1
|
Noga BR, Whelan PJ. The Mesencephalic Locomotor Region: Beyond Locomotor Control. Front Neural Circuits 2022; 16:884785. [PMID: 35615623 PMCID: PMC9124768 DOI: 10.3389/fncir.2022.884785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
The mesencephalic locomotor region (MLR) was discovered several decades ago in the cat. It was functionally defined based on the ability of low threshold electrical stimuli within a region comprising the cuneiform and pedunculopontine nucleus to evoke locomotion. Since then, similar regions have been found in diverse vertebrate species, including the lamprey, skate, rodent, pig, monkey, and human. The MLR, while often viewed under the lens of locomotion, is involved in diverse processes involving the autonomic nervous system, respiratory system, and the state-dependent activation of motor systems. This review will discuss the pedunculopontine nucleus and cuneiform nucleus that comprises the MLR and examine their respective connectomes from both an anatomical and functional angle. From a functional perspective, the MLR primes the cardiovascular and respiratory systems before the locomotor activity occurs. Inputs from a variety of higher structures, and direct outputs to the monoaminergic nuclei, allow the MLR to be able to respond appropriately to state-dependent locomotion. These state-dependent effects are roughly divided into escape and exploratory behavior, and the MLR also can reinforce the selection of these locomotor behaviors through projections to adjacent structures such as the periaqueductal gray or to limbic and cortical regions. Findings from the rat, mouse, pig, and cat will be discussed to highlight similarities and differences among diverse species.
Collapse
Affiliation(s)
- Brian R. Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: Brian R. Noga Patrick J. Whelan
| | - Patrick J. Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Brian R. Noga Patrick J. Whelan
| |
Collapse
|
2
|
Dougherty JB, Disse GD, Bridges NR, Moxon KA. Effect of spinal cord injury on neural encoding of spontaneous postural perturbations in the hindlimb sensorimotor cortex. J Neurophysiol 2021; 126:1555-1567. [PMID: 34379540 PMCID: PMC8782649 DOI: 10.1152/jn.00727.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022] Open
Abstract
Supraspinal signals play a significant role in compensatory responses to postural perturbations. Although the cortex is not necessary for basic postural tasks in intact animals, its role in responding to unexpected postural perturbations after spinal cord injury (SCI) has not been studied. To better understand how SCI impacts cortical encoding of postural perturbations, the activity of single neurons in the hindlimb sensorimotor cortex (HLSMC) was recorded in the rat during unexpected tilts before and after a complete midthoracic spinal transection. In a subset of animals, limb ground reaction forces were also collected. HLSMC activity was strongly modulated in response to different tilt profiles. As the velocity of the tilt increased, more information was conveyed by the HLSMC neurons about the perturbation due to increases in both the number of recruited neurons and the magnitude of their responses. SCI led to attenuated and delayed hindlimb ground reaction forces. However, HLSMC neurons remained responsive to tilts after injury but with increased latencies and decreased tuning to slower tilts. Information conveyed by cortical neurons about the tilts was therefore reduced after SCI, requiring more cells to convey the same amount of information as before the transection. Given that reorganization of the hindlimb sensorimotor cortex in response to therapy after complete midthoracic SCI is necessary for behavioral recovery, this sustained encoding of information after SCI could be a substrate for the reorganization that uses sensory information from above the lesion to control trunk muscles that permit weight-supported stepping and postural control.NEW & NOTEWORTHY The role of cortical circuits in the encoding of posture and balance is of interest for developing therapies for spinal cord injury. This work demonstrated that unexpected postural perturbations are encoded in the hindlimb sensorimotor cortex even in the absence of hindlimb sensory feedback. In fact, the hindlimb sensorimotor cortex continues to encode for postural perturbations after complete spinal transection.
Collapse
Affiliation(s)
- Jaimie B Dougherty
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Gregory D Disse
- Department of Biomedical Engineering, University of California at Davis, Davis, California
| | - Nathaniel R Bridges
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio
| | - Karen A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
- Department of Biomedical Engineering, University of California at Davis, Davis, California
| |
Collapse
|
3
|
Boulain M, Yuan W, Oueghlani Z, Khsime I, Salvi V, Courtand G, Halgand C, Morin D, de Deurwaerdere P, Barrière G, Juvin L. L-DOPA and 5-HTP modulation of air-stepping in newborn rats. J Physiol 2021; 599:4455-4476. [PMID: 34411301 DOI: 10.1113/jp281983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In newborn rats, L-DOPA increases the occurrence of air-stepping activity without affecting movement characteristics. L-DOPA administration increases the spinal content of dopamine in a dose-dependent manner. Injection of 5-HTP increases the spinal serotonin content but does not trigger air-stepping. 5-HTP counteracts the pro-locomotor action of L-DOPA. Less dopamine and serotonin are synthesized when L-DOPA and 5-HTP are administered as a cocktail. ABSTRACT The catecholamine precursor, L-3,4-dihydroxyphenylalanine (L-DOPA), is a well-established pharmacological agent for promoting locomotor action in vertebrates, including triggering air-stepping activities in the neonatal rat. Serotonin is also a well-known neuromodulator of the rodent spinal locomotor networks. Here, using kinematic analysis, we compared locomotor-related activities expressed by newborn rats in response to varying doses of L-DOPA and the serotonin precursor 5-hydroxytryptophan (5-HTP) administered separately or in combination. L-DOPA alone triggered episodes of air-stepping in a dose-dependent manner (25-100 mg/kg), notably determining the duration of locomotor episodes, but without affecting step cycle frequency or amplitude. In contrast, 5-HTP (25-150 mg/kg) was ineffective in instigating air-stepping, but altered episode durations of L-DOPA-induced air-stepping, and decreased locomotor cycle frequency. High performance liquid chromatography revealed that L-DOPA, which was undetectable in control conditions, accumulated in a dose-dependent manner in the lumbar spinal cord 30 min after its administration. This was paralleled by an increase in dopamine levels, whereas the spinal content of noradrenaline and serotonin remained unaffected. In the same way, the spinal levels of serotonin increased in parallel with the dose of 5-HTP without affecting the levels of dopamine and noradrenaline. When both precursors are administrated, they counteract each other for the production of serotonin and dopamine. Our data thus indicate for the first time that both L-DOPA and 5-HTP exert opposing neuromodulatory actions on air-stepping behaviour in the developing rat, and we speculate that competition for the production of dopamine and serotonin occurs when they are administered as a cocktail.
