1
|
Expression of a Form of Cerebellar Motor Memory Requires Learned Alterations to the Activity of Inhibitory Molecular Layer Interneurons. J Neurosci 2023; 43:601-612. [PMID: 36639897 PMCID: PMC9888511 DOI: 10.1523/jneurosci.0731-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Procedural memories formed in the cerebellum in response to motor errors depend on changes to Purkinje cell (PC) spiking patterns that correct movement when the erroneous context is repeated. Because molecular layer interneurons (MLIs) inhibit PCs, learning-induced changes to MLI output may participate in reshaping PC spiking patterns. However, it remains unclear whether error-driven learning alters MLI activity and whether such changes are necessary for the memory engram. We addressed this knowledge gap by measuring and manipulating MLI activity in the flocculus of both sexes of mice before and after vestibulo-ocular reflex (VOR) adaptation. We found that MLIs are activated during vestibular stimuli and that their population response exhibits a phase shift after the instantiation of gain-increase VOR adaptation, a type of error-driven learning thought to require climbing-fiber-mediated instructive signaling. Although acute optogenetic suppression of MLI activity did not affect baseline VOR performance, it negated the expression of gain-increase learning, demonstrating a specific role of MLI activity changes in motor memory expression. This effect was transitory; after a multiday consolidation period, the expression of VOR gain-increase learning was no longer sensitive to MLI activity suppression. Together, our results indicate that error-driven alteration of MLI activity is necessary for labile, climbing-fiber-induced motor memory expression.SIGNIFICANCE STATEMENT In the cerebellum, motor learning induces an associative memory of the sensorimotor context of an erroneous movement that, when recalled, results in a new pattern of output that improves subsequent trials of performance. Our study shows that error-driven motor learning induces changes to the activity pattern of cerebellar molecular layer interneurons (MLIs) and that this new pattern of activity is required to express the corrective motor memory.
Collapse
|
2
|
Maruta J. Lasting alteration of spatial orientation induced by passive motion in rabbits and its possible relevance to mal de débarquement syndrome. Front Neurol 2023; 14:1110298. [PMID: 36908625 PMCID: PMC9994528 DOI: 10.3389/fneur.2023.1110298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Background Mal de débarquement syndrome (MdDS) is a chronic disorder of spatial orientation with a persistent false sensation of self-motion, whose onset typically follows prolonged exposure to passive motion of a transport vehicle. Development of similar but transient after-sensations mimicking the exposed motion and associated postural instability, indicative of central vestibular adaptation, are common. The cause of MdDS is thought to be a subsequent failure to readapt to a stationary environment. However, vestibular plasticity pertinent to this illness has not been studied sufficiently. Because the rabbit's eye movement is sensitive to three-dimensional spatial orientation, characterizing maladaptation of the vestibulo-ocular reflex (VOR) induced in the animal may open an approach to understanding MdDS. Methods Three rabbits underwent a series of 2-h conditioning with an unnatural repetitive motion that involved a complex combination of roll, pitch, and yaw movements in a head-based reference frame, consisting of periodic rolling in darkness in a frame of reference that rotated about an earth-vertical axis. Eye movement in three dimensions was sampled during the conditioning stimulus as well as during test stimuli before and up to several days after conditioning. Results During roll-while-rotating conditioning, the roll component of the VOR was compensatory to the oscillation about the corresponding axis, but the pitch component was not, initially prominently phase-leading the head pitch motion but subsequently becoming patently phase-delayed. Unidirectional yaw nystagmus, weak but directionally compensatory to the earth-vertical axis rotation, was seen throughout the period of conditioning. After conditioning, simple side-to-side rolling induced an abnormal yaw ocular drift in the direction that opposed the nystagmus seen during conditioning, indicating a maladaptive change in spatial orientation. The impact of conditioning appeared to be partially retained even after 1 week and could be partially reversed or cumulated depending on the rotation direction in the subsequent conditioning. Conclusion The observed reversible long-term maladaptation of spatial orientation as well as the depth of knowledge available in relation to the vestibular cerebellar circuits in this species support the potential utility of a rabbit model in MdDS research.
Collapse
Affiliation(s)
- Jun Maruta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Gaede AH, Baliga VB, Smyth G, Gutiérrez-Ibáñez C, Altshuler DL, Wylie DR. Response properties of optic flow neurons in the accessory optic system of hummingbirds versus zebra finches and pigeons. J Neurophysiol 2022; 127:130-144. [PMID: 34851761 DOI: 10.1152/jn.00437.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Optokinetic responses function to maintain retinal image stabilization by minimizing optic flow that occurs during self-motion. The hovering ability of hummingbirds is an extreme example of this behavior. Optokinetic responses are mediated by direction-selective neurons with large receptive fields in the accessory optic system (AOS) and pretectum. Recent studies in hummingbirds showed that, compared with other bird species, 1) the pretectal nucleus lentiformis mesencephali (LM) is hypertrophied, 2) LM has a unique distribution of direction preferences, and 3) LM neurons are more tightly tuned to stimulus velocity. In this study, we sought to determine if there are concomitant changes in the nucleus of the basal optic root (nBOR) of the AOS. We recorded the visual response properties of nBOR neurons to large-field-drifting random dot patterns and sine-wave gratings in Anna's hummingbirds and zebra finches and compared these with archival data from pigeons. We found no differences with respect to the distribution of direction preferences: Neurons responsive to upward, downward, and nasal-to-temporal motion were equally represented in all three species, and neurons responsive to temporal-to-nasal motion were rare or absent (<5%). Compared with zebra finches and pigeons, however, hummingbird nBOR neurons were more tightly tuned to stimulus velocity of random dot stimuli. Moreover, in response to drifting gratings, hummingbird nBOR neurons are more tightly tuned in the spatiotemporal domain. These results, in combination with specialization in LM, support a hypothesis that hummingbirds have evolved to be "optic flow specialists" to cope with the optomotor demands of sustained hovering flight.NEW & NOTEWORTHY Hummingbirds have specialized response properties to optic flow in the pretectal nucleus lentiformis mesencephali (LM). The LM works with the nucleus of the basal optic root (nBOR) of the accessory optic system (AOS) to process global visual motion, but whether the neural response specializations observed in the LM extend to the nBOR is unknown. Hummingbird nBOR neurons are more tightly tuned to visual stimulus velocity, and in the spatiotemporal domain, compared with two nonhovering species.
