1
|
Arjunan A, Sah DK, Jung YD, Song J. Hepatic Encephalopathy and Melatonin. Antioxidants (Basel) 2022; 11:antiox11050837. [PMID: 35624703 PMCID: PMC9137547 DOI: 10.3390/antiox11050837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatic encephalopathy (HE) is a severe metabolic syndrome linked with acute/chronic hepatic disorders. HE is also a pernicious neuropsychiatric complication associated with cognitive decline, coma, and death. Limited therapies are available to treat HE, which is formidable to oversee in the clinic. Thus, determining a novel therapeutic approach is essential. The pathogenesis of HE has not been well established. According to various scientific reports, neuropathological symptoms arise due to excessive accumulation of ammonia, which is transported to the brain via the blood–brain barrier (BBB), triggering oxidative stress and inflammation, and disturbing neuronal-glial functions. The treatment of HE involves eliminating hyperammonemia by enhancing the ammonia scavenging mechanism in systemic blood circulation. Melatonin is the sole endogenous hormone linked with HE. Melatonin as a neurohormone is a potent antioxidant that is primarily synthesized and released by the brain’s pineal gland. Several HE and liver cirrhosis clinical studies have demonstrated impaired synthesis, secretion of melatonin, and circadian patterns. Melatonin can cross the BBB and is involved in various neuroprotective actions on the HE brain. Hence, we aim to elucidate how HE impairs brain functions, and elucidate the precise molecular mechanism of melatonin that reverses the HE effects on the central nervous system.
Collapse
Affiliation(s)
- Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
- Correspondence: (Y.D.J.); (J.S.); Tel.: +82-61-379-2706 (J.S.)
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun 58128, Korea
- Correspondence: (Y.D.J.); (J.S.); Tel.: +82-61-379-2706 (J.S.)
| |
Collapse
|
2
|
Yang L, Sun Q, Wang Y, Chan Z. Global transcriptomic network of melatonin regulated root growth in Arabidopsis. Gene 2020; 764:145082. [PMID: 32858176 DOI: 10.1016/j.gene.2020.145082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Melatonin functions as a plant growth regulator in a concentration-dependent manner. In this study, we investigated the effects of melatonin on root growth and dissected underlined mechanisms. The results showed that melatonin up to 1000 μM inhibited primary root growth, but promoted lateral root development. Through RNA sequencing analysis, functions of differentially expressed genes were mainly involved in stress response, signaling transduction, transport, hormone metabolism and amino acid metabolism. Genes involving in jasmonate (JA), brassinosteroid (BR) and cytokinin (CK) biosynthesis were inhibited, but these in ethylene (ET), strigolactone (SL) and gibberellins (GA) biosynthetic pathways were activated after melatonin treatment. The majority of zinc finger proteins (ZFPs), Calmodulin-like (CMLs), NAM, ATAF1/2, and CUC2 (NACs) and ubiquitination related genes (RING/U-box and F-box) were upregulated, which possibly acted downstream of integrated hormone signals to mediate root growth. This study characterized melatonin modulated networks in regulating root growth.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qi Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Shi Y, Fang YY, Wei YP, Jiang Q, Zeng P, Tang N, Lu Y, Tian Q. Melatonin in Synaptic Impairments of Alzheimer's Disease. J Alzheimers Dis 2019; 63:911-926. [PMID: 29710712 DOI: 10.3233/jad-171178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) underlies dementia for millions of people worldwide with no effective treatment. The dementia of AD is thought stem from the impairments of the synapses because of their critical roles in cognition. Melatonin is a neurohormone mainly released by the pineal gland in a circadian manner and it regulates brain functions in various manners. It is reported that both the melatonin deficit and synaptic impairments are present in the very early stage of AD and strongly contribute to the progress of AD. In the mammalian brains, the effects of melatonin are mainly relayed by two of its receptors, melatonin receptor type 1a (MT1) and 1b (MT2). To have a clear idea on the roles of melatonin in synaptic impairments of AD, this review discussed the actions of melatonin and its receptors in the stabilization of synapses, modulation of long-term potentiation, as well as their contributions in the transmissions of glutamatergic, GABAergic and dopaminergic synapses, which are the three main types of synapses relevant to the synaptic strength. The synaptic protective roles of melatonin in AD treatment were also summarized. Regarding its protective roles against amyloid-β neurotoxicity, tau hyperphosphorylation, oxygenation, inflammation as well as synaptic dysfunctions, melatonin may be an ideal therapeutic agent against AD at early stage.