Collapse
Affiliation(s)
- Marie Boulain
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Zied Oueghlani
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Inès Khsime
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Vianney Salvi
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Gilles Courtand
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Christophe Halgand
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Didier Morin
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | | | - Grégory Barrière
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Laurent Juvin
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| |
Collapse
|
4
|
Kwaśniewska A, Miazga K, Majczyński H, Jordan LM, Zawadzka M, Sławińska U. Noradrenergic Components of Locomotor Recovery Induced by Intraspinal Grafting of the Embryonic Brainstem in Adult Paraplegic Rats. Int J Mol Sci 2020; 21:ijms21155520. [PMID: 32752261 PMCID: PMC7432907 DOI: 10.3390/ijms21155520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/24/2022] Open
Abstract
Intraspinal grafting of serotonergic (5-HT) neurons was shown to restore plantar stepping in paraplegic rats. Here we asked whether neurons of other phenotypes contribute to the recovery. The experiments were performed on adult rats after spinal cord total transection. Grafts were injected into the sub-lesional spinal cord. Two months later, locomotor performance was tested with electromyographic recordings from hindlimb muscles. The role of noradrenergic (NA) innervation was investigated during locomotor performance of spinal grafted and non-grafted rats using intraperitoneal application of α2 adrenergic receptor agonist (clonidine) or antagonist (yohimbine). Morphological analysis of the host spinal cords demonstrated the presence of tyrosine hydroxylase positive (NA) neurons in addition to 5-HT neurons. 5-HT fibers innervated caudal spinal cord areas in the dorsal and ventral horns, central canal, and intermediolateral zone, while the NA fiber distribution was limited to the central canal and intermediolateral zone. 5-HT and NA neurons were surrounded by each other’s axons. Locomotor abilities of the spinal grafted rats, but not in control spinal rats, were facilitated by yohimbine and suppressed by clonidine. Thus, noradrenergic innervation, in addition to 5-HT innervation, plays a potent role in hindlimb movement enhanced by intraspinal grafting of brainstem embryonic tissue in paraplegic rats.
Collapse
Affiliation(s)
- Anna Kwaśniewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.M.); (H.M.); (M.Z.)
| | - Krzysztof Miazga
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.M.); (H.M.); (M.Z.)
| | - Henryk Majczyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.M.); (H.M.); (M.Z.)
| | - Larry M. Jordan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Małgorzata Zawadzka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.M.); (H.M.); (M.Z.)
| | - Urszula Sławińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.M.); (H.M.); (M.Z.)
- Correspondence:
| |
Collapse
|
5
|
Aguilar Garcia IG, Dueñas-Jiménez JM, Castillo L, Osuna-Carrasco LP, De La Torre Valdovinos B, Castañeda-Arellano R, López-Ruiz JR, Toro-Castillo C, Treviño M, Mendizabal-Ruiz G, Duenas-Jimenez SH. Fictive Scratching Patterns in Brain Cortex-Ablated, Midcollicular Decerebrate, and Spinal Cats. Front Neural Circuits 2020; 14:1. [PMID: 32174815 PMCID: PMC7056700 DOI: 10.3389/fncir.2020.00001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/03/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The spinal cord’s central pattern generators (CPGs) have been explained by the symmetrical half-center hypothesis, the bursts generator, computational models, and more recently by connectome circuits. Asymmetrical models, at odds with the half-center paradigm, are composed of extensor and flexor CPG modules. Other models include not only flexor and extensor motoneurons but also motoneuron pools controlling biarticular muscles. It is unknown whether a preferred model can explain some particularities that fictive scratching (FS) in the cat presents. The first aim of this study was to investigate FS patterns considering the aiming and the rhythmic periods, and second, to examine the effects of serotonin (5HT) on and segmental inputs to FS. Methods: The experiments were carried out first in brain cortex-ablated cats (BCAC), then spinalized (SC), and for the midcollicular (MCC) preparation. Subjects were immobilized and the peripheral nerves were used to elicit the Monosynaptic reflex (MR), to modify the scratching patterns and for electroneurogram recordings. Results: In BCAC, FS was produced by pinna stimulation and, in some cases, by serotonin. The scratching aiming phase (AP) initiates with the activation of either flexor or extensor motoneurons. Serotonin application during the AP produced simultaneous extensor and flexor bursts. Furthermore, WAY 100635 (5HT1A antagonist) produced a brief burst in the tibialis anterior (TA) nerve, followed by a reduction in its electroneurogram (ENG), while the soleus ENG remained silent. In SC, rhythmic phase (RP) activity was recorded in the soleus motoneurons. Serotonin or WAY produced FS bouts. The electrical stimulation of Ia afferent fibers produced heteronymous MRes waxing and waning during the scratch cycle. In MCC, FS began with flexor activity. Electrical stimulation of either deep peroneus (DP) or superficial peroneus (SP) nerves increased the duration of the TA electroneurogram. Medial gastrocnemius (MG) stretching or MG nerve electrical stimulation produced a reduction in the TA electroneurogram and an initial MG extensor burst. MRes waxed and waned during the scratch cycle. Conclusion: Descending pathways and segmental afferent fibers, as well as 5-HT and WAY, can change the FS pattern. To our understanding, the half-center hypothesis is the most suitable for explaining the AP in MCC.
