1
|
Dumenieu M, Senkov O, Mironov A, Bourinet E, Kreutz MR, Dityatev A, Heine M, Bikbaev A, Lopez-Rojas J. The Low-Threshold Calcium Channel Cav3.2 Mediates Burst Firing of Mature Dentate Granule Cells. Cereb Cortex 2019; 28:2594-2609. [PMID: 29790938 PMCID: PMC5998957 DOI: 10.1093/cercor/bhy084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 12/11/2022] Open
Abstract
Mature granule cells are poorly excitable neurons that were recently shown to fire action potentials, preferentially in bursts. It is believed that the particularly pronounced short-term facilitation of mossy fiber synapses makes granule cell bursting a very effective means of properly transferring information to CA3. However, the mechanism underlying the unique bursting behavior of mature granule cells is currently unknown. Here, we show that Cav3.2 T-type channels at the axon initial segment are responsible for burst firing of mature granule cells in rats and mice. Accordingly, Cav3.2 knockout mice fire tonic spikes and exhibit impaired bursting, synaptic plasticity and dentate-to-CA3 communication. The data show that Cav3.2 channels are strong modulators of bursting and can be considered a critical molecular switch that enables effective information transfer from mature granule cells to the CA3 pyramids.
Collapse
Affiliation(s)
- Mael Dumenieu
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, Germany
| | - Oleg Senkov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Andrey Mironov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Emmanuel Bourinet
- Calcium Channel Dynamics & Nociception Group, Institute of Functional Genomics, Montpellier, France
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function," University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Hamburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Martin Heine
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, Germany
| | - Arthur Bikbaev
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, Germany
| |
Collapse
|
2
|
Jaffe DB, Brenner R. A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. J Neurophysiol 2018; 119:1506-1520. [PMID: 29357445 DOI: 10.1152/jn.00385.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gain of a neuron, the number and frequency of action potentials triggered in response to a given amount of depolarizing injection, is an important behavior underlying a neuron's function. Variations in action potential waveform can influence neuronal discharges by the differential activation of voltage- and ion-gated channels long after the end of a spike. One component of the action potential waveform, the afterhyperpolarization (AHP), is generally considered an inhibitory mechanism for limiting firing rates. In dentate gyrus granule cells (DGCs) expressing fast-gated BK channels, large fast AHPs (fAHP) are paradoxically associated with increased gain. In this article, we describe a mechanism for this behavior using a computational model. Hyperpolarization provided by the fAHP enhances activation of a dendritic inward current (a T-type Ca2+ channel is suggested) that, in turn, boosts rebound depolarization at the soma. The model suggests that the fAHP may both reduce Ca2+ channel inactivation and, counterintuitively, enhance its activation. The magnitude of the rebound depolarization, in turn, determines the activation of a subsequent, slower inward current (a persistent Na+ current is suggested) limiting the interspike interval. Simulations also show that the effect of AHP on gain is also effective for physiologically relevant stimulation; varying AHP amplitude affects interspike interval across a range of "noisy" stimulus frequency and amplitudes. The mechanism proposed suggests that small fAHPs in DGCs may contribute to their limited excitability. NEW & NOTEWORTHY The afterhyperpolarization (AHP) is canonically viewed as a major factor underlying the refractory period, serving to limit neuronal firing rate. We recently reported that enhancing the amplitude of the fast AHP (fAHP) in a relatively slowly firing neuron (vs. fast spiking neurons) expressing fast-gated BK channels augments neuronal excitability. In this computational study, we present a novel, quantitative hypothesis for how varying the amplitude of the fAHP can, paradoxically, influence a subsequent spike tens of milliseconds later.
Collapse
Affiliation(s)
- David B Jaffe
- Department of Biology, UTSA Neurosciences Institute, University of Texas at San Antonio , San Antonio, Texas
| | - Robert Brenner
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
3
|
Joksimovic SM, Eggan P, Izumi Y, Joksimovic SL, Tesic V, Dietz RM, Orfila JE, DiGruccio MR, Herson PS, Jevtovic-Todorovic V, Zorumski CF, Todorovic SM. The role of T-type calcium channels in the subiculum: to burst or not to burst? J Physiol 2017; 595:6327-6348. [PMID: 28744923 PMCID: PMC5621493 DOI: 10.1113/jp274565] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/07/2017] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS Pharmacological, molecular and genetic data indicate a prominent role of low-voltage-activated T-type calcium channels (T-channels) in the firing activity of both pyramidal and inhibitory interneurons in the subiculum. Pharmacological inhibition of T-channels switched burst firing with lower depolarizing stimuli to regular spiking, and fully abolished hyperpolarization-induced burst firing. Our molecular studies showed that CaV 3.1 is the most abundantly expressed isoform of T-channels in the rat subiculum. Consistent with this finding, both regular-spiking and burst firing patterns were profoundly depressed in the mouse with global deletion of CaV 3.1 isoform of T-channels. Selective inhibition of T-channels and global deletion of CaV 3.1 channels completely suppressed development of long-term potentiation (LTP) in the CA1-subiculum, but not in the CA3-CA1 pathway. ABSTRACT Several studies suggest that voltage-gated calcium currents are involved in generating high frequency burst firing in the subiculum, but the exact nature of these currents remains unknown. Here, we used selective pharmacology, molecular and genetic approaches to implicate Cav3.1-containing T-channels in subicular burst firing, in contrast to several previous reports discounting T-channels as major contributors to subicular neuron physiology. Furthermore, pharmacological antagonism of T-channels, as well as global deletion of CaV3.1 isoform, completely suppressed development of long-term potentiation (LTP) in the CA1-subiculum, but not in the CA3-CA1 pathway. Our results indicate that excitability and synaptic plasticity of subicular neurons relies heavily on T-channels. Hence, T-channels may be a promising new drug target for different cognitive deficits.
Collapse
Affiliation(s)
- Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, 80045, USA
| | - Pierce Eggan
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, 80045, USA
| | - Yukitoshi Izumi
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Sonja Lj Joksimovic
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, 80045, USA
| | - Vesna Tesic
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, 80045, USA
| | - Robert M Dietz
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, 80045, USA
| | - James E Orfila
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, 80045, USA
| | - Michael R DiGruccio
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, 80045, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, 80045, USA
| | - Charles F Zorumski
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado, School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
4
|
Role of low-voltage-activated calcium current and extracellular calcium in controlling the firing pattern of developing CA1 pyramidal neurons. Neuroscience 2017; 344:89-101. [DOI: 10.1016/j.neuroscience.2016.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022]
|
5
|
Alessi C, Raspanti A, Magistretti J. Two distinct types of depolarizing afterpotentials are differentially expressed in stellate and pyramidal-like neurons of entorhinal-cortex layer II. Hippocampus 2015; 26:380-404. [PMID: 26342161 DOI: 10.1002/hipo.22529] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 11/09/2022]
Abstract
Two types of principal neurons, stellate cells and pyramidal-like cells, are found in medial entorhinal-cortex (mEC) layer II, and are believed to represent two distinct channels of information processing and transmission in the entorhinal cortex-hippocampus network. In this study, we found that depolarizing afterpotentials (DAPs) that follow single action potentials (APs) evoked from various levels of holding membrane voltage (Vh ) show distinct properties in the two cells types. In both, an evident DAP followed the AP at near-threshold Vh levels, and was accompanied by an enhancement of excitability and spike-timing precision. This DAP was sensitive to voltage-gated Na(+)-channel block with TTx, but not to partial removal of extracellular Ca(2+). Application of 5-μM anandamide, which inhibited the resurgent and persistent Na(+) -current components in a relatively selective way, significantly reduced the amplitude of this particular DAP while exerting poor effects on the foregoing AP. In the presence of background hyperpolarization, DAPs showed an opposite behavior in the two cell types, as in stellate cells they became even more prominent, whereas in pyramidal-like cells their amplitude was markedly reduced. The DAP observed in stellate cells under this condition was strongly inhibited by partial extracellular-Ca(2+) removal, and was sensitive to the low-voltage-activated Ca(2+)-channel blocker, NNC55-0396. This Ca(2+) dependence was not observed in the residual DAP evoked in pyramidal-like cells from likewise negative Vh levels. These results demonstrate that two distinct mechanism of DAP generation operate in mEC layer-II neurons, one Na(+)-dependent and active at near-threshold Vh levels in both stellate and-pyramidal-like cells, the other Ca(2+)-dependent and only expressed by stellate cells in the presence of background membrane hyperpolarization.
Collapse
Affiliation(s)
- Camilla Alessi
- Department of Biology and Biotechnology, "L. Spallanzani,", University of Pavia, Pavia, Italy
| | - Alessandra Raspanti
- Department of Biology and Biotechnology, "L. Spallanzani,", University of Pavia, Pavia, Italy
| | - Jacopo Magistretti
- Department of Biology and Biotechnology, "L. Spallanzani,", University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Lavialle-Defaix C, Jacob V, Monsempès C, Anton S, Rospars JP, Martinez D, Lucas P. Firing and intrinsic properties of antennal lobe neurons in the Noctuid moth Agrotis ipsilon. Biosystems 2015; 136:46-58. [PMID: 26126723 DOI: 10.1016/j.biosystems.2015.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/04/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023]
Abstract
The antennal lobe (AL) of the Noctuid moth Agrotis ipsilon has emerged as an excellent model for studying olfactory processing and its plasticity in the central nervous system. Odor-evoked responses of AL neurons and input-to-output transformations involved in pheromone processing are well characterized in this species. However, the intrinsic electrical properties responsible of the firing of AL neurons are poorly known. To this end, patch-clamp recordings in current- and voltage-clamp mode from neurons located in the two main clusters of cell bodies in the ALs were combined with intracellular staining on A. ipsilon males. Staining indicated that the lateral cluster (LC) is composed of 85% of local neurons (LNs) and 15% of projection neurons (PNs). The medial cluster (MC) contains only PNs. Action potentials were readily recorded from the soma in LNs and PNs located in the LC but not from PNs in the MC where recordings showed small or no action potentials. In the LC, the spontaneous activity of about 20% of the LNs presented irregular bursts while being more regular in PNs. We also identified a small population of LNs lacking voltage-gated Na(+) currents and generating spikelets. We focused on the firing properties of LNs since in about 60% of LNs, but not in PNs, action potentials were followed by depolarizing afterpotentials (DAPs). These DAPs could generate a second action potential, so that the activity was composed of action potential doublets. DAPs depended on voltage, Ca(2+)-channels and possibly on Ca(2+)-activated non-specific cationic channels. During steady state current injection, DAPs occurred after each action potential and did not require high-frequency firing. The amplitude of DAPs increased when the interspike interval was small, typically within bursts, likely arising from a Ca(2+) build up. DAPs were more often found in bursting than in non-bursting LNs but do not support bursting activity. DAPs and spike doublets also occurred during odor-evoked activity suggesting that they can mediate olfactory integration in the AL.
