1
|
Van Malderen S, Hehl M, Verstraelen S, Swinnen SP, Cuypers K. Dual-site TMS as a tool to probe effective interactions within the motor network: a review. Rev Neurosci 2023; 34:129-221. [PMID: 36065080 DOI: 10.1515/revneuro-2022-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Dual-site transcranial magnetic stimulation (ds-TMS) is well suited to investigate the causal effect of distant brain regions on the primary motor cortex, both at rest and during motor performance and learning. However, given the broad set of stimulation parameters, clarity about which parameters are most effective for identifying particular interactions is lacking. Here, evidence describing inter- and intra-hemispheric interactions during rest and in the context of motor tasks is reviewed. Our aims are threefold: (1) provide a detailed overview of ds-TMS literature regarding inter- and intra-hemispheric connectivity; (2) describe the applicability and contributions of these interactions to motor control, and; (3) discuss the practical implications and future directions. Of the 3659 studies screened, 109 were included and discussed. Overall, there is remarkable variability in the experimental context for assessing ds-TMS interactions, as well as in the use and reporting of stimulation parameters, hindering a quantitative comparison of results across studies. Further studies examining ds-TMS interactions in a systematic manner, and in which all critical parameters are carefully reported, are needed.
Collapse
Affiliation(s)
- Shanti Van Malderen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Melina Hehl
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| |
Collapse
|
2
|
Homologous organization of cerebellar pathways to sensory, motor, and associative forebrain. Cell Rep 2021; 36:109721. [PMID: 34551311 PMCID: PMC8506234 DOI: 10.1016/j.celrep.2021.109721] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/06/2021] [Accepted: 08/25/2021] [Indexed: 12/31/2022] Open
Abstract
Cerebellar outputs take polysynaptic routes to reach the rest of the brain, impeding conventional tracing. Here, we quantify pathways between the cerebellum and forebrain by using transsynaptic tracing viruses and a whole-brain analysis pipeline. With retrograde tracing, we find that most descending paths originate from the somatomotor cortex. Anterograde tracing of ascending paths encompasses most thalamic nuclei, especially ventral posteromedial, lateral posterior, mediodorsal, and reticular nuclei. In the neocortex, sensorimotor regions contain the most labeled neurons, but we find higher densities in associative areas, including orbital, anterior cingulate, prelimbic, and infralimbic cortex. Patterns of ascending expression correlate with c-Fos expression after optogenetic inhibition of Purkinje cells. Our results reveal homologous networks linking single areas of the cerebellar cortex to diverse forebrain targets. We conclude that shared areas of the cerebellum are positioned to provide sensory-motor information to regions implicated in both movement and nonmotor function. Pisano et al. use transsynaptic tracing and whole-brain light-sheet microscopy to quantitatively map cerebellar paths to and from the forebrain, including relatively dense projections to the prefrontal neocortex. Divergence of paths from single injection sites suggests that a single cerebellar region can influence multiple thalamic and neocortical targets at once.
Collapse
|
3
|
Pauly MG, Steinmeier A, Bolte C, Hamami F, Tzvi E, Münchau A, Bäumer T, Weissbach A. Cerebellar rTMS and PAS effectively induce cerebellar plasticity. Sci Rep 2021; 11:3070. [PMID: 33542291 PMCID: PMC7862239 DOI: 10.1038/s41598-021-82496-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
Non-invasive brain stimulation techniques including repetitive transcranial magnetic stimulation (rTMS), continuous theta-burst stimulation (cTBS), paired associative stimulation (PAS), and transcranial direct current stimulation (tDCS) have been applied over the cerebellum to induce plasticity and gain insights into the interaction of the cerebellum with neo-cortical structures including the motor cortex. We compared the effects of 1 Hz rTMS, cTBS, PAS and tDCS given over the cerebellum on motor cortical excitability and interactions between the cerebellum and dorsal premotor cortex / primary motor cortex in two within subject designs in healthy controls. In experiment 1, rTMS, cTBS, PAS, and tDCS were applied over the cerebellum in 20 healthy subjects. In experiment 2, rTMS and PAS were compared to sham conditions in another group of 20 healthy subjects. In experiment 1, PAS reduced cortical excitability determined by motor evoked potentials (MEP) amplitudes, whereas rTMS increased motor thresholds and facilitated dorsal premotor-motor and cerebellum-motor cortex interactions. TDCS and cTBS had no significant effects. In experiment 2, MEP amplitudes increased after rTMS and motor thresholds following PAS. Analysis of all participants who received rTMS and PAS showed that MEP amplitudes were reduced after PAS and increased following rTMS. rTMS also caused facilitation of dorsal premotor-motor cortex and cerebellum-motor cortex interactions. In summary, cerebellar 1 Hz rTMS and PAS can effectively induce plasticity in cerebello-(premotor)-motor pathways provided larger samples are studied.
Collapse
Affiliation(s)
- Martje G Pauly
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Annika Steinmeier
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Christina Bolte
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Feline Hamami
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Elinor Tzvi
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany. .,Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
4
|
Cerebral Cortical Activity Following Non-invasive Cerebellar Stimulation-a Systematic Review of Combined TMS and EEG Studies. THE CEREBELLUM 2020; 19:309-335. [PMID: 31907864 DOI: 10.1007/s12311-019-01093-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cerebellum sends dense projections to both motor and non-motor regions of the cerebral cortex via the cerebellarthalamocortical tract. The integrity of this tract is crucial for healthy motor and cognitive function. This systematic review examines research using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to the cerebellum with combined cortical electroencephalography (EEG) to explore the temporal features of cerebellar-cortical connectivity. A detailed discussion of the outcomes and limitations of the studies meeting review criteria is presented. Databases were searched between 1 December 2017 and 6 December 2017, with Scopus alerts current as of 23 July 2019. Of the 407 studies initially identified, 10 met review criteria. Findings suggested that cerebellar-cortical assessment is suited to combined TMS and EEG, although work is required to ensure experimental procedures are optimal for eliciting a reliable cerebellar response from stimulation. A distinct variation in methodologies and outcome measures employed across studies, and small sample sizes limited the conclusions that could be drawn regarding the electrophysiological signatures of cerebellar-cortical communication. This review highlights the need for stringent protocols and methodologies for cerebellar-cortical assessments via combined TMS and EEG. With these in place, combined TMS and EEG will provide a valuable means for exploring cerebellar connectivity with a wide range of cortical sites. Assessments have the potential to aid in the understanding of motor and cognitive function in both healthy and clinical groups, and provide insights into long-range neural communication generally.
Collapse
|
5
|
Cerebellar-Motor Cortex Connectivity: One or Two Different Networks? J Neurosci 2020; 40:4230-4239. [PMID: 32312885 DOI: 10.1523/jneurosci.2397-19.2020] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 11/21/2022] Open
Abstract
Anterior-posterior (AP) and posterior-anterior (PA) pulses of transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) appear to activate distinct interneuron networks that contribute differently to two varieties of physiological plasticity and motor behaviors (Hamada et al., 2014). The AP network is thought to be more sensitive to online manipulation of cerebellar (CB) activity using transcranial direct current stimulation. Here we probed CB-M1 interactions using cerebellar brain inhibition (CBI) in young healthy female and male individuals. TMS over the cerebellum produced maximal CBI of PA-evoked EMG responses at an interstimulus interval of 5 ms (PA-CBI), whereas the maximum effect on AP responses was at 7 ms (AP-CBI), suggesting that CB-M1 pathways with different conduction times interact with AP and PA networks. In addition, paired associative stimulation using ulnar nerve stimulation and PA TMS pulses over M1, a protocol used in human studies to induce cortical plasticity, reduced PA-CBI but not AP-CBI, indicating that cortical networks process cerebellar inputs in distinct ways. Finally, PA-CBI and AP-CBI were differentially modulated after performing two different types of motor learning tasks that are known to process cerebellar input in different ways. The data presented here are compatible with the idea that applying different TMS currents to the cerebral cortex may reveal cerebellar inputs to both the premotor cortex and M1. Overall, these results suggest that there are two independent CB-M1 networks that contribute uniquely to different motor behaviors.SIGNIFICANCE STATEMENT Connections between the cerebellum and primary motor cortex (M1) are essential for performing daily life activities, as damage to these pathways can result in faulty movements. Therefore, developing and understanding novel approaches to probe this pathway are critical to advancing our understanding of the pathophysiology of diseases involving the cerebellum. Here, we show evidence for two distinct cerebellar-cerebral interactions using cerebellar stimulation in combination with directional transcranial magnetic stimulation (TMS) over M1. These distinct cerebellar-cerebral interactions respond differently to physiological plasticity and to distinct motor learning tasks, which suggests they represent separate cerebellar inputs to the premotor cortex and M1. Overall, we show that directional TMS can probe two distinct cerebellar-cerebral pathways that likely contribute to independent processes of learning.