Collapse
Affiliation(s)
- Yan Shi
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Yan Fang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ping Wei
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Integrated TCM and Western Medicine Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Tang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Youming Lu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Crooke A, Huete-Toral F, Colligris B, Pintor J. The role and therapeutic potential of melatonin in age-related ocular diseases. J Pineal Res 2017; 63. [PMID: 28658514 DOI: 10.1111/jpi.12430] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/23/2017] [Indexed: 12/20/2022]
Abstract
The eye is continuously exposed to solar UV radiation and pollutants, making it prone to oxidative attacks. In fact, oxidative damage is a major cause of age-related ocular diseases including cataract, glaucoma, age-related macular degeneration, and diabetic retinopathy. As the nature of lens cells, trabecular meshwork cells, retinal ganglion cells, retinal pigment epithelial cells, and photoreceptors is postmitotic, autophagy plays a critical role in their cellular homeostasis. In age-related ocular diseases, this process is impaired, and thus, oxidative damage becomes irreversible. Other conditions such as low-grade chronic inflammation and angiogenesis also contribute to the development of retinal diseases (glaucoma, age-related macular degeneration and diabetic retinopathy). As melatonin is known to have remarkable qualities such as antioxidant/antinitridergic, mitochondrial protector, autophagy modulator, anti-inflammatory, and anti-angiogenic, it can represent a powerful tool to counteract all these diseases. The present review analyzes the role and therapeutic potential of melatonin in age-related ocular diseases, focusing on nitro-oxidative stress, autophagy, inflammation, and angiogenesis mechanisms.
Collapse
Affiliation(s)
- Almudena Crooke
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Huete-Toral
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Basilio Colligris
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Bertolesi GE, Hehr CL, Munn H, McFarlane S. Two light-activated neuroendocrine circuits arising in the eye trigger physiological and morphological pigmentation. Pigment Cell Melanoma Res 2016; 29:688-701. [DOI: 10.1111/pcmr.12531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy; Hotchkiss Brain Institute; Alberta Children's Hospital Research Institute; University of Calgary; Calgary AB Canada
| | - Carrie L. Hehr
- Department of Cell Biology and Anatomy; Hotchkiss Brain Institute; Alberta Children's Hospital Research Institute; University of Calgary; Calgary AB Canada
| | - Hayden Munn
- Department of Cell Biology and Anatomy; Hotchkiss Brain Institute; Alberta Children's Hospital Research Institute; University of Calgary; Calgary AB Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy; Hotchkiss Brain Institute; Alberta Children's Hospital Research Institute; University of Calgary; Calgary AB Canada
| |
Collapse
|
6
|
Hendaus MA, Jomha FA, Alhammadi AH. Melatonin in the management of perinatal hypoxic-ischemic encephalopathy: light at the end of the tunnel? Neuropsychiatr Dis Treat 2016; 12:2473-2479. [PMID: 27729791 PMCID: PMC5045913 DOI: 10.2147/ndt.s115533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) affects one to three per 1,000 live full-term births and can lead to severe and permanent neuropsychological sequelae, such as cerebral palsy, epilepsy, mental retardation, and visual motor or visual perceptive dysfunction. Melatonin has begun to be contemplated as a good choice in order to diminish the neurological sequelae from hypoxic-ischemic brain injury. Melatonin emerges as a very interesting medication, because of its capacity to cross all physiological barriers extending to subcellular compartments and its safety and effectiveness. The purpose of this commentary is to detail the evidence on the use of melatonin as a neuroprotection agent. The pharmacologic aspects of the drug as well as its potential neuroprotective characteristics in human and animal studies are described in this study. Melatonin seems to be safe and beneficial in protecting neonatal brains from perinatal HIE. Larger randomized controlled trials in humans are required, to implement a long-awaited feasible treatment in order to avoid the dreaded sequelae of HIE.