Collapse
Affiliation(s)
- Céline Lavialle-Defaix
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Vincent Jacob
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Christelle Monsempès
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Sylvia Anton
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647 USC INRA 1330, 42 rue Georges Morel, 49071 Beaucouzé, France
| | - Jean-Pierre Rospars
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Dominique Martinez
- UMR7503, Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS), Vandœuvre-lès-Nancy, France
| | - Philippe Lucas
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France.
| |
Collapse
|
7
|
Hendrickson PJ, Yu GJ, Song D, Berger TW. A Million-Plus Neuron Model of the Hippocampal Dentate Gyrus: Critical Role for Topography in Determining Spatiotemporal Network Dynamics. IEEE Trans Biomed Eng 2015; 63:199-209. [PMID: 26087482 DOI: 10.1109/tbme.2015.2445771] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
GOAL This paper describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. METHODS The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. RESULTS Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust nonrandom pattern of spiking best described as a spatiotemporal "clustering." To identify the network property or properties responsible for generating such firing "clusters," we progressively eliminated from the model key mechanisms, such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. CONCLUSION Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatiotemporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as "functional units" or "channels" that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics.
Collapse
|
8
|
Nenov MN, Tempia F, Denner L, Dineley KT, Laezza F. Impaired firing properties of dentate granule neurons in an Alzheimer's disease animal model are rescued by PPARγ agonism. J Neurophysiol 2014; 113:1712-26. [PMID: 25540218 PMCID: PMC4359997 DOI: 10.1152/jn.00419.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Early cognitive impairment in Alzheimer's disease (AD) correlates with medial temporal lobe dysfunction, including two areas essential for memory formation: the entorhinal cortex and dentate gyrus (DG). In the Tg2576 animal model for AD amyloidosis, activation of the peroxisome proliferator-activated receptor-gamma (PPARγ) with rosiglitazone (RSG) ameliorates hippocampus-dependent cognitive impairment and restores aberrant synaptic activity at the entorhinal cortex to DG granule neuron inputs. It is unknown, however, whether intrinsic firing properties of DG granule neurons in these animals are affected by amyloid-β pathology and if they are sensitive to RSG treatment. Here, we report that granule neurons from 9-mo-old wild-type and Tg2576 animals can be segregated into two cell types with distinct firing properties and input resistance that correlate with less mature type I and more mature type II neurons. The DG type I cell population was greater than type II in wild-type littermates. In the Tg2576 animals, the type I and type II cell populations were nearly equal but could be restored to wild-type levels through cognitive enhancement with RSG. Furthermore, Tg2576 cell firing frequency and spike after depolarization were decreased in type I and increased in type II cells, both of which could also be restored to wild-type levels upon RSG treatment. That these parameters were restored by PPARγ activation emphasizes the therapeutic value of RSG against early AD cognitive impairment.
Collapse
Affiliation(s)
- Miroslav N Nenov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas
| | - Filippo Tempia
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas
| | - Larry Denner
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; Center for Addiction Research, The University of Texas Medical Branch, Galveston, Texas; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, Texas; and
| | - Kelly T Dineley
- Department of Neurology, The University of Texas Medical Branch, Galveston, Texas; Center for Addiction Research, The University of Texas Medical Branch, Galveston, Texas; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, Texas; and
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas; Center for Addiction Research, The University of Texas Medical Branch, Galveston, Texas; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, Texas; and Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
9
|
Althaus AL, Sagher O, Parent JM, Murphy GG. Intrinsic neurophysiological properties of hilar ectopic and normotopic dentate granule cells in human temporal lobe epilepsy and a rat model. J Neurophysiol 2014; 113:1184-94. [PMID: 25429123 DOI: 10.1152/jn.00835.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hilar ectopic dentate granule cells (DGCs) are a salient feature of aberrant plasticity in human temporal lobe epilepsy (TLE) and most rodent models of the disease. Recent evidence from rodent TLE models suggests that hilar ectopic DGCs contribute to hyperexcitability within the epileptic hippocampal network. Here we investigate the intrinsic excitability of DGCs from humans with TLE and the rat pilocarpine TLE model with the objective of comparing the neurophysiology of hilar ectopic DGCs to their normotopic counterparts in the granule cell layer (GCL). We recorded from 36 GCL and 7 hilar DGCs from human TLE tissue. Compared with GCL DGCs, hilar DGCs in patient tissue exhibited lower action potential (AP) firing rates, more depolarized AP threshold, and differed in single AP waveform, consistent with an overall decrease in excitability. To evaluate the intrinsic neurophysiology of hilar ectopic DGCs, we made recordings from retrovirus-birthdated, adult-born DGCs 2-4 mo after pilocarpine-induced status epilepticus or sham treatment in rats. Hilar DGCs from epileptic rats exhibited higher AP firing rates than normotopic DGCs from epileptic or control animals. They also displayed more depolarized resting membrane potential and wider AP waveforms, indicating an overall increase in excitability. The contrasting findings between disease and disease model may reflect differences between the late-stage disease tissue available from human surgical specimens and the earlier disease stage examined in the rat TLE model. These data represent the first neurophysiological characterization of ectopic DGCs from human hippocampus and prospectively birthdated ectopic DGCs in a rodent TLE model.
Collapse
Affiliation(s)
- A L Althaus
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan; Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - O Sagher
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - J M Parent
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan; Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - G G Murphy
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; and Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
Hazra R, Guo JD, Ryan SJ, Jasnow AM, Dabrowska J, Rainnie DG. A transcriptomic analysis of type I-III neurons in the bed nucleus of the stria terminalis. Mol Cell Neurosci 2011; 46:699-709. [PMID: 21310239 DOI: 10.1016/j.mcn.2011.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/14/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022] Open
Abstract
The activity of neurons in the anterolateral cell group of the bed nucleus of the stria terminalis (BNST(ALG)) plays a critical role in anxiety- and stress-related behaviors. Histochemical studies have suggested that multiple distinct neuronal phenotypes exist in the BNST(ALG). Consistent with this observation, the physiological properties of BNST(ALG) neurons are also heterogeneous, and three distinct cell types can be defined (Types I-III) based primarily on their expression of four key membrane currents, namely I(h), I(A), I(T), and I(K(IR)). Significantly, all four channels are multimeric proteins and can comprise of more than one pore-forming α subunit. Hence, differential expression of α subunits may further diversify the neuronal population. However, nothing is known about the relative expression of these ion channel α subunits in BNST(ALG) neurons. We have addressed this lacuna by combining whole-cell patch-clamp recording together with single-cell reverse transcriptase polymerase chain reaction (scRT-PCR) to assess the mRNA transcript expression for each of the subunits for the four key ion channels in Type I-III neurons of the BNST(ALG.) Here, cytosolic mRNA from single neurons was probed for the expression of transcripts for each of the α subunits of I(h) (HCN1-HCN4), I(T) (Ca(v)3.1-Ca(v)3.3), I(A) (K(v)1.4, K(v)3.4, K(v)4.1-K(v) 4.3) and I(K(IR)) (Kir2.1-Kir2.4). An unbiased hierarchical cluster analysis followed by discriminant function analysis revealed that a positive correlation exists between the physiological and genetic phenotype of BNST(ALG) neurons. Thus, the analysis segregated BNST(ALG) neurons into 3 distinct groups, based on their α subunit mRNA expression profile, which positively correlated with our existing electrophysiological classification (Types I-III). Furthermore, analysis of mRNA transcript expression in Type I-Type III neurons suggested that, whereas Type I and III neurons appear to represent genetically homologous cell populations, Type II neurons may be further subdivided into three genetically distinct subgroups. These data not only validate our original classification scheme, but further refine the classification at the molecular level, and thus identifies novel targets for potential disruption and/or pharmacotherapeutic intervention in stress-related anxiety-like behaviors.
Collapse
Affiliation(s)
- Rimi Hazra
- Department of Psychiatry and Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | |
Collapse
|
11
|
Shin DSH, Yu W, Fawcett A, Carlen PL. Characterizing the persistent CA3 interneuronal spiking activity in elevated extracellular potassium in the young rat hippocampus. Brain Res 2010; 1331:39-50. [PMID: 20303341 DOI: 10.1016/j.brainres.2010.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 03/07/2010] [Indexed: 11/29/2022]
Abstract
Seizures coincide with an increase in extracellular potassium concentrations [K(+)](e) yet little information is available regarding this phenomenon on the firing pattern, frequency and neuronal properties of inhibitory neurons responsible for modulating network excitability. Therefore, we investigated the effects of elevating [K(+)](e) from 2.5 to 12.5mM on CA3 rat hippocampal interneurons in vitro using whole-cell patch-clamp recordings. We found that the majority of interneurons (21/25) in artificial cerebral spinal fluid (aCSF) exhibited spontaneous tonic spiking activity. As the [K(+)](e) increased to 12.5mM, interneurons exhibited a tonic, irregular, burst firing activity, or a combination of these. The input resistance decreased significantly to 59+/-18% at 7.5mM K(+) and did not further change at higher [K(+)](e) while the amount of K(+)-induced depolarization significantly increased from 5 to 12.5mM K(+) perfusion; a depolarization block occurred in 4 of the 12 interneurons at 12.5mM. Also, as [K(+)](e) increased, a transition from lower (1.3+/-0.6Hz) to higher dominant peak frequency (15.0+/-5.0Hz) was observed. We found that non-fast spiking (NFS) interneurons represented the majority of cells recorded and exhibited mostly tonic firing activity in raised K(+). Fast spiking (FS) interneurons predominately had a tonic firing pattern with very few exhibiting bursting activity in elevated K(+). In conclusion, we report that raised [K(+)](e) in amounts observed during seizures increases hippocampal CA3 interneuronal activity and suggests that a loss or impairment of inhibitory function may be present during these events.