Collapse
Affiliation(s)
| | | | - Luis Castillo
- Centro Básico, Universidad de Aguascalientes, Aguascalientes, Mexico
| | | | | | | | | | - Carmen Toro-Castillo
- Departmento de Electrónica y Computación, CUCEI, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Gerardo Mendizabal-Ruiz
- Departmento de Electrónica y Computación, CUCEI, Universidad de Guadalajara, Guadalajara, Mexico
| | | |
Collapse
|
6
|
Jeffrey-Gauthier R, Josset N, Bretzner F, Leblond H. Facilitation of Locomotor Spinal Networks Activity by Buspirone after a Complete Spinal Cord Lesion in Mice. J Neurotrauma 2018; 35:2208-2221. [DOI: 10.1089/neu.2017.5476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Renaud Jeffrey-Gauthier
- Department of Anatomy, Université du Québec à Trois-Rivières (UQTR), Québec, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières (UQTR), Québec, Canada
| | | | - Frédéric Bretzner
- CHU de Québec-Université Laval, Québec, Canada
- Faculty of Medicine, Department of Psychiatry and Neurosciences, Université Laval, Québec, Canada
| | - Hugues Leblond
- Department of Anatomy, Université du Québec à Trois-Rivières (UQTR), Québec, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières (UQTR), Québec, Canada
| |
Collapse
|
7
|
Systemic epothilone D improves hindlimb function after spinal cord contusion injury in rats. Exp Neurol 2018; 306:250-259. [DOI: 10.1016/j.expneurol.2018.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/23/2017] [Accepted: 01/25/2018] [Indexed: 01/04/2023]
|
8
|
Fabbiani G, Rehermann MI, Aldecosea C, Trujillo-Cenóz O, Russo RE. Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles. Front Neural Circuits 2018; 12:20. [PMID: 29593503 PMCID: PMC5859367 DOI: 10.3389/fncir.2018.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/22/2018] [Indexed: 01/04/2023] Open
Abstract
Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature spinal circuits in response to injury. Because serotonergic signaling has a central role in spinal cord functions, we hypothesized that spinal cord injury (SCI) in the fresh water turtle Trachemys scripta elegans may trigger homeostatic changes in serotonergic innervation. To test this possibility we performed immunohistochemistry for serotonin (5-HT) and key molecules involved in the determination of the serotonergic phenotype before and after SCI. We found that as expected, in the acute phase after injury the dense serotonergic innervation was strongly reduced. However, 30 days after SCI the population of serotonergic cells (5-HT+) increased in segments caudal to the lesion site. These cells expressed the neuronal marker HuC/D and the transcription factor Nkx6.1. The new serotonergic neurons did not incorporate the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) and did not express the proliferating cell nuclear antigen (PCNA) indicating that novel serotonergic neurons were not newborn but post-mitotic cells that have changed their neurochemical identity. Switching towards a serotonergic neurotransmitter phenotype may be a spinal cord homeostatic mechanism to compensate for the loss of descending serotonergic neuromodulation, thereby helping the outstanding functional recovery displayed by turtles. The 5-HT1A receptor agonist (±)-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) blocked the increase in 5-HT+ cells suggesting 5-HT1A receptors may trigger the respecification process.
Collapse
Affiliation(s)
- Gabriela Fabbiani
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - María I Rehermann
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Carina Aldecosea
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Omar Trujillo-Cenóz
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Raúl E Russo
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
9
|
Noga BR, Turkson RP, Xie S, Taberner A, Pinzon A, Hentall ID. Monoamine Release in the Cat Lumbar Spinal Cord during Fictive Locomotion Evoked by the Mesencephalic Locomotor Region. Front Neural Circuits 2017; 11:59. [PMID: 28912689 PMCID: PMC5582069 DOI: 10.3389/fncir.2017.00059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/09/2017] [Indexed: 01/28/2023] Open
Abstract
Spinal cord neurons active during locomotion are innervated by descending axons that release the monoamines serotonin (5-HT) and norepinephrine (NE) and these neurons express monoaminergic receptor subtypes implicated in the control of locomotion. The timing, level and spinal locations of release of these two substances during centrally-generated locomotor activity should therefore be critical to this control. These variables were measured in real time by fast-cyclic voltammetry in the decerebrate cat's lumbar spinal cord during fictive locomotion, which was evoked by electrical stimulation of the mesencephalic locomotor region (MLR) and registered as integrated activity in bilateral peripheral nerves to hindlimb muscles. Monoamine release was observed in dorsal horn (DH), intermediate zone/ventral horn (IZ/VH) and adjacent white matter (WM) during evoked locomotion. Extracellular peak levels (all sites) increased above baseline by 138 ± 232.5 nM and 35.6 ± 94.4 nM (mean ± SD) for NE and 5-HT, respectively. For both substances, release usually began prior to the onset of locomotion typically earliest in the IZ/VH and peaks were positively correlated with net activity in peripheral nerves. Monoamine levels gradually returned to baseline levels or below at the end of stimulation in most trials. Monoamine oxidase and uptake inhibitors increased the release magnitude, time-to-peak (TTP) and decline-to-baseline. These results demonstrate that spinal monoamine release is modulated on a timescale of seconds, in tandem with centrally-generated locomotion and indicate that MLR-evoked locomotor activity involves concurrent activation of descending monoaminergic and reticulospinal pathways. These gradual changes in space and time of monoamine concentrations high enough to strongly activate various receptors subtypes on locomotor activated neurons further suggest that during MLR-evoked locomotion, monoamine action is, in part, mediated by extrasynaptic neurotransmission in the spinal cord.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Riza P Turkson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Songtao Xie
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Annette Taberner
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Alberto Pinzon
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Ian D Hentall
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| |
Collapse
|
10
|
Grau JW, Huang YJ, Turtle JD, Strain MM, Miranda RC, Garraway SM, Hook MA. When Pain Hurts: Nociceptive Stimulation Induces a State of Maladaptive Plasticity and Impairs Recovery after Spinal Cord Injury. J Neurotrauma 2017; 34:1873-1890. [PMID: 27788626 PMCID: PMC5444485 DOI: 10.1089/neu.2016.4626] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is often accompanied by other tissue damage (polytrauma) that provides a source of pain (nociceptive) input. Recent findings are reviewed that show SCI places the caudal tissue in a vulnerable state that exaggerates the effects nociceptive stimuli and promotes the development of nociceptive sensitization. Stimulation that is both unpredictable and uncontrollable induces a form of maladaptive plasticity that enhances nociceptive sensitization and impairs spinally mediated learning. In contrast, relational learning induces a form of adaptive plasticity that counters these adverse effects. SCI sets the stage for nociceptive sensitization by disrupting serotonergic (5HT) fibers that quell overexcitation. The loss of 5HT can enhance neural excitability by reducing membrane-bound K+-Cl- cotransporter 2, a cotransporter that regulates the outward flow of Cl-. This increases the intracellular concentration of Cl-, which reduces the hyperpolarizing (inhibitory) effect of gamma-aminobutyric acid. Uncontrollable noxious stimulation also undermines the recovery of locomotor function, and increases behavioral signs of chronic pain, after a contusion injury. Nociceptive stimulation has a greater effect if experienced soon after SCI. This adverse effect has been linked to a downregulation in brain-derived neurotrophic factor and an upregulation in the cytokine, tumor necrosis factor. Noxious input enhances tissue loss at the site of injury by increasing the extent of hemorrhage and apoptotic/pyroptotic cell death. Intrathecal lidocaine blocks nociception-induced hemorrhage, cellular indices of cell death, and its adverse effect on behavioral recovery. Clinical implications are discussed.