Collapse
Affiliation(s)
- Mohamed A Hendaus
- Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation
- Department of Clinical Pediatrics, Weill-Cornell Medical College, Doha, Qatar
| | - Fatima A Jomha
- School of Pharmacy, Lebanese International University, Khiara, Lebanon
| | - Ahmed H Alhammadi
- Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation
- Department of Clinical Pediatrics, Weill-Cornell Medical College, Doha, Qatar
| |
Collapse
|
7
|
Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G, Cecon E, Zlotos DP. Update on melatonin receptors: IUPHAR Review 20. Br J Pharmacol 2016; 173:2702-25. [PMID: 27314810 DOI: 10.1111/bph.13536] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023] Open
Abstract
Melatonin receptors are seven transmembrane-spanning proteins belonging to the GPCR superfamily. In mammals, two melatonin receptor subtypes exist - MT1 and MT2 - encoded by the MTNR1A and MTNR1B genes respectively. The current review provides an update on melatonin receptors by the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology. We will highlight recent developments of melatonin receptor ligands, including radioligands, and give an update on the latest phenotyping results of melatonin receptor knockout mice. The current status and perspectives of the structure of melatonin receptor will be summarized. The physiological importance of melatonin receptor dimers and biologically important and type 2 diabetes-associated genetic variants of melatonin receptors will be discussed. The role of melatonin receptors in physiology and disease will be further exemplified by their functions in the immune system and the CNS. Finally, antioxidant and free radical scavenger properties of melatonin and its relation to melatonin receptors will be critically addressed.
Collapse
Affiliation(s)
- Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Paris, France
| | | | - Margarita L Dubocovich
- Department Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Science, University at Buffalo (SUNY), Buffalo, USA
| | - Regina P Markus
- Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, The German University in Cairo, New Cairo City, Cairo, Egypt
| |
Collapse
|
8
|
Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR. Melatonin and brain inflammaging. Prog Neurobiol 2015; 127-128:46-63. [DOI: 10.1016/j.pneurobio.2015.02.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/27/2014] [Accepted: 02/05/2015] [Indexed: 02/07/2023]
|
9
|
Adamah-Biassi EB, Zhang Y, Jung H, Vissapragada S, Miller RJ, Dubocovich ML. Distribution of MT1 melatonin receptor promoter-driven RFP expression in the brains of BAC C3H/HeN transgenic mice. J Histochem Cytochem 2014; 62:70-84. [PMID: 24051358 PMCID: PMC3873804 DOI: 10.1369/0022155413507453] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/04/2013] [Indexed: 12/29/2022] Open
Abstract
The pineal hormone melatonin activates two G-protein coupled receptors (MT1 and MT2) to regulate in part biological functions. The MT1 and MT2 melatonin receptors are heterogeneously distributed in the mammalian brain including humans. In the mouse, only a few reports have assessed the expression of the MT1 melatonin receptor expression using 2-iodomelatonin binding, in situ hybridization and/or polymerase chain reaction (PCR). Here, we described a transgenic mouse in which red fluorescence protein (RFP) is expressed under the control of the endogenous MT1 promoter, by inserting RFP cDNA at the start codon of MTNR1a gene within a bacterial artificial chromosome (BAC) and expressing this construct as a transgene. The expression of RFP in the brain of this mouse was examined either directly under a fluorescent microscope or immunohistochemically using an antibody against RFP (RFP-MT1). RFP-MT1 expression was observed in many brain regions including the subcommissural organ, parts of the ependyma lining the lateral and third ventricles, the aqueduct, the hippocampus, the cerebellum, the pars tuberalis, the habenula and the habenula commissure. This RFP-MT1 transgenic model provides a unique tool for studying the distribution of the MT1 receptor in the brain of mice, its cell-specific expression and its function in vivo.