Collapse
Affiliation(s)
- Andrea H Gaede
- Structure and Motion Laboratory, Royal Veterinary College, University of London, Hertfordshire, United Kingdom.,Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Vikram B Baliga
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Graham Smyth
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Douglas L Altshuler
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Barmack NH, Pettorossi VE. Adaptive Balance in Posterior Cerebellum. Front Neurol 2021; 12:635259. [PMID: 33767662 PMCID: PMC7985352 DOI: 10.3389/fneur.2021.635259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/16/2021] [Indexed: 11/26/2022] Open
Abstract
Vestibular and optokinetic space is represented in three-dimensions in vermal lobules IX-X (uvula, nodulus) and hemisphere lobule X (flocculus) of the cerebellum. Vermal lobules IX-X encodes gravity and head movement using the utricular otolith and the two vertical semicircular canals. Hemispheric lobule X encodes self-motion using optokinetic feedback about the three axes of the semicircular canals. Vestibular and visual adaptation of this circuitry is needed to maintain balance during perturbations of self-induced motion. Vestibular and optokinetic (self-motion detection) stimulation is encoded by cerebellar climbing and mossy fibers. These two afferent pathways excite the discharge of Purkinje cells directly. Climbing fibers preferentially decrease the discharge of Purkinje cells by exciting stellate cell inhibitory interneurons. We describe instances adaptive balance at a behavioral level in which prolonged vestibular or optokinetic stimulation evokes reflexive eye movements that persist when the stimulation that initially evoked them stops. Adaptation to prolonged optokinetic stimulation also can be detected at cellular and subcellular levels. The transcription and expression of a neuropeptide, corticotropin releasing factor (CRF), is influenced by optokinetically-evoked olivary discharge and may contribute to optokinetic adaptation. The transcription and expression of microRNAs in floccular Purkinje cells evoked by long-term optokinetic stimulation may provide one of the subcellular mechanisms by which the membrane insertion of the GABAA receptors is regulated. The neurosteroids, estradiol (E2) and dihydrotestosterone (DHT), influence adaptation of vestibular nuclear neurons to electrically-induced potentiation and depression. In each section of this review, we discuss how adaptive changes in the vestibular and optokinetic subsystems of lobule X, inferior olivary nuclei and vestibular nuclei may contribute to the control of balance.
Collapse
Affiliation(s)
- Neal H. Barmack
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Vito Enrico Pettorossi
- Section of Human Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
de Zeeuw CI, Hensbroek RA, Maruta J, Voogd J. In memory of Jerry Simpson 1939–2020. CEREBELLUM & ATAXIAS 2020. [PMCID: PMC7199335 DOI: 10.1186/s40673-020-00113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, Ebner TJ, Isope P, Jörntell H, Lackey EP, Lawrenson C, Lumb B, Schonewille M, Sillitoe RV, Spaeth L, Sugihara I, Valera A, Voogd J, Wylie DR, Ruigrok TJH. Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper [corrected]. CEREBELLUM (LONDON, ENGLAND) 2018; 17:654-682. [PMID: 29876802 PMCID: PMC6132822 DOI: 10.1007/s12311-018-0952-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.
Collapse
Affiliation(s)
- Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard Hawkes
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sho Aoki
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Onna, Japan
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Fredrik Bengtsson
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Amanda M. Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Henrik Jörntell
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elizabeth P. Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Charlotte Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Bridget Lumb
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX USA
| | - Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Antoine Valera
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jan Voogd
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Douglas R. Wylie
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB Canada
| | - Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Adaptive Acceleration of Visually Evoked Smooth Eye Movements in Mice. J Neurosci 2017; 36:6836-49. [PMID: 27335412 DOI: 10.1523/jneurosci.0067-16.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/17/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The optokinetic response (OKR) consists of smooth eye movements following global motion of the visual surround, which suppress image slip on the retina for visual acuity. The effective performance of the OKR is limited to rather slow and low-frequency visual stimuli, although it can be adaptably improved by cerebellum-dependent mechanisms. To better understand circuit mechanisms constraining OKR performance, we monitored how distinct kinematic features of the OKR change over the course of OKR adaptation, and found that eye acceleration at stimulus onset primarily limited OKR performance but could be dramatically potentiated by visual experience. Eye acceleration in the temporal-to-nasal direction depended more on the ipsilateral floccular complex of the cerebellum than did that in the nasal-to-temporal direction. Gaze-holding following the OKR was also modified in parallel with eye-acceleration potentiation. Optogenetic manipulation revealed that synchronous excitation and inhibition of floccular complex Purkinje cells could effectively accelerate eye movements in the nasotemporal and temporonasal directions, respectively. These results collectively delineate multiple motor pathways subserving distinct aspects of the OKR in mice and constrain hypotheses regarding cellular mechanisms of the cerebellum-dependent tuning of movement acceleration. SIGNIFICANCE STATEMENT Although visually evoked smooth eye movements, known as the optokinetic response (OKR), have been studied in various species for decades, circuit mechanisms of oculomotor control and adaptation remain elusive. In the present study, we assessed kinematics of the mouse OKR through the course of adaptation training. Our analyses revealed that eye acceleration at visual-stimulus onset primarily limited working velocity and frequency range of the OKR, yet could be dramatically potentiated during OKR adaptation. Potentiation of eye acceleration exhibited different properties between the nasotemporal and temporonasal OKRs, indicating distinct visuomotor circuits underlying the two. Lesions and optogenetic manipulation of the cerebellum provide constraints on neural circuits mediating visually driven eye acceleration and its adaptation.
Collapse
|
8
|
Voogd J. What we do not know about cerebellar systems neuroscience. Front Syst Neurosci 2014; 8:227. [PMID: 25565986 PMCID: PMC4270173 DOI: 10.3389/fnsys.2014.00227] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/12/2014] [Indexed: 01/14/2023] Open
Abstract
Our knowledge of the modular organization of the cerebellum and the sphere of influence of these modules still presents large gaps. Here I will review these gaps against our present anatomical and physiological knowledge of these systems.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus Medical Center Rotterdam Rotterdam, Netherlands
| |
Collapse
|
9
|
Abstract
In addition to the well-known signals of retinal image slip, floccular complex spikes (CSs) also convey nonvisual signals. We recorded eye movement and CS activity from Purkinje cells in awake rabbits sinusoidally oscillated in the dark on a vestibular turntable. The stimulus frequency ranged from 0.2 to 1.2 Hz, and the velocity amplitude ranged from 6.3 to 50°/s. The average CS modulation was evaluated at each combination of stimulus frequency and amplitude. More than 75% of the Purkinje cells carried nonvisual CS signals. The amplitude of this modulation remained relatively constant over the entire stimulus range. The phase response of the CS modulation in the dark was opposite to that during the vestibulo-ocular reflex (VOR) in the light. With increased frequency, the phase response systematically shifted from being aligned with contraversive head velocity toward peak contralateral head position. At fixed frequency, the phase response was dependent on peak head velocity, indicating a system nonlinearity. The nonvisual CS modulation apparently reflects a competition between eye movement and vestibular signals, resulting in an eye movement error signal inferred from nonvisual sources. The combination of this error signal with the retinal slip signal in the inferior olive results in a net error signal reporting the discrepancy between the actual visually measured eye movement error and the inferred eye movement error derived from measures of the internal state. The presence of two error signals requires that the role of CSs in models of the floccular control of VOR adaption be expanded beyond retinal slip.