Collapse
Affiliation(s)
- James W. Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Yung-Jen Huang
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Joel D. Turtle
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Misty M. Strain
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas
| | - Sandra M. Garraway
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Michelle A. Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas
| |
Collapse
|
11
|
Côté MP, Murray M, Lemay MA. Rehabilitation Strategies after Spinal Cord Injury: Inquiry into the Mechanisms of Success and Failure. J Neurotrauma 2016; 34:1841-1857. [PMID: 27762657 DOI: 10.1089/neu.2016.4577] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Body-weight supported locomotor training (BWST) promotes recovery of load-bearing stepping in lower mammals, but its efficacy in individuals with a spinal cord injury (SCI) is limited and highly dependent on injury severity. While animal models with complete spinal transections recover stepping with step-training, motor complete SCI individuals do not, despite similarly intensive training. In this review, we examine the significant differences between humans and animal models that may explain this discrepancy in the results obtained with BWST. We also summarize the known effects of SCI and locomotor training on the muscular, motoneuronal, interneuronal, and supraspinal systems in human and non-human models of SCI and address the potential causes for failure to translate to the clinic. The evidence points to a deficiency in neuronal activation as the mechanism of failure, rather than muscular insufficiency. While motoneuronal and interneuronal systems cannot be directly probed in humans, the changes brought upon by step-training in SCI animal models suggest a beneficial re-organization of the systems' responsiveness to descending and afferent feedback that support locomotor recovery. The literature on partial lesions in humans and animal models clearly demonstrate a greater dependency on supraspinal input to the lumbar cord in humans than in non-human mammals for locomotion. Recent results with epidural stimulation that activates the lumbar interneuronal networks and/or increases the overall excitability of the locomotor centers suggest that these centers are much more dependent on the supraspinal tonic drive in humans. Sensory feedback shapes the locomotor output in animal models but does not appear to be sufficient to drive it in humans.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Marion Murray
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Michel A Lemay
- 2 Department of Bioengineering, Temple University , Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Alford S, Schwartz E, Viana di Prisco G. The Pharmacology of Vertebrate Spinal Central Pattern Generators. Neuroscientist 2016; 9:217-28. [PMID: 15065817 DOI: 10.1177/1073858403009003014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Central pattern generators are networks of neurons capable of generating an output pattern of spike activity in a relatively stereotyped, rhythmic pattern that has been found to underlie vital functions like respiration and locomotion. The central pattern generator for locomotion in vertebrates seems to share some basic building blocks. Activation and excitation of activity is driven by descending, sensory, and intraspinal glutamatergic neurons. NMDA receptor activation may also lead to the activation of oscillatory properties in individual neurons that depend on an array of ion channels situated in those neurons. Coordination across joints or the midline of the animal is driven primarily by glycinergic inhibition. In addition to these processes, numerous modulatory mechanisms alter the function of the central pattern generator. These include metabotropic amino acid receptors activated by rhythmic release of glutamate and GABA as well as monoamines, ACh, and peptides. Function and stability of the central pattern generator is also critically dependent on the array of ion channels found in neurons that compose these oscillators, including Ca2+and voltage-gated K+channels and Ca2+channels.
Collapse
Affiliation(s)
- Simon Alford
- Department of Biological Sciences, University of Illinois at Chicago, 60607, USA.
| | | | | |
Collapse
|
13
|
Tamoxifen Promotes Axonal Preservation and Gait Locomotion Recovery after Spinal Cord Injury in Cats. J Vet Med 2016; 2016:9561968. [PMID: 27006979 PMCID: PMC4781988 DOI: 10.1155/2016/9561968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/14/2016] [Indexed: 01/01/2023] Open
Abstract
We performed experiments in cats with a spinal cord penetrating hemisection at T13-L1 level, with and without tamoxifen treatment. The results showed that the numbers of the ipsilateral and contralateral ventral horn neurons were reduced to less than half in the nontreated animals compared with the treated ones. Also, axons myelin sheet was preserved to almost normal values in treated cats. On the contrary, in the untreated animals, their myelin sheet was reduced to 28% at 30 days after injury (DAI), in both the ipsilateral and contralateral regions of the spinal cord. Additionally, we made hindlimb kinematics experiments to study the effects of tamoxifen on cat locomotion after the injury: at 4, 16, and 30 DAI. We observed that the ipsilateral hindlimb angular displacement (AD) of the pendulum-like movements (PLM) during gait locomotion was recovered to almost normal values in treated cats. Contralateral PLM acquired similar values to those obtained in intact cats. At 4 DAI, untreated animals showed a compensatory increment of PLM occurring in the contralateral hindlimb, which was partially recovered at 30 DAI. Our findings indicate that tamoxifen exerts a neuroprotective effect and preserves or produces myelinated axons, which could benefit the locomotion recovery in injured cats.