Collapse
Affiliation(s)
- E B Adamah-Biassi
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY (EBAB, YZ, SV, MLD)
| | | | | | | | | | | |
Collapse
|
10
|
Feng P, Hu Y, Vurbic D, Guo Y. Maternal stress induces adult reduced REM sleep and melatonin level. Dev Neurobiol 2013; 72:677-87. [PMID: 21805687 DOI: 10.1002/dneu.20961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have previously reported that neonatal maternal deprivation (MD) resulted in a decrease of total sleep and an increase of orexin A in adult rats. Now, we characterized features of sleep, activity, and melatonin levels in rats neonatally treated with MD and control (MC) procedures. Adult male Sprague-Dawley rats were treated with either MD or MC procedures for 10 days starting at postnatal day 4. At 3 months of age, sleep was recorded for 48 h in one set of MD and MC rats, while another set of MD and MC rats was measured for locomotor activity (under LD = 12:12). Melatonin levels in the blood, pineal gland, and hypothalamus were measured as well as clock protein level in the hypothalamus. Compared to the MC rats, REM sleep in the MD rats was significantly reduced in the light periods but not in the dark periods. Both quiet wake and total wake in the MD rats were significantly increased during the light period compared to the MC rats. The weight of the pineal gland of the MD rats was significantly smaller than in MC rats. Melatonin levels of the MD group were significantly reduced in the pineal gland and hypothalamus compared to the MC group. No significant difference was identified between groups in the expression of the clock protein in the hypothalamus. Neonatal MD resulted in reduced REM sleep and melatonin levels, without changes of circadian cycle of locomotor activity and levels of clock protein.
Collapse
Affiliation(s)
- Pingfu Feng
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
11
|
Neuroprotective effect of melatonin: a novel therapy against perinatal hypoxia-ischemia. Int J Mol Sci 2013; 14:9379-95. [PMID: 23629670 PMCID: PMC3676788 DOI: 10.3390/ijms14059379] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/01/2023] Open
Abstract
One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events.
Collapse
|
12
|
Wiechmann AF, Sherry DM. Melatonin receptors are anatomically organized to modulate transmission specifically to cone pathways in the retina of Xenopus laevis. J Comp Neurol 2012; 520:1115-27. [PMID: 22020534 DOI: 10.1002/cne.22783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Melatonin receptors have been identified in several retinal cell types, including photoreceptors, horizontal cells, amacrine cells, and ganglion cells. Recent reports suggest that melatonin potentiates signaling from rods to inner retinal neurons. However, the organization of the melatonin receptors mediating this action in the outer plexiform layer (OPL) is not clear. To assess melatonin receptor localization in the OPL, double-label confocal immunohistochemistry for Mel1a or Mel1b melatonin receptors was performed in combination with markers for cone photoreceptors (calbindin, XAP-1) and ON bipolar cells (guanine nucleotide binding protein alpha, Goα) on the retina of Xenopus laevis. Both Mel1a and Mel1b receptors were specifically associated with processes contacting the pedicles of cones, but localized to processes from different sets of second-order neurons. Mel1a receptors localized to the large axonal processes of horizontal cells, while Mel1b receptors localized to the dendrites of OFF bipolar cells. Both receptors also localized to third-order amacrine and ganglion cells and their processes in the inner plexiform layer. This study indicates that Mel1a and Mel1b melatonin receptors are expressed specifically in the Xenopus OPL to modulate transmission from cones to horizontal cells and OFF bipolar cells, respectively; they are second-order neurons that predominantly contact ribbon synapses and display OFF responses to light. When combined with results from recent physiological studies, the current results suggest a conserved function for melatonin in enhancing transmission from rods to second-order neurons across species, although the precise mechanisms by which melatonin enhances this transmission are likely to vary in a species-dependent manner.