Collapse
|
10
|
Ruigrok TJH, Teune TM. Collateralization of cerebellar output to functionally distinct brainstem areas. A retrograde, non-fluorescent tracing study in the rat. Front Syst Neurosci 2014; 8:23. [PMID: 24600356 PMCID: PMC3930852 DOI: 10.3389/fnsys.2014.00023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/01/2014] [Indexed: 11/21/2022] Open
Abstract
The organization of the cerebellum is characterized by a number of longitudinally organized connection patterns that consist of matching olivo-cortico-nuclear zones. These entities, referred to as modules, have been suggested to act as functional units. The various parts of the cerebellar nuclei (CN) constitute the output of these modules. We have studied to what extent divergent and convergent patterns in the output of the modules to four, functionally distinct brain areas can be recognized. Two retrograde tracers were injected in various combinations of the following nuclei: the red nucleus (RN), as a main premotor nucleus; the prerubral area, as a main supplier of afferents to the inferior olive (IO); the nucleus reticularis tegmenti pontis (NRTP), as a main source of cerebellar mossy fibers; and the IO, as the source of climbing fibers. For all six potential combinations three cases were examined. All nine cases with combinations that involved the IO did not, or hardly, resulted in double labeled neurons. In contrast, all other combinations resulted in at least 10% and up to 67% of double labeled neurons in cerebellar nuclear areas where both tracers were found. These results show that the cerebellar nuclear neurons that terminate within the studied areas represent basically two intermingled populations of projection cells. One population corresponds to the small nucleo-olivary neurons whereas the other consists of medium- to large-sized neurons which are likely to distribute their axons to several other areas. Despite some consistent differences between the output patterns of individual modules we propose that modular cerebellar output to premotor areas such as the RN provides simultaneous feedback to both the mossy fiber and the climbing fiber system and acts in concert with a designated GABAergic nucleo-olivary circuit. These features seem to form a basic characteristic of cerebellar operation.
Collapse
Affiliation(s)
- Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC RotterdamRotterdam, Netherlands
| | | |
Collapse
|
11
|
4-aminopyridine does not enhance flocculus function in tottering, a mouse model of vestibulocerebellar dysfunction and ataxia. PLoS One 2013; 8:e57895. [PMID: 23451282 PMCID: PMC3581497 DOI: 10.1371/journal.pone.0057895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/27/2013] [Indexed: 01/06/2023] Open
Abstract
The potassium channel antagonist 4-aminopyridine (4-AP) improves a variety of motor abnormalities associated with disorders of the cerebellum. The most rigorous quantitative data relate to 4-AP's ability to improve eye movement deficits in humans referable to dysfunction of the cerebellar flocculus. Largely based on work in the ataxic mouse mutant tottering (which carries a mutation of the Cacna1a gene of the P/Q voltage-activated calcium channel), 4-AP is hypothesized to function by enhancing excitability or rhythmicity of floccular Purkinje cells. We tested this hypothesis by determining whether systemic or intrafloccular administration of 4-AP would ameliorate the eye movement deficits in tottering that are attributable to flocculus dysfunction, including the reductions in amplitude of the yaw-axis vestibulo-ocular reflex (VOR) and vision-enhanced vestibulo-ocular reflex (VVOR), and the optokinetic reflex (OKR) about yaw and roll axes. Because tottering's deficits increase with age, both young and elderly mutants were tested to detect any age-dependent 4-AP effects. 4-AP failed to improve VOR, VVOR, and OKR gains during sinusoidal stimuli, although it may have reduced the tendency of the mutants' responses to VOR and VVOR to decline over the course of a one-hour recording session. For constant-velocity optokinetic stimuli, 4-AP generated some enhancement of yaw OKR and upward-directed roll OKR, but the effects were also seen in normal C57BL/6 controls, and thus do not represent a specific reversal of the electrophysiological consequences of the tottering mutation. Data support a possible extra-floccular locus for the effects of 4-AP on habituation and roll OKR. Unilateral intrafloccular 4-AP injections did not affect ocular motility, except to generate mild eye elevations, consistent with reduced floccular output. Because 4-AP did not produce the effects expected if it normalized outputs of floccular Purkinje cells, there is a need for further studies to elucidate the drug's mechanism of action on cerebellar motor dysfunction.
Collapse
|
12
|
Wylie DR. Processing of visual signals related to self-motion in the cerebellum of pigeons. Front Behav Neurosci 2013; 7:4. [PMID: 23408161 PMCID: PMC3569843 DOI: 10.3389/fnbeh.2013.00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/18/2013] [Indexed: 01/07/2023] Open
Abstract
In this paper I describe the key features of optic flow processing in pigeons. Optic flow is the visual motion that occurs across the entire retina as a result of self-motion and is processed by subcortical visual pathways that project to the cerebellum. These pathways originate in two retinal-recipient nuclei, the nucleus of the basal optic root (nBOR) and the nucleus lentiformis mesencephali, which project to the vestibulocerebellum (VbC) (folia IXcd and X), directly as mossy fibers, and indirectly as climbing fibers from the inferior olive. Optic flow information is integrated with vestibular input in the VbC. There is a clear separation of function in the VbC: Purkinje cells in the flocculus process optic flow resulting from self-rotation, whereas Purkinje cells in the uvula/nodulus process optic flow resulting from self-translation. Furthermore, Purkinje cells with particular optic flow preferences are organized topographically into parasagittal "zones." These zones are correlated with expression of the isoenzyme aldolase C, also known as zebrin II (ZII). ZII expression is heterogeneous such that there are parasagittal stripes of Purkinje cells that have high expression (ZII+) alternating with stripes of Purkinje cells with low expression (ZII-). A functional zone spans a ZII± stripe pair. That is, each zone that contains Purkinje cells responsive to a particular pattern of optic flow is subdivided into a strip containing ZII+ Purkinje cells and a strip containing ZII- Purkinje cells. Additionally, there is optic flow input to folia VI-VIII of the cerebellum from lentiformis mesencephali. These folia also receive visual input from the tectofugal system via pontine nuclei. As the tectofugal system is involved in the analysis of local motion, there is integration of optic flow and local motion information in VI-VIII. This part of the cerebellum may be important for moving through a cluttered environment.
Collapse
Affiliation(s)
- Douglas R. Wylie
- Centre for Neuroscience and Department of Psychology, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
13
|
Stahl JS, Thumser ZC, Oommen BS. The ataxic mouse as a model for studying downbeat nystagmus. J Vestib Res 2013; 22:221-41. [PMID: 23302704 DOI: 10.3233/ves-120463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Downbeat nystagmus (DBN) is a common eye movement complication of cerebellar disease. Use of mice to study pathophysiology of vestibulocerebellar disease is increasing, but it is unclear if mice can be used to study DBN; it has not been reported in this species. We determined whether DBN occurs in the ataxic mutant tottering, which carries a mutation in the Cacna1a gene for P/Q calcium channels. Spontaneous DBN occurred only rarely, and its magnitude did not exhibit the relationship to head tilt seen in human patients. DBN during yaw rotation was more common and shares some properties with the tilt-independent, gaze-independent component of human DBN, but differs in its dependence on vision. Hyperactivity of otolith circuits responding to pitch tilts is hypothesized to contribute to the gaze-independent component of human DBN. Mutants exhibited hyperactivity of the tilt maculo-ocular reflex (tiltMOR) in pitch. The hyperactivity may serve as a surrogate for DBN in mouse studies. TiltMOR hyperactivity correlates with hyperdeviation of the eyes and upward deviation of the head during ambulation; these may be alternative surrogates. Muscimol inactivation of the cerebellar flocculus suggests a floccular role in the tiltMOR hyperactivity and provides insight into the rarity of frank DBN in ataxic mice.