Collapse
|
14
|
Koenig B, Pape D, Chao O, Bauer J, Grimpe B. Long term study of deoxyribozyme administration to XT-1 mRNA promotes corticospinal tract regeneration and improves behavioral outcome after spinal cord injury. Exp Neurol 2016; 276:51-8. [PMID: 26428904 DOI: 10.1016/j.expneurol.2015.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/18/2015] [Accepted: 09/26/2015] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI) affects approximately 3 million people around the world, who are desperately awaiting treatment. The pressing need for the development of therapeutics has spurred medical research for decades. To respond to this pressing need, our group developed a potential therapeutic to reduce the presence of proteoglycans at the injury site after acutely traumatizing the spinal cord of rats. With the aid of a DNA enzyme against the mRNA of xylosyltransferase-1 (DNAXT-1as) we adjourn the glycosylation and prevent the assembly of the proteoglycan core protein into the extracellular matrix. Hence, endogenous repair is strengthened due to the allocation of a more growth permissive environment around the lesion site. Here, we present data on a long term study of animals with a dorsal hemisection treated with DNAXT-1as, DNAXT-1mb (control DNA enzyme) or PBS via osmotic minipumps. After successful digestion of the XT-1 mRNA shown by qPCR we observed an overall behavioral improvement of DNAXT-1as treated rats at 8, 10 and 14 weeks after insult to the spine compared to the control animals. This is accompanied by the growth of the cortical spinal tract (CST) in DNAXT-1as treated animals after a 19 week survival period. Furthermore, after evaluating the lesion size tissue-protective effects in the DNAXT-1as treated animals compared to DNAXT-1mb and PBS treated rats are revealed. The results yield new insights into the regeneration processes and provide confirmation to involve DNA enzyme administration in future therapeutic strategies to medicate SCI.
Collapse
Affiliation(s)
- Brigitte Koenig
- Molecular Neurobiology, Heinrich Heine University, Düsseldorf, 40225, Germany.
| | - Daniel Pape
- Applied Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany.
| | - Owen Chao
- Center for Behavioral Neuroscience, Heinrich Heine University, Düsseldorf, 40225, Germany.
| | - Jordana Bauer
- Applied Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany.
| | - Barbara Grimpe
- Applied Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany; Corresponding author at: Applied Neurobiology, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf 40225, Germany..
| |
Collapse
|
15
|
Dillenseger A, Schulze S, Martens H, Schmidt MJ. [Central pattern generators in the spinal cord of the cat and their relevance in rehabilitation after spinal lesion]. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2015; 44:39-46. [PMID: 26530110 DOI: 10.15654/tpk-140729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/01/2015] [Indexed: 11/13/2022]
Abstract
The ability of the spinal cord to recover after partial or complete transection, and even reinitiate motor function, was investigated in several studies in cats. It has been shown that even after a complete spinalisation at the level of T12/T13, the possibility of restoration of hind-limb function is good. Central pattern generators (CPGs), located in the spinal cord, play an important role in this situation. Although CPGs alone are unable to restore function, the combination of CPGs with targeted and consistent mobility training and, in some cases, hind-limb sensory stimulation is essential to improve function. These result in a reorganisation of the CPGs and neuronal networks in the spinal cord. The age of the animal at the time of injury and the extent and localisation of lesions, play a crucial role in recovery. A new focus of research is the influence of neurotransmitters/neuromodulators on spinal-cord regeneration. How and to what extent these factors support locomotor training remains for further clinical investigation.
Collapse
Affiliation(s)
- A Dillenseger
- Anja Dillenseger, Holbeinstraße 90, 01309 Dresden, E-Mail:
| | | | | | | |
Collapse
|
16
|
Foffani G, Shumsky J, Knudsen EB, Ganzer PD, Moxon KA. Interactive Effects Between Exercise and Serotonergic Pharmacotherapy on Cortical Reorganization After Spinal Cord Injury. Neurorehabil Neural Repair 2015; 30:479-89. [PMID: 26338432 DOI: 10.1177/1545968315600523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND In rat models of spinal cord injury, at least 3 different strategies can be used to promote long-term cortical reorganization: (1) active exercise above the level of the lesion; (2) passive exercise below the level of the lesion; and (3) serotonergic pharmacotherapy. Whether and how these potential therapeutic strategies-and their underlying mechanisms of action-interact remains unknown. Methods In spinally transected adult rats, we compared the effects of active exercise above the level of the lesion (treadmill), passive exercise below the level of the lesion (bike), serotonergic pharmacotherapy (quipazine), and combinations of the above therapies (bike+quipazine, treadmill+quipazine, bike+treadmill+quipazine) on long-term cortical reorganization (9 weeks after the spinal transection). Cortical reorganization was measured as the percentage of cells recorded in the deafferented hindlimb cortex that responded to tactile stimulation of the contralateral forelimb. Results Bike and quipazine are "competing" therapies for cortical reorganization, in the sense that quipazine limits the cortical reorganization induced by bike, whereas treadmill and quipazine are "collaborative" therapies, in the sense that the reorganization induced by quipazine combined with treadmill is greater than the reorganization induced by either quipazine or treadmill. CONCLUSIONS These results uncover the interactive effects between active/passive exercise and serotonergic pharmacotherapy on cortical reorganization after spinal cord injury, emphasizing the importance of understanding the effects of therapeutic strategies in spinal cord injury (and in other forms of deafferentation) from an integrated system-level approach.
