1
|
Li S, Wei X, Huang H, Ye L, Ma M, Sun L, Lu Y, Wu Y. Neuroplastin exerts antiepileptic effects through binding to the α1 subunit of GABA type A receptors to inhibit the internalization of the receptors. J Transl Med 2023; 21:707. [PMID: 37814294 PMCID: PMC10563248 DOI: 10.1186/s12967-023-04596-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Seizures are associated with a decrease in γ-aminobutyric type A acid receptors (GABAaRs) on the neuronal surface, which may be regulated by enhanced internalization of GABAaRs. When interactions between GABAaR subunit α-1 (GABRA1) and postsynaptic scaffold proteins are weakened, the α1-containing GABAaRs leave the postsynaptic membrane and are internalized. Previous evidence suggested that neuroplastin (NPTN) promotes the localization of GABRA1 on the postsynaptic membrane. However, the association between NPTN and GABRA1 in seizures and its effect on the internalization of α1-containing GABAaRs on the neuronal surface has not been studied before. METHODS An in vitro seizure model was constructed using magnesium-free extracellular fluid, and an in vivo model of status epilepticus (SE) was constructed using pentylenetetrazole (PTZ). Additionally, in vitro and in vivo NPTN-overexpression models were constructed. Electrophysiological recordings and internalization assays were performed to evaluate the action potentials and miniature inhibitory postsynaptic currents of neurons, as well as the intracellular accumulation ratio of α1-containing GABAaRs in neurons. Western blot analysis was performed to detect the expression of GABRA1 and NPTN both in vitro and in vivo. Immunofluorescence co-localization analysis and co-immunoprecipitation were performed to evaluate the interaction between GABRA1 and NPTN. RESULTS The expression of GABRA1 was found to be decreased on the neuronal surface both in vivo and in vitro seizure models. In the in vitro seizure model, α1-containing GABAaRs showed increased internalization. NPTN expression was found to be positively correlated with GABRA1 expression on the neuronal surface both in vivo and in vitro seizure models. In addition, NPTN overexpression alleviated seizures and NPTN was shown to bind to GABRA1 to form protein complexes that can be disrupted during seizures in both in vivo and in vitro models. Furthermore, NPTN was found to inhibit the internalization of α1-containing GABAaRs in the in vitro seizure model. CONCLUSION Our findings provide evidence that NPTN may exert antiepileptic effects by binding to GABRA1 to inhibit the internalization of α1-containing GABAaRs.
Collapse
Affiliation(s)
- Sijun Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Xing Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Hongmi Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Lin Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Meigang Ma
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Lanfeng Sun
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Yuling Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Huang TH, Lai MC, Chen YS, Huang CW. The Roles of Glutamate Receptors and Their Antagonists in Status Epilepticus, Refractory Status Epilepticus, and Super-Refractory Status Epilepticus. Biomedicines 2023; 11:biomedicines11030686. [PMID: 36979664 PMCID: PMC10045490 DOI: 10.3390/biomedicines11030686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Status epilepticus (SE) is a neurological emergency with a high mortality rate. When compared to chronic epilepsy, it is distinguished by the durability of seizures and frequent resistance to benzodiazepine (BZD). The Receptor Trafficking Hypothesis, which suggests that the downregulation of γ-Aminobutyric acid type A (GABAA) receptors, and upregulation of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors play major roles in the establishment of SE is the most widely accepted hypothesis underlying BZD resistance. NMDA and AMPA are ionotropic glutamate receptor families that have important excitatory roles in the central nervous system (CNS). They are both essential in maintaining the normal function of the brain and are involved in a variety of neuropsychiatric diseases, including epilepsy. Based on animal and human studies, antagonists of NMDA and AMPA receptors have a significant impact in ending SE; albeit most of them are not yet approved to be in clinically therapeutic guidelines, due to their psychomimetic adverse effects. Although there is still a dearth of randomized, prospective research, NMDA antagonists such as ketamine, magnesium sulfate, and the AMPA antagonist, perampanel, are regarded to be reasonable optional adjuvant therapies in controlling SE, refractory SE (RSE) or super-refractory SE (SRSE), though there are still a lack of randomized, prospective studies. This review seeks to summarize and update knowledge on the SE development hypothesis, as well as clinical trials using NMDA and AMPA antagonists in animal and human studies of SE investigations.
Collapse
Affiliation(s)
- Tzu-Hsin Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70142, Taiwan
- Zhengxin Neurology & Rehabilitation Center, Tainan 70459, Taiwan
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Yu-Shiue Chen
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70142, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70142, Taiwan
| |
Collapse
|
3
|
Yang JS, Jeon S, Jang HJ, Yoon SH. Group 1 metabotropic glutamate receptor 5 is involved in synaptically-induced Ca 2+-spikes and cell death in cultured rat hippocampal neurons. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:531-540. [PMID: 36302627 PMCID: PMC9614404 DOI: 10.4196/kjpp.2022.26.6.531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Group 1 metabotropic glutamate receptors (mGluRs) can positively affect postsynaptic neuronal excitability and epileptogenesis. The objective of the present study was to determine whether group 1 mGluRs might be involved in synaptically-induced intracellular free Ca2+ concentration ([Ca2+]i) spikes and neuronal cell death induced by 0.1 mM Mg2+ and 10 µM glycine in cultured rat hippocampal neurons from embryonic day 17 fetal Sprague–Dawley rats using imaging methods for Ca2+ and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays for cell survival. Reduction of extracellular Mg2+ concentration ([Mg2+]o) to 0.1 mM induced repetitive [Ca2+]i spikes within 30 sec at day 11.5. The mGluR5 antagonist 6-Methyl-2-(phenylethynyl) pyridine (MPEP) almost completely inhibited the [Ca2+]i spikes, but the mGluR1 antagonist LY367385 did not. The group 1 mGluRs agonist, 3,5-dihydroxyphenylglycine (DHPG), significantly increased the [Ca2+]i spikes. The phospholipase C inhibitor U73122 significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The IP3 receptor antagonist 2-aminoethoxydiphenyl borate or the ryanodine receptor antagonist 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate also significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The TRPC channel inhibitors SKF96365 and flufenamic acid significantly inhibited the [Ca2+]i spikes in the absence or presence of DHPG. The mGluR5 antagonist MPEP significantly increased the neuronal cell survival, but mGluR1 antagonist LY367385 did not. These results suggest a possibility that mGluR5 is involved in synaptically-induced [Ca2+]i spikes and neuronal cell death in cultured rat hippocampal neurons by releasing Ca2+ from IP3 and ryanodine-sensitive intracellular stores and activating TRPC channels.
Collapse
Affiliation(s)
- Ji Seon Yang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| | - Sujeong Jeon
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyun-Jong Jang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| | - Shin Hee Yoon
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
4
|
Restoration of FMRP expression in adult V1 neurons rescues visual deficits in a mouse model of fragile X syndrome. Protein Cell 2021; 13:203-219. [PMID: 34714519 PMCID: PMC8901859 DOI: 10.1007/s13238-021-00878-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022] Open
Abstract
Many people affected by fragile X syndrome (FXS) and autism spectrum disorders have sensory processing deficits, such as hypersensitivity to auditory, tactile, and visual stimuli. Like FXS in humans, loss of Fmr1 in rodents also cause sensory, behavioral, and cognitive deficits. However, the neural mechanisms underlying sensory impairment, especially vision impairment, remain unclear. It remains elusive whether the visual processing deficits originate from corrupted inputs, impaired perception in the primary sensory cortex, or altered integration in the higher cortex, and there is no effective treatment. In this study, we used a genetic knockout mouse model (Fmr1KO), in vivo imaging, and behavioral measurements to show that the loss of Fmr1 impaired signal processing in the primary visual cortex (V1). Specifically, Fmr1KO mice showed enhanced responses to low-intensity stimuli but normal responses to high-intensity stimuli. This abnormality was accompanied by enhancements in local network connectivity in V1 microcircuits and increased dendritic complexity of V1 neurons. These effects were ameliorated by the acute application of GABAA receptor activators, which enhanced the activity of inhibitory neurons, or by reintroducing Fmr1 gene expression in knockout V1 neurons in both juvenile and young-adult mice. Overall, V1 plays an important role in the visual abnormalities of Fmr1KO mice and it could be possible to rescue the sensory disturbances in developed FXS and autism patients.
Collapse
|
5
|
Ergina JL, Amakhin DV, Postnikova TY, Soboleva EB, Zaitsev AV. Short-Term Epileptiform Activity Potentiates Excitatory Synapses but Does Not Affect Intrinsic Membrane Properties of Pyramidal Neurons in the Rat Hippocampus In Vitro. Biomedicines 2021; 9:biomedicines9101374. [PMID: 34680489 PMCID: PMC8533424 DOI: 10.3390/biomedicines9101374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
Even brief epileptic seizures can lead to activity-dependent structural remodeling of neural circuitry. Animal models show that the functional plasticity of synapses and changes in the intrinsic excitability of neurons can be crucial for epileptogenesis. However, the exact mechanisms underlying epileptogenesis remain unclear. We induced epileptiform activity in rat hippocampal slices for 15 min using a 4-aminopyridine (4-AP) in vitro model and observed hippocampal hyperexcitability for at least 1 h. We tested several possible mechanisms of this hyperexcitability, including changes in intrinsic membrane properties of neurons and presynaptic and postsynaptic alterations. Neither input resistance nor other essential biophysical properties of hippocampal CA1 pyramidal neurons were affected by epileptiform activity. The glutamate release probability also remained unchanged, as the frequency of miniature EPSCs and the paired amplitude ratio of evoked responses did not change after epileptiform activity. However, we found an increase in the AMPA/NMDA ratio, suggesting alterations in the properties of postsynaptic glutamatergic receptors. Thus, the increase in excitability of hippocampal neural networks is realized through postsynaptic mechanisms. In contrast, the intrinsic membrane properties of neurons and the probability of glutamate release from presynaptic terminals are not affected in a 4-AP model.