Collapse
Affiliation(s)
- John S Stahl
- Neurology Division, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.
| | | | | |
Collapse
|
14
|
Voogd J, Schraa-Tam CKL, van der Geest JN, De Zeeuw CI. Visuomotor cerebellum in human and nonhuman primates. CEREBELLUM (LONDON, ENGLAND) 2012; 11:392-410. [PMID: 20809106 PMCID: PMC3359447 DOI: 10.1007/s12311-010-0204-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula-nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| | | | | | | |
Collapse
|
15
|
Oberdick J, Sillitoe RV. Cerebellar zones: history, development, and function. THE CEREBELLUM 2012; 10:301-6. [PMID: 21822545 DOI: 10.1007/s12311-011-0306-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The longitudinal and transverse zonal arrangement of axonal projections to and from the cerebellum, even more than the well-known laminar cytoarchitecture, is the hallmark of cerebellar anatomy. No model of cerebellar function, whether in motor control, cognition, or emotion, will be complete without understanding the development and function of zones. To this end, a special issue of this journal is dedicated to zones, and the purpose of this article is to summarize the research and review articles that are contained within. The special issue begins by considering some of the very first studies in the 1960s and 1970s that led to our modern understanding of this unique and defining anatomical substructure. Then, it considers the molecular analogs of longitudinal zones in the form of stripes in the cerebellar cortex and related sub-areas in the deep cerebellar nuclei, and it includes studies on the genetic underpinnings of stripes and zones. Several articles address the evolution of both embryonic clusters and adult zones across vertebrate species, and others discuss the functional and clinical relevance of zones. While we do not yet fully understand the role of zones with respect to motor behavior in all of its complexities, cerebellar function is clearly modular, and combinatorial models of complex motor movements based on multi-purpose modules are beginning to emerge. This special issue, by refocusing attention on this fundamental organization of the cerebellum, sets the stage for future studies that will more fully reveal the cellular, developmental, behavioral, and clinical relevance of zones.
Collapse
Affiliation(s)
- John Oberdick
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
16
|
Abstract
The contention of this commentary, focused on the vestibulocerebellum (particularly the flocculus), is that the great importance for our understanding of cerebellar organization in terms of climbing fiber zones, begun years ago by Voogd [1969, 2011] and Oscarsson [1969], needs to be matched by coming more to grips with the other fundamental geometrical organization of the cerebellum, the parallel fibers. The central issue is the selection of those parallel fiber signals to be transformed into Purkinje cell activity in the different zones. At present, in comparison to our knowledge of vestibulocerebellar climbing fiber inputs, the deficiencies in our knowledge of the zonal anatomy and physiology of vestibulocerebellar mossy fibers and granule cells are glaring. The recent emphasis on molecularly oriented investigations points to the need to reinvigorate pursuit of unanswered questions about cerebellar anatomy, the handmaiden of physiology.
Collapse
|
17
|
Abstract
Cerebellar zones were there, of course, before anyone noticed them. Their history is that of young people, unhindered by preconceived ideas, who followed up their observations with available or new techniques. In the 1960s of the last century, the circumstances were fortunate because three groups, in Leiden, Lund, and Bristol, using different approaches, stumbled on the same zonal pattern in the cerebellum of the cat. In Leiden, the Häggqvist myelin stain divulged the compartments in the cerebellar white matter that channel the afferent and efferent connections of the zones. In Lund, the spino-olivocerebellar pathways activated from individual spinal funiculi revealed the zonal pattern. In Bristol, charting the axon reflex of olivocerebellar climbing fibers on the surface of the cerebellum resulted in a very similar zonal map. The history of the zones is one of accidents and purposeful pursuit. The technicians, librarians, animal caretakers, students, secretaries, and medical illustrators who made it possible remain unnamed, but their contributions certainly should be acknowledged.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus Medical Center Rotterdam, Box 2040, 3000CA, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Limitations of PET and lesion studies in defining the role of the human cerebellum in motor learning. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
|
20
|
|
21
|
Eyeblink conditioning, motor control, and the analysis of limbic-cerebellar interactions. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081929] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
|
23
|
Grasping cerebellar function depends on our understanding the principles of sensorimotor integration: The frame of reference hypothesis. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Dysmetria of thought: Correlations and conundrums in the relationship between the cerebellum, learning, and cognitive processing. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081851] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
|
26
|
|
27
|
Q: Is the cerebellum an adaptive combiner of motor and mental/motor activities? A: Yes, maybe, certainly not, who can say? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00082017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
|
29
|
What behavioral benefit does stiffness control have? An elaboration of Smith's proposal. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
|
31
|
Goumans J, Houben MMJ, Dits J, van der Steen J. Peaks and troughs of three-dimensional vestibulo-ocular reflex in humans. J Assoc Res Otolaryngol 2010; 11:383-93. [PMID: 20177730 PMCID: PMC2914236 DOI: 10.1007/s10162-010-0210-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 01/25/2010] [Indexed: 11/29/2022] Open
Abstract
The three-dimensional vestibulo-ocular reflex (3D VOR) ideally generates compensatory ocular rotations not only with a magnitude equal and opposite to the head rotation but also about an axis that is collinear with the head rotation axis. Vestibulo-ocular responses only partially fulfill this ideal behavior. Because animal studies have shown that vestibular stimulation about particular axes may lead to suboptimal compensatory responses, we investigated in healthy subjects the peaks and troughs in 3D VOR stabilization in terms of gain and alignment of the 3D vestibulo-ocular response. Six healthy upright sitting subjects underwent whole body small amplitude sinusoidal and constant acceleration transients delivered by a six-degree-of-freedom motion platform. Subjects were oscillated about the vertical axis and about axes in the horizontal plane varying between roll and pitch at increments of 22.5° in azimuth. Transients were delivered in yaw, roll, and pitch and in the vertical canal planes. Eye movements were recorded in with 3D search coils. Eye coil signals were converted to rotation vectors, from which we calculated gain and misalignment. During horizontal axis stimulation, systematic deviations were found. In the light, misalignment of the 3D VOR had a maximum misalignment at about 45°. These deviations in misalignment can be explained by vector summation of the eye rotation components with a low gain for torsion and high gain for vertical. In the dark and in response to transients, gain of all components had lower values. Misalignment in darkness and for transients had different peaks and troughs than in the light: its minimum was during pitch axis stimulation and its maximum during roll axis stimulation. We show that the relatively large misalignment for roll in darkness is due to a horizontal eye movement component that is only present in darkness. In combination with the relatively low torsion gain, this horizontal component has a relative large effect on the alignment of the eye rotation axis with respect to the head rotation axis.
