzhou, China
- Henan Engineering and Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Shuijun Zhang
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
| | - Jiacheng Zhang
- Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| |
Collapse
|
4
|
Dong G, Kogan S, Venugopal N, Chang E, He L, Faal F, Shi Y, Phillips McCluskey L. Interleukin (IL)-1 Receptor Signaling Is Required for Complete Taste Bud Regeneration and the Recovery of Neural Taste Responses following Axotomy. J Neurosci 2023; 43:3439-3455. [PMID: 37015809 PMCID: PMC10184746 DOI: 10.1523/jneurosci.1355-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 04/06/2023] Open
Abstract
Experimental or traumatic nerve injury causes the degeneration of associated taste buds. Unlike most sensory systems, the sectioned nerve and associated taste buds can then regenerate, restoring neural responses to tastants. It was previously unknown whether injury-induced immune factors mediate this process. The proinflammatory cytokines, interleukin (IL)-1α and IL-1β, and their requisite receptor are strongly expressed by anterior taste buds innervated by the chorda tympani nerve. We tested taste bud regeneration and functional recovery in mice lacking the IL-1 receptor. After axotomy, the chorda tympani nerve regenerated but was initially unresponsive to tastants in both WT and Il1r KO mice. In the absence of Il1r signaling, however, neural taste responses remained minimal even >8 weeks after injury in both male and female mice, whereas normal taste function recovered by 3 weeks in WT mice. Failed recovery was because of a 57.8% decrease in regenerated taste buds in Il1r KO compared with WT axotomized mice. Il1a gene expression was chronically dysregulated, and the subset of regenerated taste buds were reinnervated more slowly and never reached full volume as progenitor cell proliferation lagged in KO mice. Il1r signaling is thus required for complete taste bud regeneration and the recovery of normal taste transmission, likely by impairing taste progenitor cell proliferation. This is the first identification of a cytokine response that promotes taste recovery. The remarkable plasticity of the taste system makes it ideal for identifying injury-induced mechanisms mediating successful regeneration and recovery.SIGNIFICANCE STATEMENT Taste plays a critical role in nutrition and quality of life. The adult taste system is highly plastic and able to regenerate following the disappearance of most taste buds after experimental nerve injury. Several growth factors needed for taste bud regeneration have been identified, but we demonstrate the first cytokine pathway required for the recovery of taste function. In the absence of IL-1 cytokine signaling, taste bud regeneration is incomplete, preventing the transmission of taste activity to the brain. These results open a new direction in revealing injury-specific mechanisms that could be harnessed to promote the recovery of taste perception after trauma or disease.
Collapse
Affiliation(s)
- Guangkuo Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Schuyler Kogan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Natasha Venugopal
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Eddy Chang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Lianying He
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Fama Faal
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Yang Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Lynnette Phillips McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| |
Collapse
|
5
|
Rhee YH, Choi YH, Hu AC, Lee MY, Ahn JC, Kim S, Mo JH, Woo SH, Chung PS. Role of Transient Receptor Potential Vanilloid 1 in Sonic Hedgehog-Dependent Taste Bud Differentiation. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010075. [PMID: 36676024 PMCID: PMC9862146 DOI: 10.3390/life13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Taste bud cell differentiation is extremely important for taste sensation. Immature taste bud cells cannot function during taste perception transmission to the nerve. In this study, we investigated whether hedgehog signaling affected taste bud cell differentiation and whether transient receptor potential vanilloid 1 (TRPV1) played a key role in dry mouth. The induction of dry mouth due to salivary gland resection (SGR) was confirmed on the basis of reduced salivation and disrupted fungiform papillae. The expression of keratin 8 (K8) of taste bud cells, neurofilament (NF), sonic hedgehog (Shh), and glioma-associated oncogene homolog 1 (Gli1) around taste bud cells was downregulated; however, the expression of TRPV1, P2X purinoceptor 3 (P2X3), and hematopoietic stem cell factor (c-Kit) was upregulated at the NF ends in the dry mouth group. To investigate the effect of TRPV1 defect on dry mouth, we induced dry mouth in the TRPV-/- group. The K8, NF, and P2X3 expression patterns were the same in the TRPV1 wild-type and TRPV1-/- dry mouth groups. However, Shh and c-Kit expression decreased regardless of dry mouth in the case of TRPV1 deficiency. These results indicated that TRPV1 positively regulated proliferation during taste bud cell injury by blocking the Shh/Gli1 pathway. In addition, not only cell proliferation but also differentiation of taste bud cells could not be regulated under TRPV1-deficiency conditions. Thus, TRPV1 positively regulates taste bud cell innervation and differentiation; this finding could be valuable in the clinical treatment of dry mouth-related taste dysfunction.