Collapse
Affiliation(s)
- Guglielmo Foffani
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain Hospitales de Madrid, Móstoles, Spain CEU-San Pablo University, Madrid, Spain
| | - Jed Shumsky
- Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | - Karen A Moxon
- Drexel University College of Medicine, Philadelphia, PA, USA Drexel University, Philadelphia, PA, USA
| |
Collapse
|
17
|
Gad P, Roy RR, Choe J, Zhong H, Nandra MS, Tai YC, Gerasimenko Y, Edgerton VR. Electrophysiological mapping of rat sensorimotor lumbosacral spinal networks after complete paralysis. PROGRESS IN BRAIN RESEARCH 2015; 218:199-212. [PMID: 25890138 DOI: 10.1016/bs.pbr.2015.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this chapter, we outline the use of a multisite electrode array in the spinal rat model to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats. The results demonstrate that spinal rats can stand and step when the spinal cord is stimulated tonically via electrodes located at specific sites on the spinal cord. The quality of stepping and standing was dependent on the location of the electrodes on the spinal cord, the specific stimulation parameters, and the orientation of the cathode and anode. The spinal motor evoked potentials in selected muscles during standing and stepping are shown to be critical tools to study selective activation of interneuronal circuits via responses of varying latencies. The present results provide further evidence that the assessment of functional networks in the background of behaviorally relevant functional states is likely to be a physiological tool of considerable importance in developing strategies to facilitate recovery of motor function after a number of neuromotor disorders.
Collapse
Affiliation(s)
- Parag Gad
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Roland R Roy
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA; Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Jaehoon Choe
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA; Department of Neuroscience, University of California, Los Angeles, CA, USA
| | - Hui Zhong
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | | | - Yu-Chong Tai
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yury Gerasimenko
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA; Pavlov Institute of Physiology, St. Petersburg, Russia; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - V Reggie Edgerton
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA; Department of Neurobiology, University of California, Los Angeles, CA, USA; Department of Neurosurgery, University of California, Los Angeles, CA, USA; Brain Research Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Gad P, Roy RR, Choe J, Creagmile J, Zhong H, Gerasimenko Y, Edgerton VR. Electrophysiological biomarkers of neuromodulatory strategies to recover motor function after spinal cord injury. J Neurophysiol 2015; 113:3386-96. [PMID: 25695648 DOI: 10.1152/jn.00918.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
The spinal cord contains the circuitry to control posture and locomotion after complete paralysis, and this circuitry can be enabled with epidural stimulation [electrical enabling motor control (eEmc)] and/or administration of pharmacological agents [pharmacological enabling motor control (fEmc)] when combined with motor training. We hypothesized that the characteristics of the spinally evoked potentials after chronic administration of both strychnine and quipazine under the influence of eEmc during standing and stepping can be used as biomarkers to predict successful motor performance. To test this hypothesis we trained rats to step bipedally for 7 wk after paralysis and characterized the motor potentials evoked in the soleus and tibialis anterior (TA) muscles with the rats in a non-weight-bearing position, standing and stepping. The middle responses (MRs) to spinally evoked stimuli were suppressed with either or both drugs when the rat was suspended, whereas the addition of either or both drugs resulted in an overall activation of the extensor muscles during stepping and/or standing and reduced the drag duration and cocontraction between the TA and soleus muscles during stepping. The administration of quipazine and strychnine in concert with eEmc and step training after injury resulted in larger-amplitude evoked potentials [MRs and late responses (LRs)] in flexors and extensors, with the LRs consisting of a more normal bursting pattern, i.e., randomly generated action potentials within the bursts. This pattern was linked to more successful standing and stepping. Thus it appears that selected features of the patterns of potentials evoked in specific muscles with stimulation can serve as effective biomarkers and predictors of motor performance.
Collapse
Affiliation(s)
- Parag Gad
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Roland R Roy
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, California
| | - Jaehoon Choe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Jack Creagmile
- Department of Neuroscience, University of California, Los Angeles, California
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Yury Gerasimenko
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California; Pavlov Institute of Physiology, St. Petersburg, Russia; and Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California; Department of Neurobiology, University of California, Los Angeles, California; Department of Neurosurgery, University of California, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, California;
| |
Collapse
|
19
|
Ghosh M, Pearse DD. The role of the serotonergic system in locomotor recovery after spinal cord injury. Front Neural Circuits 2015; 8:151. [PMID: 25709569 PMCID: PMC4321350 DOI: 10.3389/fncir.2014.00151] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/28/2014] [Indexed: 11/30/2022] Open
Abstract
Serotonin (5-HT), a monoamine neurotransmitter synthesized in various populations of brainstem neurons, plays an important role in modulating the activity of spinal networks involved in vertebrate locomotion. Following spinal cord injury (SCI) there is a disruption of descending serotonergic projections to spinal motor areas, which results in a subsequent depletion in 5-HT, the dysregulation of 5-HT transporters as well as the elevated expression, super-sensitivity and/or constitutive auto-activation of specific 5-HT receptors. These changes in the serotonergic system can produce varying degrees of locomotor dysfunction through to paralysis. To date, various approaches targeting the different components of the serotonergic system have been employed to restore limb coordination and improve locomotor function in experimental models of SCI. These strategies have included pharmacological modulation of serotonergic receptors, through the administration of specific 5-HT receptor agonists, or by elevating the 5-HT precursor 5-hydroxytryptophan, which produces a global activation of all classes of 5-HT receptors. Stimulation of these receptors leads to the activation of the locomotor central pattern generator (CPG) below the site of injury to facilitate or improve the quality and frequency of movements, particularly when used in concert with the activation of other monoaminergic systems or coupled with electrical stimulation. Another approach has been to employ cell therapeutics to replace the loss of descending serotonergic input to the CPG, either through transplanted fetal brainstem 5-HT neurons at the site of injury that can supply 5-HT to below the level of the lesion or by other cell types to provide a substrate at the injury site for encouraging serotonergic axon regrowth across the lesion to the caudal spinal cord for restoring locomotion.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA ; The Neuroscience Program, University of Miami Miller School of Medicine Miami, FL, USA ; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
20
|
Lemmens S, Brône B, Dooley D, Hendrix S, Geurts N. Alpha-adrenoceptor modulation in central nervous system trauma: pain, spasms, and paralysis--an unlucky triad. Med Res Rev 2014; 35:653-77. [PMID: 25546087 DOI: 10.1002/med.21337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many researchers have attempted to pharmacologically modulate the adrenergic system to control locomotion, pain, and spasms after central nervous system (CNS) trauma, although such efforts have led to conflicting results. Despite this, multiple studies highlight that α-adrenoceptors (α-ARs) are promising therapeutic targets because in the CNS, they are involved in reactivity to stressors and regulation of locomotion, pain, and spasms. These functions can be activated by direct modulation of these receptors on neuronal networks in the brain and the spinal cord. In addition, these multifunctional receptors are also broadly expressed on immune cells. This suggests that they might play a key role in modulating immunological responses, which may be crucial in treating spinal cord injury and traumatic brain injury as both diseases are characterized by a strong inflammatory component. Reducing the proinflammatory response will create a more permissive environment for axon regeneration and may support neuromodulation in combination therapies. However, pharmacological interventions are hindered by adrenergic system complexity and the even more complicated anatomical and physiological changes in the CNS after trauma. This review is the first concise overview of the pros and cons of α-AR modulation in the context of CNS trauma.