Collapse
Affiliation(s)
- Janine Goumans
- Department of Neuroscience, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
32
|
Expression of calcium-binding proteins in pathways from the nucleus of the basal optic root to the cerebellum in pigeons. Vis Neurosci 2008; 25:701-7. [PMID: 19112657 DOI: 10.1017/s0952523808080772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Calcium-binding protein expression has proven useful in delineating neural pathways. For example, in birds, calbindin is strongly expressed in the tectofugal pathway, whereas parvalbumin (PV) is strongly expressed in the thalamofugal pathway. Whether neurons within other visual regions also differentially express calcium-binding proteins, however, has not been extensively studied. The nucleus of the basal optic root (nBOR) is a retinal-recipient nucleus that is critical for the generation of the optokinetic response. The nBOR projects to the cerebellum both directly and indirectly via the inferior olive (IO). The cerebellar and IO projections originate from different neurons within the nBOR, but whether they can also be differentiated based on calcium-binding protein expression is unknown. In this study, we combined retrograde neuronal tracing from the cerebellum and IO with fluorescent immunohistochemistry for PV and calretinin (CR) in the nBOR of pigeons. We found that about half (52.3%) of the cerebellar-projecting neurons were CR+ve, and about one-third (33.6%) were PV+ve. Most (90%) of these PV+ve cells were also labeled for CR. In contrast, very few of the IO-projecting neurons expressed CR or PV (<or=2%). Thus, the direct nBOR-cerebellar and indirect nBOR-olivocerebellar pathways to the cerebellum can be distinguished based on the differential expression of CR and PV.
Collapse
|
33
|
Manzoni D. The cerebellum and sensorimotor coupling: Looking at the problem from the perspective of vestibular reflexes. THE CEREBELLUM 2007; 6:24-37. [PMID: 17366264 DOI: 10.1080/14734220601132135] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cerebellar modules process afferent information and deliver outputs relevant for both reflex and voluntary movements. The response of cerebellar modules to a given input depends on the whole array of signals impinging on them. Studies on vestibular reflexes indicate that the response of the cerebellar circuits to the vestibular input is modified by the integration of multiple visual, vestibular and somatosensory afferent signals. In this way the cerebellum slowly adapts these reflexes when they are not adequate to the behavioural condition and allows their fast modifications when the relative position of the body segments and that of the body in space are changed. Studies on voluntary movements indicate that the cerebellum is responsible for motor learning that consists of the development of new input-output associations. Several theoretical, anatomical and clinical studies are consistent with the hypothesis that the cerebellum allows the delivery of motor commands which vary according to the condition of the motor apparatus. Finally, the cerebellum could change the relation between visual information and aimed reaching movements according to the position of the eyes in the orbit and of the neck over the body. We propose that, due to the large expansion of its cortex, an important function of the cerebellum could be that of expanding the range of sensorimotor associations according to all the factors characterizing the behavioural condition. Indeed, following cerebellar lesion, learning is often lost, the movement results impaired and requires an increased attention. In the light of the recently discovered connections of the cerebellum with the rostral regions of the frontal lobe, it can be suggested that the ability of cerebellar circuits to modify the rules of input-output coupling according to a general context is a fundamental property allowing the cerebellum to control not only motor but also cognitive functions.
Collapse
Affiliation(s)
- D Manzoni
- Dipartimento di Fisiologia Umana, Università di Pisa, Via S. Zeno 31, 56127 Pisa, Italy.
| |
Collapse
|
34
|
Urbano FJ, Simpson JI, Llinás RR. Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes. Proc Natl Acad Sci U S A 2006; 103:16550-5. [PMID: 17050678 PMCID: PMC1616941 DOI: 10.1073/pnas.0607888103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The electrophysiological properties of rat inferior olive (IO) neurons in the dorsal cap of Kooy (DCK) and the adjacent ventrolateral outgrowth (VLO) were compared with those of IO neurons in the principal olive (PO). Whereas DCK/VLO neurons are involved in eye movement control via their climbing fiber projection to the cerebellar flocculus, PO neurons control limb and digit movements via their climbing fiber projection to the lateral cerebellar hemisphere. In vitro patch recordings from DCK/VLO neurons revealed that low threshold calcium currents, Ih currents, and subthreshold oscillations are lacking in this subset of IO neurons. The recordings of activity in DCK neurons obtained by using voltage-sensitive dye imaging showed that activity is not limited to a single neuron, but rather that clusters of DCK neurons can be active in unison. These electrophysiological results show that the DCK/VLO neurons have unique properties that set them apart from the neurons in the PO nucleus. This finding indicates that motor control, from the perspective of the olivocerebellar system, is fundamentally different for the oculomotor and the somatomotor systems.
Collapse
Affiliation(s)
- Francisco J. Urbano
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - John I. Simpson
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Rodolfo R. Llinás
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| |
Collapse
|
35
|
Schonewille M, Luo C, Ruigrok TJH, Voogd J, Schmolesky MT, Rutteman M, Hoebeek FE, De Jeu MTG, De Zeeuw CI. Zonal organization of the mouse flocculus: physiology, input, and output. J Comp Neurol 2006; 497:670-82. [PMID: 16739198 DOI: 10.1002/cne.21036] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The zones of the flocculus have been mapped in many species with a noticeable exception, the mouse. Here, the functional map of the mouse was constructed via extracellular recordings followed by tracer injections of biotinylated-dextran-amine and immunohistochemistry for heat-shock protein-25. Zones were identified based on the Purkinje cell complex spike modulation occurring in response to optokinetic stimulation. In zones 1 and 3 Purkinje cells responded best to rotation about a horizontal axis oriented at 135 degrees ipsilateral azimuth, whereas in zones 2 and 4 they responded best to rotation about the vertical axis. The tracing experiments showed that Purkinje cells of zone 1 projected to the parvicellular part of lateral cerebellar nucleus and superior vestibular nucleus, while Purkinje cells of zone 3 projected to group Y and the superior vestibular nucleus. Purkinje cells of zones 2 and 4 projected to the magnocellular and parvicellular parts of the medial vestibular nucleus, while some also innervated the lateral vestibular nucleus or nucleus prepositus hypoglossi. The climbing fiber inputs to Purkinje cells in zones 1 and 3 were derived from neurons in the ventrolateral outgrowth of the contralateral inferior olive, whereas those in zones 2 and 4 were derived from the contralateral caudal dorsal cap. Purkinje cells in zones 1 and 2, but not in zones 3 and 4, were positively labeled for heat-shock protein-25. The present study illustrates that Purkinje cells in the murine flocculus are organized in discrete zones with specific functions, specific input - output relations, and a specific histochemical signature.