Collapse
Affiliation(s)
- Damian Seung-Ho Shin
- Center for Neuropharmacology & Neuroscience, Albany Medical College, Albany, NY, USA.
| | | | | | | |
Collapse
|
12
|
Young CC, Stegen M, Bernard R, Müller M, Bischofberger J, Veh RW, Haas CA, Wolfart J. Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy. J Physiol 2009; 587:4213-33. [PMID: 19564397 DOI: 10.1113/jphysiol.2009.170746] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In humans, temporal lobe epilepsy (TLE) is often associated with Ammon's horn sclerosis (AHS) characterized by hippocampal cell death, gliosis and granule cell dispersion (GCD) in the dentate gyrus. Granule cells surviving TLE have been proposed to be hyperexcitable and to play an important role in seizure generation. However, it is unclear whether this applies to conditions of AHS. We studied granule cells using the intrahippocampal kainate injection mouse model of TLE, brain slice patch-clamp recordings, morphological reconstructions and immunocytochemistry. With progressing AHS and GCD, 'epileptic' granule cells of the injected hippocampus displayed a decreased input resistance, a decreased membrane time constant and an increased rheobase. The resting leak conductance was doubled in epileptic granule cells and roughly 70-80% of this difference were sensitive to K(+) replacement. Of the increased K(+) leak, about 50% were sensitive to 1 mm Ba(2+). Approximately 20-30% of the pathological leak was mediated by a bicuculline-sensitive GABA(A) conductance. Epileptic granule cells had strongly enlarged inwardly rectifying currents with a low micromolar Ba(2+) IC(50), reminiscent of classic inward rectifier K(+) channels (Irk/Kir2). Indeed, protein expression of Kir2 subunits (Kir2.1, Kir2.2, Kir2.3, Kir2.4) was upregulated in epileptic granule cells. Immunolabelling for two-pore weak inward rectifier K(+) channels (Twik1/K2P1.1, Twik2/K2P6.1) was also increased. We conclude that the excitability of granule cells in the sclerotic focus of TLE is reduced due to an increased resting conductance mainly due to upregulated K(+) channel expression. These results point to a local adaptive mechanism that could counterbalance hyperexcitability in epilepsy.
Collapse
Affiliation(s)
- Christina C Young
- Cellular Neurophysiology, Dept. of Neurosurgery, University Medical Center Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Molineux ML, Mehaffey WH, Tadayonnejad R, Anderson D, Tennent AF, Turner RW. Ionic Factors Governing Rebound Burst Phenotype in Rat Deep Cerebellar Neurons. J Neurophysiol 2008; 100:2684-701. [DOI: 10.1152/jn.90427.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large diameter cells in rat deep cerebellar nuclei (DCN) can be distinguished according to the generation of a transient or weak rebound burst and the expression of T-type Ca2+ channel isoforms. We studied the ionic basis for the distinction in burst phenotypes in rat DCN cells in vitro. Following a hyperpolarization, transient burst cells generated a high-frequency spike burst of ≤450 Hz, whereas weak burst cells generated a lower-frequency increase (<140 Hz). Both cell types expressed a low voltage–activated (LVA) Ca2+ current near threshold for rebound burst discharge (−50 mV) that was consistent with T-type Ca2+ current, but on average 7 times more current was recorded in transient burst cells. The number and frequency of spikes in rebound bursts was tightly correlated with the peak Ca2+ current at −50 mV, showing a direct relationship between the availability of LVA Ca2+ current and spike output. Transient burst cells exhibited a larger spike depolarizing afterpotential that was insensitive to blockers of voltage-gated Na+ or Ca2+ channels. In comparison, weak burst cells exhibited larger afterhyperpolarizations (AHPs) that reduced cell excitability and rebound spike output. The sensitivity of AHPs to Ca2+ channel blockers suggests that both LVA and high voltage–activated (HVA) Ca2+ channels trigger AHPs in weak burst compared with only HVA Ca2+ channels in transient burst cells. The two burst phenotypes in rat DCN cells thus derive in part from a difference in the availability of LVA Ca2+ current following a hyperpolarization and a differential activation of AHPs that establish distinct levels of membrane excitability.
Collapse
|
14
|
McKay BE, McRory JE, Molineux ML, Hamid J, Snutch TP, Zamponi GW, Turner RW. CaV3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur J Neurosci 2006; 24:2581-94. [PMID: 17100846 DOI: 10.1111/j.1460-9568.2006.05136.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spike output in many neuronal cell types is affected by low-voltage-activated T-type calcium currents arising from the Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 channel subtypes and their splice isoforms. The contributions of T-type current to cell output is often proposed to reflect a differential distribution of channels to somatic and dendritic compartments, but the subcellular distribution of the various rat T-type channel isoforms has not been fully determined. We used subtype-specific Ca(v)3 polyclonal antibodies to determine their distribution in key regions of adult Sprague-Dawley rat brain thought to exhibit T-type channel expression, and in particular, dendritic low-voltage-activated responses. We found a selective subcellular distribution of Ca(v)3 channel proteins in cell types of the neocortex and hippocampus, thalamus, and cerebellar input and output neurons. In general, the Ca(v)3.1 T-type channel immunolabel is prominent in the soma/proximal dendritic region and Ca(v)3.2 immunolabel in the soma and proximal-mid dendrites. Ca(v)3.3 channels are distinct in distributing to the soma and over extended lengths of the dendritic arbor of particular cell types. Ca(v)3 distribution overlaps with cell types previously established to exhibit rebound burst discharge as well as those not recognized for this activity. Additional immunolabel in the region of the nucleus in particular cell types was verified as corresponding to Ca(v)3 antigen through analysis of isolated protein fractions. These results provide evidence that different Ca(v)3 channel isoforms may contribute to low-voltage-activated calcium-dependent responses at the somatic and dendritic level, and the potential for T-type calcium channels to contribute to multiple aspects of neuronal activity.
Collapse
Affiliation(s)
- Bruce E McKay
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr, N.W., Calgary, Alberta, T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Selke K, Müller A, Kukley M, Schramm J, Dietrich D. Firing pattern and calbindin-D28k content of human epileptic granule cells. Brain Res 2006; 1120:191-201. [PMID: 16997289 DOI: 10.1016/j.brainres.2006.08.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/17/2006] [Accepted: 08/18/2006] [Indexed: 11/30/2022]
Abstract
In the hippocampus of chronic temporal lobe epilepsy, many abnormalities in structure and function have been described but their pathophysiological relevance often is poorly understood. In this study, we asked whether there may be a link between changes in the firing pattern and the loss of the calcium binding protein calbindin-D28k in epileptic hippocampal granule cells. Using the perforated patch-clamp technique, we investigated granule cells in slices prepared from human hippocampi removed for the treatment of pharmacoresistant temporal lobe epilepsy. Granule cells in hippocampi without significant signs of structural damage (lesion group) displayed a firing pattern indistinguishable from that of rodent granule cells and were strongly labeled with anti-calbindin-D28k antibodies. In contrast, half of granule cells in sclerotic hippocampi (HS group) showed an altered firing pattern and a severe loss of calbindin-D28k. While these cells show passive membrane properties comparable to cells of the rodent and lesion group, they lack the medium afterhyperpolarization and display only a weak spike frequency adaptation. On the other hand, granule cells in the HS group have an increased action potential threshold and an enlarged fast afterhyperpolarization. Applying post-recording immunohistochemistry to individual electrophysiologically characterized granule cells, we show that the loss of calbindin-D28k is not causally related to any of the changes in firing pattern. Both alterations seem to occur during the course of temporal lobe epilepsy, with the firing pattern being affected earlier than the calbindin-D28k content. In conclusion, we propose that it is the combination of the altered intrinsic excitability of granule cells with the amplified and prolonged synaptic input from perforant path fibers previously described in the epileptic dentate area which promotes tonic, non-adapting, high frequency firing of granule cells and thereby strongly augments the excitability of the hippocampus.
Collapse
Affiliation(s)
- K Selke
- Department of Neurosurgery, NCH U1 R035, Experimental Neurophysiology, University Clinic Bonn, Sigmund-Freud Str. 25, D-53105 Bonn, Germany
| | | | | | | | | |
Collapse
|
16
|
Pryor J, Shi R. Electrophysiological changes in isolated spinal cord white matter in response to oxygen deprivation. Spinal Cord 2006; 44:653-61. [PMID: 16432530 DOI: 10.1038/sj.sc.3101901] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN In vitro studies using isolated guinea pig spinal cord white matter. OBJECTIVES To determine whether lack of oxygen can cause irreversible impairment of electrical impulse conduction. SETTING Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA. METHODS The hypoxic injury was induced by reducing the oxygen tension of the perfused solution by 80%. Compound action potentials (CAPs) were monitored before, during, and after oxygen deprivation. RESULTS We have found that 60 min of hypoxia reduced the conduction to 30% of preinjury level and recovered to approximately 60% of the preinjury level upon reoxygenation. Larger axons appeared to be more vulnerable to oxygen deprivation. We noted a significant decrease and recovery of the depolarizing afterpotential (DAP). Likewise, there was a delay and recovery of absolute and relative refractory period. Concomitantly, the ability of axons to follow repetitive stimuli was suppressed following oxygen deprivation but recovered upon reoxygenation. CONCLUSION Following 60 min of oxygen deprivation and 30 min of reoxygenation, mammalian spinal cord white matter can partially recover electrical impulse conduction. However, within the same period, cords gained a complete recovery of other electrical properties, such as the depression of DAP, the delaying of refractory period, and the decreased ability to respond to repetitive stimuli. Compared to previous findings when both oxygen and glucose were deprived, we conclude that glucose plays a relatively minor role during the acute stage of oxygen deprivation in mammalian spinal cord white matter.