Collapse
|
6
|
Zaitsev АV, Amakhin DV, Dyomina AV, Zakharova MV, Ergina JL, Postnikova TY, Diespirov GP, Magazanik LG. Synaptic Dysfunction in Epilepsy. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302103008x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Deshpande LS, DeLorenzo RJ, Churn SB, Parsons JT. Neuronal-Specific Inhibition of Endoplasmic Reticulum Mg 2+/Ca 2+ ATPase Ca 2+ Uptake in a Mixed Primary Hippocampal Culture Model of Status Epilepticus. Brain Sci 2020; 10:brainsci10070438. [PMID: 32664397 PMCID: PMC7407863 DOI: 10.3390/brainsci10070438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
Loss of intracellular calcium homeostasis is an established mechanism associated with neuronal dysfunction and status epilepticus. Sequestration of free cytosolic calcium into endoplasmic reticulum by Mg2+/Ca2+ adenosinetriphosphatase (ATPase) is critical for maintenance of intracellular calcium homeostasis. Exposing hippocampal cultures to low-magnesium media is a well-accepted in vitro model of status epilepticus. Using this model, it was shown that endoplasmic reticulum Ca2+ uptake was significantly inhibited in homogenates from cultures demonstrating electrophysiological seizure phenotypes. Calcium uptake was mainly neuronal. However, glial Ca2+ uptake was also significantly inhibited. Viability of neurons exposed to low magnesium was similar to neurons exposed to control solutions. Finally, it was demonstrated that Ca2+ uptake inhibition and intracellular free Ca2+ levels increased in parallel with increasing incubation in low magnesium. The results suggest that inhibition of Mg2+/Ca2+ ATPase-mediated endoplasmic reticulum Ca2+ sequestration contributes to loss of intracellular Ca2+ homeostasis associated with status epilepticus. This study describes for the first time inhibition of endoplasmic reticulum Mg2+/Ca2+ ATPase in a mixed primary hippocampal model of status epilepticus. In combination with animal models of status epilepticus, the cell culture model provides a powerful tool to further elucidate mechanisms that result in inhibition of Mg2+/Ca2+ ATPase and downstream consequences of decreased enzyme activity.
Collapse
Affiliation(s)
- Laxmikant S. Deshpande
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; (L.S.D.); (R.J.D.); (S.B.C.)
| | - Robert J. DeLorenzo
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; (L.S.D.); (R.J.D.); (S.B.C.)
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Biochemistry and Molecular Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Severn B. Churn
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; (L.S.D.); (R.J.D.); (S.B.C.)
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Physiology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J. Travis Parsons
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; (L.S.D.); (R.J.D.); (S.B.C.)
- Correspondence:
| |
Collapse
|
8
|
Aucubin Alleviates Seizures Activity in Li-Pilocarpine-Induced Epileptic Mice: Involvement of Inhibition of Neuroinflammation and Regulation of Neurotransmission. Neurochem Res 2019; 44:472-484. [DOI: 10.1007/s11064-018-2700-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
|
9
|
Wang Y, Wang Y, Chen Z. Double-edged GABAergic synaptic transmission in seizures: The importance of chloride plasticity. Brain Res 2018; 1701:126-136. [PMID: 30201259 DOI: 10.1016/j.brainres.2018.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022]
Abstract
GABAergic synaptic inhibition, which is a critical regulator of neuronal excitability, is closely involved in epilepsy. Interestingly, fast GABAergic transmission mediated by Cl- permeable GABAA receptors can bi-directionally exert both seizure-suppressing and seizure-promoting actions. Accumulating evidence suggests that chloride plasticity, the driving force of GABAA receptor-mediated synaptic transmission, contributes to the double-edged role of GABAergic synapses in seizures. Large amounts of Cl- influx can overwhelm Cl- extrusion during seizures not only in healthy tissue in a short-term "activity-dependent" manner, but also in chronic epilepsy in a long-term, irreversible "pathology-dependent" manner related to the dysfunction of two chloride transporters: the chloride importer NKCC1 and the chloride exporter KCC2. In this review, we address the importance of chloride plasticity for the "activity-dependent" and "pathology-dependent" mechanisms underlying epileptic events and provide possible directions for further research, which may be clinically important for the design of GABAergic synapse-targeted precise therapeutic interventions for epilepsy.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Miri ML, Vinck M, Pant R, Cardin JA. Altered hippocampal interneuron activity precedes ictal onset. eLife 2018; 7:40750. [PMID: 30387711 PMCID: PMC6245730 DOI: 10.7554/elife.40750] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/02/2018] [Indexed: 12/29/2022] Open
Abstract
Although failure of GABAergic inhibition is a commonly hypothesized mechanism underlying seizure disorders, the series of events that precipitate a rapid shift from healthy to ictal activity remain unclear. Furthermore, the diversity of inhibitory interneuron populations poses a challenge for understanding local circuit interactions during seizure initiation. Using a combined optogenetic and electrophysiological approach, we examined the activity of identified mouse hippocampal interneuron classes during chemoconvulsant seizure induction in vivo. Surprisingly, synaptic inhibition from parvalbumin- (PV) and somatostatin-expressing (SST) interneurons remained intact throughout the preictal period and early ictal phase. However, these two sources of inhibition exhibited cell-type-specific differences in their preictal firing patterns and sensitivity to input. Our findings suggest that the onset of ictal activity is not associated with loss of firing by these interneurons or a failure of synaptic inhibition but is instead linked with disruptions of the respective roles these interneurons play in the hippocampal circuit.
Collapse
Affiliation(s)
- Mitra L Miri
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Martin Vinck
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Rima Pant
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Jessica A Cardin
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Kavli Institute for Neuroscience, Yale University, New Haven, United States
| |
Collapse
|
11
|
Wu G, Yu J, Wang L, Ren S, Zhang Y. PKC/CREB pathway mediates the expressions of GABA A receptor subunits in cultured hippocampal neurons after low-Mg 2+ solution treatment. Epilepsy Res 2018; 140:155-161. [PMID: 29414524 DOI: 10.1016/j.eplepsyres.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/08/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the potential effects of the PKC/CREB pathway on the expressions of GABAA receptor subunits α1, γ2, and δ in cultured hippocampal neurons using a model of epilepsy that employed conditions of low magnesium (Mg2+). METHODS A total of 108 embryonic rats at the age of 18 embryonic days (E18)prepared from adult female SD rats were used as experimental subjects. Primary rat hippocampal cultures were prepared from the embryonic 18 days rats. The cultured hippocampal neurons were then treated with artificial cerebrospinal fluid containing low Mg2+ solutions to generate a low Mg2+ model of epilepsy. The low Mg2+ stimulation lasted for 3 h and then returned to in maintenance medium for 20 h. The changes of the GABAA receptor subunit α1, γ2, δ were observed by blocking or activating the function of the CREB. The quantification of the GABAA receptor subunit α1, γ2, δ and the CREB were determined by a qRT-PCR and a Western blot method. RESULTS After the neurons were exposed to a low-Mg2+ solution for 3 h, GABAA receptor mRNA expression markedly increased compared to the control, and then gradually decreased. In contrast, CREB mRNA levels exhibited a dramatic down-regulation 3 h after terminating low-Mg2+ treatment, and then peaked at 9 h. Western blot analyses verified that staurosporine suppressed CREB phosphorylation (p-CREB). The mRNA expression of GABAA receptor subunit α1 increased only in the presence of staurosporine, whereas the expressions of subunits γ2 and δ significantly increased in the presence of either KG-501 or staurosporine. Furthermore, phorbol 12-myristate 13-acetate (PMA) decreased the expressions of GABAA subunits α1, γ2, and δ when administered alone. However, the administration of either KG-501 or staurosporine reversed the inhibitory effects of PMA. CONCLUSIONS The PKC/CREB pathway may negatively regulate the expressions of GABAA receptor subunits α1, γ2, and δ in cultured hippocampal neurons in low Mg2+ model of epilepsy.
Collapse
Affiliation(s)
- Guofeng Wu
- Emergency Department of the Affiliated Hospital, Guizhou Medical University, Guiyang City, 550004, PR China.
| | - Jinpeng Yu
- Emergency Department of the Affiliated Hospital, Guizhou Medical University, Guiyang City, 550004, PR China
| | - Likun Wang
- Emergency Department of the Affiliated Hospital, Guizhou Medical University, Guiyang City, 550004, PR China
| | - Siying Ren
- Emergency Department of the Affiliated Hospital, Guizhou Medical University, Guiyang City, 550004, PR China
| | - Yixia Zhang
- Guizhou Centre for Disease Control and Prevention, Guiyang City, 550004, PR China
| |
Collapse
|
12
|
Irl H, Kratzer S, Schwerin S, Kochs E, Blobner M, Schneider G, Rammes G, Haseneder R. Tranexamic acid impairs hippocampal synaptic transmission mediated by gamma aminobutyric acid receptor type A. Eur J Pharmacol 2017; 815:49-55. [DOI: 10.1016/j.ejphar.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 09/17/2017] [Accepted: 10/02/2017] [Indexed: 01/17/2023]
|
13
|
Weissinger F, Wawra M, Fidzinski P, Elsner M, Meierkord H, Holtkamp M, Buchheim K. Dentate gyrus autonomous ictal activity in the status epilepticus rat model of epilepsy. Brain Res 2017; 1658:1-10. [PMID: 28062187 DOI: 10.1016/j.brainres.2016.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 02/01/2023]
Abstract
The dentate gyrus (DG) as part of the hippocampal formation is believed to serve as a gatekeeper with strong inhibitory properties against uncontrolled propagation of neuronal activity from the entorhinal cortex and neocortical structures. In temporal lobe epilepsy, the DG becomes hyperexcitable and loses its gate function, enabling propagation of ictal activity into downstream structures such as CA3 and CA1 areas. Furthermore, the DG, apart from facilitating propagation, may also be able to autonomously generate ictal activity, but this point has remained open so far. To tackle this question, we used intrinsic optical imaging in combination with electrophysiological recordings in brain slice preparations from rats in which status epilepticus had been induced electrically several weeks prior to measurements. Upon omission of Mg++ from the artificial cerebrospinal fluid, in 15 out of 33 slices (45.4%) from 9 out of 13 epileptic animals (69.2%), spontaneous and autonomous ictal activity, mostly seizure-like events (SLE), was observed in the DG. This activity manifested independently from SLE generated in adjacent cortices and never occurred in slices from control animals. SLE generated in the DG differed from those with origin in the entorhinal or temporal cortex by longer latency to the first event after Mg++ omission (p<0.001), a higher SLE frequency (p<0.05), higher amplitude (p<0.001) and a longer SLE duration (p<0.05). We conclude that in epilepsy, the DG, in addition to facilitated gating of activity from upstream structures, can serve as an independent generator of ictal activity.