Collapse
|
36
|
Pakan JMP, Krueger K, Kelcher E, Cooper S, Todd KG, Wylie DRW. Projections of the nucleus lentiformis mesencephali in pigeons (Columba livia): A comparison of the morphology and distribution of neurons with different efferent projections. J Comp Neurol 2006; 495:84-99. [PMID: 16432900 DOI: 10.1002/cne.20855] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The avian nucleus lentiformis mesencephali (LM) is a visual structure involved in the optokinetic response. The LM consists of several morphologically distinct cell types. In the present study we sought to determine if different cell types had differential projections. Using retrograde tracers, we examined the morphology and distribution of LM neurons projecting to the vestibulocerebellum (VbC), inferior olive (IO), dorsal thalamus, nucleus of the basal optic root (nBOR), and midline mesencephalon. From injections into the latter two structures, small LM cells were labeled. More were localized to the lateral LM as opposed to medial LM. From injections into the dorsal thalamus, small neurons were found throughout LM. From injections into the VbC, large multipolar cells were found throughout LM. From injections into IO, a strip of medium-sized fusiform neurons along the border of the medial and lateral subnuclei was labeled. To investigate if neurons project to multiple targets we used fluorescent retrograde tracers. After injections into IO and VbC, double-labeled neurons were not observed in LM. Likewise, after injections into nBOR and IO, double-labeled neurons were not observed. Finally, we processed sections through LM for glutamic acid decarboxylase (GAD). Small neurons, mostly in the lateral LM, were labeled, suggesting that projections from LM to nBOR and midline mesencephalon are GABAergic. We conclude that two efferents of LM, VbC and IO, receive input from morphologically distinct neurons: large multipolar and medium-sized fusiform neurons, respectively. The dorsal thalamus, nBOR, and midline mesencephalon receive input from small neurons, some of which are likely GABAergic.
Collapse
Affiliation(s)
- Janelle M P Pakan
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
The anatomical, physiological, and behavioral evidence for the involvement of three regions of the cerebellum in oculomotor behavior is reviewed here: (1) the oculomotor vermis and paravermis of lobules V, IV, and VII; (2) the uvula and nodulus; (3) flocculus and ventral paraflocculus. No region of the cerebellum controls eye movements exclusively, but each receives sensory information relevant for the control of multiple systems. An analysis of the microcircuitry suggests how sagittal climbing fiber zones bring visual information to the oculomotor vermis; convey vestibular information to the uvula and nodulus, while optokinetic space is represented in the flocculus. The mossy fiber projections are more heterogeneous. The importance of the inferior olive in modulating Purkinje cell responses is discussed.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus Medical Center Rotterdam, Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | |
Collapse
|
38
|
Stahl JS, James RA, Oommen BS, Hoebeek FE, De Zeeuw CI. Eye movements of the murine P/Q calcium channel mutant tottering, and the impact of aging. J Neurophysiol 2005; 95:1588-607. [PMID: 16339008 DOI: 10.1152/jn.00318.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mice carrying mutations of the gene encoding the ion pore of the P/Q calcium channel (Cacna1a) are an instance in which cerebellar dysfunction may be attributable to altered electrophysiology and thus provide an opportunity to study how neuronal intrinsic properties dictate signal processing in the ocular motor system. P/Q channel mutations can engender multiple effects at the single neuron, circuit, and behavioral levels; correlating physiological and behavioral abnormalities in multiple allelic strains will ultimately facilitate determining which alterations of physiology are responsible for specific behavioral aberrations. We used videooculography to quantify ocular motor behavior in tottering mutants aged 3 mo to 2 yr and compared their performance to data previously obtained in the allelic mutant rocker and C57BL/6 controls. Tottering mutants shared numerous abnormalities with rocker, including upward deviation of the eyes at rest, increased vestibuloocular reflex (VOR) phase lead at low stimulus frequencies, reduced VOR gain at high stimulus frequencies, reduced gain of the horizontal and vertical optokinetic reflex, reduced time constants of the neural integrator, and reduced plasticity of the VOR as assessed in a cross-axis training paradigm. Unlike rocker, young tottering mutants exhibited normal peak velocities of nystagmus fast phases, arguing against a role for neuromuscular transmission defects in the attenuation of compensatory eye movements. Tottering also differed by exhibiting directional asymmetries of the gains of optokinetic reflexes. The data suggest at least four pathophysiological mechanisms (two congenital and two acquired) are required to explain the ocular motor deficits in the two Cacna1a mutant strains.
Collapse
Affiliation(s)
- John S Stahl
- Dept. of Neurology, University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, OH 44106-5040, USA.
| | | | | | | | | |
Collapse
|
39
|
Hoebeek FE, Stahl JS, van Alphen AM, Schonewille M, Luo C, Rutteman M, van den Maagdenberg AMJM, Molenaar PC, Goossens HHLM, Frens MA, De Zeeuw CI. Increased noise level of purkinje cell activities minimizes impact of their modulation during sensorimotor control. Neuron 2005; 45:953-65. [PMID: 15797555 DOI: 10.1016/j.neuron.2005.02.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 09/27/2004] [Accepted: 02/02/2005] [Indexed: 11/24/2022]
Abstract
While firing rate is well established as a relevant parameter for encoding information exchanged between neurons, the significance of other parameters is more conjectural. Here, we show that regularity of neuronal spike activities affects sensorimotor processing in tottering mutants, which suffer from a mutation in P/Q-type voltage-gated calcium channels. While the modulation amplitude of the simple spike firing rate of their floccular Purkinje cells during optokinetic stimulation is indistinguishable from that of wild-types, the regularity of their firing is markedly disrupted. The gain and phase values of tottering's compensatory eye movements are indistinguishable from those of flocculectomized wild-types or from totterings with the flocculus treated with P/Q-type calcium channel blockers. Moreover, normal eye movements can be evoked in tottering when the flocculus is electrically stimulated with regular spike trains mimicking the firing pattern of normal simple spikes. This study demonstrates the importance of regularity of firing in Purkinje cells for neuronal information processing.
Collapse
Affiliation(s)
- F E Hoebeek
- Department of Neuroscience, Erasmus MC, Dr. Molenwaterplein 50, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pakan JMP, Todd KG, Nguyen AP, Winship IR, Hurd PL, Jantzie LL, Wylie DRW. Inferior olivary neurons innervate multiple zones of the flocculus in pigeons (Columba livia). J Comp Neurol 2005; 486:159-68. [PMID: 15844212 DOI: 10.1002/cne.20523] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Complex spike activity of floccular Purkinje cells responds to patterns of rotational optic flow about the vertical axis (rVA neurons) or a horizontal axis 45 degrees to the midline (rH45 neurons). The pigeon flocculus is organized into four parasagittal zones: two rVA zones (zones 0 and 2) interdigitated with two rH45 zones (zones 1 and 3). Climbing fiber input to the rVA and rH45 zones arises in the caudal and rostral regions of the medial column of the inferior olive (mcIO), respectively. To determine whether the two rVA zones and the two rH45 zones receive input from different areas of the caudal and rostral mcIO and whether individual neurons project to both zones of the same rotational preference, different colors of fluorescent retrograde tracer were injected into the two rVA or two rH45 zones. For the rVA injections, retrogradely labeled cells from the two zones were intermingled in the caudal mcIO, but the distribution of cells labeled from zone 0 was slightly caudal to that from zone 2. On average, 18% of neurons were double labeled. For the rH45 injections, cells retrogradely labeled from the two zones were intermingled in the rostral mcIO, but the distribution of cells labeled from zone 1 was slightly rostral to that from zone 3. On average, 22% of neurons were double labeled. In sum, each of the two rVA zones and the two rH45 zones receives input from slightly different regions of the mcIO, and about 20% of the neurons project to both zones.