Collapse
|
6
|
Swan BD, Brocker DT, Gross RE, Turner DA, Grill WM. Effects of ramped-frequency thalamic deep brain stimulation on tremor and activity of modeled neurons. Clin Neurophysiol 2019; 131:625-634. [PMID: 31978847 DOI: 10.1016/j.clinph.2019.11.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We conducted intraoperative measurements of tremor to quantify the effects of temporally patterned ramped-frequency DBS trains on tremor. METHODS Seven patterns of stimulation were tested in nine subjects with thalamic DBS for essential tremor: stimulation 'off', three ramped-frequency stimulation (RFS) trains from 130 → 50 Hz, 130 → 60 Hz, and 235 → 90 Hz, and three constant frequency stimulation (CFS) trains at 72, 82, and 130 Hz. The same patterns were applied to a computational model of the thalamic neural network. RESULTS Temporally patterned 130 → 60 Hz ramped-frequency trains suppressed tremor relative to stimulation 'off,' but 130 → 50 Hz, 130 → 60 Hz, and 235 → 90 Hz ramped-frequency trains were no more effective than constant frequency stimulation with the same mean interpulse interval (IPI). Computational modeling revealed that rhythmic burst-driver inputs to thalamus were masked during DBS, but long IPIs, concurrent with pauses in afferent cerebellar and cortical firing, allowed propagation of bursting activity. The mean firing rate of bursting-type model neurons as well as the firing pattern entropy of model neurons were both strongly correlated with tremor power across stimulation conditions. CONCLUSION Frequency-ramped DBS produced equivalent tremor suppression as constant frequency thalamic DBS. Tremor-related thalamic burst activity may result from burst-driver input, rather than by an intrinsic rebound mechanism. SIGNIFICANCE Ramping stimulation frequency may exacerbate thalamic burst firing by introducing consecutive pauses of increasing duration to the stimulation pattern.
Collapse
Affiliation(s)
- Brandon D Swan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - David T Brocker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University Hospital, Atlanta, GA, USA
| | - Dennis A Turner
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Abstract
The thalamus is a neural processor and integrator for the activities of the forebrain. Surprisingly, little is known about the roles of the "cerebellar" thalamus despite the anatomical observation that all the cortico-cerebello-cortical loops make relay in the main subnuclei of the thalamus. The thalamus displays a broad range of electrophysiological responses, such as neuronal spiking, bursting, or oscillatory rhythms, which contribute to precisely shape and to synchronize activities of cortical areas. We emphasize that the cerebellar thalamus deserves a renewal of interest to better understand its specific contributions to the cerebellar motor and associative functions, especially at a time where the anatomy between cerebellum and basal ganglia is being rewritten.
Collapse
|
8
|
Kariminezhad S, Karhu J, Säisänen L, Könönen M, Julkunen P. Interaction between repetition suppression in motor activation and long-interval intracortical inhibition. Sci Rep 2019; 9:11543. [PMID: 31395949 PMCID: PMC6687749 DOI: 10.1038/s41598-019-47932-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 07/15/2019] [Indexed: 11/25/2022] Open
Abstract
Repetition suppression (RS) is the adaptation of the neural activity in response to a repeated external stimulus. It has been proposed that RS occurs at the thalamo-cortical level, hence activating a feedback loop to the cortex in order to counteract with the repeated motor cortical activation. In this study, to elucidate the common modulators between the RS and the inhibitory/facilitatory cortical networks, two TMS paradigms were applied, i.e. the characteristic long-interval intracortical inhibition (LICI) and the I1-wave timed short-interval intracortical facilitation (SICF). Since LICI is a local intracortical inhibitory phenomenon affecting cortical excitation over a long interval like the RS, the interaction between RS and LICI was tested. As the I1-wave timed SICF is likely not affected by inhibitory modulation, the appearance of the RS with respect to SICF was investigated. Non-linear interaction between LICI and RS was observed, while I1-wave timed SICF facilitated all MEP responses of RS by a common offset still preserving the RS. These findings implicate that the underlying mechanism for the observed interaction is likely contributed to the activation of the negative thalamo-cortical feedback loop represented by the RS, most likely at the cortical level.
Collapse
Affiliation(s)
- Shohreh Kariminezhad
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland. .,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland.
| | | | - Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland.,Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Petro Julkunen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
9
|
Deep brain stimulation induces sparse distributions of locally modulated neuronal activity. Sci Rep 2018; 8:2062. [PMID: 29391468 PMCID: PMC5794783 DOI: 10.1038/s41598-018-20428-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022] Open
Abstract
Deep brain stimulation (DBS) therapy is a potent tool for treating a range of brain disorders. High frequency stimulation (HFS) patterns used in DBS therapy are known to modulate neuronal spike rates and patterns in the stimulated nucleus; however, the spatial distribution of these modulated responses are not well understood. Computational models suggest that HFS modulates a volume of tissue spatially concentrated around the active electrode. Here, we tested this theory by investigating modulation of spike rates and patterns in non-human primate motor thalamus while stimulating the cerebellar-receiving area of motor thalamus, the primary DBS target for treating Essential Tremor. HFS inhibited spike activity in the majority of recorded cells, but increasing stimulation amplitude also shifted the response to a greater degree of spike pattern modulation. Modulated responses in both categories exhibited a sparse and long-range spatial distribution within motor thalamus, suggesting that stimulation preferentially affects afferent and efferent axonal processes traversing near the active electrode and that the resulting modulated volume strongly depends on the local connectome of these axonal processes. Such findings have important implications for current clinical efforts building predictive computational models of DBS therapy, developing directional DBS lead technology, and formulating closed-loop DBS strategies.
Collapse
|
10
|
Hashimoto T, Muralidharan A, Yoshida K, Goto T, Yako T, Baker KB, Vitek JL. Neuronal activity and outcomes from thalamic surgery for spinocerebellar ataxia. Ann Clin Transl Neurol 2018; 5:52-63. [PMID: 29376092 PMCID: PMC5771317 DOI: 10.1002/acn3.508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 11/11/2022] Open
Abstract
Objectives We investigated the effects of deep brain stimulation (DBS) or lesions of the ventral intermediate nucleus (Vim) of the thalamus for spinocerebellar ataxia (SCA) and examined the pathophysiological role of neuronal activity of the Vim underlying ataxia. Methods Five patients with SCA with cortical atrophy (ages 60-69 years; 2 sporadic and three familial SCA) and five patients with essential tremor (ET) (ages 57-71 years) were treated with Vim surgery. Intraoperatively, we recorded neuronal activity from single neurons in the Vim thalamus while patients were at rest and compared the physiological properties of those neurons between patients with SCA and those with ET. Results Postsurgery mean scores for the Fahn-Tolosa-Marin Tremor Scale were improved from 78 to 44 in SCA patients and from 54 to 21 in ET patients. Stronger stimulation was necessary to optimize outcomes in SCA as compared to ET patients. We analyzed 68 Vim neurons in SCA and 60 Vim neurons in ET. Mean discharge rates, burst characteristics, and oscillatory activity were similar for both patient groups, however, we observed that the ratio of cells responding to passive manipulation was significantly smaller (P = 0.0001) in SCA (22%) than in ET (71%). Interpretation Thalamic surgery led to a significant improvement in tremor in SCA patients. One potential mechanism underlying ataxia in SCA may be disruption of cerebellar sensory feedback, which modulates motor commands in the cerebello-thalamo-cortical network.