Collapse
Affiliation(s)
- Yun-Hee Rhee
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Medical Laser Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Laser Translational Clinical Trial Center, Dankook University Hospital, Cheonan 31116, Republic of Korea
| | - Young-Hoon Choi
- Laser Translational Clinical Trial Center, Dankook University Hospital, Cheonan 31116, Republic of Korea
| | - Allison C. Hu
- Beckman Laser Institute and Medical Clinic, University of California Irvine, 1002 Health Sciences Rd., Irvine, CA 92697, USA
| | - Min Young Lee
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Medical Laser Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Chul Ahn
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Medical Laser Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Sehwan Kim
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Ji-Hun Mo
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Medical Laser Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Laser Translational Clinical Trial Center, Dankook University Hospital, Cheonan 31116, Republic of Korea
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Seung Hoon Woo
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Medical Laser Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Laser Translational Clinical Trial Center, Dankook University Hospital, Cheonan 31116, Republic of Korea
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Medical Laser Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Laser Translational Clinical Trial Center, Dankook University Hospital, Cheonan 31116, Republic of Korea
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Correspondence:
| |
Collapse
|
6
|
Kinnamon SC. Inflammatory-mediated taste dysfunction - Is NO the key? Brain Behav Immun 2022; 105:190-191. [PMID: 35868599 PMCID: PMC10155678 DOI: 10.1016/j.bbi.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sue C Kinnamon
- Dept. of Otolaryngology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Aurora, CO 80045, United States
| |
Collapse
|
7
|
Wu Z, Huang Y, Hu W, Ren L, Jiang P, Margolskee RF, Wang H, Feng S. Lipopolysaccharide-induced inflammation increases nitric oxide production in taste buds. Brain Behav Immun 2022; 103:145-153. [PMID: 35447301 PMCID: PMC10353706 DOI: 10.1016/j.bbi.2022.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) is expressed when cells are induced or stimulated by proinflammatory cytokines and/or bacterial lipopolysaccharide (LPS). iNOS is a downstream gene of the NF-κB pathway. Our previous studies demonstrated that five Nfkb genes are expressed in mouse taste epithelium and taste organoids. However, it is unclear whether activation of the NF-κB pathway could induce iNOS gene expression and increase nitric oxide (NO) production in taste buds. In this study, we investigated the expression of iNOS mRNA and protein after LPS stimulation. Our results showed that a subset of taste bud cells and taste neurons express iNOS proteins after LPS stimulation. In addition, isolated mouse taste epithelium can release NO after exposure to LPS ex vivo. In taste behavioral tests, the NO donor nitroprusside enhanced mouse aversive responses to salty, bitter, and sour taste compounds. The enhanced aversive responses were especially strong for salty taste. In conclusion, our results suggest that iNOS and NO may play a role in the inflammation-associated taste disturbances.
Collapse
Affiliation(s)
- Zhizhongbin Wu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Yilin Huang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Weiqing Hu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Liyin Ren
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Hong Wang
- Monell Chemical Senses Center, Philadelphia, PA, USA.