Collapse
Affiliation(s)
- Florian Weissinger
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Wawra
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Pawel Fidzinski
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mark Elsner
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hartmut Meierkord
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Martin Holtkamp
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Katharina Buchheim
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
14
|
Assessment of Methods for the Intracellular Blockade of GABAA Receptors. PLoS One 2016; 11:e0160900. [PMID: 27501143 PMCID: PMC4976935 DOI: 10.1371/journal.pone.0160900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
Selective blockade of inhibitory synaptic transmission onto specific neurons is a useful tool for dissecting the excitatory and inhibitory synaptic components of ongoing network activity. To achieve this, intracellular recording with a patch solution capable of blocking GABAA receptors has advantages over other manipulations, such as pharmacological application of GABAergic antagonists or optogenetic inhibition of populations of interneurones, in that the majority of inhibitory transmission is unaffected and hence the remaining network activity preserved. Here, we assess three previously described methods to block inhibition: intracellular application of the molecules picrotoxin, 4,4’-dinitro-stilbene-2,2’-disulphonic acid (DNDS) and 4,4’-diisothiocyanostilbene-2,2’-disulphonic acid (DIDS). DNDS and picrotoxin were both found to be ineffective at blocking evoked, monosynaptic inhibitory postsynaptic currents (IPSCs) onto mouse CA1 pyramidal cells. An intracellular solution containing DIDS and caesium fluoride, but lacking nucleotides ATP and GTP, was effective at decreasing the amplitude of IPSCs. However, this effect was found to be independent of DIDS, and the absence of intracellular nucleotides, and was instead due to the presence of fluoride ions in this intracellular solution, which also blocked spontaneously occurring IPSCs during hippocampal sharp waves. Critically, intracellular fluoride ions also caused a decrease in both spontaneous and evoked excitatory synaptic currents and precluded the inclusion of nucleotides in the intracellular solution. Therefore, of the methods tested, only fluoride ions were effective for intracellular blockade of IPSCs but this approach has additional cellular effects reducing its selectivity and utility.
Collapse
|
15
|
Abstract
Molecular genetics has led to major advances in the study of neurological disease over the last 2 decades. Initial advances were made in understanding specific mutations that were associated with disease, such as epilepsy and other neurological conditions. In addition to specific mutations, recent research has focused on long-lasting or permanent changes in genetic expression as an underlying substrate of acquired diseases such as epilepsy. In symptomatic epilepsy, normal brain tissue is permanently altered and develops spon taneous recurrent seizures. Evidence indicates that long-lasting changes in gene expression at both tran scriptional and post-transcriptional levels are associated with epileptogenesis. The expression of transcription factors and other regulatory proteins represent a molecular mechanism for mediating these changes. Understanding the effects of severe environmental stresses on the multiple sites of transcriptional and post-transcriptional regulation of gene expression is likely to provide important insights into the devel opment of altered neuronal function in a number of important disease states, including epilepsy. NEURO SCIENTIST 5:86-99, 1999
Collapse
Affiliation(s)
- Robert J. Delorenzo
- Departments of Neurology, Pharmacology and Toxicology,
and Biochemistry and Molecular Biophysics Virginia Commonwealth University
Richmond, Virginia
| | - T. Allen Morris
- Departments of Neurology, Pharmacology and Toxicology,
and Biochemistry and Molecular Biophysics Virginia Commonwealth University
Richmond, Virginia
| |
Collapse
|
16
|
Shafeghat N, Heidarinejad M, Murata N, Nakamura H, Inoue T. Optical detection of neuron connectivity by random access two-photon microscopy. J Neurosci Methods 2016; 263:48-56. [PMID: 26851307 DOI: 10.1016/j.jneumeth.2016.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/24/2015] [Accepted: 01/26/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND Knowledge about the distribution, strength, and direction of synaptic connections within neuronal networks are crucial for understanding brain function. Electrophysiology using multiple electrodes provides a very high temporal resolution, but does not yield sufficient spatial information for resolving neuronal connection topology. Optical recording techniques using single-cell resolution have provided promise for providing spatial information. Although calcium imaging from hundreds of neurons has provided a novel view of the neural connections within the network, the kinetics of calcium responses are not fast enough to resolve each action potential event with high fidelity. Therefore, it is not possible to detect the direction of neuronal connections. NEW METHOD We took advantage of the fast kinetics and large dynamic range of the DiO/DPA combination of voltage sensitive dye and the fast scan speed of a custom-made random-access two-photon microscope to resolve each action potential event from multiple neurons in culture. RESULTS Long-duration recording up to 100min from cultured hippocampal neurons yielded sufficient numbers of spike events for analyzing synaptic connections. Cross-correlation analysis of neuron pairs clearly distinguished synaptically connected neuron pairs with the connection direction. COMPARISON WITH EXISTING METHOD The long duration recording of action potentials with voltage-sensitive dye utilized in the present study is much longer than in previous studies. Simultaneous optical voltage and calcium measurements revealed that voltage-sensitive dye is able to detect firing events more reliably than calcium indicators. CONCLUSIONS This novel method reveals a new view of the functional structure of neuronal networks.
Collapse
Affiliation(s)
- Nasrin Shafeghat
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Morteza Heidarinejad
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Noboru Murata
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hideki Nakamura
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
17
|
Allio A, Calorio C, Franchino C, Gavello D, Carbone E, Marcantoni A. Bud extracts from Tilia tomentosa Moench inhibit hippocampal neuronal firing through GABAA and benzodiazepine receptors activation. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:288-296. [PMID: 26144285 DOI: 10.1016/j.jep.2015.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/10/2015] [Accepted: 06/14/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tilia tomentosa Moench bud extracts (TTBEs) is used in traditional medicine for centuries as sedative compound. Different plants belonging to the Tilia genus have shown their efficacy in the treatment of anxiety but still little is known about the mechanism of action of their bud extracts. AIM OF THE STUDY To evaluate the action of TTBEs as anxiolytic and sedative compound on in vitro hippocampal neurons. MATERIAL AND METHODS The anxiolytic effect of TTBEs was assayed by testing the effects of these compounds on GABAA receptor-activated chloride current of hippocampal neurons by means of the patch-clamp technique and microelectrode-arrays (MEAs). RESULTS TTBEs acutely administered on mouse hippocampal neurons, activated a chloride current comparable to that measured in the presence of GABA (100 µM). Bicuculline (100 µM) and picrotoxin (100 µM) blocked about 90% of this current, while the remaining 10% was blocked by adding the benzodiazepine (BDZ) antagonist flumazenil (30 µM). Flumazenil alone blocked nearly 60% of the TTBEs activated current, suggesting that TTBEs binds to both GABAA and BDZ receptor sites. Application of high-doses of TTBEs on spontaneous active hippocampal neurons grown for 3 weeks on MEAs blocked the synchronous activity of these neurons. The effects were mimicked by GABA and prevented by picrotoxin (100µM) and flumazenil (30 µM). At minimal doses, TTBEs reduced the frequency of synchronized bursts and increased the cross-correlation index of synchronized neuronal firing. CONCLUSIONS Our data suggest that TTBEs mimics GABA and BDZ agonists by targeting hippocampal GABAergic synapses and inhibiting network excitability by increasing the strength of inhibitory synaptic outputs. Our results contribute toward the validation of TTBEs as effective sedative and anxiolytic compound.
Collapse
Affiliation(s)
- Arianna Allio
- Department of Drug Science and Technology, University of Torino, Corso Raffaello 30, 10125 Torino, Italy.
| | - Chiara Calorio
- Department of Drug Science and Technology, University of Torino, Corso Raffaello 30, 10125 Torino, Italy.
| | - Claudio Franchino
- Department of Drug Science and Technology, University of Torino, Corso Raffaello 30, 10125 Torino, Italy.
| | - Daniela Gavello
- Department of Drug Science and Technology, University of Torino, Corso Raffaello 30, 10125 Torino, Italy.
| | - Emilio Carbone
- Department of Drug Science and Technology, University of Torino, Corso Raffaello 30, 10125 Torino, Italy.
| | - Andrea Marcantoni
- Department of Drug Science and Technology, University of Torino, Corso Raffaello 30, 10125 Torino, Italy.
| |
Collapse
|
18
|
Peng X, Hughes EG, Moscato EH, Parsons TD, Dalmau J, Balice-Gordon RJ. Cellular plasticity induced by anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann Neurol 2015; 77:381-98. [PMID: 25369168 PMCID: PMC4365686 DOI: 10.1002/ana.24293] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/19/2014] [Accepted: 10/22/2014] [Indexed: 02/06/2023]
Abstract
Objective Autoimmune-mediated anti–α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) encephalitis is a severe but treatment-responsive disorder with prominent short-term memory loss and seizures. The mechanisms by which patient antibodies affect synapses and neurons leading to symptoms are poorly understood. Methods The effects of patient antibodies on cultures of live rat hippocampal neurons were determined with immunostaining, Western blot, and electrophysiological analyses. Results We show that patient antibodies cause a selective decrease in the total surface amount and synaptic localization of GluA1- and GluA2-containing AMPARs, regardless of receptor subunit binding specificity, through increased internalization and degradation of surface AMPAR clusters. In contrast, patient antibodies do not alter the density of excitatory synapses, N-methyl-D-aspartate receptor (NMDAR) clusters, or cell viability. Commercially available AMPAR antibodies directed against extracellular epitopes do not result in a loss of surface and synaptic receptor clusters, suggesting specific effects of patient antibodies. Whole-cell patch clamp recordings of spontaneous miniature postsynaptic currents show that patient antibodies decrease AMPAR-mediated currents, but not NMDAR-mediated currents. Interestingly, several functional properties of neurons are also altered: inhibitory synaptic currents and vesicular γ-aminobutyric acid transporter (vGAT) staining intensity decrease, whereas the intrinsic excitability of neurons and short-interval firing increase. Interpretation These results establish that antibodies from patients with anti-AMPAR encephalitis selectively eliminate surface and synaptic AMPARs, resulting in a homeostatic decrease in inhibitory synaptic transmission and increased intrinsic excitability, which may contribute to the memory deficits and epilepsy that are prominent in patients with this disorder.
Collapse
Affiliation(s)
- Xiaoyu Peng
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | |
Collapse
|
19
|
Wang S, Yang X, Lin Y, Qiu X, Li H, Zhao X, Cao L, Liu X, Pang Y, Wang X, Chi Z. Cellular NAD depletion and decline of SIRT1 activity play critical roles in PARP-1-mediated acute epileptic neuronal death in vitro. Brain Res 2013; 1535:14-23. [PMID: 23994215 DOI: 10.1016/j.brainres.2013.08.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 08/09/2013] [Accepted: 08/21/2013] [Indexed: 11/28/2022]
Abstract
Intense poly(ADP-ribose) polymerase-1 (PARP-1) activation was implicated as a major cause of caspase-independent cell death in the hippocampal neuronal culture (HNC) model of acute acquired epilepsy (AE). The molecular mechanisms are quite complicated. The linkage among neuronal death, cellular nicotinamide adenine dinucleotide (NAD) levels, apoptosis-inducing factor (AIF) translocation, SIRT1 expression and activity were investigated here. The results showed that PARP-1 over-activation caused by Mg²⁺-free stimuli led to cellular NAD depletion which could block AIF translocation from mitochondria to nucleus and attenuate neuronal death. Also, SIRT1 deacetylase activity was reduced by Mg²⁺-free treatment, accompanied by elevated ratio of neuronal death, which could be rescued by NAD repletion. These data demonstrated that cellular NAD depletion and decline of SIRT1 activity play critical roles in PARP-1-mediated epileptic neuronal death in the HNC model of acute AE.