Collapse
Affiliation(s)
| | - Abirami Muralidharan
- Neuromodulation Research CenterDepartment of NeurologyUniversity of MinnesotaMinneapolisMinnesota
| | - Kunihiro Yoshida
- Department of Brain Disease ResearchShinshu University School of MedicineMatsumotoJapan
| | - Tetsuya Goto
- Department of NeurosurgeryShinshu University School of MedicineMatsumotoJapan
| | - Takehiro Yako
- Department of NeurosurgeryAizawa HospitalMatsumotoJapan
| | | | - Jerrold L. Vitek
- Neuromodulation Research CenterDepartment of NeurologyUniversity of MinnesotaMinneapolisMinnesota
| |
Collapse
|
11
|
What Do We Know About the Influence of the Cerebellum on Walking Ability? Promising Findings from Transcranial Alternating Current Stimulation. THE CEREBELLUM 2017; 16:859-867. [DOI: 10.1007/s12311-017-0859-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Tazoe T, Perez MA. Cortical and reticular contributions to human precision and power grip. J Physiol 2017; 595:2715-2730. [PMID: 27891607 DOI: 10.1113/jp273679] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/14/2016] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS The corticospinal tract contributes to the control of finger muscles during precision and power grip. We explored the neural mechanisms contributing to changes in corticospinal excitability during these gripping configurations. Motor evoked potentials (MEPs) elicited by cortical, but not by subcortical, stimulation were more suppressed during power grip compared with precision grip and index finger abduction. Intracortical inhibition was more reduced during power grip compared with the other tasks. An acoustic startle cue, a stimulus that engages the reticular system, suppressed MEP size during power grip to a lesser extent than during the other tasks at a cortical level and this positively correlated with changes in intracortical inhibition. Our findings suggest that changes in corticospinal excitability during gross more than fine finger manipulations are largely cortical in origin and that the reticular system contributed, at least in part, to these effects. ABSTRACT It is well accepted that the corticospinal tract contributes to the control of finger muscles during precision and power grip in humans but the neural mechanisms involved remain poorly understood. Here, we examined motor evoked potentials elicited by cortical and subcortical stimulation of corticospinal axons (MEPs and CMEPs, respectively) and the activity in intracortical circuits (suppression of voluntary electromyography) and spinal motoneurons (F-waves) in an intrinsic hand muscle during index finger abduction, precision grip and power grip. We found that the size of MEPs, but not CMEPs, was more suppressed during power grip compared with precision grip and index finger abduction, suggesting a cortical origin for these effects. Notably, intracortical inhibition was more reduced during power grip compared with the other tasks. To further examine the origin of changes in intracortical inhibition we assessed the contribution of the reticular system, which projects to cortical neurons, and projects to spinal motoneurons controlling hand muscles. An acoustic startle cue, which engages the reticular system, suppressed MEP size during power grip to a lesser extent than during the other tasks and this positively correlated with changes in intracortical inhibition. A startle cue decreased intracortical inhibition, but not CMEPs, during power grip. F-waves remained unchanged across conditions. Our novel findings show that changes in corticospinal excitability present during power grip compared with fine finger manipulations are largely cortical in origin and suggest that the reticular system contributed, at least in part, to these effects.
Collapse
Affiliation(s)
- Toshiki Tazoe
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33125, USA
| |
Collapse
|
13
|
Oulad Ben Taib N, Manto M. The in vivo reduction of afferent facilitation induced by low frequency electrical stimulation of the motor cortex is antagonized by cathodal direct current stimulation of the cerebellum. CEREBELLUM & ATAXIAS 2016; 3:15. [PMID: 27579172 PMCID: PMC5004309 DOI: 10.1186/s40673-016-0053-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/25/2016] [Indexed: 12/03/2022]
Abstract
Background Low-frequency electrical stimulation to the motor cortex (LFSMC) depresses the excitability of motor circuits by long-term depression (LTD)-like effects. The interactions between LFSMC and cathodal direct current stimulation (cDCS) over the cerebellum are unknown. Methods We assessed the corticomotor responses and the afferent facilitation of corticomotor responses during a conditioning paradigm in anaesthetized rats. We applied LFSMC at a frequency of 1 Hz and a combination of LFSMC with cDCS. Results LFSMC significantly depressed both the corticomotor responses and the afferent facilitation of corticomotor responses. Simultaneous application of cDCS over the cerebellum antagonized the depression of corticomotor responses and cancelled the depression of the afferent facilitation. Conclusion Our results demonstrate that cDCS of the cerebellum is a potent modulator the inhibition of the motor circuits induced by LFSMC applied in vivo. These results expand our understanding of the effects of cerebellar DCS on motor commands and open novel applications for a cerebellar remote control of LFSMC-induced neuroplasticity. We suggest that the cerebellum acts as a neuronal machine supervising not only long-term potentiation (LTP)-like effects, but also LTD-like effects in the motor cortex, two mechanisms which underlie cerebello-cerebral interactions and the cerebellar control of remote plasticity. Implications for clinical ataxiology are discussed.
Collapse
Affiliation(s)
| | - Mario Manto
- Unité d'Etude du Mouvement (UEM), FNRS, Neurologie ULB-Erasme, 808 Route de Lennik, 1070 Bruxelles, Belgium ; Service des Neurosciences, Université de Mons, 7000 Mons, Belgium
| |
Collapse
|
14
|
Badalyan SA, Ipekchyan M, Sarkisyan VA. Neuron Populations Giving Rise to Corticothalamic Projections to the Partially Deafferented Ventrolateral Nucleus of the Thalamus. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0139-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Swan BD, Brocker DT, Hilliard JD, Tatter SB, Gross RE, Turner DA, Grill WM. Short pauses in thalamic deep brain stimulation promote tremor and neuronal bursting. Clin Neurophysiol 2015; 127:1551-1559. [PMID: 26330131 DOI: 10.1016/j.clinph.2015.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/01/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We conducted intraoperative measurements of tremor during DBS containing short pauses (⩽50 ms) to determine if there is a minimum pause duration that preserves tremor suppression. METHODS Nine subjects with ET and thalamic DBS participated during IPG replacement surgery. Patterns of DBS included regular 130 Hz stimulation interrupted by 0, 15, 25 or 50 ms pauses. The same patterns were applied to a model of the thalamic network to quantify effects of pauses on activity of model neurons. RESULTS All patterns of DBS decreased tremor relative to 'off'. Patterns with pauses generated less tremor reduction than regular high frequency DBS. The model revealed that rhythmic burst-driver inputs to thalamus were masked during DBS, but pauses in stimulation allowed propagation of bursting activity. The mean firing rate of bursting-type model neurons as well as the firing pattern entropy of model neurons were both strongly correlated with tremor power across stimulation conditions. CONCLUSIONS The temporal pattern of stimulation influences the efficacy of thalamic DBS. Pauses in stimulation resulted in decreased tremor suppression indicating that masking of pathological bursting is a mechanism of thalamic DBS for tremor. SIGNIFICANCE Pauses in stimulation decreased the efficacy of open-loop DBS for suppression of tremor.
Collapse
Affiliation(s)
- Brandon D Swan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - David T Brocker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Justin D Hilliard
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Stephen B Tatter
- Department of Neurosurgery, Wake Forest University Baptist Medical Center, Winston-Salem, NC, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dennis A Turner
- Department of Surgery, Duke University Medical Center, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Surgery, Duke University Medical Center, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
16
|
Chang JW, Min BK, Kim BS, Chang WS, Lee YH. Neurophysiologic correlates of sonication treatment in patients with essential tremor. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:124-131. [PMID: 25438838 DOI: 10.1016/j.ultrasmedbio.2014.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 07/23/2014] [Accepted: 08/12/2014] [Indexed: 06/04/2023]
Abstract
Transcranial magnetic resonance imaging-guided high-intensity focused ultrasound (MRgHIFU) is gaining attention as a potent substitute for surgical intervention in the treatment of neurologic disorders. To discern the neurophysiologic correlates of its therapeutic effects, we applied MRgHIFU to an intractable neurologic disorder, essential tremor, while measuring magnetoencephalogram mu rhythms from the motor cortex. Focused ultrasound sonication destroyed tissues by focusing a high-energy beam on the ventralis intermedius nucleus of the thalamus. The post-treatment effectiveness was also evaluated using the clinical rating scale for tremors. Thalamic MRgHIFU had substantial therapeutic effects on patients, based on MRgHIFU-mediated improvements in movement control and significant changes in brain mu rhythms. Ultrasonic thalamotomy may reduce hyper-excitable activity in the motor cortex, resulting in normalized behavioral activity after sonication treatment. Thus, non-invasive and spatially accurate MRgHIFU technology can serve as a potent therapeutic tool with broad clinical applications.