| | - Shan Feng
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; Monell Chemical Senses Center, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Lakshmanan HG, Miller E, White-Canale A, McCluskey LP. Immune responses in the injured olfactory and gustatory systems: a role in olfactory receptor neuron and taste bud regeneration? Chem Senses 2022; 47:bjac024. [PMID: 36152297 PMCID: PMC9508897 DOI: 10.1093/chemse/bjac024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sensory cells that specialize in transducing olfactory and gustatory stimuli are renewed throughout life and can regenerate after injury unlike their counterparts in the mammalian retina and auditory epithelium. This uncommon capacity for regeneration offers an opportunity to understand mechanisms that promote the recovery of sensory function after taste and smell loss. Immune responses appear to influence degeneration and later regeneration of olfactory sensory neurons and taste receptor cells. Here we review surgical, chemical, and inflammatory injury models and evidence that immune responses promote or deter chemosensory cell regeneration. Macrophage and neutrophil responses to chemosensory receptor injury have been the most widely studied without consensus on their net effects on regeneration. We discuss possible technical and biological reasons for the discrepancy, such as the difference between peripheral and central structures, and suggest directions for progress in understanding immune regulation of chemosensory regeneration. Our mechanistic understanding of immune-chemosensory cell interactions must be expanded before therapies can be developed for recovering the sensation of taste and smell after head injury from traumatic nerve damage and infection. Chemosensory loss leads to decreased quality of life, depression, nutritional challenges, and exposure to environmental dangers highlighting the need for further studies in this area.
Collapse
Affiliation(s)
- Hari G Lakshmanan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Elayna Miller
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - AnnElizabeth White-Canale
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lynnette P McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
9
|
Caretta A, Mucignat-Caretta C. Are Multiple Chemosensory Systems Accountable for COVID-19 Outcome? J Clin Med 2021; 10:5601. [PMID: 34884303 PMCID: PMC8658083 DOI: 10.3390/jcm10235601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023] Open
Abstract
Chemosensory systems (olfaction, taste, trigeminus nerve, solitary chemoreceptor cells, neuroendocrine pulmonary cells, and carotid body, etc.) detect molecules outside or inside our body and may share common molecular markers. In addition to the impairment of taste and olfaction, the detection of the internal chemical environment may also be incapacitated by COVID-19. If this is the case, different consequences can be expected. (1) In some patients, hypoxia does not trigger distressing dyspnea ("silent" hypoxia): Long-term follow-up may determine whether silent hypoxia is related to malfunctioning of carotid body chemoreceptors. Moreover, taste/olfaction and oxygen chemoreceptors may be hit simultaneously: Testing olfaction, taste, and oxygen chemoreceptor functions in the early stages of COVID-19 allows one to unravel their connections and trace the recovery path. (2) Solitary chemosensory cells are also involved in the regulation of the innate mucosal immune response: If these cells are affected in some COVID-19 patients, the mucosal innate immune response would be dysregulated, opening one up to massive infection, thus explaining why COVID-19 has lethal consequences in some patients. Similar to taste and olfaction, oxygen chemosensory function can be easily tested with a non-invasive procedure in humans, while functional tests for solitary chemosensory or pulmonary neuroendocrine cells are not available, and autoptic investigation is required to ascertain their involvement.
Collapse
Affiliation(s)
- Antonio Caretta
- Department of Food and Drug Science, University of Parma, 43100 Parma, Italy;
- NIBB—National Institute for Biostructures and Biosystems, 00136 Rome, Italy
| | - Carla Mucignat-Caretta
- NIBB—National Institute for Biostructures and Biosystems, 00136 Rome, Italy
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| |
Collapse
|
10
|
Abstract
Gut microbiota has emerged as a major metabolically active organ with critical functions in both health and disease. The trillions of microorganisms hosted by the gastrointestinal tract are involved in numerous physiological and metabolic processes including modulation of appetite and regulation of energy in the host spanning from periphery to the brain. Indeed, bacteria and their metabolic byproducts are working in concert with the host chemosensory signaling pathways to affect both short- and long-term ingestive behavior. Sensing of nutrients and taste by specialized G protein-coupled receptor cells is important in transmitting food-related signals, optimizing nutrition as well as in prevention and treatment of several diseases, notably obesity, diabetes and associated metabolic disorders. Further, bacteria metabolites interact with specialized receptors cells expressed by gut epithelium leading to taste and appetite response changes to nutrients. This review describes recent advances on the role of gut bacteria in taste perception and functions. It further discusses how intestinal dysbiosis characteristic of several pathological conditions may alter and modulate taste preference and food consumption via changes in taste receptor expression.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW From single cells to entire organisms, biological entities are in constant communication with their surroundings, deciding what to 'allow' in, and what to reject. In very different ways, the immune and taste systems both fulfill this function, with growing evidence suggesting a relationship between the two, through shared signaling pathways, receptors, and feedback loops. The purpose of this review was to explore recent reports on taste and immunity in model animals and in humans to explore our understanding of the interplay between these systems. RECENT FINDINGS Acute infections in the upper airway, as with SARS-CoV-2, are associated with a proinflammatory state, and blunted taste perception. Further, recent findings highlight taste receptors working as immune sentinels throughout the body. Work in humans and mice also points to inflammation from obesity impacting taste, altering taste bud abundance and composition. There is accumulating evidence that taste cells, and particularly their receptors, play a role in airway and gut immunity, responsive to invading organisms. Inflammation itself may further act on taste buds and other taste receptor expressing cells throughout the body as a form of homeostatic control.