Collapse
Affiliation(s)
- Shengjun Wang
- Department of Neurology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim HJ, Kim TH, Choi SJ, Hong YJ, Yang JS, Sung KW, Rhie DJ, Hahn SJ, Yoon SH. Fluoxetine suppresses synaptically induced [Ca²⁺]i spikes and excitotoxicity in cultured rat hippocampal neurons. Brain Res 2012; 1490:23-34. [PMID: 23131584 DOI: 10.1016/j.brainres.2012.10.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/21/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
Abstract
Fluoxetine is a widely used antidepressant with an action that is primarily attributed to the inhibition of serotonin re-uptake into the synaptic terminals of the central nervous system. Fluoxetine also has blocking effects on various ion channels, including Ca(2+) channels. It remains unclear, however, how fluoxetine may affect synaptically induced [Ca(2+)](i) spikes. We investigated the effects of fluoxetine on [Ca(2+)](i) spikes, along with the subsequent neurotoxicity that is synaptically evoked by lowering extracellular Mg(2+) in cultured rat hippocampal neurons. Fluoxetine inhibited the synaptically induced [Ca(2+)](i) spikes in p-chloroamphetamine-treated and non-treated neurons, in a concentration-dependent manner. However, other selective serotonin reuptake inhibitors, such as paroxetine and citalopram, did not significantly affect the spikes. Pretreatment with fluoxetine for 5 min inhibited [Ca(2+)](i) increases induced by glutamate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and N-methyl-d-aspartate. Fluoxetine also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced currents. In addition, fluoxetine decreased the [Ca(2+)](i) responses induced by the metabotrophic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine or the ryanodine receptor agonist caffeine. Fluoxetine inhibited [Ca(2+)](i) responses induced by 20mM KCl. Fluoxetine decreased the release of FM1-43 induced by electric field stimulation. Furthermore, fluoxetine inhibited 0.1mM [Mg(2+)](o)-induced cell death. Collectively, our results suggest that fluoxetine suppresses the spikes and protects neurons against excitotoxicity, particularly in cultured rat hippocampal neurons, presumably due to both direct inhibition of presynaptic glutamate release and postsynaptic glutamate receptor-mediated [Ca(2+)](i) signaling. In addition to an indirect inhibitory effect via 5-HT levels, these data suggest a new, possibly direct inhibitory action of fluoxetine on synaptically induced [Ca(2+)](i) spikes and neuronal cell death.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, San #29, Anseo-dong, Dongnam-gu, Cheonan, Chungnam 330-714, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hyperthermia induces epileptiform discharges in cultured rat cortical neurons. Brain Res 2011; 1417:87-102. [DOI: 10.1016/j.brainres.2011.08.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 01/28/2023]
|
22
|
Drumond L, Kushmerick C, Guidine P, Doretto M, Moraes M, Massensini A. Reduced hippocampal GABAergic function in Wistar audiogenic rats. Braz J Med Biol Res 2011; 44:1054-9. [DOI: 10.1590/s0100-879x2011007500118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 08/25/2011] [Indexed: 03/13/2023] Open
|
23
|
Musto AE, Samii M. Platelet-activating factor receptor antagonism targets neuroinflammation in experimental epilepsy. Epilepsia 2011; 52:551-61. [PMID: 21204830 DOI: 10.1111/j.1528-1167.2010.02920.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Temporal lobe epilepsy is associated with the inflammatory process related to the basic mechanisms that lead to seizure susceptibility and brain damage. Platelet-activating factor (PAF), a potent, short-lived phospholipid mediator of inflammation, participates in physiologic signaling in the brain. However, after seizures, PAF accumulates in the brain and activates intracellular signaling related with inflammation-mediated excitotoxicity and hippocampal hyperexcitability. The objective of this study is to evaluate the effect of PAF antagonism on hippocampal hyperexcitability, seizure susceptibility, and neuroprotection using the kindling paradigm and pilocarpine-induced seizure damage models. METHODS The PAF antagonist, LAU-0901 (60 mg/kg, i.p.), or vehicle, was administrated each day of kindling or daily during the 4 weeks after status epilepticus (SE). We analyzed seizure severity, electrical activity, cellular damage, and inflammation in the hippocampi of both treated groups. KEY FINDINGS LAU-0901 limits the progression of kindling and attenuates seizure susceptibility 1 week after the kindling procedure. In addition, under the seizure-damage conditions studied here, we observed that LAU-0901 induces hippocampal neuroprotection and limits somatostatin interneuronal cell loss and inflammation. SIGNIFICANCE Our results indicate that modulation of PAF overactivity attenuates seizure susceptibility, hippocampal hyperexcitability, and neuroinflammation.
Collapse
Affiliation(s)
- Alberto E Musto
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
24
|
Isaeva E, Isaev D, Savrasova A, Khazipov R, Holmes GL. Recurrent neonatal seizures result in long-term increases in neuronal network excitability in the rat neocortex. Eur J Neurosci 2010; 31:1446-55. [PMID: 20384780 DOI: 10.1111/j.1460-9568.2010.07179.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neonatal seizures are associated with a high likelihood of adverse neurological outcomes, including mental retardation, behavioral disorders, and epilepsy. Early seizures typically involve the neocortex, and post-neonatal epilepsy is often of neocortical origin. However, our understanding of the consequences of neonatal seizures for neocortical function is limited. In the present study, we show that neonatal seizures induced by flurothyl result in markedly enhanced susceptibility of the neocortex to seizure-like activity. This change occurs in young rats studied weeks after the last induced seizure and in adult rats studied months after the initial seizures. Neonatal seizures resulted in reductions in the amplitude of spontaneous inhibitory postsynaptic currents and the frequency of miniature inhibitory postsynaptic currents, and significant increases in the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and in the frequency of miniature excitatory postsynaptic currents (mEPSCs) in pyramidal cells of layer 2/3 of the somatosensory cortex. The selective N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovalerate eliminated the differences in amplitude and frequency of sEPSCs and mEPSCs in the control and flurothyl groups, suggesting that NMDA receptors contribute significantly to the enhanced excitability seen in slices from rats that experienced recurrent neonatal seizures. Taken together, our results suggest that recurrent seizures in infancy result in a persistent enhancement of neocortical excitability.
Collapse
Affiliation(s)
- Elena Isaeva
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | | | | | | | |
Collapse
|
25
|
Increase of GABAA receptor-mediated tonic inhibition in dentate granule cells after traumatic brain injury. Neurobiol Dis 2010; 38:464-75. [PMID: 20304069 DOI: 10.1016/j.nbd.2010.03.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 10/19/2022] Open
Abstract
Traumatic brain injury (TBI) can result in altered inhibitory neurotransmission, hippocampal dysfunction, and cognitive impairments. GABAergic spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) and tonic (extrasynaptic) whole cell currents were recorded in control rat hippocampal dentate granule cells (DGCs) and at 90days after controlled cortical impact (CCI). At 34 degrees C, in CCI DGCs, sIPSC frequency and amplitude were unchanged, whereas mIPSC frequency was decreased (3.10+/-0.84Hz, n=16, and 2.44+/-0.67Hz, n=7, p<0.05). At 23 degrees C, 300nM diazepam increased peak amplitude of mIPSCs in control and CCI DGCs, but the increase was 20% higher in control (26.81+/-2.2pA and 42.60+/-1.22pA, n=9, p=0.031) compared to CCI DGCs (33.46+/-2.98pA and 46.13+/-1.09pA, n=10, p=0.047). At 34 degrees C, diazepam did not prolong decay time constants (6.59+/-0.12ms and 6.62+/-0.98ms, n=9, p=0.12), the latter suggesting that CCI resulted in benzodiazepine-insensitive pharmacology in synaptic GABA(A) receptors (GABA(A)Rs). In CCI DGCs, peak amplitude of mIPSCs was inhibited by 100microM furosemide (51.30+/-0.80pA at baseline and 43.50+/-5.30pA after furosemide, n=5, p<0.001), a noncompetitive antagonist of GABA(A)Rs with an enhanced affinity to alpha4 subunit-containing receptors. Potentiation of tonic current by the GABA(A)R delta subunit-preferring competitive agonist THIP (1 and 3microM) was increased in CCI DGCs (47% and 198%) compared to control DGCs (13% and 162%), suggesting the presence of larger tonic current in CCI DGCs; THIP (1microM) had no effect on mIPSCs. Taken together, these results demonstrate alterations in synaptic and extrasynaptic GABA(A)Rs in DGCs following CCI.
Collapse
|
26
|
Waldbaum S, Dudek FE. Single and repetitive paired-pulse suppression: a parametric analysis and assessment of usefulness in epilepsy research. Epilepsia 2008; 50:904-16. [PMID: 19170733 DOI: 10.1111/j.1528-1167.2008.01939.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The paired-pulse technique has been widely used as a convenient but indirect measure of "inhibition" in hippocampal circuits of normal and epileptic animals. Most investigators have used a single paired-pulse protocol, whereas others have utilized repetitive paired pulses. This study investigated which parameters influence results from paired-pulse tests, focusing on the repetitive paired-pulse technique; it aims to assess how this technique may be used in an unbiased and quantitative manner across animal preparations for comparisons of control and experimental epileptic animals. METHODS The perforant path was stimulated while field potentials were recorded from the granule cell layer under isoflurane anesthesia. Paired-pulse suppression was analyzed as a function of stimulation intensity and interpulse interval and frequency. RESULTS Paired-pulse suppression was greater with increased stimulus intensity and decreased interpulse interval (20-100 ms). During repetitive protocols, stimulation frequencies <or=1.0 Hz produced paired-pulse suppression similar to single paired-pulse responses, but caused more paired-pulse suppression between 1.0 and 4.0 Hz at all but the lowest intensities. The amplitude of the population spike produced by the conditioning pulse increased progressively during stimulation at higher frequencies (1.0-4.0 Hz). DISCUSSION The single paired-pulse technique is highly dependent on stimulation parameters, as is the repetitive paired-pulse protocol, which is more variable. To generate reliable, consistent, and unbiased data in comparisons of control and experimental epileptic groups, all parameters should be specified and controlled across experiments. Paired-pulse suppression is susceptible to alterations in many mechanisms, and, therefore, represents a circuit response rather than an assay of gamma-aminobutyric acid (GABA)ergic inhibition in epilepsy research.