Collapse
Affiliation(s)
- Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea.
| | - Bong-Soo Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Ho Lee
- Korea Research Institute of Standards and Science, Daejeon, Korea
| |
Collapse
|
17
|
Cheron G, Márquez-Ruiz J, Kishino T, Dan B. Disruption of the LTD dialogue between the cerebellum and the cortex in Angelman syndrome model: a timing hypothesis. Front Syst Neurosci 2014; 8:221. [PMID: 25477791 PMCID: PMC4237040 DOI: 10.3389/fnsys.2014.00221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/25/2014] [Indexed: 12/11/2022] Open
Abstract
Angelman syndrome (AS) is a genetic neurodevelopmental disorder in which cerebellar functioning impairment has been documented despite the absence of gross structural abnormalities. Characteristically, a spontaneous 160 Hz oscillation emerges in the Purkinje cells network of the Ube3a (m-/p+) Angelman mouse model. This abnormal oscillation is induced by enhanced Purkinje cell rhythmicity and hypersynchrony along the parallel fiber beam. We present a pathophysiological hypothesis for the neurophysiology underlying major aspects of the clinical phenotype of AS, including cognitive, language and motor deficits, involving long-range connection between the cerebellar and the cortical networks. This hypothesis states that the alteration of the cerebellar rhythmic activity impinges cerebellar long-term depression (LTD) plasticity, which in turn alters the LTD plasticity in the cerebral cortex. This hypothesis was based on preliminary experiments using electrical stimulation of the whiskers pad performed in alert mice showing that after a 8 Hz LTD-inducing protocol, the cerebellar LTD accompanied by a delayed response in the wild type (WT) mice is missing in Ube3a (m-/p+) mice and that the LTD induced in the barrel cortex following the same peripheral stimulation in wild mice is reversed into a LTP in the Ube3a (m-/p+) mice. The control exerted by the cerebellum on the excitation vs. inhibition balance in the cerebral cortex and possible role played by the timing plasticity of the Purkinje cell LTD on the spike-timing dependent plasticity (STDP) of the pyramidal neurons are discussed in the context of the present hypothesis.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Electrophysiology, Université de MonsMons, Belgium
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institut, Université Libre de BruxellesBrussels, Belgium
| | | | - Tatsuya Kishino
- Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki UniversityNagasaki, Japan
| | - Bernard Dan
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de BruxellesBrussels, Belgium
| |
Collapse
|
18
|
Response of human thalamic neurons to high-frequency stimulation. PLoS One 2014; 9:e96026. [PMID: 24804767 PMCID: PMC4013084 DOI: 10.1371/journal.pone.0096026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 04/02/2014] [Indexed: 11/20/2022] Open
Abstract
Thalamic deep brain stimulation (DBS) is an effective treatment for tremor, but the mechanisms of action remain unclear. Previous studies of human thalamic neurons to noted transient rebound bursting activity followed by prolonged inhibition after cessation of high frequency extracellular stimulation, and the present study sought to identify the mechanisms underlying this response. Recordings from 13 thalamic neurons exhibiting low threshold spike (LTS) bursting to brief periods of extracellular stimulation were made during surgeries to implant DBS leads in 6 subjects with Parkinson's disease. The response immediately after cessation of stimulation included a short epoch of burst activity, followed by a prolonged period of silence before a return to LTS bursting. A computational model of a population of thalamocortical relay neurons and presynaptic axons terminating on the neurons was used to identify cellular mechanisms of the observed responses. The model included the actions of neuromodulators through inhibition of a non-pertussis toxin sensitive K+ current (IKL), activation of a pertussis toxin sensitive K+ current (IKG), and a shift in the activation curve of the hyperpolarization-activated cation current (Ih). The model replicated well the measured responses, and the prolonged inhibition was associated most strongly with changes in IKG while modulation of IKL or Ih had minimal effects on post-stimulus inhibition suggesting that neuromodulators released in response to high frequency stimulation are responsible for mediating the post-stimulation bursting and subsequent long duration silence of thalamic neurons. The modeling also indicated that the axons of the model neurons responded robustly to suprathreshold stimulation despite the inhibitory effects on the soma. The findings suggest that during DBS the axons of thalamocortical neurons are activated while the cell bodies are inhibited thus blocking the transmission of pathological signals through the network and replacing them with high frequency regular firing.
Collapse
|
19
|
Kent AR, Grill WM. Neural origin of evoked potentials during thalamic deep brain stimulation. J Neurophysiol 2013; 110:826-43. [PMID: 23719207 DOI: 10.1152/jn.00074.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Closed-loop deep brain stimulation (DBS) systems could provide automatic adjustment of stimulation parameters and improve outcomes in the treatment of Parkinson's disease and essential tremor. The evoked compound action potential (ECAP), generated by activated neurons near the DBS electrode, may provide a suitable feedback control signal for closed-loop DBS. The objectives of this work were to characterize the ECAP across stimulation parameters and determine the neural elements contributing to the signal. We recorded ECAPs during thalamic DBS in anesthetized cats and conducted computer simulations to calculate the ECAP of a population of thalamic neurons. The experimental and computational ECAPs were similar in shape and had characteristics that were correlated across stimulation parameters (R(2) = 0.80-0.95, P < 0.002). The ECAP signal energy increased with larger DBS amplitudes (P < 0.0001) and pulse widths (P < 0.002), and the signal energy of secondary ECAP phases was larger at 10-Hz than at 100-Hz DBS (P < 0.002). The computational model indicated that these changes resulted from a greater extent of neural activation and an increased synchronization of postsynaptic thalamocortical activity, respectively. Administration of tetrodotoxin, lidocaine, or isoflurane abolished or reduced the magnitude of the experimental and computational ECAPs, glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and D(-)-2-amino-5-phosphonopentanoic acid (APV) reduced secondary ECAP phases by decreasing postsynaptic excitation, and the GABAA receptor agonist muscimol increased the latency of the secondary phases by augmenting postsynaptic hyperpolarization. This study demonstrates that the ECAP provides information about the type and extent of neural activation generated during DBS, and the ECAP may serve as a feedback control signal for closed-loop DBS.
Collapse
Affiliation(s)
- Alexander R Kent
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | | |
Collapse
|
20
|
Helmich RC, Hallett M, Deuschl G, Toni I, Bloem BR. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 2012; 135:3206-26. [PMID: 22382359 PMCID: PMC3501966 DOI: 10.1093/brain/aws023] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tremor in Parkinson's disease has several mysterious features. Clinically, tremor is seen in only three out of four patients with Parkinson's disease, and tremor-dominant patients generally follow a more benign disease course than non-tremor patients. Pathophysiologically, tremor is linked to altered activity in not one, but two distinct circuits: the basal ganglia, which are primarily affected by dopamine depletion in Parkinson's disease, and the cerebello-thalamo-cortical circuit, which is also involved in many other tremors. The purpose of this review is to integrate these clinical and pathophysiological features of tremor in Parkinson's disease. We first describe clinical and pathological differences between tremor-dominant and non-tremor Parkinson's disease subtypes, and then summarize recent studies on the pathophysiology of tremor. We also discuss a newly proposed ‘dimmer-switch model’ that explains tremor as resulting from the combined actions of two circuits: the basal ganglia that trigger tremor episodes and the cerebello-thalamo-cortical circuit that produces the tremor. Finally, we address several important open questions: why resting tremor stops during voluntary movements, why it has a variable response to dopaminergic treatment, why it indicates a benign Parkinson's disease subtype and why its expression decreases with disease progression.
Collapse
Affiliation(s)
- Rick C Helmich
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Birdno MJ, Kuncel AM, Dorval AD, Turner DA, Gross RE, Grill WM. Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. J Neurophysiol 2011; 107:364-83. [PMID: 21994263 DOI: 10.1152/jn.00906.2010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) provides dramatic tremor relief when delivered at high-stimulation frequencies (more than ∼100 Hz), but its mechanisms of action are not well-understood. Previous studies indicate that high-frequency stimulation is less effective when the stimulation train is temporally irregular. The purpose of this study was to determine the specific characteristics of temporally irregular stimulus trains that reduce their effectiveness: long pauses, bursts, or irregularity per se. We isolated these characteristics in stimulus trains and conducted intraoperative measurements of postural tremor in eight volunteers. Tremor varied significantly across stimulus conditions (P < 0.015), and stimulus trains with pauses were significantly less effective than stimulus trains without (P < 0.002). There were no significant differences in tremor between trains with or without bursts or between trains that were irregular or periodic. Thus the decreased effectiveness of temporally irregular DBS trains is due to long pauses in the stimulus trains, not the degree of temporal irregularity alone. We also conducted computer simulations of neuronal responses to the experimental stimulus trains using a biophysical model of the thalamic network. Trains that suppressed tremor in volunteers also suppressed fluctuations in thalamic transmembrane potential at the frequency associated with cerebellar burst-driver inputs. Clinical and computational findings indicate that DBS suppresses tremor by masking burst-driver inputs to the thalamus and that pauses in stimulation prevent such masking. Although stimulation of other anatomic targets may provide tremor suppression, we propose that the most relevant neuronal targets for effective tremor suppression are the afferent cerebellar fibers that terminate in the thalamus.