Collapse
Affiliation(s)
- Janelle M P Pakan
- Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Billig I, Balaban CD. Zonal organization of the vestibulo-cerebellar pathways controlling the horizontal eye muscles using two recombinant strains of pseudorabies virus. Neuroscience 2005; 133:1047-59. [PMID: 15923089 DOI: 10.1016/j.neuroscience.2005.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 03/22/2005] [Accepted: 04/01/2005] [Indexed: 11/29/2022]
Abstract
Many studies have documented the influence of the flocculus upon vestibulo-ocular reflex eye movements. Electrical stimulation of Purkinje cells in a central longitudinal zone evoked slow ipsilateral eye movements in the horizontal plane. Recently, the organization of neurons in the vestibulo-cerebellar pathways controlling single lateral rectus and medial rectus muscles was identified in rats using the transynaptic transport of pseudorabies virus. Overlapping distributions of neurons innervating single muscles were located predominantly in a central longitudinal zone of ventral paraflocculi/dorsal flocculi, and the rostral half of ventral flocculi. This study used two isogenic pseudorabies virus recombinants to determine whether individual cells in those brain regions have collateralized projections to motoneuron pools innervating the right lateral rectus and the left medial rectus muscles using different survival times and dual injection paradigms. The infected neurons were detected using dual-labeling immunofluorescence. Three populations of labeled neurons were observed: two populations replicated only one reporter while a third contained both viruses (i.e. dual-labeled). Most dual-labeled cells were located in a central longitudinal zone of the ventral paraflocculus, ipsilateral to the injection into the medial rectus, whereas very few were in the flocculus. This finding suggests that the flocculus and ventral paraflocculus may exert influence upon distinct vestibulo-cerebellar pathways. Most Purkinje cells in the ventral paraflocculus may influence the vestibulo-ocular reflex pathways through collateralization, whereas those in the flocculus may instead provide a monocular control of eye movements.
Collapse
Affiliation(s)
- I Billig
- Department of Otolaryngology, Eye and Ear Institute, Room 106A, 203 Lothrop Street, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
42
|
Billig I, Balaban CD. Zonal organization of the vestibulo-cerebellum in the control of horizontal extraocular muscles using pseudorabies virus: I. Flocculus/ventral paraflocculus. Neuroscience 2004; 125:507-20. [PMID: 15062992 DOI: 10.1016/j.neuroscience.2004.01.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2004] [Indexed: 11/16/2022]
Abstract
Much literature has studied the relationship between the organization of neurons in the flocculus/ventral paraflocculus and vestibulo-ocular reflex pathways. Although activation of a flocculus central zone produces ipsilateral horizontal eye movement, anatomical tracing evidence in rats suggests that there may not be a simple one-to-one correspondence between flocculus/ventral paraflocculus zones and control of single extraocular muscles or coplanar pairs of antagonistic extraocular muscles. This study used the retrograde transynaptic transport of pseudorabies virus to identify the topographical organization of Purkinje cells in the flocculus/ventral paraflocculus that control the lateral rectus (LR) and medial rectus (MR) muscles in rats. A survival time of 80 h and 84 h was necessary to observe consistent transynaptically labeled cells in the flocculus/ventral paraflocculus following injections of pseudorabies virus into the MR and LR, respectively. The organization of Purkinje cells in the dorsal flocculus and ventral paraflocculus abided by the traditional boundaries, whereas the labeling pattern in the ventral flocculus showed a more complex, interdigitated arrangement. In agreement with prior studies, transynaptically labeled neurons were also observed in specific vestibular nuclear regions within the medial and superior vestibular nuclei and dorsal Y group. The distribution of labeled neurons in ipsilateral and contralateral vestibular nuclei was associated with features of ipsilateral and contralateral retrograde labeling of Purkinje cells in flocculus/ventral paraflocculus. Importantly, this study provides the first evidence of vestibulo-cerebellar zones controlling individual extraocular muscles and also overlapping distribution of neurons in flocculo-vestibular zones that influence the LR and MR motoneuron pools. This suggests that some of these neurons may be responsible for controlling both muscles.
Collapse
Affiliation(s)
- I Billig
- Department of Otolaryngology, Eye and Ear Institute, Room 106A, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
43
|
Abstract
Our understanding of how the brain controls eye movements has benefited enormously from the comparison of neuronal activity with eye movements and the quantification of these relationships with mathematical models. Although these early studies focused on horizontal and vertical eye movements, recent behavioural and modelling studies have illustrated the importance, but also the complexity, of extending previous conclusions to the problems of controlling eye and head orientation in three dimensions (3-D). An important facet in understanding 3-D eye orientation and movement has been the discovery of mobile, soft-tissue sheaths or 'pulleys' in the orbit which might influence the pulling direction of extraocular muscles. Appropriately placed pulleys could generate the eye-position-dependent tilt of the ocular rotation axes which are characteristic for eye movements which follow Listing's law. Based on such pulley models of the oculomotor plant it has recently been proposed that a simple two-dimensional (2-D) neural controller would be sufficient to generate correct 3-D eye orientation and movement. In contrast to this apparent simplification in oculomotor control, multiple behavioural observations suggest that the visuo-motor transformations, as well as the premotor circuitry for saccades, pursuit eye movements and the vestibulo-ocular reflexes, must include a neural controller which operates in 3-D, even when considering an eye plant with pulleys. This review summarizes the most recent work and ideas on this controversy. In addition, by proposing directly testable hypotheses, we point out that, in analogy to the previously successful steps towards elucidating the neural control of horizontal eye movements, we need a quantitative characterization first of motoneuron and next of premotor neuron properties in 3-D before we can succeed in gaining further insight into the neural control of 3-D motor behaviours.