Collapse
Affiliation(s)
- Simon Waldbaum
- Department of Biomedical Sciences, Anatomy and Neurobiology Section, Colorado State University, Fort Collins, Colorado, USA
| | | |
Collapse
|
27
|
Sun DA, Deshpande LS, Sombati S, Baranova A, Wilson MS, Hamm RJ, DeLorenzo RJ. Traumatic brain injury causes a long-lasting calcium (Ca2+)-plateau of elevated intracellular Ca levels and altered Ca2+ homeostatic mechanisms in hippocampal neurons surviving brain injury. Eur J Neurosci 2008; 27:1659-72. [PMID: 18371074 DOI: 10.1111/j.1460-9568.2008.06156.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) survivors often suffer chronically from significant morbidity associated with cognitive deficits, behavioral difficulties and a post-traumatic syndrome and thus it is important to understand the pathophysiology of these long-term plasticity changes after TBI. Calcium (Ca2+) has been implicated in the pathophysiology of TBI-induced neuronal death and other forms of brain injury including stroke and status epilepticus. However, the potential role of long-term changes in neuronal Ca2+ dynamics after TBI has not been evaluated. In the present study, we measured basal free intracellular Ca2+ concentration ([Ca2+](i)) in acutely isolated CA3 hippocampal neurons from Sprague-Dawley rats at 1, 7 and 30 days after moderate central fluid percussion injury. Basal [Ca2+](i) was significantly elevated when measured 1 and 7 days post-TBI without evidence of neuronal death. Basal [Ca2+](i) returned to normal when measured 30 days post-TBI. In contrast, abnormalities in Ca2+ homeostasis were found for as long as 30 days after TBI. Studies evaluating the mechanisms underlying the altered Ca2+ homeostasis in TBI neurons indicated that necrotic or apoptotic cell death and abnormalities in Ca2+ influx and efflux mechanisms could not account for these changes and suggested that long-term changes in Ca2+ buffering or Ca2+ sequestration/release mechanisms underlie these changes in Ca2+ homeostasis after TBI. Further elucidation of the mechanisms of altered Ca2+ homeostasis in traumatized, surviving neurons in TBI may offer novel therapeutic interventions that may contribute to the treatment and relief of some of the morbidity associated with TBI.
Collapse
Affiliation(s)
- David A Sun
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Karst H, Joëls M. Brief RU 38486 treatment normalizes the effects of chronic stress on calcium currents in rat hippocampal CA1 neurons. Neuropsychopharmacology 2007; 32:1830-9. [PMID: 17228340 DOI: 10.1038/sj.npp.1301296] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic stress alters many properties in rat brain, like serotonin responsiveness and dendritic morphology. In the present study, we examined (i) whether unpredictable stress during 21 days affects calcium (Ca) currents of CA1 pyramidal neurons recorded on day 22; and (ii) if so, whether this change is normalized by treatment with the glucocorticoid receptor-antagonist RU 38486 during days 18-21. At 3 weeks of unpredictable stress increased the amplitude of the peak and sustained calcium current components, determined in hippocampal slices prepared from animals under rest (ie, with low corticosterone levels). The increased Ca-current amplitude was associated with an enhanced cell capacitance; current density was not significantly affected by chronic stress. In slices from stressed rats that received RU 38486, no stress-induced enhancement of calcium current amplitude was seen, while RU 38486 by itself did not alter calcium currents in handled controls. We confirmed earlier observations that brief in vitro treatment with 100 nM corticosterone, thus substantially activating the low-affinity glucocorticoid receptors, increases Ca-current amplitude recorded 1-4 h later in slices from naïve rats. However, Ca-current amplitude was not affected by corticosterone applied to slices from handled controls and currents were even decreased by corticosterone given to slices from chronically stressed rats, suggesting that corticosterone effects depend on the history of the animal. In conclusion, the data indicate that chronic stress, RU 38486 treatment as well as acute rises in corticosterone level strongly modulate calcium influx into CA1 neurons. This could have consequences for the viability of these neurons.
Collapse
Affiliation(s)
- Henk Karst
- SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
29
|
Optical suppression of seizure-like activity with an LED. Epilepsy Res 2007; 74:201-9. [PMID: 17448638 DOI: 10.1016/j.eplepsyres.2007.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 03/18/2007] [Indexed: 11/30/2022]
Abstract
The therapy of focal epilepsy remains unsatisfactory for as many as 25% of patients. We tested the hypothesis that an efficient, ultraviolet light emitting diode (UV LED), coupled with a newly developed "caged" gamma-aminobutyric acid (GABA), might be capable of terminating "ictal-like" events in cultured murine neurons. GABA was released from BC204, a recently described caged GABA, using a small, ultraviolet (UV) LED. Ictal-like events were provoked by removal of extracellular magnesium. In preliminary control experiments, the concentration of GABA released from our caged compound was dependent upon the strength and duration of the illumination, and readily achieved micromolar (microM) levels that are known to activate tonic, extrasynaptic GABA(A) receptors. Ultraviolet illumination had no effect when BC204 was not present in the perfusate and the currents produced by BC204 were eliminated by picrotoxin. Within a few seconds of UV illumination, BC204 rapidly terminated ictal-like events at low microM concentration. Uncaging of BC204 also blocked the elevation of intracellular calcium induced by seizure-like discharges in our cultures. While much more technical development is clearly required to extend our observations to a more intact preparation, these results suggest the intriguing possibility of constructing an implantable device to "optically suppress" focal human seizures under closed loop control.
Collapse
|
30
|
DeLorenzo RJ, Sun DA, Deshpande LS. Erratum to "Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintenance of epilepsy." [Pharmacol. Ther. 105(3) (2005) 229-266]. Pharmacol Ther 2006; 111:288-325. [PMID: 16832874 DOI: 10.1016/j.pharmthera.2004.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury [central nervous system (CNS) insult]. (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels ([Ca(2+)](i)) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but the share a common molecular mechanism for producing brain damage--an increase in extracellular glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, 23298-0599, USA.
| | | | | |
Collapse
|
31
|
Qi JS, Yao J, Fang C, Luscher B, Chen G. Downregulation of tonic GABA currents following epileptogenic stimulation of rat hippocampal cultures. J Physiol 2006; 577:579-90. [PMID: 16990405 PMCID: PMC1890447 DOI: 10.1113/jphysiol.2006.113134] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Deficits in GABAergic inhibitory transmission are a hallmark of temporal lobe epilepsy and have been replicated in animal and tissue culture models of epilepsy. GABAergic inhibition comprises phasic and tonic inhibition that is mediated by synaptic and extrasynaptic GABAA receptors, respectively. We have recently demonstrated that chronic stimulation with cyclothiazide (CTZ) or kainic acid (KA) induces robust epileptiform activity in hippocampal neurons both in vitro and in vivo. Here, we report a downregulation of tonic GABA inhibition after chronic epileptogenic stimulation of rat hippocampal cultures. Chronic pretreatment of hippocampal neurons with CTZ or KA resulted in a marked reduction in GABAergic inhibition, as shown by a significant decrease in whole-cell GABA currents and in the frequency of miniature inhibitory postsynaptic currents (mIPSCs). Interestingly, synaptically localized GABAA receptors remained relatively stable, as evidenced by the unaltered amplitude of mIPSCs, as well as the unchanged punctate immunoreactivity of gamma2 subunit-containing postsynaptic GABAA receptors. In contrast, tonic GABA currents, assessed either by a GABAA receptor antagonist bicuculline or a selective extrasynaptic GABAA receptor agonist THIP, were significantly reduced following epileptogenic stimulation. These results reveal a novel form of neural plasticity, that epileptogenic stimulation can selectively downregulate extrasynaptic GABAA receptors while leaving synaptic GABAA receptors unchanged. Thus, in addition to synaptic alteration of GABAergic transmission, regulation of tonic inhibition may also play an important role during epileptogenesis.
Collapse
Affiliation(s)
- Jin-shun Qi
- Department of Biology, 201 Life Sciences Building, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Status epilepticus is a neurological emergency that results in mortality and neurological morbidity. It has been postulated that the reduction of inhibitory transmission during status epilepticus results from a rapid modification of GABA(A) receptors. However, the mechanism(s) that contributes to this modification has not been elucidated. We report, using an in vitro model of status epilepticus combined with electrophysiological and cellular imaging techniques, that prolonged epileptiform bursting results in a reduction of GABA-mediated synaptic inhibition. Furthermore, we found that constitutive internalization of GABA(A) receptors is rapid and accelerated by the increased neuronal activity associated with seizures. Inhibition of neuronal activity reduced the rate of internalization. These findings suggest that the rate of GABA(A) receptor internalization is regulated by neuronal activity and its acceleration contributes to the reduction of inhibitory transmission observed during prolonged seizures.
Collapse
|
33
|
Nishimura T, Schwarzer C, Gasser E, Kato N, Vezzani A, Sperk G. Altered expression of GABA(A) and GABA(B) receptor subunit mRNAs in the hippocampus after kindling and electrically induced status epilepticus. Neuroscience 2005; 134:691-704. [PMID: 15951123 DOI: 10.1016/j.neuroscience.2005.04.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 03/23/2005] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
Epilepsy may result from altered transmission of the principal inhibitory transmitter GABA in the brain. Using in situ hybridization in two animal models of epileptogenesis, we investigated changes in the expression of nine major GABA(A) receptor subunits (alpha1, alpha2, alpha4, alpha5, beta1-beta3, gamma2 and delta) and of the GABA(B) receptor species GABA(B)R1a, GABA(B)R1b and GABA(B)R2 in 1) hippocampal kindling and 2) epilepsy following electrically-induced status epilepticus (SE). Hippocampal kindling triggers a decrease in seizure threshold without producing spontaneous seizures and hippocampal damage, whereas the SE model is characterized by spontaneous seizures and hippocampal damage. Changes in the expression of GABA(A) and GABA(B) receptor mRNAs were observed in both models, and compared with those seen in other models and in human temporal lobe epilepsy. The most prominent changes were a relatively fast (24 h after kindling and electrically-induced SE) and lasting (7 and 30 days after termination of kindling and SE, respectively) reduction of GABA(A) receptor subunit delta mRNA levels (by 43-78%) in dentate granule cells, accompanied by increases in mRNA levels of all three beta-subunits (by 8-79%) and subunit gamma2 (by 11-43%). Levels of the minor subunit alpha4 were increased by up to 60% in dentate granule cells in both animal models, whereas those of subunit alpha5 were decreased 24 h and 30 days after SE, but not after kindling. In cornu ammonis 3 pyramidal cells, downregulation of subunits alpha2, alpha4, alpha5, and beta1-3 was observed in the ventral hippocampus and of alpha2, alpha5, beta3 and gamma2 in its dorsal extension 24 h after SE. Similar but less pronounced changes were seen in sector cornu ammonis 1. Persistent decreases in subunit alpha2, alpha4 and beta2 transcript levels were presumably related to SE-induced cell loss. GABA(B) receptor expression was characterized by increases in GABA(B)R2 mRNA levels at all intervals after kindling and SE. The observed changes suggest substantial and cell specific rearrangement of GABA receptors. Lasting downregulation of subunits delta and alpha5 in granule cells and transient decreases in subunit alpha2 and beta1-3 mRNA levels in cornu ammonis 3 pyramidal cells are suggestive of impaired GABA(A) receptor-mediated inhibition. Persistent upregulation of subunits beta1-3 and gamma2 of the GABA(A) receptor and of GABA(B)R2 mRNA in granule cells, however, may result in activation of compensatory anticonvulsant mechanisms.