Collapse
Affiliation(s)
- Merrill J Birdno
- Duke Univ., Dept. of Biomedical Engineering, Hudson Hall, Rm. 136, Box 90281, Durham, NC 27708-0281, USA
| | | | | | | | | | | |
Collapse
|
22
|
Kuncel AM, Birdno MJ, Swan BD, Grill WM. Tremor reduction and modeled neural activity during cycling thalamic deep brain stimulation. Clin Neurophysiol 2011; 123:1044-52. [PMID: 21978653 DOI: 10.1016/j.clinph.2011.07.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The effectiveness of deep brain stimulation (DBS) depends on both the frequency and the temporal pattern of stimulation. We quantified responses to cycling DBS with constant frequency to determine if there was a critical on and/or off time for alleviating tremor. METHODS We measured postural tremor in 10 subjects with thalamic DBS and quantified neuronal entropy in a network model of Vim thalamic DBS. We tested 12 combinations of cycling on/off times that maintained the same average frequency of 125 Hz, four constant frequency settings, and baseline. RESULTS Tremor and neural firing pattern entropy decreased as the percent on time increased from 50% to 100%. Cycling with stimulation on for at least 60% of the time was as effective as regular stimulation. All cycling settings reduced the firing pattern entropy of model neurons from the no stimulation condition by regularizing pathological firing patterns, either through synaptically-mediated inhibition or axon excitation. CONCLUSIONS These results indicate that pauses present in cycling stimulation decreased its effectiveness in suppressing tremor, and that changes in the amount of tremor suppression were strongly correlated with changes in the firing pattern entropy of model neurons. SIGNIFICANCE Cycling stimulation may reduce power consumption during clinical DBS, and thereby increase the battery life of the implanted pulse generator.
Collapse
Affiliation(s)
- Alexis M Kuncel
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | | | | | | |
Collapse
|
23
|
The effects of reversible inactivation of the subthalamo-pallidal pathway on the behaviour of naive and hemiparkinsonian monkeys. J Clin Neurosci 2010; 4:218-27. [PMID: 18638958 DOI: 10.1016/s0967-5868(97)90076-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/1996] [Accepted: 06/28/1996] [Indexed: 11/23/2022]
Abstract
This study was designed to further investigate the role of the subthalamic nucleus (STN) and globus pallidus internus (GPi) in the pathophysiology of Parkinson's disease. The prevailing theory about the pathophysiology of Parkinson's disease (PD) predicts that there is overactivity of the subthalamo-pallidal pathway. In order to inactivate that pathway, naive and hemiparkinsonian monkeys were locally administered either muscimol (to reversibly inactivate the contralateral STN) or kynurenic acid (to reduce glutamatergic activity in the contralateral GPi). Three naive and 2 hemiparkinsonian monkeys were studied. Intra-carotid MPTP was administered to produce 2 hemiparkinsonian monkeys. Injection sites of muscimol and kynurenic acid in the brain were confirmed electrophysiologically and histologically. Injections of muscimol into the STN in naive and hemiparkinsonian monkeys caused reversible contralateral dystonia, but did not alleviate Parkinsonism. Only one kynurenic acid injection into GPi partially alleviated Parkinsonism. On the basis of the results in this study, aspects of the currently accepted hypothesis of the pathophysiology of PD cannot be confirmed. However, this study reports that the STN has an important role in the production of dystonia. This experimental model of dystonia will prove suitable for further study of both the mechanisms causing dystonia as well as for possible therapeutic approaches to its treatment.
Collapse
|
24
|
Avanzino L, Bove M, Tacchino A, Ruggeri P, Giannini A, Trompetto C, Abbruzzese G. Cerebellar involvement in timing accuracy of rhythmic finger movements in essential tremor. Eur J Neurosci 2009; 30:1971-9. [PMID: 19912337 DOI: 10.1111/j.1460-9568.2009.06984.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cerebellum is involved in the generation of essential tremor (ET) and cerebellar timing function is altered in patients with ET showing an increased variability of rhythmic hand movements. Using a sensor-engineered glove, we evaluated motor behaviour during repetitive finger tapping movements in 15 patients with ET and in 11 age- and gender-matched normal subjects. In addition, we investigated whether, in patients with ET, an inhibitory repetitive transcranial magnetic stimulation (1 Hz-rTMS) over lateral cerebellum was able to change timing properties and motor behaviour. Patients with ET showed a longer touch duration (TD) and a lower inter tapping interval (ITI) than normal subjects. The temporal variability of the movement (coefficient of variation of ITI) was increased in patients with ET. Neither clinical rating scale or tremor measurements correlated with any parameter of motor performance in the ET group. 1 Hz-rTMS over ipsilateral lateral cerebellum transiently affected the performance of patients with ET, by reducing TD values and normalizing ITI values. After 1 Hz-rTMS, the coefficient of variation of ITI was restored to values similar to those of normal subjects. We postulate that the strategy to increase TD, probably adopted to allow a better perception of movement, can affect ITI and its variability. The results support the idea that the cerebellum plays a central role in the selection of motor strategy of rhythmic finger movements, particularly in terms of temporal organization of movement.
Collapse
Affiliation(s)
- Laura Avanzino
- Department of Neurosciences, Ophthalmology and Genetics, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Fierro B, Giglia G, Palermo A, Pecoraro C, Scalia S, Brighina F. Modulatory effects of 1 Hz rTMS over the cerebellum on motor cortex excitability. Exp Brain Res 2006; 176:440-7. [PMID: 16917771 DOI: 10.1007/s00221-006-0628-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 07/05/2006] [Indexed: 11/27/2022]
Abstract
Clinical observations and data from animal experiments point to a physiological facilitatory influence of the deep cerebellar structures on the motor system through the cerebello-thalamo-cortical pathways. The aim of the present study was to explore the long-term effects of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) over the cerebellum on short intracortical inhibition (SICI) and facilitation (ICF) of the motor cortex in normal subjects. Eight healthy subjects (mean age 26.9 +/- 3.1) underwent 1 Hz frequency rTMS delivered on the right cerebellar hemisphere. Before and after cerebellar rTMS, SICI and ICF were assessed in the motor cortex contralateral to the stimulated cerebellar hemisphere by means of a paired pulse paradigm with a conditioning subthreshold stimulus set to 80% of the motor threshold (MT) followed by a testing stimulus at 120% of MT intensity. Five different interstimulus intervals (ISIs) were used to assess SICI (2 and 4 ms) and ICF (7, 10 and 15 ms). Amplitude of the responses was expressed as the percentage of motor evoked potential (MEP) to test stimulus alone. Results showed a significant decrease of ICF at 10 ms ISI that persisted up to 20 min after cerebellar rTMS. This was the only significant modulatory effect of cerebellar stimulation on intracortical motor excitability A suppressive effect of the low-frequency TMS on Purkinje cells could be supposed, even if, the lack of effects on other facilitatory ISIs, stands for more complex modulatory effects of rTMS over cerebellum. The study is a further demonstration that rTMS over the cerebellum induces a long-lasting modulatory effect on the excitability of the interconnected motor area.
Collapse
Affiliation(s)
- Brigida Fierro
- Department of Neurology, University of Palermo, Via G. La Loggia 1, 90129 Palermo, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Esser SK, Hill SL, Tononi G. Modeling the Effects of Transcranial Magnetic Stimulation on Cortical Circuits. J Neurophysiol 2005; 94:622-39. [PMID: 15788519 DOI: 10.1152/jn.01230.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is commonly used to activate or inactivate specific cortical areas in a noninvasive manner. Because of technical constraints, the precise effects of TMS on cortical circuits are difficult to assess experimentally. Here, this issue is investigated by constructing a detailed model of a portion of the thalamocortical system and examining the effects of the simulated delivery of a TMS pulse. The model, which incorporates a large number of physiological and anatomical constraints, includes 33,000 spiking neurons arranged in a 3-layered motor cortex and over 5 million intra- and interlayer synaptic connections. The model was validated by reproducing several results from the experimental literature. These include the frequency, timing, dose response, and pharmacological modulation of epidurally recorded responses to TMS (the so-called I-waves), as well as paired-pulse response curves consistent with data from several experimental studies. The modeled responses to simulated TMS pulses in different experimental paradigms provide a detailed, self-consistent account of the neural and synaptic activities evoked by TMS within prototypical cortical circuits.
Collapse
Affiliation(s)
- Steve K Esser
- Neuroscience Training Program, University of Wisconsin, 6001 Research Park Boulevard, Madison, Wisconsin 53719-1176, USA
| | | | | |
Collapse
|
27
|
Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol 2004; 557:689-700. [PMID: 15047772 PMCID: PMC1665103 DOI: 10.1113/jphysiol.2003.059808] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 03/19/2004] [Indexed: 11/08/2022] Open
Abstract
Animal studies have shown that cerebellar projections influence both excitatory and inhibitory neurones in the motor cortex but this connectivity has yet to be demonstrated in human subjects. In human subjects, magnetic or electrical stimulation of the cerebellum 5-7 ms before transcranial magnetic stimulation (TMS) of the motor cortex decreases the TMS-induced motor-evoked potential (MEP), indicating a cerebellar inhibition of the motor cortex (CBI). TMS also reveals inhibitory and excitatory circuits of the motor cortex, including a short-interval intracortical inhibition (SICI), long-interval intracortical inhibition (LICI) and intracortical facilitation (ICF). This study used magnetic cerebellar stimulation to investigate connections between the cerebellum and these cortical circuits. Three experiments were performed on 11 subjects. The first experiment showed that with increasing test stimulus intensities, LICI, CBI and ICF decreased, while SICI increased. The second experiment showed that the presence of CBI reduced SICI and increased ICF. The third experiment showed that the interaction between CBI and LICI reduced CBI. Collectively, these findings suggest that cerebellar stimulation results in changes to both inhibitory and excitatory neurones in the human motor cortex.