Collapse
Affiliation(s)
- J Pryor
- Department of Basic Medical Sciences, Institute for Applied Neurology, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
17
|
Liu X, Stan Leung L. Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells. Brain Res 2004; 1023:185-92. [PMID: 15374744 DOI: 10.1016/j.brainres.2004.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2004] [Indexed: 10/26/2022]
Abstract
The depolarizing afterpotential (DAP) following an action potential increases the excitability of a neuron. Mechanisms related to the DAP following an antidromic or current-induced spike were studied in CA1 pyramidal cells by whole-cell recordings in hippocampal slices in vitro. In DAP-holding voltage curves, the DAP at 10 ms after the spike peak (DAP10) was extrapolated to reverse at about -50 mV. Increase of extracellular K(+) concentration increased DAP and neuronal bursting. DAP10 reversal potential shifted positively with an increase in [K(+)](o) and with the blockade of K(+) conductance using pipettes filled with Cs(+). Similarly, extracellular tetraethylammonium (TEA; 10 mM), 4-aminopyridine (3-10 mM) increased DAP and shifted the DAP10 reversal potential to a depolarizing direction. Decrease of [Ca(2+)](o) did not alter DAP significantly, suggesting a nonessential role of Ca(2+) in the DAP. Perfusion of tetrodotoxin (TTX; 0.1-1 microM) and replacement of extracellular Na(+) by choline(+) suppressed both spike height and DAP simultaneously. Replacement of extracellular Na(+) by Li(+) increased DAP and spike bursts, and caused a positive shift of the DAP10 reversal potential. It is suggested that Li(+) increased DAP by blocking an Na(+)-activated K(+) current. In summary, multiple K(+) conductances are normally active during the DAP following a single action potential.
Collapse
Affiliation(s)
- Xinhuai Liu
- Department of Physiology, University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
18
|
Lee SH, Sohn JW, Ahn SC, Park WS, Ho WK. Li+ enhances GABAergic inputs to granule cells in the rat hippocampal dentate gyrus. Neuropharmacology 2004; 46:638-46. [PMID: 14996541 DOI: 10.1016/j.neuropharm.2003.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 10/28/2003] [Accepted: 11/12/2003] [Indexed: 11/30/2022]
Abstract
Defects in GABAergic interneurons are thought to be involved in the pathophysiology of bipolar disorder, and Li+ has been used as a primary therapeutic agent in the treatment. We used the patch clamp technique to investigate whether Li+ affects on spontaneous GABAergic synaptic inputs to granule cells (GCs) in hippocampal dentate gyrus. Extracellularly applied Li+ (25 mM) markedly increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs), an effect completely blocked by picrotoxin or bicuculline. Li+ increased sIPSCs frequency in the presence of tetrodotoxin (TTX), but to a lesser extent than its absence. Li+ caused no change in the cumulative amplitude distribution of miniature IPSCs, indicating that a presynaptic mechanism is involved. When TTX was added in the presence of Li+, large-amplitude sIPSCs (>30 pA) were abolished specifically with no effect on small-amplitude sIPSCs (<20 pA). Intracellular Li+ (6 mM) applied via the patch pipette depolarized the resting membrane potential in fast-spiking interneurons, resulting in an increase in spontaneous action potential (AP) firing. This change, however, was not observed in GCs. These results suggest that Li(+)-induced spontaneous AP firing in GABAergic interneurons contributes to the increase in GABAergic synaptic inputs to GCs.
Collapse
Affiliation(s)
- Suk-Ho Lee
- Department of Physiology, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Ku, Seoul 110-799, South Korea
| | | | | | | | | |
Collapse
|
19
|
Turner RW, Lemon N, Doiron B, Rashid AJ, Morales E, Longtin A, Maler L, Dunn RJ. Oscillatory burst discharge generated through conditional backpropagation of dendritic spikes. ACTA ACUST UNITED AC 2004; 96:517-30. [PMID: 14692499 DOI: 10.1016/s0928-4257(03)00007-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gamma frequencies of burst discharge (>40 Hz) have become recognized in select cortical and non-cortical regions as being important in feature extraction, neural synchrony and oscillatory discharge. Pyramidal cells of the electrosensory lateral line lobe (ELL) of Apteronotus leptorhynchus generate burst discharge in relation to specific features of sensory input in vivo that resemble those recognized as gamma frequency discharge when examined in vitro. We have shown that these bursts are generated by an entirely novel mechanism termed conditional backpropagation that involves an intermittent failure of dendritic Na+ spike conduction. Conditional backpropagation arises from a frequency-dependent broadening of dendritic spikes during repetitive discharge, and a mismatch between the refractory periods of somatic and dendritic spikes. A high threshold class of K+ channel, AptKv3.3, is expressed at high levels and distributed over the entire soma-dendritic axis of pyramidal cells. AptKv3.3 channels are shown to contribute to the repolarization of both somatic and dendritic spikes, with pharmacological blockade of dendritic Kv3 channels revealing an important role in controlling the threshold for burst discharge. The entire process of conditional back-propagation and burst output is successfully simulated using a new compartmental model of pyramidal cells that incorporates a cumulative inactivation of dendritic K+ channels during repetitive discharge. This work is important in demonstrating how the success of spike backpropagation can control the output of a principle sensory neuron, and how this process is regulated by the distribution and properties of voltage-dependent K+ channels.
Collapse
Affiliation(s)
- Ray W Turner
- Neuroscience Research Group, University of Calgary, Calgary Alberta, Canada T2N 4N1.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Menendez de la Prida L, Suarez F, Pozo MA. Electrophysiological and morphological diversity of neurons from the rat subicular complex in vitro. Hippocampus 2003; 13:728-44. [PMID: 12962317 DOI: 10.1002/hipo.10123] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We combined whole-cell recordings with Neurobiotin labeling to examine the electrophysiological and morphological properties of neurons from the ventral subicular complex in vitro (including the subicular, presubicular, and parasubicular areas). No a priori morphological sampling criteria were used to select cells. Cells were classified as bursting (IB), regular-spiking (RS), and fast-spiking (FS) according to their firing patterns in response to depolarizing current pulses. A number of cells remained unclassified. We found 54% RS, 26% IB, 11% FS, and 9% unclassified cells out of a total of 131 neurons examined. We also found cells showing intrinsic membrane potential oscillations (MPO) (6%), which represented a subgroup of the unclassified cells. We analyzed several electrophysiological parameters and found that RS and IB cells can be subclassified into two separate subgroups. RS cells were subclassified as tonic and adapting, according to the degree of firing adaptation. Both responded with single spikes to orthodromic stimulation. IB cells were subclassified in two subgroups according to their capacity to fire more than one burst, and showed different responses to orthodromic stimulation. We observed that bursting in these two subgroups appeared to involve both Ca2+ and persistent Na+ components. Both IB and RS cells, as well as MPO neurons, were projecting cells. FS cells were morphologically identified as local circuit interneurons. We also analyzed the spatial distribution of these cell types from the vicinity of CA1 to the parasubicular areas. We conclude that, in contrast to the commonly accepted idea of the subicular complex as a bursting structure, there is a wide electrophysiological variability even within a given cellular group.
Collapse
Affiliation(s)
- L Menendez de la Prida
- Brain Mapping Unit, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | |
Collapse
|
21
|
Wang X, Lambert NA. Membrane properties of identified lateral and medial perforant pathway projection neurons. Neuroscience 2003; 117:485-92. [PMID: 12614688 DOI: 10.1016/s0306-4522(02)00659-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physiological characteristics of neurons that project to the hippocampus and dentate gyrus via the medial perforant pathway (projection neurons) are well known, but the characteristics of neurons that project to these areas via the lateral perforant pathway (projection neurons) are less well known. We have used retrograde tracing and whole-cell recording in brain slices to compare the membrane and firing properties of medial perforant pathway and lateral perforant pathway projection neurons in layer II of the medial and lateral entorhinal cortex. The properties of medial perforant pathway projection neurons were identical to those reported previously for spiny stellate neurons in the medial entorhinal cortex. In contrast, lateral perforant pathway projection neurons were characterized by a higher input resistance, a lack of time-dependent inward (anomalous) rectification, and a lack of prominent depolarizing spike afterpotentials. Voltage-clamp recordings suggest that the absence of anomalous rectification in lateral perforant pathway projection neurons is due to smaller hyperpolarization activated cation currents in these cells, and the lack of depolarizing afterpotential may be due to smaller low-threshold calcium currents. Persistent sodium current was also smaller in lateral perforant pathway projection neurons, but the difference in persistent sodium current between medial perforant pathway and lateral perforant projection neurons was much less pronounced than the difference in low voltage activated currents. These results underscore the functional differences between the medial entorhinal cortex and lateral entorhinal cortex, and may help to explain the differing abilities of these cortical areas to participate in certain types of network activity.
Collapse
Affiliation(s)
- X Wang
- Department of Pharmacology and Toxicology, Medical College of Georgia, and Medical Research Service, Veterans Administration Medical Center, Augusta, GA 30912-2300, USA
| | | |
Collapse
|
22
|
Song D, Wang Z, Berger TW. Contribution of T-type VDCC to TEA-induced long-term synaptic modification in hippocampal CA1 and dentate gyrus. Hippocampus 2003; 12:689-97. [PMID: 12440583 DOI: 10.1002/hipo.10105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously reported that exposure to the K+ channel blocker tetraethylammonium (TEA), 25 mM, induces long-term potentiation (LTP) in CA1, but not in the dentate gyrus (DG), of the rat hippocampal slice. During TEA application, stimulation of excitatory afferents results in a strong depolarizing potential after the fast excitatory postsynaptic potential (EPSP) in CA1, but not in DG. We hypothesized that the differential effect of TEA on long-term synaptic modification in CA1 and DG results from different levels of TEA-elicited depolarization in the two cell types. Additional pharmacological studies showed that blockade of T-type voltage-dependent calcium channels (VDCCs) decreased both the magnitude of LTP and the late, depolarizing potential in CA1. Blockade of L-type VDCCs had no such effect. Using computer models of morphologically reconstructed CA1 pyramidal cells and DG granule cells, we tested our hypothesis by simulating the relative intracellular Ca2+ accumulation and membrane potential changes mediated by T-type and L-type VDCCs. Simulation results using pyramidal cell models showed that, with decreased maximum conductance of TEA-sensitive potassium channels, synaptic inputs elicited strong depolarizing potentials similar to those observed with intracellular recording. During this depolarization, VDCCs were opened and resulted in a large intracellular Ca2+ accumulation that presumably caused LTP. When T-type VDCCs were blocked, the magnitudes of both the Ca2+ accumulation and the late depolarizing potential were decreased substantially. Simulated blockade of L-type VDCCs had only a minor effect. Together, our modeling and experimental studies indicate that T-type VDCCs, rather than L-type VDCCs, are primarily responsible for facilitating the depolarizing potential caused by TEA and for the consequent Ca2+ influx. Thus, our findings strongly suggest that the induction of TEA-LTP in CA1 depends primarily on T-type, rather than L-type, VDCCs. Simulation results using modeled granule cells suggests that the failure of TEA to induce LTP in DG is partly due to a low density of T-type VDCCs in granule cell membranes.