Collapse
Affiliation(s)
- T Nishimura
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
34
|
Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 2005; 105:229-66. [PMID: 15737406 PMCID: PMC2819430 DOI: 10.1016/j.pharmthera.2004.10.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 10/12/2004] [Indexed: 01/22/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury (central nervous system [CNS] insult), (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels [Ca(2+)](i) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but they share a common molecular mechanism for producing brain damage-an increase in extracellular glutamate concentration that causes increased intracellular neuronal calcium, leading to neuronal injury and/or death. Neurons that survive the injury induced by glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J Delorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0599, USA.
| | | | | |
Collapse
|
35
|
Sinkkonen ST, Vekovischeva OY, Möykkynen T, Ogris W, Sieghart W, Wisden W, Korpi ER. Behavioural correlates of an altered balance between synaptic and extrasynaptic GABAAergic inhibition in a mouse model. Eur J Neurosci 2004; 20:2168-78. [PMID: 15450096 DOI: 10.1111/j.1460-9568.2004.03684.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
GABAA receptors mediate fast phasic inhibitory postsynaptic potentials and participate in slower tonic extrasynaptic inhibition. Thy1alpha6 mice with ectopic forebrain expression of GABAA receptor alpha6 subunits exhibit increased extrasynaptic GABAA receptor-mediated background conductance and reduced synaptic GABAA receptor currents in hippocampal CA1 neurons [W. Wisden et al. (2002) Neuropharmacology 43, 530-549]. Here we demonstrate that isolated CA1 neurons of these mice showed furosemide-sensitivity of GABA-evoked currents, confirming the functional expression of alpha6 subunit. In addition, receptor autoradiography of the CA1 region of Thy1alpha6 brain sections revealed pharmacological features that are unique for alpha6betagamma2 and alpha6beta receptors. The existence of atypical alpha6beta receptors was confirmed after completely eliminating GABAA receptors containing gamma1, gamma2, gamma3 or delta subunits using serial immunoaffinity chromatography on subunit-specific GABAA receptor antibodies. Behaviourally, the Thy1alpha6 mice showed normal features with slightly enhanced startle reflex and struggle-escape behaviours. However, they were more sensitive to GABAA antagonists DMCM (shorter latency to writhing clonus) and picrotoxinin (shorter latency to generalized convulsions). Tiagabine, an antiepileptic GABA-uptake inhibitor that increases brain GABA levels, delayed picrotoxinin-induced convulsions at a low dose of 3.2 mg/kg in Thy1alpha6 mice, but not in control mice; however, the overall effect of higher tiagabine doses on the convulsion latency remained smaller in the Thy1alpha6 mice. Altered balance between extrasynaptic and synaptic receptors thus affects seizure sensitivity to GABAergic convulsants. Importantly, the increased extrasynaptic inhibition, even when facilitated in the presence of tiagabine, was not able fully to counteract enhanced seizure induction by GABAA antagonists.
Collapse
Affiliation(s)
- Saku T Sinkkonen
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, PO Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
36
|
Blair RE, Sombati S, Lawrence DC, McCay BD, DeLorenzo RJ. Epileptogenesis Causes Acute and Chronic Increases in GABAA Receptor Endocytosis That Contributes to the Induction and Maintenance of Seizures in the Hippocampal Culture Model of Acquired Epilepsy. J Pharmacol Exp Ther 2004; 310:871-80. [PMID: 15084648 DOI: 10.1124/jpet.104.068478] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Altered GABAergic inhibitory tone has been observed in association with a number of both acute and chronic models of epilepsy and is believed to be the result, in part, of a decrease in function of the postsynaptic GABAA receptor (GABAAR). This study was carried out to investigate if alterations in receptor internalization contribute to the decrease in GABAAR function observed with epilepsy, utilizing the hippocampal neuronal culture model of low-Mg2+-induced spontaneous recurrent epileptiform discharges (SREDs). Analysis of GABAAR function in "epileptic" cultures showed a 62% reduction in [3H]flunitrazepam binding to the GABAA alpha receptor subunit and a 50% decrease in GABA currents when compared with controls. Confocal microscopy analysis of immunohistochemical staining of GABAAR beta2/beta3 subunit expression revealed approximately a 30% decrease of membrane staining in hippocampal cultures displaying SREDs immediately after low-Mg2+ treatment and in the chronic epileptic state. Low-Mg2+-treated cultures internalized antibody labeled GABAA receptor with an increase in rate of 68% from control. Inhibition of GABAAR endocytosis in epileptic cultures resulted in both a recovery to control levels of membrane GABAA beta2/beta3 immunostaining and a total blockade of SREDs. These results indicate that altered GABAAR endocytosis contributes to the decrease in GABAAR expression and function observed in this in vitro model of epilepsy and plays a role in causing and maintaining SREDs. Understanding the mechanisms underlying altered GABAA R recycling may offer new insights into the pathophysiology of epilepsy and provide novel therapeutic strategies to treat this major neurological condition.
Collapse
Affiliation(s)
- Robert E Blair
- Department of Neurology, Virginia Commonwealth University, School of Medicine, P.O. Box 980599, Richmond, VA 23298, USA.
| | | | | | | | | |
Collapse
|
37
|
Rafiq A, Gong QZ, Lyeth BG, DeLorenzo RJ, Coulter DA. Induction of prolonged electrographic seizures in vitro has a defined threshold and is all or none: implications for diagnosis of status epilepticus. Epilepsia 2003; 44:1034-41. [PMID: 12887434 PMCID: PMC2867609 DOI: 10.1046/j.1528-1157.2003.51902.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To study whether induction of prolonged (>30-min duration) in vitro electrographic seizure discharges resembling status epilepticus (SE) is graded or all-or-none, and to determine the critical factors mediating SE induction. METHODS Prolonged electrographic seizure discharges were induced in combined hippocampal-entorhinal cortical (HEC) brain slices by electrical stimulation of the Schaeffer collaterals. Discharges were recorded by using field-potential electrodes in the dentate gyrus, CA3, CA1, and entorhinal cortex. Slices were prepared from rats that were (a). 21- to 30-day-old naive, (b). 60- to 120-day old naive, (c). epileptic, and (d). status post a prior traumatic brain injury. RESULTS Induction of SE discharges was dependent on the duration, but not amplitude of the preceding stimulus train-induced afterdischarge in HEC slices from 21- to 30-day-old control, brain-injured, and epileptic animals, but not from 60- to 120-day-old animals. In slices from 21- to 30-day-old control animals, once afterdischarges exceeded 4 min in duration, SE was induced in 50% of slices, and after >or=6 min 37 s seizure activity; SE was induced in 95% of slices. A defined SE threshold also was evident in brain-damaged rats, including rats in which an epileptic condition was induced by pilocarpine injection 4-16 weeks before recording, and rats subjected to a fluid percussive head trauma 1-8 weeks before recording. However, in these brain-damaged animals, mean SE threshold was considerably lower (24 and 44 s, respectively). HEC slices from 60- to 120-day-old controls for the brain-injured and epileptic animals did not develop SE even after 20 stimulations, demonstrating the pronounced effect of brain injury and epilepsy on the development of SE in the HEC slice preparation compared with that in age-matched controls. CONCLUSIONS In vitro, SE discharges have a defined temporal threshold for initiation. Once a seizure exceeds 6-7 min in duration in control animals, and 30-55 s in brain-damaged animals, the probability of SE induction is greatly increased. This demonstrates that brain injury lowers the afterdischarge duration required to produce SE and suggests that brains injured from trauma or SE are more susceptible to develop status epilepticus.
Collapse
Affiliation(s)
- Azhar Rafiq
- Department of Neurology and the VCU Comprehensive Epilepsy Center of Virginia Commonwealth University, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298-0599, USA
| | | | | | | | | |
Collapse
|
38
|
Benardete EA, Kriegstein AR. Increased excitability and decreased sensitivity to GABA in an animal model of dysplastic cortex. Epilepsia 2002; 43:970-82. [PMID: 12199722 DOI: 10.1046/j.1528-1157.2002.40901.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Cortical dysplasia (CD) is associated with epilepsy in both the pediatric and adult populations. The mechanism underlying seizures with cortical malformations is still poorly understood. To study the physiology of dysplastic cortex, we developed an experimental model of CD. METHODS Pregnant rats were given intraperitoneal injections of carmustine (1-3-bis-chloroethyl-nitrosourea; BCNU) on embryonic day 15 (E15). Cortical histology was examined in the resulting pups at P0, P28, and P60. In addition, evoked and spontaneous field potential recordings were obtained in cortical slices from adult control and BCNU-exposed rats. Finally, we used whole-cell recordings to compare physiologic properties of pyramidal neurons and gamma-aminobutyric acid (GABA) responses in control and BCNU-treated animals. RESULTS Features characteristic of CD were found in the offspring, including laminar disorganization, cytomegalic neurons, and neuronal heterotopias. Dysplastic cortex also contained abnormal clusters of Cajal-Retzius (CR) cells and disruption of radial glial fibers, as demonstrated with immunohistochemistry. Under conditions of partial GABAA-receptor blockade with 10 microM bicuculline methiodide (BMI), slices of dysplastic cortex demonstrated a significant increase in the number of spontaneous and evoked epileptiform discharges. Individual pyramidal neurons in dysplastic cortex were less sensitive to application of GABA compared with controls. CONCLUSIONS BCNU exposure in utero produces histologic alterations suggestive of CD in rat offspring. Dysplastic cortex from this model demonstrates features of hyperexcitability and decreased neuronal sensitivity to GABA. Such physiologic alterations may underlie the increased epileptogenicity of dysplastic cortex.