Collapse
Affiliation(s)
- Jason R Goodman
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Robin Dando
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Self-reported Taste and Smell Disorders in Patients with COVID-19: Distinct Features in China. Curr Med Sci 2021; 41:14-23. [PMID: 33582900 PMCID: PMC7881907 DOI: 10.1007/s11596-021-2312-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023]
Abstract
Last December 2019, a cluster of viral pneumonia cases identified as coronavirus disease 2019 (COVID-19) was reported in Wuhan, China. We aimed to explore the frequencies of nasal symptoms in patients with COVID-19, including loss of smell and taste, as well as their presentation as the first symptom of the disease and their association with the severity of COVID-19. In this retrospective study, 1206 laboratory-confirmed COVID-19 patients were included and followed up by telephone one month after discharged from Tongji Hospital, Wuhan. Demographic data, laboratory values, comorbidities, symptoms, and numerical rating scale scores (0-10) of nasal symptoms were extracted from the hospital medical records, and confirmed or reevaluated by the telephone follow-up. From patients (n=1172) completing follow-up, 199 (17%) subjects had severe COVID-19 and 342 (29.2%) reported nasal symptoms. 20.6% COVID-19 patients had loss of taste (median score=6), while 11.4% had loss of smell (median score=5). Loss of taste scores, but not loss of smell scores, were significantly increased in severe vs. non-severe COVID-19 patients. Interleukin (IL)-6 and lactose dehydrogenase (LDH) serum levels were positively correlated with loss of taste scores. About 80% of COVID-19 patients recovered from smell and taste dysfunction in 2 weeks. In this cohort, only 1 out of 10 hospital admitted patients had loss of smell while 1 out of 5 reported loss of taste which was associated to severity of COVID-19. Most patients recovered smell and taste dysfunctions in 2 weeks.
Collapse
|
13
|
Giuliani C, Franceschi C, Luiselli D, Garagnani P, Ulijaszek S. Ecological Sensing Through Taste and Chemosensation Mediates Inflammation: A Biological Anthropological Approach. Adv Nutr 2020; 11:1671-1685. [PMID: 32647890 PMCID: PMC7666896 DOI: 10.1093/advances/nmaa078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/24/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Ecological sensing and inflammation have evolved to ensure optima between organism survival and reproductive success in different and changing environments. At the molecular level, ecological sensing consists of many types of receptors located in different tissues that orchestrate integrated responses (immune, neuroendocrine systems) to external and internal stimuli. This review describes emerging data on taste and chemosensory receptors, proposing them as broad ecological sensors and providing evidence that taste perception is shaped not only according to sense epitopes from nutrients but also in response to highly diverse external and internal stimuli. We apply a biological anthropological approach to examine how ecological sensing has been shaped by these stimuli through human evolution for complex interkingdom communication between a host and pathological and symbiotic bacteria, focusing on population-specific genetic diversity. We then focus on how these sensory receptors play a major role in inflammatory processes that form the basis of many modern common metabolic diseases such as obesity, type 2 diabetes, and aging. The impacts of human niche construction and cultural evolution in shaping environments are described with emphasis on consequent biological responsiveness.