Collapse
Affiliation(s)
- Dora E Angelaki
- Department of Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| | | |
Collapse
|
44
|
De Zeeuw CI, Koekkoek SKE, van Alphen AM, Luo C, Hoebeek F, van der Steen J, Frens MA, Sun J, Goossens HHLM, Jaarsma D, Coesmans MPH, Schmolesky MT, De Jeu MTG, Galjart N. Gain and Phase Control of Compensatory Eye Movements by the Flocculus of the Vestibulocerebellum. THE VESTIBULAR SYSTEM 2004. [DOI: 10.1007/0-387-21567-0_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
45
|
Voogd J, Wylie DRW. Functional and anatomical organization of floccular zones: A preserved feature in vertebrates. J Comp Neurol 2004; 470:107-12. [PMID: 14750155 DOI: 10.1002/cne.11022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus MC, 3000MR Rotterdam, The Netherlands.
| | | |
Collapse
|
46
|
Ruigrok TJH. Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum. J Comp Neurol 2003; 466:278-98. [PMID: 14528453 DOI: 10.1002/cne.10889] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Collateralization of mossy and climbing fibers was investigated using cortical injections of cholera toxin b-subunit in the rat vestibulocerebellum. Injections were characterized by their retrograde labeling within the inferior olive. Collateral labeling was plotted using color-coded density profiles of the whole cerebellar cortex. Injections in the medial part of the nodulus resulted in olivary labeling that was restricted to the rostral part of the dorsal cap. Climbing fiber collaterals were found in medial and lateral nodular zones as well as in the ventral paraflocculus and adjacent flocculus. Injections in the intermediate part of the nodulus resulted in olivary labeling of the beta-subnucleus but could also involve the ventrolateral outgrowth. In the latter case, climbing fiber collaterals were found in the two floccular zones and in a small region in the lateral-most part of crus I. All nodular injections showed a bilaterally symmetric distribution of collateral mossy fiber rosettes that was mostly confined to the vestibulocerebellum and originated predominantly from the vestibular nuclei. Injections in the flocculus labeled the caudal part of the dorsal cap and/or the ventrolateral outgrowth. Mossy fiber rosettes were observed throughout the vestibulocerebellum but also included other regions of the cerebellar cortex in a bilaterally symmetric pattern corresponding with a more widespread precerebellar origin. Climbing fibers originating in the rostral dorsal cap, labeled from an injection in the ventral paraflocculus, collateralize to a medial and lateral zone in the nodulus. Climbing fiber collaterals were usually accompanied by subjacent labeling of mossy fiber rosettes. These results demonstrate that some nodular and floccular zones are related and, at least partially, share a common input.
Collapse
Affiliation(s)
- Tom J H Ruigrok
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands.
| |
Collapse
|
47
|
Wylie DRW, Brown MR, Winship IR, Crowder NA, Todd KG. Zonal organization of the vestibulocerebellum in pigeons (Columba livia): III. Projections of the translation zones of the ventral uvula and nodulus. J Comp Neurol 2003; 465:179-94. [PMID: 12949780 DOI: 10.1002/cne.10857] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous electrophysiological studies in pigeons have shown that the complex spike activity of Purkinje cells in the medial vestibulocerebellum (nodulus and ventral uvula) is modulated by patterns of optic flow that result from self-translation along a particular axis in three-dimensional space. There are four response types based on the axis of preferred translational optic flow. By using a three axis system, where +X, +Y, and +Z represent rightward, upward, and forward self-motion, respectively, the four cell types are t(+Y), t(-Y), t(-X-Z), and t(-X+Z), with the assumption of recording from the left side of the head. These response types are organized into parasagittal zones. In this study, we injected the anterograde tracer biotinylated dextran amine into physiologically identified zones. The t(-X-Z) zone projected dorsally within the vestibulocerebellar process (pcv) on the border with the medial cerebellar nucleus (CbM), and labeling was found in the CbM itself. The t(-X+Z) zone also projected to the pcv and CbM, but to areas ventral to the projection sites of the t(-X-Z) zone. The t(-Y) zone also projected to the pcv, but more ventrally on the border with the superior vestibular nucleus (VeS). Some labeling was also found in the dorsal VeS and the dorsolateral margin of the caudal descending vestibular nucleus, and a small amount of labeling was found laterally in the caudal margin of the medial vestibular nucleus. The data set was insufficient to draw conclusions about the projection of the t(+Y) zone. These results are contrasted with the projections of the flocculus, compared with the primary vestibular projection, and implications for collimotor function are discussed.
Collapse
Affiliation(s)
- Douglas R W Wylie
- Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.
Collapse
|
49
|
Coesmans M, Smitt PAS, Linden DJ, Shigemoto R, Hirano T, Yamakawa Y, van Alphen AM, Luo C, van der Geest JN, Kros JM, Gaillard CA, Frens MA, de Zeeuw CI. Mechanisms underlying cerebellar motor deficits due to mGluR1-autoantibodies. Ann Neurol 2003; 53:325-36. [PMID: 12601700 DOI: 10.1002/ana.10451] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Patients with Hodgkin's disease can develop paraneoplastic cerebellar ataxia because of the generation of autoantibodies against mGluR1 (mGluR1-Abs). Yet, the pathophysiological mechanisms underlying their motor coordination deficits remain to be elucidated. Here, we show that application of IgG purified from the patients' serum to cerebellar slices of mice acutely reduces the basal activity of Purkinje cells, whereas application to the flocculus of mice in vivo evokes acute disturbances in the performance of their compensatory eye movements. In addition, the mGluR1-Abs block induction of long-term depression in cultured mouse Purkinje cells, whereas the cerebellar motor learning behavior of the patients is affected in that they show impaired adaptation of their saccadic eye movements. Finally, postmortem analysis of the cerebellum of a paraneoplastic cerebellar ataxia patient showed that the number of Purkinje cells was significantly reduced by approximately two thirds compared with three controls. We conclude that autoantibodies against mGluR1 can cause cerebellar motor coordination deficits caused by a combination of rapid effects on both acute and plastic responses of Purkinje cells and chronic degenerative effects.
Collapse
Affiliation(s)
- Michiel Coesmans
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Winship IR, Wylie DRW. Zonal organization of the vestibulocerebellum in pigeons (Columba livia): I. Climbing fiber input to the flocculus. J Comp Neurol 2003; 456:127-39. [PMID: 12509870 DOI: 10.1002/cne.10507] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous studies in pigeons have shown that the neurons in the medial column of the inferior olive respond best to patterns of optic flow resulting from self-rotation. With respect to the axis of rotation, there are two functional groups: rVA neurons prefer rotation about the vertical axis, whereas rH45 neurons respond best to rotation about an horizontal axis oriented at 45 degrees ipsilateral azimuth. The rVA and rH45 neurons are located in the caudal and rostral margins of the medial column, respectively. These olivary neurons project as climbing fibers to the contralateral flocculus. In this study, injections of anterograde tracers into the medial column were used to investigate the zonal organization of the climbing fiber input to the flocculus of pigeons. Iontophoretic injections of either cholera toxin subunit-B or biotinylated dextrin amine were made into the medial column of the inferior olive at locations responsive to rVA or rH45 rotational optic flow. Anterogradely labeled climbing fibers in the flocculus showed a clear zonal organization. There were four parasagittal bands spanning both folia IXcd and X consisting of two rVA zones interdigitated with two rH45 zones. These findings are compared with the zonal organization of the flocculus in mammalian species.
Collapse
Affiliation(s)
- Ian R Winship
- Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | |
Collapse
|