Collapse
Affiliation(s)
- Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles 90089, USA.
| | | | | |
Collapse
|
23
|
Abstract
T-type Ca2+ channels were originally called low-voltage-activated (LVA) channels because they can be activated by small depolarizations of the plasma membrane. In many neurons Ca2+ influx through LVA channels triggers low-threshold spikes, which in turn triggers a burst of action potentials mediated by Na+ channels. Burst firing is thought to play an important role in the synchronized activity of the thalamus observed in absence epilepsy, but may also underlie a wider range of thalamocortical dysrhythmias. In addition to a pacemaker role, Ca2+ entry via T-type channels can directly regulate intracellular Ca2+ concentrations, which is an important second messenger for a variety of cellular processes. Molecular cloning revealed the existence of three T-type channel genes. The deduced amino acid sequence shows a similar four-repeat structure to that found in high-voltage-activated (HVA) Ca2+ channels, and Na+ channels, indicating that they are evolutionarily related. Hence, the alpha1-subunits of T-type channels are now designated Cav3. Although mRNAs for all three Cav3 subtypes are expressed in brain, they vary in terms of their peripheral expression, with Cav3.2 showing the widest expression. The electrophysiological activities of recombinant Cav3 channels are very similar to native T-type currents and can be differentiated from HVA channels by their activation at lower voltages, faster inactivation, slower deactivation, and smaller conductance of Ba2+. The Cav3 subtypes can be differentiated by their kinetics and sensitivity to block by Ni2+. The goal of this review is to provide a comprehensive description of T-type currents, their distribution, regulation, pharmacology, and cloning.
Collapse
Affiliation(s)
- Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908-0735, USA.
| |
Collapse
|
24
|
Doiron B, Noonan L, Lemon N, Turner RW. Persistent Na+ current modifies burst discharge by regulating conditional backpropagation of dendritic spikes. J Neurophysiol 2003; 89:324-37. [PMID: 12522183 DOI: 10.1152/jn.00729.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The estimation and detection of stimuli by sensory neurons is affected by factors that govern a transition from tonic to burst mode and the frequency characteristics of burst output. Pyramidal cells in the electrosensory lobe of weakly electric fish generate spike bursts for the purpose of stimulus detection. Spike bursts are generated during repetitive discharge when a frequency-dependent broadening of dendritic spikes increases current flow from dendrite to soma to potentiate a somatic depolarizing afterpotential (DAP). The DAP eventually triggers a somatic spike doublet with an interspike interval that falls inside the dendritic refractory period, blocking spike backpropagiation and the DAP. Repetition of this process gives rise to a rhythmic dendritic spike failure, termed conditional backpropagation, that converts cell output from tonic to burst discharge. Through in vitro recordings and compartmental modeling we show that burst frequency is regulated by the rate of DAP potentiation during a burst, which determines the time required to discharge the spike doublet that blocks backpropagation. DAP potentiation is magnified through a positive feedback process when an increase in dendritic spike duration activates persistent sodium current (I(NaP)). I(NaP) further promotes a slow depolarization that induces a shift from tonic to burst discharge over time. The results are consistent with a dynamical systems analysis that shows that the threshold separating tonic and burst discharge can be represented as a saddle-node bifurcation. The interaction between dendritic K(+) current and I(NaP) provides a physiological explanation for a variable time scale of bursting dynamics characteristic of such a bifurcation.
Collapse
Affiliation(s)
- Brent Doiron
- Department of Physics, University of Ottawa, Ontario K1N 6N5, Canada
| | | | | | | |
Collapse
|
25
|
Ohno K, Higashima M. Effects of antiepileptic drugs on afterdischarge generation in rat hippocampal slices. Brain Res 2002; 924:39-45. [PMID: 11743993 DOI: 10.1016/s0006-8993(01)03027-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have recently reported that ictal-like afterdischarges (ADs) analogous to those in in vivo kindling models are induced by high-frequency stimulation (100 Hz, 1s) to the stratum radiatum of the CA1 region of rat hippocampal slices. To test whether this model can also serve as an in vitro seizure model for temporal lobe epilepsy, we examined the effects of antiepileptic drugs on this model and compared them with their effects on seizures in patients with temporal lobe epilepsy. ADs were progressively enhanced following repetitive high-frequency stimulations to slices treated with 4-aminopyridine, a proconvulsive A-type potassium channel blocker. Bath application of phenytoin (1-100 microM) and carbamazepine (1-100 microM) suppressed AD generation in a concentration-dependent manner. At a clinically relevant concentration of 10 microM, phenytoin reduced the number of spikes in an AD to 50.6% and carbamazepine to 39.7% of the control values. On the other hand, ethosuximide had no effect on AD generation at a concentration of 1 mM, which is clinically effective against absence seizures, but enhanced it at a toxic concentration of 10 mM. These findings indicate that the pharmacological profiles of antiepileptic drugs applied to our model correspond to those applied to seizures in patients with temporal lobe epilepsy. We therefore conclude that this model can be a useful in vitro model for the ictal manifestation of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Koji Ohno
- Department of Neuropsychiatry, School of Medicine, Kanazawa University, Kanazawa 920-8641, Japan
| | | |
Collapse
|
26
|
Savić N, Sciancalepore M. Electrophysiological characterization of "giant" cells in stratum radiatum of the CA3 hippocampal region. J Neurophysiol 2001; 85:1998-2007. [PMID: 11353016 DOI: 10.1152/jn.2001.85.5.1998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell patch-clamp recording and intracellular staining with biocytin allowed the morphological and electrophysiological characterization of "giant" cells, studied in stratum (st.) radiatum of the CA3 region in 17- to 21-day-old rat hippocampal slices. These neurons had extensive dendritic arborization, a triangular soma, and a bipolar vertical orientation with axons directed to the pyramidal layer or extended into the st. oriens. Giant cells had significantly higher input resistance and shorter action potentials compared with CA3 pyramidal cells. Evoked action potentials were typically followed by an afterdepolarizing potential (ADP). During depolarizing current injection, most (80%) of recorded giant cells displayed a regular firing pattern (maximum steady-state firing rate, approximately 30 Hz) characterized by a modest early accommodation, whereas irregular firing was observed in the remaining 20% of giant cells. Hyperpolarizing current pulses induced a slow inward rectification of the electrotonic voltage responses, blocked by 2 mM external Cs(+). N-methyl-D-aspartate (NMDA) and non-NMDA-mediated excitatory postsynaptic currents (EPSCs) measured under voltage clamp were distinguished on the basis of their voltage dependence and sensitivity to specific NMDA and non-NMDA glutamate receptor blockers. Non-NMDA EPSCs possessed a linear current-voltage relationship. EPSCs elicited by st. lucidum stimulation were reversibly reduced (mean, 23%) by the group II metabotropic glutamate receptor agonist (2S, 1'R, 2'R, 3'R)-2-(2,3-dicarboxyl-cyclopropyl)-glycine (DCG-IV, 1 microM). GABA(A)-mediated postsynaptic currents were subject to paired-pulse depression that was inhibited by the GABA(B) antagonist CGP 55845A (5 microM). We conclude that CA3 giant cells represent a particular class of hippocampal neuron located in st. radiatum that shares only some morphological and physiological properties with principal cells.
Collapse
Affiliation(s)
- N Savić
- Neuroscience Programme and Istituto Nazionale Fisica della Materia Unit, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
| | | |
Collapse
|
27
|
Lemon N, Turner RW. Conditional spike backpropagation generates burst discharge in a sensory neuron. J Neurophysiol 2000; 84:1519-30. [PMID: 10980024 DOI: 10.1152/jn.2000.84.3.1519] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Backpropagating dendritic Na(+) spikes generate a depolarizing afterpotential (DAP) at the soma of pyramidal cells in the electrosensory lateral line lobe (ELL) of weakly electric fish. Repetitive spike discharge is associated with a progressive depolarizing shift in somatic spike afterpotentials that eventually triggers a high-frequency spike doublet and subsequent burst afterhyperpolarization (bAHP). The rhythmic generation of a spike doublet and bAHP groups spike discharge into an oscillatory burst pattern. This study examined the soma-dendritic mechanisms controlling the depolarizing shift in somatic spike afterpotentials, and the mechanism by which spike doublets terminate spike discharge. Intracellular recordings were obtained from ELL pyramidal somata and apical dendrites in an in vitro slice preparation. The pattern of spike discharge was equivalent in somatic and dendritic regions, reflecting the backpropagation of spikes from soma to dendrites. There was a clear frequency-dependent threshold in the transition from tonic to burst discharge, with bursts initiated when interspike intervals fell between approximately 3-7 ms. Removal of all backpropagating spikes by dendritic TTX ejection revealed that the isolated somatic AHPs were entirely stable at the interspike intervals that generated burst discharge. As such, the depolarizing membrane potential shift during repetitive discharge could be attributed to a potentiation of DAP amplitude. Potentiation of the DAP was due to a frequency-dependent broadening and temporal summation of backpropagating dendritic Na(+) spikes. Spike doublets were generated with an interspike interval close to, but not within, the somatic spike refractory period. In contrast, the interspike interval of spike doublets always fell within the longer dendritic refractory period, preventing backpropagation of the second spike of the doublet. The dendritic depolarization was thus abruptly removed from one spike to the next, allowing the burst to terminate when the bAHP hyperpolarized the membrane. The transition from tonic to burst discharge was dependent on the number and frequency of spikes invoking dendritic spike summation, indicating that burst threshold depends on the immediate history of cell discharge. Spike frequency thus represents an important condition that determines the success of dendritic spike invasion, establishing an intrinsic mechanism by which backpropagating spikes can be used to generate a rhythmic burst output.