Collapse
Affiliation(s)
- Allan F Wiechmann
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | |
Collapse
|
13
|
Eif4a3 is required for accurate splicing of the Xenopus laevis ryanodine receptor pre-mRNA. Dev Biol 2012; 372:103-10. [PMID: 22944195 DOI: 10.1016/j.ydbio.2012.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/17/2012] [Accepted: 08/19/2012] [Indexed: 11/22/2022]
Abstract
The Exon Junction Complex (EJC) plays a critical role in multiple posttranscriptional events, including RNA subcellular localization, nonsense-mediated decay (NMD), and translation. We previously reported that knockdown of the EJC core component Eukaryotic initiation factor 4a3 (Eif4a3) results in full-body paralysis of embryos of the frog, Xenopus laevis. Here, we explore the cellular and molecular mechanisms underlying this phenotype. We find that cultured muscle cells derived from Eif4a3 morphants do not contract, and fail to undergo calcium-dependent calcium release in response to electrical stimulation or treatment with caffeine. We show that ryr (ryanodine receptor) transcripts are incorrectly spliced in Eif4a3 morphants, and demonstrate that inhibition of Xenopus Ryr function similarly results in embryonic paralysis. These results suggest that the EJC mediates muscle cell function via regulation of pre-mRNA splicing during early vertebrate embryogenesis.
Collapse
|
14
|
Cheng ZY, Chebib M, Schmid KL. rho1 GABAC receptors are expressed in fibrous and cartilaginous layers of chick sclera and located on sclera fibroblasts and chondrocytes. J Neurochem 2011; 118:281-7. [DOI: 10.1111/j.1471-4159.2011.07300.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
MT2-like melatonin receptor modulates amplitude receptor potential in visual cells of crayfish during a 24-hour cycle. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:486-92. [DOI: 10.1016/j.cbpa.2009.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/29/2009] [Accepted: 07/30/2009] [Indexed: 11/17/2022]
|
16
|
Banerjee A, Meenakumari KJ, Udin S, Krishna A. Melatonin regulates delayed embryonic development in the short-nosed fruit bat, Cynopterus sphinx. Reproduction 2009; 138:935-44. [DOI: 10.1530/rep-09-0114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of the present study was to evaluate the seasonal variation in serum melatonin levels and their relationship to the changes in the serum progesterone level, ovarian steroidogenesis, and embryonic development during two successive pregnancies of Cynopterus sphinx. Circulating melatonin concentrations showed two peaks; one coincided with the period of low progesterone synthesis and delayed embryonic development, whereas the second peak coincided with regressing corpus luteum. This finding suggests that increased serum melatonin level during November–December may be responsible for delayed embryonic development by suppressing progesterone synthesis. The study showed increased melatonin receptors (MTNR1A and MTNR1B) in the corpus luteum and in the utero–embryonic unit during the period of delayed embryonic development. The in vitro study showed that a high dose of melatonin suppressed progesterone synthesis, whereas a lower dose of melatonin increased progesterone synthesis by the ovary. The effects of melatonin on ovarian steroidogenesis are mediated through changes in the expression of peripheral-type benzodiazepine receptor, P450 side chain cleavage enzyme, and LH receptor proteins. This study further showed a suppressive impact of melatonin on the progesterone receptor (PGR) in the utero–embryonic unit; this effect might contribute to delayed embryonic development in C. sphinx. The results of the present study thus suggest that a high circulating melatonin level has a dual contribution in retarding embryonic development in C. sphinx by impairing progesterone synthesis as well as by inhibiting progesterone action by reducing expression of PGR in the utero–embryonic unit.