Collapse
Affiliation(s)
- Zafiris J Daskalakis
- Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Woody CD, Gruen E, Wang XF. Electrical properties affecting discharge of units of the mid and posterolateral thalamus of conscious cats. Neuroscience 2004; 122:531-9. [PMID: 14614917 DOI: 10.1016/j.neuroscience.2003.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Discharge properties in response to intracellularly applied, rectangular currents were measured in units of the mid (lateralis dorsalis and centrolateral nuclei) and posterolateral (lateralis posterior and pulvinar nuclei) thalamus of conscious cats. A separate aim was to determine if neuronal excitability changed in association with changes in stimulus-evoked activity after the animals were trained to discriminate between two acoustic stimuli when performing a conditioned motor response. Low threshold spike (l.t.s.) discharges were observed in three of 272 cells given 1 nA intracellular, hyperpolarizing current pulses of 40 ms duration. This finding supports the view that thalamic neurons of conscious animals operate mainly in the relay as opposed to the oscillatory mode. Application of larger and longer hyperpolarizing currents in the cells produced rebound l.t.s. discharges, supporting the expectation that most thalamic neurons are capable of producing this type of discharge. Decrements of spike afterhyperpolarizations (AHP) and broadening of spike bases upon repeated discharge also were observed in each area of the thalamus studied. After conditioning, changes were found in the posterolateral thalamus (but not in the mid-thalamus) in the proportions of cells with spontaneous, rapid (>/=50 Hz), repetitive, discharges (RRD) and rapid, sustained discharges at rates >/=100 Hz during application of depolarizing current (RSD). In the posterolateral thalamus the percentage of units responding to 1 nA depolarization with RSD fell from 71% before conditioning to 45% after conditioning. The percentage of cells with RRD decreased from 69% to 46%. The changes were accompanied by a 3 mV hyperpolarization of the membrane potentials of the cells and a decrease in baseline activity. After conditioning, increases in excitability were found in cells of the mid thalamus that responded selectively to the click conditioned stimulus (CS) that elicited the conditioned response, and decreases in excitability were found in cells of the posterolateral thalamus that responded to the discriminative acoustic stimulus (DS) to which the animals were trained not to respond. An earlier study showed a potentiation of discharge in response to the CS in units of the midthalamus after similar conditioning and a reduction of the proportion of DS responsive units and peak discharge to the DS in units of the posterolateral thalamus. We conclude that the discharge properties of units of the mid and posterolateral thalamus can change to support discrimination between acoustic stimuli of different functional significance after conditioning.
Collapse
Affiliation(s)
- C D Woody
- Mental Retardation Research Center, Brain Research Institute, UCLA Medical Center, Room 58-232, 760 Westwood Plaza, Los Angeles, CA 90024, USA.
| | | | | |
Collapse
|
29
|
Abstract
Mutual inhibition between the GABAergic cells of the thalamic reticular nucleus (RTN) is important in regulating oscillations in the thalamocortical network, promoting those in the spindle range of frequencies over those at lower frequencies. Excitatory inputs to the RTN from the cerebral cortex are numerically large and particularly powerful in inducing spindles. However, the extent to which corticothalamic influences can engage the inhibitory network of the RTN has not been fully explored. Focal electrical stimulation of layer VI in the barrel cortex of the mouse thalamocortical slice in vitro resulted in prominent di- or polysynaptic inhibitory postsynaptic currents (IPSCs) in RTN cells under the experimental conditions used. The majority of cortically induced responses consisted of mixed PSCs in which the inhibitory component predominated or of large IPSCs alone, implying inhibition of neighboring cells by other, cortically excited RTN cells. Within the mixed PSCs, fixed and variable latency components could commonly be identified. IPSCs could be blocked by application of ionotropic glutamate receptor antagonists or of GABA(A) receptor antagonists, also indicating their dependence on corticothalamic excitation triggering disynaptic or polysynaptic inhibition. Spontaneous GABA(A) receptor-dependent IPSCs were routinely observed in the RTN and, taken together with the results of cortical stimulation, indicate the existence of a substantial network of intrareticular inhibitory connections that can be effectively recruited by the corticothalamic system. These results suggest activation of cortical excitatory inputs triggers the propagation of inhibitory currents within the RTN and support the view that activation of the RTN from the somatosensory cortex, although focused by the topography of the corticothalamic projection, is capable of disynaptically engaging the whole inhibitory network of the RTN, by local and probably by reentrant GABA(A) receptor-based synapses, thus spreading the corticothalamic influence throughout the RTN.
Collapse
Affiliation(s)
- Liming Zhang
- Center for Neuroscience, University of California, Davis, California 95616, USA
| | | |
Collapse
|
30
|
Haslinger B, Boecker H, Büchel C, Vesper J, Tronnier VM, Pfister R, Alesch F, Moringlane JR, Krauss JK, Conrad B, Schwaiger M, Ceballos-Baumann AO. Differential modulation of subcortical target and cortex during deep brain stimulation. Neuroimage 2003; 18:517-24. [PMID: 12595204 DOI: 10.1016/s1053-8119(02)00043-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The combination of electrical deep brain stimulation (DBS) with functional imaging offers a unique model for tracing brain circuitry and for testing the modulatory potential of electrical stimulation on a neuronal network in vivo. We therefore applied parametric positron emission tomography (PET) analyses that allow characterization of rCBF responses as linear and nonlinear functions of the experimentally modulated stimulus (variable stimulator setting). In patients with electrodes in the thalamic ventrointermediate nucleus (VIM) for the treatment of essential tremor (ET) here we show that variations in voltage and frequency of thalamic stimulation have differential effects in a thalamo-cortical circuitry. Increasing stimulation amplitude was associated with a linear raise in rCBF at the thalamic stimulation site, but with a nonlinear rCBF response in the primary sensorimotor cortex (M1/S1). The reverse pattern in rCBF changes was observed with increasing stimulation frequency. These results indicate close connectivity between the stimulated nucleus (VIM) and primary sensorimotor cortex. Likewise, stimulation parameter-specific modulation occurs at this simple interface between an electrical and a cerebral system and suggests that the scope of DBS extends beyond an ablation-like on-off effect: DBS could rather allow a gradual tuning of activity within a neuronal circuit.
Collapse
Affiliation(s)
- B Haslinger
- Neurologische Klinik TU-München, Klinikum Rechts der Isar, Möhlstrasse 28, D-81675 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Saint-Cyr JA, Hoque T, Pereira LCM, Dostrovsky JO, Hutchison WD, Mikulis DJ, Abosch A, Sime E, Lang AE, Lozano AM. Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging. J Neurosurg 2002; 97:1152-66. [PMID: 12450038 DOI: 10.3171/jns.2002.97.5.1152] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors sought to determine the location of deep brain stimulation (DBS) electrodes that were most effective in treating Parkinson disease (PD). METHODS Fifty-four DBS electrodes were localized in and adjacent to the subthalamic nucleus (STN) postoperatively by using magnetic resonance (MR) imaging in a series of 29 patients in whom electrodes were implanted for the treatment of medically refractory PD, and for whom quantitative clinical assessments were available both pre- and postoperatively. A novel MR imaging sequence was developed that optimized visualization of the STN. The coordinates of the tips of these electrodes were calculated three dimensionally and the results were normalized and corrected for individual differences by using intraoperative neurophysiological data (mean 5.13 mm caudal to the midcommissural point [MCP], 8.46 mm inferior to the anterior commissure-posterior commissure [AC-PC], and 10.2 mm lateral to the midline). Despite reported concerns about distortion on the MR image, reconstructions provided consistent data for the localization of electrodes. The neurosurgical procedures used, which were guided by combined neuroimaging and neurophysiological methods, resulted in the consistent placement of DBS electrodes in the subthalamus and mesencephalon such that the electrode contacts passed through the STN and dorsally adjacent fields of Forel (FF) and zona incerta (ZI). The mean location of the clinically effective contacts was in the anterodorsal STN (mean 1.62 mm posterior to the MCP, 2.47 mm inferior to the AC-PC, and 11.72 mm lateral to the midline). Clinically effective stimulation was most commonly directed at the anterodorsal STN, with the current spreading into the dorsally adjacent FF and ZI. CONCLUSIONS The anatomical localization of clinically effective electrode contacts provided in this study yields useful information for the postoperative programming of DBS electrodes.