Collapse
Affiliation(s)
- Cristina Giuliani
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Donata Luiselli
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
- Department of Cultural Heritage (DBC), Laboratory of Ancient DNA (aDNALab), Campus of Ravenna, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Stanley Ulijaszek
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Muhanna D, Arnipalli SR, Kumar SB, Ziouzenkova O. Osmotic Adaptation by Na +-Dependent Transporters and ACE2: Correlation with Hemostatic Crisis in COVID-19. Biomedicines 2020; 8:E460. [PMID: 33142989 PMCID: PMC7693583 DOI: 10.3390/biomedicines8110460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 symptoms, including hypokalemia, hypoalbuminemia, ageusia, neurological dysfunctions, D-dimer production, and multi-organ microthrombosis reach beyond effects attributed to impaired angiotensin-converting enzyme 2 (ACE2) signaling and elevated concentrations of angiotensin II (Ang II). Although both SARS-CoV (Severe Acute Respiratory Syndrome Coronavirus) and SARS-CoV-2 utilize ACE2 for host entry, distinct COVID-19 pathogenesis coincides with the acquisition of a new sequence, which is homologous to the furin cleavage site of the human epithelial Na+ channel (ENaC). This review provides a comprehensive summary of the role of ACE2 in the assembly of Na+-dependent transporters of glucose, imino and neutral amino acids, as well as the functions of ENaC. Data support an osmotic adaptation mechanism in which osmotic and hemostatic instability induced by Ang II-activated ENaC is counterbalanced by an influx of organic osmolytes and Na+ through the ACE2 complex. We propose a paradigm for the two-site attack of SARS-CoV-2 leading to ENaC hyperactivation and inactivation of the ACE2 complex, which collapses cell osmolality and leads to rupture and/or necrotic death of swollen pulmonary, endothelial, and cardiac cells, thrombosis in infected and non-infected tissues, and aberrant sensory and neurological perception in COVID-19 patients. This dual mechanism employed by SARS-CoV-2 calls for combinatorial treatment strategies to address and prevent severe complications of COVID-19.
Collapse
Affiliation(s)
| | | | | | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (D.M.); (S.R.A.); (S.B.K.)
| |
Collapse
|
15
|
Pittman DW, Dong G, Brantly AM, He L, Nelson TS, Kogan S, Powell J, McCluskey LP. Behavioral and neurophysiological taste responses to sweet and salt are diminished in a model of subclinical intestinal inflammation. Sci Rep 2020; 10:17611. [PMID: 33077838 PMCID: PMC7573616 DOI: 10.1038/s41598-020-74632-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
There is strong evidence for gut-taste bud interactions that influence taste function, behavior and feeding. However, the effect of gut inflammation on this axis is unknown despite reports of taste changes in gastrointestinal (GI) inflammatory conditions. Lipopolysaccharide (LPS), an inflammatory stimulus derived from gram-negative bacteria, is present in the normal GI tract and levels increase during high-fat feeding and gut infection and inflammation. Recordings from the chorda tympani nerve (CT), which transmits taste information from taste buds on the anterior tongue to the brain, previously revealed a transient decrease in sucrose responses in mice that ingest LPS during a single overnight period. Here we test the effect of acute or chronic, weekly LPS gavage on licking behavior and CT responses. Using brief-access testing, rats treated with acute LPS and mice receiving acute or chronic LPS decreased licking responses to sucrose and saccharin and to NaCl in mice. In long-term (23 h) tests chronic LPS also reduced licking responses to saccharin, sucrose, and NaCl in mice. Neurophysiological recordings from the CT supported behavioral changes, demonstrating reduced responses to sucrose, saccharin, acesulfame potassium, glucose and NaCl in acute and chronic LPS groups compared to controls. Chronic LPS significantly elevated neutrophils in the small intestine and colon, but LPS was not detected in serum and mice did not display sickness behavior or lose weight. These results indicate that sweet and salt taste sensitivity could be reduced even in asymptomatic or mild localized gut inflammatory conditions such as inflammatory bowel disease.