Collapse
|
17
|
Levoye A, Jockers R, Ayoub MA, Delagrange P, Savaskan E, Guillaume JL. Are G Protein‐Coupled Receptor Heterodimers of Physiological Relevance?—Focus on Melatonin Receptors. Chronobiol Int 2009; 23:419-26. [PMID: 16687315 DOI: 10.1080/07420520500521863] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In mammals, the circadian hormone melatonin targets two seven-transmembrane-spanning receptors, MT1 and MT2, of the G protein-coupled receptor (GPCR) super-family. Evidence accumulated over the last 15 yrs convincingly demonstrates that GPCRs, classically considered to function as monomers, are actually organized as homodimers and heterodimerize with other GPCR family members. These dimers are formed early in the biosynthetic pathway and remain stable throughout the entire life cycle. A growing number of observations demonstrate that GPCR oligomerization may occur in native tissues and may have important consequences on receptor function. The formation of MT1 and MT2 homodimers and MT1/MT2 heterodimers has been shown in heterologous expression systems at physiological expression levels. Formation of MT1/MT2 heterodimers remains to be shown in native tissues but is suggested by the documented co-expression of MT1 and MT2 in many melatonin-sensitive tissues, such as the hypothalamic suprachiasmatic nuclei, retina, arteries, and adipose tissue. Considering that multiple GPCRs are expressed simultaneously in most cells, the possible engagement into heterodimeric complexes has to be considered and taken into account for the interpretation of experimental data obtained from native tissues and knockout animals.
Collapse
Affiliation(s)
- Angélique Levoye
- Department of Cell Biology, Institut Cochin, Université Paris-Descartes, Faculté de Médecine, France
| | | | | | | | | | | |
Collapse
|
18
|
Bourgeron T. The possible interplay of synaptic and clock genes in autism spectrum disorders. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:645-54. [PMID: 18419324 DOI: 10.1101/sqb.2007.72.020] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental conditions characterized by deficits in social communication, absence or delay in language, and stereotyped and repetitive behaviors. Results from genetic studies reveal one pathway associated with susceptibility to ASD, which includes the synaptic cell adhesion molecules NLGN3, NLGN4, and NRXN1 and a postsynaptic scaffolding protein SHANK3. This protein complex is crucial for the maintenance of functional synapses as well as the adequate balance between neuronal excitation and inhibition. Among the factors that could modulate this pathway are the genes controlling circadian rhythms. Indeed, sleep disorders and low melatonin levels are frequently observed in ASD. In this context, an alteration of both this synaptic pathway and the setting of the clock would greatly increase the risk of ASD. In this chapter, I report genetic and neurobiological findings that highlight the major role of synaptic and clock genes in the susceptibility to ASD. On the basis of these lines of evidence, I propose that future studies of ASD should investigate the circadian modulation of synaptic function as a focus for functional analyses and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- T Bourgeron
- Department of Neuroscience, Institut Pasteur, Paris, France
| |
Collapse
|
19
|
Lanoix D, Ouellette R, Vaillancourt C. Expression of melatoninergic receptors in human placental choriocarcinoma cell lines. Hum Reprod 2006; 21:1981-9. [PMID: 16632463 DOI: 10.1093/humrep/del120] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Melatonin crosses the placenta and enters the fetal circulation. Moreover, experimental data suggest a possible influence of melatonin on placental function and fetal development in humans. To date, the expression and role of melatonin receptors in human placenta choriocarcinoma cell lines and in human term placental tissues remain to be elucidated. METHODS AND RESULTS Results from RT-PCR, western blotting and confocal microscopy demonstrated that the MT1, MT2 and RORalpha1 melatonin receptors are expressed in the human term placental tissues and in choriocarcinoma cell lines JEG-3 and BeWo. Furthermore, enzyme-linked immunosorbent assay showed that 6-chloromelatonin (a melatonin agonist) inhibits, in a dose-dependent manner, forskolin-stimulated hCG-beta secretion in JEG-3 (P < 0.001) and BeWo (P < 0.05) cells but had no effect on basal human chorionic gonadotrophin (hCG-beta) levels. This effect of 6-chloromelatonin on forskolin-stimulated HCG-beta secretion was abolished by pertussis toxin (PTX), suggesting that melatonin regulates hCG-beta production by an action involving an inhibitory Gi/o protein. In PTX-treated BeWo cells, 6-chloromelatonin stimulated basal hCG-beta secretion (P < 0.001). CONCLUSION These results demonstrate, for the first time, the expression of melatonin receptors in human term placental tissues and in choriocarcinoma cells and suggest a possible paracrine/autocrine function for melatonin in human placenta.