Collapse
Affiliation(s)
- Stefanie Lemmens
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Bert Brône
- Department of Physiology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nathalie Geurts
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
21
|
Serotonergic transmission after spinal cord injury. J Neural Transm (Vienna) 2014; 122:279-95. [PMID: 24866695 DOI: 10.1007/s00702-014-1241-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 05/06/2014] [Indexed: 12/27/2022]
Abstract
Changes in descending serotonergic innervation of spinal neural activity have been implicated in symptoms of paralysis, spasticity, sensory disturbances and pain following spinal cord injury (SCI). Serotonergic neurons possess an enhanced ability to regenerate or sprout after many types of injury, including SCI. Current research suggests that serotonine (5-HT) release within the ventral horn of the spinal cord plays a critical role in motor function, and activation of 5-HT receptors mediates locomotor control. 5-HT originating from the brain stem inhibits sensory afferent transmission and associated spinal reflexes; by abolishing 5-HT innervation SCI leads to a disinhibition of sensory transmission. 5-HT denervation supersensitivity is one of the key mechanisms underlying the increased motoneuron excitability that occurs after SCI, and this hyperexcitability has been demonstrated to underlie the pathogenesis of spasticity after SCI. Moreover, emerging evidence implicates serotonergic descending facilitatory pathways from the brainstem to the spinal cord in the maintenance of pathologic pain. There are functional relevant connections between the descending serotonergic system from the rostral ventromedial medulla in the brainstem, the 5-HT receptors in the spinal dorsal horn, and the descending pain facilitation after tissue and nerve injury. This narrative review focussed on the most important studies that have investigated the above-mentioned effects of impaired 5-HT-transmission in humans after SCI. We also briefly discussed the promising therapeutical approaches with serotonergic drugs, monoclonal antibodies and intraspinal cell transplantation.
Collapse
|
22
|
Abstract
Over the past 2 decades, the biological understanding of the mechanisms underlying structural and functional repair of the injured central nervous system has strongly increased. This has resulted in the development of multiple experimental treatment strategies with the collective aim of enhancing and surpassing the limited spontaneous recovery occurring in animal models and ultimately humans suffering from spinal cord or brain injuries. Several of these experimental treatments have revealed beneficial effects in animal models of spinal cord injury. With the exception of neurorehabilitative therapies, however, therapeutic interventions that enhance recovery are currently absent within the clinical realm of spinal cord injury. The present review surveys the prospects and challenges in experimental and clinical spinal cord repair. Major shortcomings in experimental research center on the difficulty of closely modeling human traumatic spinal cord injury in animals, the small number of investigations done on cervical spinal injury and tetraplegia, and the differences in lesion models, species, and functional outcome parameters used between laboratories. The main challenges in the clinical field of spinal cord repair are associated with the standardization and sensitivity of functional outcome measures, the definition of the inclusion/exclusion criteria for patient recruitment in trials, and the accuracy and reliability of an early diagnosis to predict subsequent neurological outcome. Research and clinical networks were recently created with the goal of optimizing animal studies and human trials. Promising clinical trials are currently in progress. The time has come to translate the biologic-mechanistic knowledge from basic science into efficacious treatments able to improve the conditions of humans suffering from spinal cord injury.
Collapse
Affiliation(s)
- Linard Filli
- Brain Research Institute, University Zurich and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | | |
Collapse
|
23
|
Moxon KA, Kao T, Shumsky JS. Role of cortical reorganization on the effect of 5-HT pharmacotherapy for spinal cord injury. Exp Neurol 2012; 240:17-27. [PMID: 23159333 DOI: 10.1016/j.expneurol.2012.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/26/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
Cortical reorganization or expansion of the intact cortical regions into the deafferented cortex after complete spinal transection in neonatally spinalized rats was shown to be essential for increases in weight-supported stepping at adulthood. The novel somatotopic organization identified in these animals can be induced by exercise or spinal transplants that bridge the site of injury. However, the role of cortical reorganization in increased weight-supported (WS) stepping after pharmacotherapy is unknown. For the neonatally spinalized rat model, the 5-HT(2C) receptor agonist 1-(m-chlorophenyl)-piperazine hydrochloride (mCPP) increases the number of WS steps taken when administered to adult rats spinalized as neonates (mCPP+) though not all animals showed this effect (mCPP-). Since no differences in the behavior of the animals off-drug has been demonstrated, it is unclear why acute administration of 5-HT affects only a subset of animals. One possibility is that differences in cortical organization between mCPP+ and mCPP- may contribute to the differences in the functional effect of mCPP. To test this, we recorded from single neurons in the deafferented hindlimb sensorimotor cortex during passive sensory stimulation of the cutaneous surface of the forepaws and during active sensorimotor stimulation of the forepaws while the animals locomoted on a motorized treadmill. Our results show that neurons recorded from mCPP+ animals increased their responsiveness to both passive and active stimulation off-drug in comparison to neurons from mCPP- animals. These data suggest that differences in the cortical organization of mCPP+ compared to mCPP- animals may be at least partially responsible for the effect of a 5-HT(2C) receptor agonist on functional outcome.