Collapse
Affiliation(s)
- David W Pittman
- Department of Psychology, Wofford College, Spartanburg, SC, USA
| | - Guangkuo Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street/CA-3016, Augusta, GA, 30912, USA
| | | | - Lianying He
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Tyler S Nelson
- Department of Psychology, Wofford College, Spartanburg, SC, USA
| | - Schuyler Kogan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street/CA-3016, Augusta, GA, 30912, USA
| | - Julia Powell
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street/CA-3016, Augusta, GA, 30912, USA
| | - Lynnette Phillips McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street/CA-3016, Augusta, GA, 30912, USA.
| |
Collapse
|
16
|
Salt sensitivity and hypertension. J Hum Hypertens 2020; 35:184-192. [PMID: 32862203 DOI: 10.1038/s41371-020-00407-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Salt sensitivity refers to the physiological trait present in mammals, including humans, by which the blood pressure (BP) of some members of the population exhibits changes parallel to changes in salt intake. It is commoner in elderly, females, Afro-Americans, patients with chronic kidney disease (CKD) and insulin resistance. Increased salt intake promotes an expansion of extracellular fluid volume and increases cardiac output. Salt-sensitive individuals present an abnormal kidney reaction to salt intake; the kidneys retain most of the salt due to an abnormal over-reactivity of sympathetic nervous system and a blunted suppression of renin-angiotensin axis. Moreover, instead of peripheral vascular resistance falling, salt-sensitive subjects present increased vascular resistance due mainly to impaired nitric oxide synthesis in endothelium. Recent studies have shown that part of the dietary salt loading accumulates in skin. Hypertensive and patients with CKD seem to have more sodium in skin comparing to healthy ones. However, we still have not fully explained the link between skin sodium, BP and salt sensitivity. Finally, although salt sensitivity plays a meaningful role in BP pathophysiology, it cannot be used by the physician in everyday patient's care, mainly due to lack of a simple and practical diagnostic test.
Collapse
|
17
|
Feng S, Achoute L, Margolskee RF, Jiang P, Wang H. Lipopolysaccharide-Induced Inflammatory Cytokine Expression in Taste Organoids. Chem Senses 2020; 45:187-194. [PMID: 31993633 PMCID: PMC7320225 DOI: 10.1093/chemse/bjaa002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inflammatory cytokines are signaling molecules that regulate numerous physiological processes, from tissue homeostasis to metabolism and food intake. Expression of certain cytokines can be markedly induced in subsets of taste bud cells under acute and chronic inflammation. This may contribute to altered taste perception and preference associated with many diseases. Although the pathways of cytokine induction are well studied in immune cells, they remain poorly characterized in taste cells, in part due to the difficulties of performing biochemical analyses with a limited number of taste cells. The recently developed taste organoid model provides an opportunity to carry out these mechanistic studies in vitro. However, it was unknown whether taste organoids respond to inflammatory stimuli as do in vivo native taste buds. Here we analyze lipopolysaccharide (LPS)-induced expression and secretion of two inflammatory cytokines, tumor necrosis factor (TNF), and interleukin-6 (IL-6). We show that, similarly to native mouse taste epithelia, organoids derived from mouse circumvallate stem cells express several toll-like receptors (TLRs), including TLR4-the primary receptor for LPS. Organoids and native taste epithelia express all five genes in the nuclear factor-κb (Nfkb) family that encode the transcription factor NF-κB, a critical regulator of inflammatory responses. LPS stimulates fast induction of TNF and IL-6 with similar induction kinetics in organoids and native taste epithelia. These results show that taste epithelial cells possess necessary components for inflammatory cytokine induction and secretion and suggest that the organoid model can be a useful tool to dissect the underlying mechanisms.
Collapse
Affiliation(s)
- Shan Feng
- Monell Chemical Senses Center, Philadelphia, PA, USA
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Beibei District, Chongqing, China
| | - Leyitha Achoute
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Lincoln University, Lincoln University, PA, USA
| | | | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Hong Wang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| |
Collapse
|
18
|
Li Q, Fung E. Multifaceted Functions of Epithelial Na + Channel in Modulating Blood Pressure. Hypertension 2019; 73:273-281. [PMID: 30580685 DOI: 10.1161/hypertensionaha.118.12330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qi Li
- From the Division of Cardiology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (Q.L., E.F.).,Laboratory for Heart Failure and Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR (Q.L., E.F.)
| | - Erik Fung
- From the Division of Cardiology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (Q.L., E.F.).,Gerald Choa Cardiac Research Centre, Faculty of Medicine, The Chinese University of Hong Kong (E.F.).,Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong (E.F.).,Laboratory for Heart Failure and Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR (Q.L., E.F.)