Collapse
Affiliation(s)
- Ethan A Benardete
- Department of Neurology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons; and Department of Neurosurgery, NYU Medical Center, New York, New York 10032, USA
| | | |
Collapse
|
39
|
Rigo JM, Hans G, Nguyen L, Rocher V, Belachew S, Malgrange B, Leprince P, Moonen G, Selak I, Matagne A, Klitgaard H. The anti-epileptic drug levetiracetam reverses the inhibition by negative allosteric modulators of neuronal GABA- and glycine-gated currents. Br J Pharmacol 2002; 136:659-72. [PMID: 12086975 PMCID: PMC1573396 DOI: 10.1038/sj.bjp.0704766] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. In this study in vitro and in vivo approaches were combined in order to investigate if the anti-epileptic mechanism(s) of action of levetiracetam (LEV; Keppra) may involve modulation of inhibitory neurotransmission. 2. GABA- and glycine-gated currents were studied in vitro using whole-cell patch-clamp techniques applied on cultured cerebellar granule, hippocampal and spinal neurons. Protection against clonic convulsions was assessed in vivo in sound-susceptible mice. The effect of LEV was compared with reference anti-epileptic drugs (AEDs): carbamazepine, phenytoin, valproate, clonazepam, phenobarbital and ethosuximide. 3. LEV contrasted the reference AEDs by an absence of any direct effect on glycine-gated currents. At high concentrations, beyond therapeutic relevance, it induced a small reduction in the peak amplitude and a prolongation of the decay phase of GABA-gated currents. A similar action on GABA-elicited currents was observed with the reference AEDs, except ethosuximide. 4. These minor direct effects contrasted with a potent ability of LEV (EC(50)=1 - 10 microM) to reverse the inhibitory effects of the negative allosteric modulators zinc and beta-carbolines on both GABA(A) and glycine receptor-mediated responses. 5. Clonazepam, phenobarbital and valproate showed a similar ability to reverse the inhibition of beta-carbolines on GABA-gated currents. Blockade of zinc inhibition of GABA responses was observed with clonazepam and ethosuximide. Phenytoin was the only AED together with LEV that inhibited the antagonism of zinc on glycine-gated currents and only clonazepam and phenobarbital inhibited the action of DMCM. 6. LEV (17 mg kg(-1)) produced a potent suppression of sound-induced clonic convulsions in mice. This protective effect was significantly abolished by co-administration of the beta-carboline FG 7142, from a dose of 5 mg kg(-1). In contrast, the benzodiazepine receptor antagonist flumazenil (up to 10 mg kg(-1)) was without any effect on the protection afforded by LEV. 7. The results of the present study suggest that a novel ability to oppose the action of negative modulators on the two main inhibitory ionotropic receptors may be of relevance for the anti-epileptic mechanism(s) of action of LEV.
Collapse
Affiliation(s)
- J-M Rigo
- Research Center for Cellular and Molecular Neurosciences and Department of Neurology, University of Liège, Belgium
| | - G Hans
- Research Center for Cellular and Molecular Neurosciences and Department of Neurology, University of Liège, Belgium
| | - L Nguyen
- Research Center for Cellular and Molecular Neurosciences and Department of Neurology, University of Liège, Belgium
| | - V Rocher
- Research Center for Cellular and Molecular Neurosciences and Department of Neurology, University of Liège, Belgium
| | - S Belachew
- Research Center for Cellular and Molecular Neurosciences and Department of Neurology, University of Liège, Belgium
| | - B Malgrange
- Research Center for Cellular and Molecular Neurosciences and Department of Neurology, University of Liège, Belgium
| | - P Leprince
- Research Center for Cellular and Molecular Neurosciences and Department of Neurology, University of Liège, Belgium
| | - G Moonen
- Research Center for Cellular and Molecular Neurosciences and Department of Neurology, University of Liège, Belgium
| | - I Selak
- UCB S.A. Pharma Sector, Preclinical CNS Research, Braine-l'Alleud, Belgium
| | - A Matagne
- UCB S.A. Pharma Sector, Preclinical CNS Research, Braine-l'Alleud, Belgium
| | - H Klitgaard
- UCB S.A. Pharma Sector, Preclinical CNS Research, Braine-l'Alleud, Belgium
- Author for correspondence:
| |
Collapse
|
40
|
van Brederode JF, Rho JM, Cerne R, Tempel BL, Spain WJ. Evidence of altered inhibition in layer V pyramidal neurons from neocortex of Kcna1-null mice. Neuroscience 2001; 103:921-9. [PMID: 11301201 DOI: 10.1016/s0306-4522(01)00041-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mice lacking the potassium channel subunit KCNA1 exhibit a severe epileptic phenotype beginning at an early postnatal age. The precise cellular physiological substrates for these seizures are unclear, as is the site of origin. Since KCNA1 mRNA in normal mice is expressed in the neocortex, we asked whether neurons in the neocortex of three to four week-old Kcna1-null mutants exhibit evidence of hyperexcitability. Layer V pyramidal neurons were directly visualized in brain slices with infrared differential-interference contrast microscopy and evaluated with cellular electrophysiological techniques. There were no significant differences in intrinsic membrane properties and action potential shape between Kcna1-null and wild-type mice, consistent with previous findings in hippocampal slice recordings. However, the frequency of spontaneous post-synaptic currents was significantly higher in Kcna1-null compared to wild-type mice. The frequency of spontaneous inhibitory post-synaptic currents and miniature (action-potential-independent) inhibitory post-synaptic currents was also significantly higher in Kcna1-null compared to wild-type mice. However, the frequency of spontaneous and miniature excitatory post-synaptic currents was not different in these two groups of animals. Comparison of the amplitude and kinetics of miniature inhibitory and excitatory post-synaptic currents revealed differences in amplitude, rise time and half-width between Kcna1-null and wild-type mice. Our data indicate that the inhibitory drive onto layer V pyramidal neurons is increased in Kcna1 knockout mice, either directly through an increased spontaneous release of GABA from presynaptic terminals contacting layer V pyramidal neurons, or an enhanced excitatory synaptic input to inhibitory interneurons.
Collapse
Affiliation(s)
- J F van Brederode
- Department of Neurology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
41
|
Suppression of neuronal hyperexcitability and associated delayed neuronal death by adenoviral expression of GABA(C) receptors. J Neurosci 2001. [PMID: 11331372 DOI: 10.1523/jneurosci.21-10-03419.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The excessive neuronal excitation underlying several clinically important diseases is often treated with GABA allosteric modulators in an attempt to enhance inhibition. An alternative strategy would be to enhance directly the sensitivity of postsynaptic neurons to GABA. The GABA(C) receptor, normally found only in the retina, is more sensitive to GABA and demonstrates little desensitization compared with the GABA(A) receptor. We constructed an adenovirus vector that expressed cDNA for both the GABA(C) receptor rho(1) subunit and a green fluorescent protein (GFP) reporter and used it to transduce cultured hippocampal neurons. Transduced neurons were identified by fluorescence, double immunocytochemistry proved colocalization of the rho(1) protein and the reporter, Western blot verified the expected molecular masses, and electrophysiological and pharmacological properties confirmed the presence of functional GABA(C) receptors. rho(1)-GFP transduction resulted in an increased density of GABA(A) receptors as well as expression of novel GABA(C) receptors. This effect was not reproduced by addition of TTX or Mg(2+) to the culture medium to reduce action potentials or synaptic activity. In a model of neuronal hyperexcitability induced by chronic blockade of glutamate receptors, expression of GABA(C) receptors abolished the hyperactivity and the consequent delayed neuronal death. Adenovirus-mediated neuronal GABA(C) receptor engineering, via its dual mechanism of inhibition, may offer a way of inhibiting only those hyperexcitable neurons responsible for clinical problems, avoiding the generalized nervous system depression associated with pharmacological therapy.
Collapse
|
42
|
White R, Hua Y, Scheithauer B, Lynch DR, Henske EP, Crino PB. Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann Neurol 2001; 49:67-78. [PMID: 11198298 DOI: 10.1002/1531-8249(200101)49:1<67::aid-ana10>3.0.co;2-l] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The molecular pharmacologic basis of epileptogenesis in cortical tubers in the tuberous sclerosis complex is unknown. Altered transcription of genes encoding glutamatergic and gamma-aminobutyric acid (GABA)-ergic receptors and uptake sites may contribute to seizure initiation and may occur selectively in dysplastic neurons and giant cells. Arrays containing GABA A (GABAAR), GluR, NMDA receptor (NR) subunits, GAD65, the vesicular GABA transporter (VGAT), and the neuronal glutamate transporter (EAAC1) cDNAs were probed with amplified poly (A) mRNA from tubers or normal neocortex to identify changes in gene expression. Increased levels of EAAC1, and NR2B and 2D subunit mRNAs and diminished levels of GAD65, VGAT, GluR1, and GABAAR alpha1 and alpha2 were observed in tubers. Ligand-binding experiments in frozen tuber homogenates demonstrated an increase in functional NR2B-containing receptors. Arrays were then probed with poly (A) mRNA from single, microdissected dysplastic neurons, giant cells, or normal neurons (n = 30 each). Enhanced expression of GluR 3, 4, and 6 and NR2B and 2C subunit mRNAs was noted in the dysplastic neurons, whereas only the NR2D mRNA was upregulated in giant cells. GABAAR alpha1 and alpha2 mRNA levels were reduced in both dysplastic neurons and giant cells compared to control neurons. Differential expression of GluR, NR, and GABAAR mRNAs in tubers reflects cell-specific changes in gene transcription that argue for a distinct molecular phenotype of dysplastic neurons and giant cells and suggests that dysplastic neurons and giant cells make differential contributions to epileptogenesis in the tuberous sclerosis complex.