Collapse
Affiliation(s)
- N Lemon
- Department of Cell Biology and Anatomy, Neuroscience Research Group, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
28
|
Jahromi SS, Pelletier MR, McDonald PJ, Khosravani H, Carlen PL. Antiepileptic efficacy of topiramate: assessment in two in vitro seizure models. Brain Res 2000; 872:20-8. [PMID: 10924671 DOI: 10.1016/s0006-8993(00)02410-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The antiepileptic efficacy of topiramate (TPM) has been demonstrated in both whole animal seizure models and clinical trials; however, there is no consensus concerning its mechanism of action. We determined first whether the antiepileptic effect of TPM generalized to in vitro seizure models. Epileptiform discharges, recorded extracellularly, were evoked by repeated tetanic stimulation of Schaffer collaterals and layer III association fibers in entorhinal cortex/hippocampus and piriform cortex slices, respectively. TPM was applied at concentrations of 20 or 100 microM. Whole cell recordings were made from CA1 pyramidal neurons and the effect of TPM was assessed on a variety of intrinsic membrane properties including resting membrane potential, input resistance and postspike potentials. TPM (20 microM) was without effect in entorhinal cortex/hippocampus (N=6); however, 100 microM TPM decreased significantly the Coastline Burst Index from 358.3+/-65.8 to 225. 5+/-77.1 (N=4), the frequency of spontaneous epileptiform discharges to 44.6+/-21.8 (N=5) and the duration of primary afterdischarge (PAD) to 65.9+/-10.1 (N=10) percent of control. In contrast, phenytoin (50 microM, N=7; 100 microM, N=8) reduced PAD to 96.9+/-14. 8 and 86.5+/-17.3 percent of control, respectively. TPM (100 microM) did not reduce significantly the frequency of spontaneous discharges in piriform cortex (85.4+/-12.3 percent of control; N=5). TPM (100 microM) was without significant effect on intrinsic membrane properties in CA1 pyramidal neurons. Likely candidate mechanisms underlying the antiepileptic effect produced by TPM include enhancement of chloride-mediated GABA(A) currents and reduction of kainate and L-type calcium currents.
Collapse
Affiliation(s)
- S S Jahromi
- Department of Physiology, University of Toronto, Ont., M5T 2S8, Toronto, Canada
| | | | | | | | | |
Collapse
|
29
|
Craig PJ, Beattie RE, Folly EA, Banerjee MD, Reeves MB, Priestley JV, Carney SL, Sher E, Perez-Reyes E, Volsen SG. Distribution of the voltage-dependent calcium channel alpha1G subunit mRNA and protein throughout the mature rat brain. Eur J Neurosci 1999; 11:2949-64. [PMID: 10457190 DOI: 10.1046/j.1460-9568.1999.00711.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular identity of a gene which encodes the pore-forming subunit (alpha1G) of a member of the family of low-voltage-activated, T-type, voltage-dependent calcium channels has been described recently. Although northern mRNA analyses have shown alpha1G to be expressed predominantly in the brain, the detailed cellular distribution of this protein in the central nervous system (CNS) has not yet been reported. The current study describes the preparation of a subunit specific alpha1G riboprobe and antiserum which have been used in parallel in situ mRNA hybridization and immunohistochemical studies to localize alpha1G in the mature rat brain. Both alpha1G mRNA and protein were widely distributed throughout the brain, but variations were observed in the relative level of expression in discrete nuclei. Immunoreactivity for alpha1G was typically localized in both the soma and dendrites of many neurons. Whilst alpha1G protein and mRNA expression were often observed in cells known to exhibit T-type current activity, some was also noted in regions, e.g. cerebellar granule cells, in which T-type activity has not been described. These observations may reflect differences between the subcellular distribution of channels that can be identified by immunohistochemical methods compared with electrophysiological techniques.
Collapse
Affiliation(s)
- P J Craig
- Eli Lilly and Co., Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Aradi I, Holmes WR. Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. J Comput Neurosci 1999; 6:215-35. [PMID: 10406134 DOI: 10.1023/a:1008801821784] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have constructed a detailed model of a hippocampal dentate granule (DG) cell that includes nine different channel types. Channel densities and distributions were chosen to reproduce reported physiological responses observed in normal solution and when blockers were applied. The model was used to explore the contribution of each channel type to spiking behavior with particular emphasis on the mechanisms underlying postspike events. T-type calcium current in more distal dendrites contributed prominently to the appearance of the depolarizing after-potential, and its effect was controlled by activation of BK-type calcium-dependent potassium channels. Coactivation and interaction of N-, and/or L-type calcium and AHP currents present in somatic and proximal dendritic regions contributed to the adaptive properties of the model DG cell in response to long-lasting current injection. The model was used to predict changes in channel densities that could lead to epileptogenic burst discharges and to predict the effect of altered buffering capacity on firing behavior. We conclude that the clustered spatial distributions of calcium related channels, the presence of slow delayed rectifier potassium currents in dendrites, and calcium buffering properties, together, might explain the resistance of DG cells to the development of epileptogenic burst discharges.
Collapse
Affiliation(s)
- I Aradi
- Department of Biological Sciences, Ohio University, Athens 45701, USA.
| | | |
Collapse
|
31
|
Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 1999. [PMID: 10066243 DOI: 10.1523/jneurosci.19-06-01895.1999] [Citation(s) in RCA: 563] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Low voltage-activated (T-type) calcium currents are observed in many central and peripheral neurons and display distinct physiological and functional properties. Using in situ hybridization, we have localized central and peripheral nervous system expression of three transcripts (alpha1G, alpha1H, and alpha1I) of the T-type calcium channel family (CaVT). Each mRNA demonstrated a unique distribution, and expression of the three genes was largely complementary. We found high levels of expression of these transcripts in regions associated with prominent T-type currents, including inferior olivary and thalamic relay neurons (which expressed alpha1G), sensory ganglia, pituitary, and dentate gyrus granule neurons (alpha1H), and thalamic reticular neurons (alpha1I and alpha1H). Other regions of high expression included the Purkinje cell layer of the cerebellum, the bed nucleus of the stria terminalis, the claustrum (alpha1G), the olfactory tubercles (alpha1H and alpha1I), and the subthalamic nucleus (alpha1I and alpha1G). Some neurons expressed high levels of all three genes, including hippocampal pyramidal neurons and olfactory granule cells. Many brain regions showed a predominance of labeling for alpha1G, including the amygdala, cerebral cortex, rostral hypothalamus, brainstem, and spinal cord. Exceptions included the basal ganglia, which showed more prominent labeling for alpha1H and alpha1I, and the olfactory bulb, the hippocampus, and the caudal hypothalamus, which showed more even levels of all three transcripts. Our results are consistent with the hypothesis that differential gene expression underlies pharmacological and physiological heterogeneity observed in neuronal T-type calcium currents, and they provide a molecular basis for the study of T-type channels in particular neurons.
Collapse
|
32
|
Ries CR, Puil E. Mechanism of anesthesia revealed by shunting actions of isoflurane on thalamocortical neurons. J Neurophysiol 1999; 81:1795-801. [PMID: 10200213 DOI: 10.1152/jn.1999.81.4.1795] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By using thalamic brain slices from juvenile rats and the whole cell recording technique, we determined the effects of aqueous applications of the anesthetic isoflurane (IFL) on tonic and burst firing activities of ventrobasal relay neurons. At concentrations equivalent to those used for in vivo anesthesia, IFL induced a hyperpolarization and increased membrane conductance in a reversible and concentration-dependent manner (ionic mechanism detailed in companion paper). The increased conductance short-circuited the effectiveness of depolarizing pulses and was the main cause for inhibition of tonic firing of action potentials. Despite the IFL-induced hyperpolarization, which theoretically should have promoted bursting, the shunt blocked the low-threshold Ca2+ spike (LTS) and associated burst firing of action potentials as well as the high-threshold Ca2+ spike (HTS). Increasing the amplitude of either the depolarizing test pulse or hyperpolarizing prepulse or increasing the duration of the hyperpolarizing prepulse partially reversed the blockade of the LTS burst. In voltage-clamp experiments on the T-type Ca2+ current, which produces the LTS, IFL decreased the spatial distribution of imposed voltages and hence impaired the activation of spatially distant T channels. Although IFL may have increased a dendritic leak conductance or decreased dendritic Ca2+ currents, the somatic shunt appeared to block initiation of the LTS and HTS as well as their electrotonic propogation to the axon hillock. In summary, IFL hyperpolarized thalamocortical neurons and shunted voltage-dependent Na+ and Ca2+ currents. Considering the importance of the thalamus in relaying different sensory modalities (i.e., somatosensation, audition, and vision) and motor information as well as the corticothalamocortical loops in mediating consciousness, the shunted firing activities of thalamocortical neurons would be instrumental for the production of anesthesia in vivo.
Collapse
Affiliation(s)
- C R Ries
- Department of Pharmacology and Therapeutics and Department of Anaesthesia, Faculty of Medicine, The University of British Columbia Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
33
|
Hatton GI, Li ZH. Neurophysiology of magnocellular neuroendocrine cells: recent advances. PROGRESS IN BRAIN RESEARCH 1999; 119:77-99. [PMID: 10074782 DOI: 10.1016/s0079-6123(08)61563-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Magnocellular neuroendocrine cells of the hypothalamic paraventricular and supraoptic nuclei are responsible for most of the vasopressin and oxytocin in the peripheral blood as well as for central release of these peptides in selected brain areas. As the principal component of the hypothalamo-neurohypophysial system, these neurons have been a subject of continual study for half a century. The wealth of solid information from decades of in vivo studies has provided a firm basis for in vitro, brain slice and explant investigations of neural mechanisms involved in the control and regulation of vasopressin and oxytocin neurons. In vitro methods have revealed the presence and permitted the study of monosynaptic projections to supraoptic neurons from the olfactory bulbs, the tuberomammillary nuclei of the posterior hypothalamus and from the organum vasculosum of the lamina terminalis. Such methods have also facilitated the elucidation of the various ionic currents controlling neurosecretory cell activity as well as the roles of calcium binding proteins and release of calcium from internal stores. This review summarizes recent advances in our understanding of the afferent inputs that impinge upon these two cell types, and the cellular and molecular mechanisms intrinsic to these neurons that determine their activity patterns and, in part, their responses to incoming stimuli.