| |
Collapse
|
19
|
McCluskey LP, He L, Dong G, Harris R. Chronic exposure to liquid sucrose and dry sucrose diet have differential effects on peripheral taste responses in female rats. Appetite 2019; 145:104499. [PMID: 31669578 DOI: 10.1016/j.appet.2019.104499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 11/29/2022]
Abstract
Sugar-sweetened beverages are the major source of added calories in the Western diet and their prevalence is associated with obesity and metabolic disruption. Despite the critical role of the taste system in determining food selection and consumption, the effects of chronic sucrose consumption on the peripheral taste system in mammals have received limited attention. We offered female Sprague Dawley rats free access to water and one of three diets for up to 40 days: (1) sucrose-free chow or "NS" diet; (2) a high-sucrose dry diet or "HS"; or (3) 30% sucrose solution and the NS diet, designated "LiqS" diet. Sucrose consumption by LiqS rats gradually increased and by day 14 was equal to that of HS rats. Food intake decreased in LiqS rats, but their energy intake remained higher than for NS or HS rats. There was no significant difference in weight gain of the groups during the study. Recordings from the chorda tympani nerve (CT), which innervates taste buds on the anterior tongue, revealed decreased responses to 1 M sucrose in both LiqS and HS rats and to acesulfame K and salt tastants in LiqS rats after 40 days on diet. Umami, bitter, and acid response magnitudes were unchanged in both groups. These results demonstrate that chronic sucrose exposure inhibits taste responses to higher concentrations of sweet stimuli. More surprisingly, CT responses to NaCl and 0.5M NaAc were significantly reduced in rats on the LiqS diet. Thus, the physical form of the diet influences taste responsiveness to salt and sweet taste function. These data suggest that taste buds are previously unappreciated targets of chronic sucrose consumption.
Collapse
Affiliation(s)
- Lynnette Phillips McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, United States.
| | - Lianying He
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, United States; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, United States
| | - Guankuo Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, United States
| | - Ruth Harris
- Department of Physiology, Medical College of Georgia at Augusta University, United States
| |
Collapse
|
20
|
Yu W, Hwa LS, Makhijani VH, Besheer J, Kash TL. Chronic inflammatory pain drives alcohol drinking in a sex-dependent manner for C57BL/6J mice. Alcohol 2019; 77:135-145. [PMID: 30300665 DOI: 10.1016/j.alcohol.2018.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022]
Abstract
Sex differences in chronic pain and alcohol abuse are not well understood. The development of rodent models is imperative for investigating the underlying changes behind these pathological states. In the present study, we investigated whether hind paw treatment with the inflammatory agent Complete Freund's Adjuvant (CFA) could generate hyperalgesia and alter alcohol consumption in male and female C57BL/6J mice. CFA treatment led to greater nociceptive sensitivity for both sexes in the Hargreaves test, and increased alcohol drinking for males in a continuous-access two-bottle choice (CA2BC) paradigm. Regardless of treatment, female mice exhibited greater alcohol drinking than males. Following a 2-h terminal drinking session, CFA treatment failed to produce changes in alcohol drinking, blood ethanol concentration (BEC), and plasma corticosterone (CORT) for both sexes. Two-hour alcohol consumption and CORT was higher in females than males, regardless of CFA treatment. Taken together, these findings have established that male mice are more susceptible to escalations in alcohol drinking when undergoing pain, despite higher levels of total alcohol drinking and CORT in females. Furthermore, the exposure of CFA-treated C57BL/6J mice to the CA2BC drinking paradigm has proven to be a useful model for studying the relationship between chronic pain and alcohol abuse. Future applications of the CFA/CA2BC model should incorporate manipulations of stress signaling and other related biological systems to improve our mechanistic understanding of pain and alcohol interactions.