Collapse
Affiliation(s)
- Jean A Saint-Cyr
- Department of Surgery, Division of Neurosurgery, University of Toronto and University Health Network, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kakei S, Na J, Shinoda Y. Thalamic terminal morphology and distribution of single corticothalamic axons originating from layers 5 and 6 of the cat motor cortex. J Comp Neurol 2001; 437:170-85. [PMID: 11494250 DOI: 10.1002/cne.1277] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We investigated the axonal morphology of single corticothalamic (CT) neurons of the motor cortex (Mx) in the cat thalamus, using a neuronal tracer, biotinylated dextran amine (BDA). After localized injection of BDA into the Mx, labeled CT axons were found ipsilaterally in the thalamic reticular nucleus (TRN), the ventroanterior-ventrolateral complex (VA-VL), the central lateral nucleus (CL), the central medial nucleus, and the centromedian nucleus, but with the primary focus in the VA-VL. The terminals in the VA-VL formed a large laminar cluster, which extended approximately in parallel with the internal medullary lamina. The laminar organization mirrored morphologic features of single CT axons. We reconstructed the trajectories of 25 single CT axons that arose from layer V (16 axons) or layer VI (9 axons) and terminated in the VA-VL. Terminals of single CT axons that originated from both layer V and layer VI were confined within a laminar structure about 700 microm thick, suggesting the existence of laminar input organization in the VA-VL. Otherwise, the two groups of the CT axons showed contrasting features. All of the CT axons derived from layer VI gave rise to a few short collaterals to the TRN and then formed extensive arborization with numerous small, drumstick-like terminals in the VA-VL. On the other hand, the CT axons arising from layer V gave rise to collaterals whose main axons descended into the cerebral peduncle. Each collateral projected to the VA-VL or CL without projection to the TRN and formed a few small clusters of giant terminals. The two groups of CT neurons in the same cortical column had convergent rather than segregated termination in the VA-VL. However, the terminals of layer VI CT neurons were distributed diffusely and widely in the VA-VL, whereas the terminals of layer V CT neurons were much more focused and surrounded by the terminals of the former group. These contrasting features of the two types of CT projections appear to represent their different functional roles in the generation of motor commands and control of movements in the Mx.
Collapse
Affiliation(s)
- S Kakei
- Department of Physiology, School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | |
Collapse
|
33
|
Holdefer RN, Miller LE, Chen LL, Houk JC. Functional connectivity between cerebellum and primary motor cortex in the awake monkey. J Neurophysiol 2000; 84:585-90. [PMID: 10899231 DOI: 10.1152/jn.2000.84.1.585] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Simultaneous single neuron and local field potential (LFP) recordings were made in arm-related areas of the cerebellar nuclei (CN) and primary motor cortex (M1) of two monkeys during a reaching and button pressing task. Microstimulation of focal sites in CN caused short latency (median = 3.0 ms) increases in discharge in 25% of 210 M1 neurons. Suppressive effects were less common (13%) and observed at longer latencies (median = 9.9 ms). Stimulation in CN also caused reciprocal facilitation and suppression in averages of antagonist muscle electromyograms (EMGs). The latency of these effects was approximately 8-11 ms. In contrast to the selectivity of unit and EMG effects, stimulation-evoked changes in LFP occurred over a broad range of sites. There were no significant short-latency effects detected in cross-correlation histograms between single neurons in CN and M1. However, CN spike-triggered averages of M1 LFPs were observed in a few cases (10% of 126 cases). In one-half of these, there were effects both before and after the CN spikes, which may reflect causal effects from M1 to CN, as well as from CN to M1. Overall, these results demonstrate a spatially specific, short latency, primarily excitatory pathway from CN to M1. The relatively rare effects at the single neuron level may have resulted from the difficulty in achieving optimal alignment between cerebellar and cerebral sites because of the specificity of these connections.
Collapse
Affiliation(s)
- R N Holdefer
- Department of Physiology and the Northwestern University Institute for Neuroscience, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
34
|
Raeva S, Vainberg N, Dubinin V. Analysis of spontaneous activity patterns of human thalamic ventrolateral neurons and their modifications due to functional brain changes. Neuroscience 1999; 88:365-76. [PMID: 10197760 DOI: 10.1016/s0306-4522(98)00228-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the human thalamic ventralis lateralis nucleus the spontaneous activity of 235 single units during 38 stereotactic operations in locally anaesthetized parkinsonian patients was analysed. Two basic cell types (A and B) were shown to exist in this nucleus: (i) with unitary irregular (2-40/s) discharges characterized by a tendency to spike grouping in the range of 4-6 Hz and 10-30 Hz (A-type, 74%), (ii) with bursting discharges firing in short trains (5-30 ms) characterized by an unstable rhythmic 3-6 Hz pattern similar to a low-threshold Ca2+ intrinsic burst structure of discharges (B-type, 26%). The functional brain changes after a motor tests performance were accompanied by the appearance of two different transient modifications of activity of A-cells pattern into rhythmic burst discharges: (i) in the range of 3-6 Hz, similar to the bursts found for B-cells and recorded mainly in the anterior ventrolateral region in rigid patients, (ii) in the range of 5 +/- 1 Hz, characterized by other interspike interval and recorded in the posterior ventrolateral region in patients with tremor. Modifications during short-term anaesthesia resulted in 10-15 Hz burst discharges that were associated with gradual disappearance of A-cells activity. In contrast to what happens for A-cells, the activity of bursting B-units was characterized by an invariant intrinsic structure of discharges irrespective of the functional brain changes or the forms of parkinsonian pathology. The nature of A- and B-units as well as the mechanisms of transient modifications of their spontaneous activity patterns due to the functional brain changes are discussed.
Collapse
Affiliation(s)
- S Raeva
- Laboratory of Human Cell Neurophysiology, Institute of Chemical Physics, Russian Academy of Sciences, Moscow
| | | | | |
Collapse
|
35
|
Sato F, Nakamura Y, Shinoda Y. Serial electron microscopic reconstruction of axon terminals on physiologically identified thalamocortical neurons in the cat ventral lateral nucleus. J Comp Neurol 1997; 388:613-31. [PMID: 9388020 DOI: 10.1002/(sici)1096-9861(19971201)388:4<613::aid-cne9>3.0.co;2-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution of different types of terminals on different portions of single thalamocortical neurons (TCNs) was quantitatively investigated in the cat ventral lateral nucleus (VL) by the application of computer-assisted three-dimensional reconstruction from serial ultrathin sections. Single neurons in the VL were intracellularly penetrated with a glass micropipette filled with horseradish peroxidase (HRP), and were electrophysiologically identified as TCNs by their antidromic responses to stimulation of the motor cortex. These TCNs received monosynaptic excitation from the contralateral cerebellum. After electrophysiological identification, they were injected with HRP iontophoretically. The spatial distribution of terminals of different types on two identified TCNs was analyzed on serial ultrathin sections, some of which were stained by a postembedding immunogold technique by using a gamma-aminobutyric acid (GABA) antibody. Terminals that synapsed on the injected cells were categorized as LR terminals (GABA-negative large axon terminals containing round vesicles), SR terminals (GABA-negative small axon terminals containing round vesicles), P terminals (GABA-positive axon terminals of various sizes containing pleomorphic vesicles), or PSDs (presynaptic dendrites). The order of dendritic branches of labeled TCNs was determined by computer-assisted reconstruction from serial sections. LR terminals made contacts mainly with proximal dendrites of TCNs. SR terminals made contacts predominantly with distal dendrites, and were never found on somata or primary dendrites. P terminals were observed on somata and on every portion of the dendritic trees. Synapses formed by PSDs were concentrated on the proximal dendrites and sometimes formed synaptic triads with LR terminals. Only a few terminals were found on somata, all of which were P type. Therefore, terminals belonging to different classes were not uniformly distributed on the somata and dendrites of single TCNs. These results suggest that terminals originating from different sources may preferentially contact specific regions of TCNs in the VL, and their topographical locations reflect the electrophysiological response properties of the TCNs.