Collapse
Affiliation(s)
- G I Hatton
- Department of Neuroscience, University of California, Riverside 92521, USA.
| | | |
Collapse
|
34
|
Hatton GI, Li Z. Mechanisms of neuroendocrine cell excitability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 449:79-95. [PMID: 10026788 DOI: 10.1007/978-1-4615-4871-3_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Oxytocin (OT) and vasopressin (VP), two neuronally synthesized nonapeptides, are made in the hypothalamic paraventricular and supraoptic nuclei of mammals and released into their blood, eventually to have profound hormonal actions on peripheral tissues. In the rat both OT and VP neurons fire slowly and irregularly under conditions of low demand for peptide release, but natural or artificial depolarizing stimuli result in differential patterns of activity: either regular continuous firing, strongly associated with OT cells, or phasic bursting, characteristic of VP neurons. Recently published findings offer an explanation for the dominant presence of certain Ca(2+)-dependent membrane potentials that typically lead to phasic firing in VP neurons. Mechanisms of excitability involved in the differential activities of the two cell types, as well as of the same cell type under different physiological conditions, include such factors as Ca2+ binding proteins, voltage- and ligand-gated ion channels, release of Ca2+ from internal stores and gap junctional conductances. The evidence for these factors is reviewed here.
Collapse
Affiliation(s)
- G I Hatton
- Department of Neuroscience, University of California, Riverside 92521, USA.
| | | |
Collapse
|
35
|
McDowell TS, Pancrazio JJ, Barrett PQ, Lynch C. Volatile Anesthetic Sensitivity of T-Type Calcium Currents in Various Cell Types. Anesth Analg 1999. [DOI: 10.1213/00000539-199901000-00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Abstract
To incorporate variation of neuron shape in neural models, we developed a method of generating a population of realistically shaped neurons. Parameters that characterize a neuron include soma diameters, distances to branch points, fiber diameters, and overall dendritic tree shape and size. Experimentally measured distributions provide a means of treating these morphological parameters as stochastic variables in an algorithm for production of neurons. Stochastically generated neurons shapes were used in a model of hippocampal dentate gyrus granule cells. A large part of the variation of whole neuron input resistance R(N) is due to variation in shape. Membrane resistivity Rm computed from R(N) varies accordingly. Statistics of responses to synaptic activation were computed for different dendritic shapes. Magnitude of response variation depended on synapse location, measurement site, and attribute of response.
Collapse
Affiliation(s)
- J L Winslow
- Physiology Department and Institute of Biomedical Engineering, University of Toronto, Ont.
| | | | | | | |
Collapse
|
37
|
McDowell TS, Pancrazio JJ, Barrett PQ, Lynch C. Volatile anesthetic sensitivity of T-type calcium currents in various cell types. Anesth Analg 1999; 88:168-73. [PMID: 9895087 DOI: 10.1097/00000539-199901000-00032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED We evaluated the effects of volatile anesthetics on T-type calcium current (ICa,T) present in four different cell types using the whole cell version of the patch clamp technique. In dorsal root ganglion neurons and in two neuroendocrine cells--adrenal glomerulosa cells (AG) and thyroid C-cells--ICa,T was reversibly decreased by volatile anesthetics at clinically relevant concentrations, with isoflurane and enflurane being more potent that halothane. In AG cells, the most sensitive cell type tested, ICa,T was reduced 47%+/-4% (n = 6) by isoflurane (0.7 mM) and 56%+/-2% (n = 5) by enflurane (1.2 mM), but by only 24%+/-1% (n = 5; P < 0.05) by halothane (0.7 mM). Isoflurane caused a significant increase in the rate of deactivation of ICa,T in AG cells. In ventricular myocytes, however, ICa,T was much less sensitive to both isoflurane and halothane. The differential sensitivity of ICa,T in various cell types to the anesthetics may reflect differences in the channels expressed in these tissues or differences in the cellular intermediates involved in anesthetic action. Depression of ICa,T in neuronal cells may contribute to anesthetic action through decreases in cellular excitability. IMPLICATIONS Using the patch clamp technique, we showed that T-type calcium channels, which promote cellular excitability, are inhibited by volatile anesthetics in neuronal and neuroendocrine cells, but not in ventricular myocytes. Inhibition of neuronal T-type channels may contribute to the mechanism of action of volatile anesthetics.
Collapse
Affiliation(s)
- T S McDowell
- Department of Anesthesiology, University of Virginia Health Sciences Center, Charlottesville, USA
| | | | | | | |
Collapse
|
38
|
Magistretti J, de Curtis M. Low-voltage activated T-type calcium currents are differently expressed in superficial and deep layers of guinea pig piriform cortex. J Neurophysiol 1998; 79:808-16. [PMID: 9463443 DOI: 10.1152/jn.1998.79.2.808] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A variety of voltage-dependent calcium conductances are known to control neuronal excitability by boosting peripheral synaptic potentials and by shaping neuronal firing patterns. The existence and functional significance of a differential expression of low- and high-voltage activated (LVA and HVA, respectively) calcium currents in subpopulations of neurons, acutely isolated from different layers of the guinea pig piriform cortex, were investigated with the whole cell variant of the patch-clamp technique. Calcium currents were recorded from pyramidal and multipolar neurons dissociated from layers II, III, and IV. Average membrane capacitance was larger in layer IV cells [13.1 +/- 6.2 (SD) pF] than in neurons from layers II and III (8.6 +/- 2.8 and 7.9 +/- 3.1 pF, respectively). Neurons from all layers showed HVA calcium currents with an activation voltage range positive to -40 mV. Neurons dissociated from layers III and IV showed an LVA calcium current with the biophysical properties of a T-type conductance. Such a current displayed the following characteristics: 1) showed maximal amplitude of 11-16 pA/pF at -30 mV, 2) inactivated rapidly with a time constant of approximately 22 ms at -30 mV, and 3) was completely steady-state inactivated at -60 mV. Only a subpopulation of layer II neurons (group 2 cells; circa 18%) displayed an LVA calcium current similar to that observed in deep layers. The general properties of layer II-group 2 cells were otherwise identical to those of group 1 neurons. The present study demonstrates that LVA calcium currents are differentially expressed in neurons acutely dissociated from distinct layers of the guinea pig piriform cortex.
Collapse
Affiliation(s)
- J Magistretti
- Department of Experimental Neurophysiology, Istituto Nazionale Neurologico Carlo Besta, 20133 Milano, Italy
| | | |
Collapse
|
39
|
Higashima M, Kinoshita H, Koshino Y. Contribution of T-type calcium channels to afterdischarge generation in rat hippocampal slices. Brain Res 1998; 781:129-36. [PMID: 9507088 DOI: 10.1016/s0006-8993(97)01222-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To clarify the possible involvement of Ca2+ channel subtypes in epileptogenesis, the CA1 region of rat hippocampal slices was examined for the pharmacological effects of Ca2+ channel blockers on ictal-like afterdischarges (ADs) observed following the repetition of high-frequency electrical stimulation, as well as on interictal-like bursts of population spikes following single stimuli in the presence of bicuculline. Ni2+ and amiloride, which predominantly block T-type Ca2+ channels, suppressed the number of spikes in ADs at concentrations of these two channel blockers sufficient to eliminate this type of Ca2+ channel in acutely dissociated and cultured hippocampal neurons. On the other hand, neither the L-type Ca2+ channel blocker nifedipine nor the N-type Ca2+ channel blocker City, omega-conotoxin GVIA had any effect on the generation of ADs. In addition, none of these T-, L- and N-type channel blockers had any effect on the bicuculline-induced, interictal-like epileptiform discharges. We therefore conclude that the activation of T-type Ca2+ channels, which is distinct from the mechanisms involved in interictal activity, may play a causative role in the generation of ictal-like ADs.
Collapse
Affiliation(s)
- M Higashima
- Department of Neuropsychiatry, School of Medicine, Kanazawa University, Kanazawa 920, Japan
| | | | | |
Collapse
|
40
|
Okuhara DY, Beck SG. Corticosteroids influence the action potential firing pattern of hippocampal subfield CA3 pyramidal cells. Neuroendocrinology 1998; 67:58-66. [PMID: 9485170 PMCID: PMC3118419 DOI: 10.1159/000054299] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Corticosteroids regulate gene expression through the activation of mineralocorticoid and glucocorticoid receptors. The hippocampus contains the highest density of mineralocorticoid and glucocorticoid receptors in the central nervous system. The modulation of neuron excitability by corticosteroids in hippocampal subfield CA1 is well documented. However, it is not known whether corticosteroids produce different effects across the various hippocampal subfields. Therefore, we used intracellular recording techniques to examine the actions of chronic corticosteroid treatment (2 weeks) on the electrophysiological properties of rat hippocampal subfield CA3 pyramidal cells. The treatment groups used in this investigation were: adrenalectomy (ADX), selective mineralocorticoid receptor activation with aldosterone (ALD), mineralocorticoid and glucocorticoid receptor activation with high levels of corticosterone (HCT), and SHAM. Corticosteroid treatment altered the percentage of nonburst and burst firing neurons. The percentages of nonbursting cells were 74 and 62% in tissue from ADX and HCT animals compared to 42 and 41% in ALD and SHAM animals, respectively. The corticosteroid-induced effect on the ratio of nonbursting to bursting cells does not appear to be secondary to changes in the cell's membrane input resistance, resting potential, time constant, action potential, slow-or fast-afterhyperpolarizing potential properties. Based on these results we conclude that corticosteroids are important for maintaining the ratio of nonburst and burst firing pyramidal neurons in subfield CA3. These novel results are distinct from those previously reported for subfield CA1, suggesting that corticosteroids have different effects across hippocampal subfields.