Collapse
|
21
|
Wang A, Duncan SE, Lesser GJ, Ray WK, Dietrich AM. Effect of lactoferrin on taste and smell abnormalities induced by chemotherapy: a proteome analysis. Food Funct 2019; 9:4948-4958. [PMID: 30182113 DOI: 10.1039/c8fo00813b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer patients receiving chemotherapy often experience taste and smell abnormalities (TSA). To date, the underlying molecular mechanisms of this frequent side-effect have not been determined and effective treatments are not available. This study assessed the feasibility of lactoferrin (LF) supplementation as a treatment for TSA and investigate the related mechanisms through salivary proteome analysis. Nineteen cancer patients with established TSA following chemotherapy administration were enrolled in this study. Cancer patients and additional 12 healthy subjects took LF supplements, 3 tablets per day (250 mg per tablet), for 30 days. Saliva was collected at three timepoints: baseline, 30-day LF supplementation, and 30-day post-LF supplementation. Patient's TSA level, salivary proteome, and salivary minerals at each LF treatment stage were analyzed. High TSA level was associated with high concentration of salivary Fe and loss of critical salivary immune proteins. LF supplementation significantly decreased the concentration of salivary Fe (P = 0.025), increased the abundance (P < 0.05) of salivary α-amylase and Zn-α-2-GP, and led to an overall increase of expression (≥2-fold changes) of immune proteins including immunoglobulin heavy chain, annexin A1, and proteinase inhibitor. Abundance of α-amylase and SPLUNC2 were further increased (P < 0.05) at 30-day post-LF supplementation in cancer patients. At the same time, total TSA score was significantly reduced (P < 0.001) in chemotherapy patients. This study demonstrated the feasibility of developing lactoferrin supplementation as a treatment to reduce TSA caused by chemotherapy and improve cancer patient's oral immunity.
Collapse
Affiliation(s)
- Aili Wang
- Food Science and Technology Department, Virginia Tech, VA 24061, USA.
| | | | | | | | | |
Collapse
|
22
|
Martin LJ, Sollars SI. Contributory role of sex differences in the variations of gustatory function. J Neurosci Res 2016; 95:594-603. [DOI: 10.1002/jnr.23819] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/31/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Louis J. Martin
- Department of Psychology; University of Nebraska at Omaha; Omaha Nebraska
| | - Suzanne I. Sollars
- Department of Psychology; University of Nebraska at Omaha; Omaha Nebraska
| |
Collapse
|
23
|
Huang AY, Wu SY. The effect of imiquimod on taste bud calcium transients and transmitter secretion. Br J Pharmacol 2016; 173:3121-3133. [PMID: 27464850 DOI: 10.1111/bph.13567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Imiquimod is an immunomodulator approved for the treatment of basal cell carcinoma and has adverse side effects, including taste disturbances. Paracrine transmission, representing cell-cell communication within taste buds, has the potential to shape the final signals that taste buds transmit to the brain. Here, we tested the underlying assumption that imiquimod modifies taste transmitter secretion in taste buds of mice. EXPERIMENTAL APPROACH Taste buds were isolated from C57BL/6J mice. The effects of imiquimod on transmitter release in taste buds were measured using calcium imaging with cellular biosensors, and examining the net effect of imiquimod on taste-evoked ATP secretion from mouse taste buds. KEY RESULTS Up to 72% of presynaptic (Type III) taste cells responded to 100 μM imiquimod with an increase in intracellular Ca2+ concentrations. These Ca2+ responses were inhibited by thapsigargin, an inhibitor of the sarco/endoplasmic reticulum Ca2+ -ATPase, and by U73122, a PLC inhibitor, suggesting that the Ca2+ mobilization elicited by imiquimod was dependent on release from internal Ca2+ stores. Moreover, combining studies of Ca2+ imaging with cellular biosensors showed that imiquimod evoked secretion of 5-HT, which then provided negative feedback onto receptor (Type II) cells to reduce taste-evoked ATP secretion. CONCLUSION AND IMPLICATIONS Our results provide evidence that there is a subset of taste cells equipped with a range of intracellular mechanisms that respond to imiquimod. The findings are also consistent with a role of imiquimod as an immune response modifier, which shapes peripheral taste responses via 5-HT signalling.
Collapse
Affiliation(s)
- Anthony Y Huang
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA. .,Center for Integrated Research in Cognitive and Neural Science, Southern Illinois University School of Medicine, Carbondale, IL, USA.
| | - Sandy Y Wu
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|