Collapse
Affiliation(s)
- F Sato
- Department of Anatomy, Faculty of Medicine, Tokyo Medical and Dental University, Japan.
| | | | | |
Collapse
|
36
|
Strafella A, Ashby P, Munz M, Dostrovsky JO, Lozano AM, Lang AE. Inhibition of voluntary activity by thalamic stimulation in humans: relevance for the control of tremor. Mov Disord 1997; 12:727-37. [PMID: 9380056 DOI: 10.1002/mds.870120517] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The motor effects of stimuli delivered through four-channel, quadripolar macroelectrodes chronically implanted in the ventrolateral thalamus were studied in 20 awake cooperating human subjects. Single stimuli could inhibit voluntary contraction of the contralateral first dorsal interosseous muscle (FDI) for up to 200 ms. The inhibition was often followed by a rebound facilitation or by oscillatory activity. This inhibition appeared to arise from the ventrolateral thalamus and could not be obtained in other patients by stimulation of the periventricular grey matter (PVG), the globus pallidus internus (GPI), or the subthalamic nucleus (STN). The neural elements activated by the stimulus had a short chronaxie and a short refractory period, implying that they were large-diameter axons. Similar effects were obtained from each of the four electrodes in the row, suggesting that this fiber system lay parallel rather than perpendicular to the implanted macroelectrode. The inhibition resulting from a single stimulus was diminished by a prior stimulus or train of stimuli. A continuous train of stimuli produced inhibition for only the first 200 ms. We propose that the thalamic stimulus activates a neural network which includes thalamic relay cells and neurons of the thalamic reticular nucleus and that the inhibition of thalamic relay cells habituates with repeated stimuli. It has been suggested that parkinsonian rest tremor results from synchronization of the oscillatory activity of this network. If this is the case, continuous thalamic stimulation might disrupt this oscillation by diminishing the inhibitory phase.
Collapse
Affiliation(s)
- A Strafella
- Playfair Neuroscience Unit, Toronto Hospital-Western Division, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Ito H, Ishii K, Onuma T, Kawashima R, Fukuda H. Cerebral perfusion changes in traumatic diffuse brain injury; IMP SPECT studies. Ann Nucl Med 1997; 11:167-72. [PMID: 9212901 DOI: 10.1007/bf03164829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diffuse brain injury (DBI) is characterized by axonal degeneration and neuronal damage which cause diffuse brain atrophy. We have investigated the time course of abnormalities in cerebral perfusion distribution in cases of DBI by using Iodine-123-IMP SPECT, and the relationship to the appearance of diffuse brain atrophy. SPECT scans were performed on eight patients with diffuse brain injury due to closed cranial trauma in acute and chronic stages. All patients showed abnormalities in cerebral perfusion with decreases in perfusion, even in non-depicted regions on MRI, and the affected areas varied throughout the period of observation. Diffuse brain atrophy appeared in all patients. In some patients, diffuse brain atrophy was observed at or just after the time when the maximum number of lesions on SPECT were seen. The abnormalities in cerebral perfusion in cases of DBI might therefore be related to axonal degeneration and neuronal damage which causes diffuse brain atrophy.
Collapse
Affiliation(s)
- H Ito
- Department of Nuclear Medicine and Radiology, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
38
|
Na J, Kakei S, Shinoda Y. Cerebellar input to corticothalamic neurons in layers V and VI in the motor cortex. Neurosci Res 1997; 28:77-91. [PMID: 9179883 DOI: 10.1016/s0168-0102(97)00031-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To investigate whether corticothalamic (CT) neurons in the motor cortex (Mx) receive cerebellar input via the ventroanterior-ventrolateral nucleus of the thalamus (VA-VL), we recorded intracellular potentials from neurons in the Mx of anesthetized cats and examined effects of stimulation of the VA-VL and the brachium conjunctivum on them. After this electrophysiological identification, horseradish peroxide (HRP) was injected iontophoretically into the recorded neurons for morphological analysis. We identified 34 neurons as CT neurons by their antidromic response to stimulation of the VA-VL, of which 13 were layer VI CT neurons and 21 were layer V CT neurons. A majority of the CT neurons of both layers VI and V received monosynaptic excitatory postsynaptic potentials (EPSPs) from the VA-VL and di- or polysynaptic EPSPs from the cerebellum. The laminar distribution and morphological characteristics of single CT neurons receiving cerebellar input were analyzed on 19 HRP-labeled CT neurons. Eight layer V and six layer VI CT neurons were reconstructed from serial sections. All the reconstructed layer VI CT neurons were modified pyramidal neurons whose apical dendrites ended in layer III or V, and all the stained layer V CT neurons were typical pyramidal neurons, although the laminar and tangential distribution of recurrent collaterals of these neurons varied from neuron to neuron.
Collapse
Affiliation(s)
- J Na
- Department of Physiology, School of Medicine, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|
39
|
Sato F, Nakamura Y, Shinoda Y. Three-dimensional analysis of cerebellar terminals and their postsynaptic components in the ventral lateral nucleus of the cat thalamus. J Comp Neurol 1996; 371:537-51. [PMID: 8841908 DOI: 10.1002/(sici)1096-9861(19960805)371:4<537::aid-cne4>3.0.co;2-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Relationships among cerebellar terminals (CTs), dendrites of thalamocortical projection neurons (TCNs), and dendrites of local circuit neurons in the ventral lateral nucleus of the cat thalamus were analyzed quantitatively by observing several series of serial ultrathin sections and by using a computer-assisted program for the three-dimensional reconstruction from serial ultrathin sections. In pentobarbital-anesthetized cats, CTs were labeled either by injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the cerebellar nuclei or by intra-axonal injection of HRP after electrophysiological identification. By using two series of 133 and 73 serial sections, mutual relationships between 43 WGA-HRP-labeled CTs and their postsynaptic structures were analyzed based on their synaptic specializations and shapes of synaptic vesicles. Thirty-nine of these CTs formed a synapse with one TCN dendrite, whereas only four CTs formed synapses with two TCN dendrites. These CTs also synapsed on dendrites containing pleomorphic synaptic vesicles (presynaptic dendrites). Single CTs synapsed on 0-6 presynaptic dendrites (2.2 +/- 1.5, N = 43) through their whole extents, and about 40% of these presynaptic dendrites that were contacted by CTs established synaptic contacts with the same TCN dendrites on which the CTs synapsed. Thus, a CT, a presynaptic dendrite, and a TCN dendrite formed a triadic arrangement. Triadic arrangements were identified in approximately 60% of these 43 CTs. However, they rarely had a glomerulus-like appearance, as described previously in the ventral lateral nucleus and other main thalamic relay nuclei. In another series of 83 and 43 serial sections along dendrites of TCNs, observations were focused on the triadic arrangement. Triadic arrangements were located evenly on the primary and secondary dendrites of TCNs. Computer-assisted three-dimensional reconstructions were made on one WGA-HRP-labeled CT and two intra-axonally labeled CTs (a bouton en passant and a bouton terminal) with their surrounding neuronal elements, and complex spatial arrangement of neuronal processes became obvious. These results provide the quantitative assessment of synaptic arrangements among CTs, presynaptic dendrites, and TCN dendrites and reveal their spatial interrelations in the cat ventral lateral nucleus.
Collapse
Affiliation(s)
- F Sato
- Department of Anatomy, Faculty of Medicine, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|
40
|
Timofeev I, Contreras D, Steriade M. Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. J Physiol 1996; 494 ( Pt 1):265-78. [PMID: 8814620 PMCID: PMC1160628 DOI: 10.1113/jphysiol.1996.sp021489] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The fluctuations during various phases of the slow sleep oscillation (< 1 Hz) in synaptic responsiveness of motor cortical (Cx), thalamic reticular (RE) and thalamocortical (TC) neurones were investigated intracellularly in cats under ketamine-xylazine anaesthesia. Orthodromic responses to stimuli applied to brachium conjunctivum (BC) axons and corticothalamic pathways were studied. The phases of slow oscillation consist of a long-hyperpolarized, followed by a sharp depth-negative EEG deflection and a series of faster waves that are associated with the depolarization of Cx and RE neurones, while TC cells display a sequence of IPSPs within the spindle frequency. 2. BC-evoked bisynaptic excitatory postsynaptic potentials (EPSPs) in Cx and RE neurones were drastically reduced in amplitude during the long-lasting hyperpolarization and the early part of the depolarizing phase. By contrast, the BC-evoked monosynaptic EPSPs of TC cells were not diminished during the depth-positive EEG wave, but the hyperpolarization during this phase of the slow oscillation prevented TC neurones transferring prethalamic signals to the cortex. 3. At variance with the diminished bisynaptic EPSPs evoked in response to BC stimuli during the long-lasting hyperpolarization, Cx-evoked monosynaptic EPSPs in Cx cells increased linearly with hyperpolarization during this phase of the slow oscillation. Similarly, the amplitudes of Cx-evoked EPSPs in RE and TC cells were not diminished during the long-lasting hyperpolarization. 4. The diminished responsiveness of Cx and RE neurones to prethalamic volleys during the long-lasting hyperpolarization is attributed to gating processes at the level of TC cells that, because of their hyperpolarization, do not transfer prethalamic information to further relays.
Collapse
Affiliation(s)
- I Timofeev
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Quebec, Canada
| | | | | |
Collapse
|