Collapse
Affiliation(s)
- D Y Okuhara
- Department of Pharmacology, Loyola University Chicago Stritch School of Medicine, Maywood, Ill 60153, USA
| | | |
Collapse
|
41
|
Li Z, Hatton GI. Reduced outward K+ conductances generate depolarizing after-potentials in rat supraoptic nucleus neurones. J Physiol 1997; 505 ( Pt 1):95-106. [PMID: 9409474 PMCID: PMC1160096 DOI: 10.1111/j.1469-7793.1997.095bc.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Whole-cell patch clamp recordings were obtained from sixty-five rat supraoptic nucleus (SON) neurones in brain slices to investigate ionic mechanisms underlying depolarizing after-potentials (DAPs). When cells were voltage clamped around -58 mV, slow inward currents mediating DAPs (IDAP), evoked by three brief depolarizing pulses, had a peak of 17 +/- 1 pA (mean +/- S.E.M.) and lasted for 2.8 +/- 0.1 s. 2. No significant differences in the amplitude and duration were observed when one to three preceding depolarizing pulses were applied, although there was a tendency for twin pulses to evoke larger IDAP than a single pulse. The IDAP was absent when membrane potentials were more negative than -70 mV. In the range -70 to -50 mV, IDAP amplitudes and durations increased as the membrane became more depolarized, with an activation threshold of -65.7 +/- 0.7 mV. 3. IDAP with normal amplitude and duration could be evoked during the decay of a preceding IDAP. As frequencies of depolarizing pulses rose from 2 to 20 Hz, the times to peak IDAP amplitude were reduced but the amplitudes and durations did not change. 4. A consistent reduction in membrane conductance during the IDAP was observed in all SON neurones tested, and averaged 34.6 +/- 3.3%. Small hyperpolarizing pulses used to measure membrane conductances appeared not to disturb major ionic mechanisms underlying IDAP, since the slope and duration of IDAP with and without test pulses were similar. 5. The IDAP had an averaged reversal potential of -87.4 +/- 1.6 mV, which was close to the K+ equilibrium potential. An elevation in [K+]o reduced or abolished the IDAP, and shifted its reversal potential toward more positive levels. Perifusion of slices with 7.5-10 mM TEA, a K+ channel blocker, reversibly suppressed the IDAP. 6. Both Na+ and Ca2+ currents failed to induce an IDAP-like current during perifusion of slices with media containing high [K+]o or TEA. However, the IDAP was abolished by replacing external Ca2+ with Co2+, or replacing 82% of external Na+ with choline or Li+. Perifusion of slices with media containing 1-2 microM TTX also reduced IDAP by 55.5 +/- 9.0%. 7. These results suggest that the generation of DAPs in SON neurones mainly involves a reduction in outward K+ current(s), which probably has little or no inactivation and can be inhibited by [Ca2+]i transients, due to Ca2+ influx during action potentials and Ca2+ release from internal stores. Na+ influx might provide a permissive influence for Ca(2+)-induced reduction of K+ conductances and/or help to raise [Ca2+]i via reverse-mode Ca(2+)-Na+ exchange. Other conductances, making minor contributions to the IDAP, may also be involved.
Collapse
Affiliation(s)
- Z Li
- Department of Neuroscience, University of California at Riverside 92521, USA
| | | |
Collapse
|
42
|
Serotonergic inhibition of the T-type and high voltage-activated Ca2+ currents in the primary sensory neurons of Xenopus larvae. J Neurosci 1997. [PMID: 9278519 DOI: 10.1523/jneurosci.17-18-06839.1997] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The primary sensory Rohon-Beard (R-B) neurons of Xenopus larvae are highly analogous to the C fibers of the mammalian pain pathway. We explored the actions of 5-HT by studying the modulation of Ca2+ currents. In approximately 80% of the acutely isolated R-B neurons, 5-HT inhibited the high voltage-activated (HVA) currents by 16% (n = 29) and the T-type currents by 24% (n = 41). The modulation of the T-type and the HVA currents was mimicked by selective 5-HT1A and 5-HT1D agonists: 8-OH-DPAT and L-694,247. The effects of the agonists were blocked by their respective 5-HT1A or 5-HT1D antagonists: p-MPPI and GR127935, suggesting that both 5-HT1A and 5-HT1D receptors were involved. Approximately 70% of the actions of 5-HT on HVA currents was occluded by omega-conotoxin-GVIA (N-type channel blocker), whereas the rest of the modulation ( approximately 30%) was occluded by <100 nM omega-agatoxin-TK (P/Q-type channel blocker). This suggests that 5-HT acts on N- and P/Q-type Ca2+ channels. Neither the modulation of the T-type nor that of the HVA currents was accompanied by changes in their voltage-dependent kinetics. Cell-attached patch-clamp recordings suggest that the modulation of the T-type channel occurs through a membrane-delimited second messenger. We have studied the functional consequences of the modulation of T-type Ca2+ channels and have found that these channels play a role in spike initiation in R-B neurons. Modulation of T-type channels by 5-HT therefore could modulate the sensitivity of this sensory pathway by increasing the thresholds of R-B neurons. This is a new and potentially important locus for modulation of sensory pathways in vertebrates.
Collapse
|
43
|
Li Z, Hatton GI. Ca2+ release from internal stores: role in generating depolarizing after-potentials in rat supraoptic neurones. J Physiol 1997; 498 ( Pt 2):339-50. [PMID: 9032683 PMCID: PMC1159205 DOI: 10.1113/jphysiol.1997.sp021862] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Influences of Ca2+ release from internal stores on the generation of depolarizing after-potentials (DAPs) were investigated in magnocellular neurones of rat supraoptic nucleus (SON) using whole-cell patch recording techniques in brain slices. 2. DAPs were recorded from more than half of the cells encountered, and following evoked single spikes had an amplitude of 3.00 +/- 0.19 mV (mean +/- S.E.M.) and lasted for 1.02 +/- 0.06 s. Their sizes usually increased with the number of preceding spikes, but could be reduced or eliminated when intervals between consecutive current pulses evoking tens of spikes were short. 3. DAPs were eliminated by removal of external Ca2+, and significantly reduced by bath application of nifedipine or omega-conotoxin. 4. Blockade of Ca2+ release from internal stores by perifusion with ryanodine or dantrolene, or direct diffusion of Ruthenium Red into cells suppressed DAP amplitudes by approximately 50% and shortened their durations. 5. Depletion of internal Ca2+ stores by perifusion with thapsigargin or cyclopiazonic acid also reduced DAP amplitudes by approximately 50% and eliminated phasic patterns of firing. 6. Caffeine, an agent known to enhance intracellular Ca2+ release, amplified DAPs and promoted phasic firing. 7. These results suggest that Ca2+ influx via high-voltage-activated Ca2+ channels in SON cells triggers ryanodine receptor-mediated Ca2+ release from internal stores. This process enhances DAPs and promotes phasic firing in SON cells, and would thus contribute to vasopressin release.
Collapse
Affiliation(s)
- Z Li
- Department of Neuroscience, University of California at Riverside 92521, USA
| | | |
Collapse
|
44
|
Zhang L, Han D, Carlen PL. Temporal specificity of muscarinic synaptic modulation of the Ca(2+)-dependent K+ current (ISAHP) in rat hippocampal neurones. J Physiol 1996; 496 ( Pt 2):395-405. [PMID: 8910224 PMCID: PMC1160885 DOI: 10.1113/jphysiol.1996.sp021693] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. We examined synaptic modulation of the Ca(2+)-dependent K+ current (ISAHP), which underlies the slow after-hyperpolarization (sAHP) in hippocampal CA1 neurones of rat brain slices. ISAHP was evoked in whole-cell voltage-clamp mode by depolarizing pulses, and synaptic afferents to CA1 neurones were stimulated electrically with a paired-pulse protocol. 2. Afferent stimulation delivered 200-1500 ms prior to be depolarizing pulse produced a profound reduction of ISAHP by 58%, but not other Ca(2+)-dependent outward currents that preceded ISAHP. Perfusion of slices with atropine significantly attenuated the synaptic reduction of ISAHP, indicating an event mediated largely by muscarinic receptor activation. When delivered < 400 ms after the depolarizing pulse, similar synaptic stimuli produced no substantial reduction in ISAHP, even in neurons where the duration of ISAHP was prolonged to 8-10 s either by lowering the recording temperature or by intracellular application of a calcium chelator. 3. To examine the effect of cholinergic stimulation of the depolarization-activated Ca2+ influx, high-threshold voltage-activated Ca2+ currents were recorded in the conventional or perforated whole-cell mode. Perfusion of slices with 5-10 microM carbachol for 5-10 min caused no substantial decrease in these Ca2+ currents, suggesting that the synaptic reduction of ISAHP is unlikely to be due to a blockade of depolarization-induced Ca2+ influx which triggers the generation of ISAHP. 4. The present data demonstrate that afferent stimulation reduces ISAHP only if it occurs prior to the depolarization-induced Ca2+ influx. We propose that modulation of inactive sAHP channels by muscarinic stimulation may decrease their sensitivity to the influx of Ca2+, whereas sAHP channels activated by Ca2+ may compete with the receptor-coupled modulation thus rendering the sAHP channels unresponsive to cholinergic afferent stimulation.
Collapse
Affiliation(s)
- L Zhang
- Toronto Hospital Research Institute, Department of Medicine (Neurology), University of Toronto, Canada.
| | | | | |
Collapse
|
45
|
Jensen MS, Azouz R, Yaari Y. Spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. J Physiol 1996; 492 ( Pt 1):199-210. [PMID: 8730595 PMCID: PMC1158873 DOI: 10.1113/jphysiol.1996.sp021301] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. Intracellular recordings in adult rat hippocampal slices were used to investigate the properties and origins of intrinsically generated bursts in the somata of CA1 pyramidal cells (PCs). The CA1 PCs were classified as either non-bursters or bursters according to the firing patterns evoked by intrasomatically applied long ( > or = 100 ms) depolarizing current pulses. Non-bursters generated stimulus-graded trains of independent action potentials, whereas bursters generated clusters of three or more closely spaced spikes riding on a distinct depolarizing envelope. 2. In all PCs fast spike repolarization was incomplete and ended at a potential approximately 10 mV more positive than resting potential. Solitary spikes were followed by a distinct after-depolarizing potential (ADP) lasting 20-40 ms. The ADP in most non-bursters declined monotonically to baseline ('passive' ADP), whereas in most bursters it remained steady or even re-depolarized before declining to baseline ('active' ADP). 3. Active, but not passive, ADPs were associated with an apparent increase in input conductance. They were maximal in amplitude when the spike was evoked from resting potential and were reduced by mild depolarization or hyperpolarization (+/- 2 mV). 4. Evoked and spontaneous burst firing was sensitive to small changes in membrane potential. In most cases maximal bursts were generated at resting potential and were curtailed by small depolarizations or hyperpolarizations (+/- 5 mV). 5. Bursts comprising clusters of spikelets ('d-spikes') were observed in 12% of the bursters. Some of the d-spikes attained threshold for triggering full somatic spikes. Gradually hyperpolarizing these neurones blocked somatic spikes before blocking d-spikes, suggesting that the latter are generated at more remote sites. 6. The data suggest that active ADPs and intrinsic bursts in the somata of adult CA1 PCs are generated by a slow, voltage-gated inward current. Bursts arise in neurones in which this current is sufficiently large to generate suprathreshold ADPs, and thereby initiate a regenerative process of spike recruitment and slow depolarization.
Collapse
Affiliation(s)
- M S Jensen
- PharmaBiotec, Institute of Physiology, Aarhus University, Denmark
| | | | | |
Collapse
|