Collapse
MESH Headings
- Cell Line, Tumor
- Choriocarcinoma/metabolism
- Chorionic Gonadotropin, beta Subunit, Human/metabolism
- Female
- Fluorescent Antibody Technique
- Gene Expression/drug effects
- Humans
- Melatonin/analogs & derivatives
- Melatonin/antagonists & inhibitors
- Melatonin/pharmacology
- Nuclear Receptor Subfamily 1, Group F, Member 1
- Pertussis Toxin/pharmacology
- Placenta/metabolism
- Receptor, Melatonin, MT1/biosynthesis
- Receptor, Melatonin, MT2/biosynthesis
- Receptors, Cytoplasmic and Nuclear
- Receptors, Melatonin/biosynthesis
- Receptors, Retinoic Acid/biosynthesis
- Trans-Activators
Collapse
Affiliation(s)
- Dave Lanoix
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | | | | |
Collapse
|
20
|
Melatonin. Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
21
|
Prada C, Udin SB. Melatonin decreases calcium levels in retinotectal axons of Xenopus laevis by indirect activation of group III metabotropic glutamate receptors. Brain Res 2005; 1053:67-76. [PMID: 16051198 DOI: 10.1016/j.brainres.2005.06.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/08/2005] [Accepted: 06/10/2005] [Indexed: 11/29/2022]
Abstract
Melatonin is a neuromodulator that binds to receptors in the retinotectal laminae of the amphibian optic tectum. The effect of melatonin on calcium dynamics in Xenopus retinotectal axons was investigated by imaging retinotectal axons labeled with the fluorescent indicator Fluo-4. Melatonin exerted an inhibitory influence on depolarization-evoked calcium increases, and the melatonin receptor antagonist 4-P-PDOT blocked this effect. Blockade of group III metabotropic receptors (mGluRs) counteracted the effect of melatonin on retinotectal axons. Application of the group II/group III mGluR antagonist MSPG or the group III-selective antagonist MSOP abolished the effect of melatonin. Conversely, this effect was not significantly affected by the group I mGluR antagonist LY367385 nor by EGLU or LY341495 at concentrations that specifically inhibit group II mGluRs. Furthermore, a higher concentration of LY341495 that affects group III mGluRs inhibited the effect of melatonin. The data therefore support the hypothesis that, in retinotectal axons, melatonin reduces cAMP levels, thereby relieving PKA-induced inhibition of group III mGluRs; the newly activated mGluRs in turn inhibit voltage-sensitive calcium channels, leading to a decrease in Ca2+ concentrations. The role of GABA(C) receptors in retinotectal responses was also evaluated. GABA(C) receptor antagonists did not block the effects of melatonin but instead were additive. Moreover, while other studies have shown that in Xenopus tectal cells, GABA(C) receptors mediate inhibition, in retinotectal axons, the opposite appears to occur since depolarization-evoked calcium rises in retinotectal axons were inhibited by GABA(C) receptor blockade. This result suggests that activation of GABA(C) receptors produces an increase in the synaptic excitability of retinotectal axon terminals.
Collapse
Affiliation(s)
- Claudia Prada
- Neuroscience Program, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | |
Collapse
|