Collapse
Affiliation(s)
- R White
- PENN Epilepsy Center and Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | | | |
Collapse
|
43
|
Gibbs JW, Zhang YF, Shumate MD, Coulter DA. Regionally selective blockade of GABAergic inhibition by zinc in the thalamocortical system: functional significance. J Neurophysiol 2000; 83:1510-21. [PMID: 10712476 DOI: 10.1152/jn.2000.83.3.1510] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thalamocortical (TC) system is a tightly coupled synaptic circuit in which GABAergic inhibition originating from the nucleus reticularis thalami (NRT) serves to synchronize oscillatory TC rhythmic behavior. Zinc is colocalized within nerve terminals throughout the TC system with dense staining for zinc observed in NRT, neocortex, and thalamus. Whole cell voltage-clamp recordings of GABA-evoked responses were conducted in neurons isolated from ventrobasal thalamus, NRT, and somatosensory cortex to investigate modulation of the GABA-mediated chloride conductance by zinc. Zinc blocked GABA responses in a regionally specific, noncompetitive manner within the TC system. The regional levels of GABA blockade efficacy by zinc were: thalamus > NRT > cortex. The relationship between clonazepam and zinc sensitivity of GABA(A)-mediated responses was examined to investigate possible presence or absence of specific GABA(A) receptor (GABAR) subunits. These properties of GABARs have been hypothesized previously to be dependent on presence or absence of the gamma2 subunit and seem to display an inverse relationship. In cross-correlation plots, thalamic and NRT neurons did not show a statistically significant relationship between clonazepam and zinc sensitivity; however, a statistically significant correlation was observed in cortical neurons. Spontaneous epileptic TC oscillations can be induced in vitro by perfusion of TC slices with an extracellular medium containing no added Mg(2+). Multiple varieties of oscillations are generated, including simple TC burst complexes (sTBCs), which resemble spike-wave discharge activity. A second variant was termed a complex TC burst complex (cTBC), which resembled generalized tonic clonic seizure activity. sTBCs were exacerbated by zinc, whereas cTBCs were blocked completely by zinc. This supported the concept that zinc release may modulate TC rhythms in vivo. Zinc interacts with a variety of ionic conductances, including GABAR currents, N-methyl-D-aspartate (NMDA) receptor currents, and transient potassium (A) currents. D-2-amino-5-phosphonovaleric acid and 4-aminopyridine blocked both s- and cTBCs in TC slices. Therefore NMDA and A current-blocking effects of zinc are insufficient to explain differential zinc sensitivity of these rhythms. This supports a significant role of zinc-induced GABAR modulation in differential TC rhythm effects. Zinc is localized in high levels within the TC system and appears to be released during TC activity. Furthermore application of exogenous zinc modulates TC rhythms and differentially blocks GABARs within the TC system. These data are consistent with the hypothesis that endogenously released zinc may have important neuromodulatory actions impacting generation of TC rhythms, mediated at least in part by effects on GABARs.
Collapse
Affiliation(s)
- J W Gibbs
- Department of Anatomy, Medical College of Virginia of Virginia Commonwealth University, Richmond, Virginia 23298-0599, USA
| | | | | | | |
Collapse
|
44
|
Blair RE, Churn SB, Sombati S, Lou JK, DeLorenzo RJ. Long-lasting decrease in neuronal Ca2+/calmodulin-dependent protein kinase II activity in a hippocampal neuronal culture model of spontaneous recurrent seizures. Brain Res 1999; 851:54-65. [PMID: 10642828 DOI: 10.1016/s0006-8993(99)02100-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaM Kinase II) activity was evaluated in a well-characterized in vitro model of epileptiform activity. Long-lasting spontaneous recurrent seizure (SRS) activity was induced in hippocampal neuronal cultures by exposure to low Mg2+ media for 3 h. Analysis of endogenous Ca2+/calmodulin-dependent phosphorylation revealed a significant long-lasting decrease in 32P incorporation into the alpha (50 kDa) and beta (60 kDa) subunits of CaM kinase II in association with the induction of SRS activity in this preparation. Ca2+/calmodulin-dependent substrate phosphorylation of the synthetic peptides, Autocamtide-2 and Syntide II, was also significantly reduced following the induction of SRSs and persisted for the life of the neurons in culture. The decrement in CaM kinase II activity associated with low Mg2+ treatment remained significantly decreased when values were corrected for changes in levels of alpha subunit immunoreactivity and neuronal cell loss. Addition of the protein phosphatase inhibitors, okadaic acid and cyclosporin A, to the phosphorylation reaction did not block the SRS-associated decrease in substrate phosphorylation, indicating that enhanced phosphatase activity was not a contributing factor to the observed decrease in phosphate incorporation. The findings of this study demonstrate that CaM kinase II activity is decreased in association with epileptogenesis observed in these hippocampal cultures and may contribute to the production and maintenance of SRSs in this model.
Collapse
Affiliation(s)
- R E Blair
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0599, USA
| | | | | | | | | |
Collapse
|
45
|
Gibbs JW, Morton LD, Amaker B, Ward JD, Holloway KL, Coulter DA. Physiological analysis of Rasmussen's encephalitis: patch clamp recordings of altered inhibitory neurotransmitter function in resected frontal cortical tissue. Epilepsy Res 1998; 31:13-27. [PMID: 9696297 DOI: 10.1016/s0920-1211(98)00009-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rasmussen's encephalitis (RE) is a progressive, rare childhood disease characterized by severe epilepsy, hemiplegia, dementia, and inflammation of the brain. While one mechanism underlying the pathogenesis of RE has been hypothesized to be mediated by production of excitotoxic GluR3 autoantibodies to the AMPA receptor, other neuropathological etiologies have also been indicated. Whole-cell patch clamp recordings of GABA(A) receptor mediated responses were conducted in neurons acutely isolated from an RE patient, and compared to properties of non-focal human temporal cortical neurons. RE neurons appeared similar anatomically to control cortical neurons. Significant differences in GABAergic responses were evident between RE and control neurons. GABA was significantly more potent in RE than in control cortical neurons (EC50 of 13 microM vs 23 microM, respectively). In addition, the overall efficacy of GABA was significantly decreased in RE neurons, associated with a decrease in postsynaptic GABA current density in RE neurons (5.1 pA/microm2) in comparison to controls (9.2 pA/microm2). Augmentation of GABA responses by the benzodiazepine, clonazepam (CNZ), was significantly reduced in RE in comparison to control neurons (34% vs 99% augmentation at 100 nM). The RE-associated reduced functional efficacy and altered pharmacology of neuronal GABA(A) receptors is consistent with overall disinhibition in RE neurons, and could contribute to the generation of the severe epileptic activity evident in this disorder.
Collapse
Affiliation(s)
- J W Gibbs
- Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0599, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Current frontline antiepileptic drugs tend to fall into several cellular mechanistic categories, and these categories often correlate with the clinical spectrum of action of the various antiepileptic drugs. Many antiepileptic drugs effective in control of partial and generalized tonic-clonic seizures are use- and voltage-dependent blockers of sodium channels. This mechanism selectively dampens pathologic activation of sodium channels, without interacting with normal sodium channel function. Examples include phenytoin, carbamazepine, valproic acid, and lamotrigine. Many antiepileptic drugs effective in control of generalized absence seizures block low threshold calcium currents. Low threshold calcium channels are present in high densities in thalamic neurons, and these channels trigger regenerative bursts that drive normal and pathologic thalamocortical rhythms, including the spike wave discharges of absence seizures. Examples include ethosuximide, trimethadione, and methsuximide. Several antiepileptic drugs that have varying clinical actions interact with the gamma-amino-butyric acid (GABA)ergic system. Diazepam and clonazepam selectively augment function of a subset of GABAA receptors, and these drugs are broad-spectrum antiepileptic drugs. In contrast, barbiturates augment function of all types of GABAA receptors, and are ineffective in control of generalized absence seizures, but effective in control of many other seizure types. Tiagabine and vigabatrin enhance cerebrospinal levels of GABA by interfering with reuptake and degradation of GABA, respectively. These antiepileptic drugs are effective in partial seizures. Lamotrigine is effective against both partial and generalized seizures, including generalized absence seizures. Its sole documented cellular mechanism of action is sodium channel block, a mechanism shared by phenytoin and carbamazepine. These drugs are ineffective against absence seizures. Consequently, unless there are unique aspects to the sodium channel block by lamotrigine, it seems unlikely that this mechanism alone could explain its broad clinical efficacy. Therefore, lamotrigine may have as yet uncharacterized cellular actions, which could combine with its sodium channel blocking actions, to account for its broad clinical efficacy.
Collapse
Affiliation(s)
- D A Coulter
- Department of Neurology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0599, USA
| |
Collapse
|
47
|
Gibbs JW, Shumate MD, Coulter DA. Differential epilepsy-associated alterations in postsynaptic GABA(A) receptor function in dentate granule and CA1 neurons. J Neurophysiol 1997; 77:1924-38. [PMID: 9114245 DOI: 10.1152/jn.1997.77.4.1924] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alterations in GABAergic function associated with the development of temporal lobe epilepsy (TLE) were examined with the use of patch-clamp recording techniques in dentate granule (DG) and CA1 neurons acutely isolated from control and spontaneously epileptic rats in which TLE was elicited by pilocarpine injection 3-17 wk before use. The maximal efficacy of gamma-aminobutyric acid (GABA) in activating whole cell GABA currents increased significantly in epileptic DG neurons relative to controls. This efficacy increase was due to a 78% enhancement in the functional capacitance-normalized GABA(A) receptor (GABA(A)R) current density in epileptic DG neurons. Increased DG GABA(A)R current density was not accompanied by alterations in GABA potency (EC50). However, the maximal sensitivity of DG GABA-evoked currents to blockade by zinc increased 190% in epileptic neurons. Augmentation of epileptic DG neuron GABA-evoked currents by the broad-spectrum anticonvulsant benzodiazepine clonazepam (100 nM) was enhanced 114% relative to controls, whereas augmentation by the benzodiazepine, (BZ1)-selective agonist zolpidem (100 nM) was decreased by 66%. In contrast to DG neurons, maximal efficacy of GABA in activating GABA currents decreased in epileptic CA1 neurons relative to controls, due to a 52% decrease in functional capacitance-normalized GABA(A)R current density. This altered efficacy of GABA was accompanied by an increased GABA potency (GABA EC50 was 35.8 and 24.5 microM in control and epileptic neurons, respectively). Sensitivity of GABA-evoked currents to blockade by zinc was unchanged in epileptic CA1 neurons, whereas clonazepam (100 nM) augmentation of CA1 GABA-evoked currents decreased 81% relative to controls. These regionally distinct epilepsy-associated modifications in hippocampal GABAergic function may be due to discrete structural alterations in postsynaptic GABA(A)Rs accompanying epileptogenesis, could be therapeutically important, and undoubtedly could contribute to the enhanced limbic excitability underlying TLE.
Collapse
Affiliation(s)
- J W Gibbs
- Department of Anatomy, Medical College of Virginia, Richmond 23298-0599, USA
| | | | | |
Collapse
|