Collapse
Affiliation(s)
- Karen A Moxon
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | | | |
Collapse
|
24
|
Bose PK, Hou J, Parmer R, Reier PJ, Thompson FJ. Altered patterns of reflex excitability, balance, and locomotion following spinal cord injury and locomotor training. Front Physiol 2012; 3:258. [PMID: 22934014 PMCID: PMC3429034 DOI: 10.3389/fphys.2012.00258] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/20/2012] [Indexed: 11/13/2022] Open
Abstract
Spasticity is an important problem that complicates daily living in many individuals with spinal cord injury (SCI). While previous studies in human and animals revealed significant improvements in locomotor ability with treadmill locomotor training, it is not known to what extent locomotor training influences spasticity. In addition, it would be of considerable practical interest to know how the more ergonomically feasible cycle training compares with treadmill training as therapy to manage SCI-induced spasticity and to improve locomotor function. Thus the main objective of our present studies was to evaluate the influence of different types of locomotor training on measures of limb spasticity, gait, and reflex components that contribute to locomotion. For these studies, 30 animals received midthoracic SCI using the standard Multicenter Animal Spinal cord Injury Studies (MASCIS) protocol (10 g 2.5 cm weight drop). They were divided randomly into three equal groups: control (contused untrained), contused treadmill trained, and contused cycle trained. Treadmill and cycle training were started on post-injury day 8. Velocity-dependent ankle torque was tested across a wide range of velocities (612-49°/s) to permit quantitation of tonic (low velocity) and dynamic (high velocity) contributions to lower limb spasticity. By post-injury weeks 4 and 6, the untrained group revealed significant velocity-dependent ankle extensor spasticity, compared to pre-surgical control values. At these post-injury time points, spasticity was not observed in either of the two training groups. Instead, a significantly milder form of velocity-dependent spasticity was detected at postcontusion weeks 8-12 in both treadmill and bicycle training groups at the four fastest ankle rotation velocities (350-612°/s). Locomotor training using treadmill or bicycle also produced significant increase in the rate of recovery of limb placement measures (limb axis, base of support, and open field locomotor ability) and reflex rate-depression, a quantitative assessment of neurophysiological processes that regulate segmental reflex excitability, compared with those of untrained injured controls. Light microscopic qualitative studies of spared tissue revealed better preservation of myelin, axons, and collagen morphology in both locomotor trained animals. Both locomotor trained groups revealed decreased lesion volume (rostro-caudal extension) and more spared tissue at the lesion site. These improvements were accompanied by marked upregulation of BDNF, GABA/GABA(b), and monoamines (e.g., norepinephrine and serotonin) which might account for these improved functions. These data are the first to indicate that the therapeutic efficacy of ergonomically practical cycle training is equal to that of the more labor-intensive treadmill training in reducing spasticity and improving locomotion following SCI in an animal model.
Collapse
Affiliation(s)
- Prodip K Bose
- Brain Rehabilitation Research Center, North Florida/South Georgia VA Medical Center Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
25
|
Domingo A, Al-Yahya AA, Asiri Y, Eng JJ, Lam T. A systematic review of the effects of pharmacological agents on walking function in people with spinal cord injury. J Neurotrauma 2012; 29:865-79. [PMID: 22142289 PMCID: PMC4496059 DOI: 10.1089/neu.2011.2052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies of spinalized animals indicate that some pharmacological agents may act on receptors in the spinal cord, helping to produce coordinated locomotor movement. Other drugs may help to ameliorate the neuropathological changes resulting from spinal cord injury (SCI), such as spasticity or demyelination, to improve walking. The purpose of this study was to systematically review the effects of pharmacological agents on gait in people with SCI. A keyword literature search of articles that evaluated the effects of drugs on walking after SCI was performed using the databases MEDLINE/PubMed, CINAHL, EMBASE, PsycINFO, and hand searching. Two reviewers independently evaluated each study, using the Physiotherapy Evidence Database (PEDro) tool for randomized clinical trials (RCTs), and the modified Downs & Black scale for all other studies. Results were tabulated and levels of evidence were assigned. Eleven studies met the inclusion criteria. One RCT provided Level 1 evidence that GM-1 ganglioside in combination with physical therapy improved motor scores, walking velocity, and distance better than placebo and physical therapy in persons with incomplete SCI. Multiple studies (levels of evidence 1-5) showed that clonidine and cyproheptadine may improve locomotor function and walking speed in severely impaired individuals with incomplete SCI. Gains in walking speed associated with GM-1, cyproheptadine, and clonidine are low compared to those seen with locomotor training. There was also Level 1 evidence that 4-aminopyridine and L-dopa were no better than placebo in helping to improve gait. Two Level 5 studies showed that baclofen had little to no effect on improving walking in persons with incomplete SCI. There is limited evidence that pharmacological agents tested so far would facilitate the recovery of walking after SCI. More studies are needed to better understand the effects of drugs combined with gait training on walking outcomes in people with SCI.
Collapse
Affiliation(s)
- Antoinette Domingo
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
26
|
Sławińska U, Majczyński H, Dai Y, Jordan LM. The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats. J Physiol 2012; 590:1721-36. [PMID: 22351637 DOI: 10.1113/jphysiol.2011.224931] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent studies on the restoration of locomotion after spinal cord injury have employed robotic means of positioning rats above a treadmill such that the animals are held in an upright posture and engage in bipedal locomotor activity. However, the impact of the upright posture alone, which alters hindlimb loading, an important variable in locomotor control, has not been examined. Here we compared the locomotor capabilities of chronic spinal rats when placed in the horizontal and upright postures. Hindlimb locomotor movements induced by exteroceptive stimulation (tail pinching) were monitored with video and EMG recordings. We found that the upright posture alone significantly improved plantar stepping. Locomotor trials using anaesthesia of the paws and air stepping demonstrated that the cutaneous receptors of the paws are responsible for the improved plantar stepping observed when the animals are placed in the upright posture.We also tested the effectiveness of serotonergic drugs that facilitate locomotor activity in spinal rats in both the horizontal and upright postures. Quipazine and (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) improved locomotion in the horizontal posture but in the upright posture either interfered with or had no effect on plantar walking. Combined treatment with quipazine and 8-OH-DPAT at lower doses dramatically improved locomotor activity in both postures and mitigated the need to activate the locomotor CPG with exteroceptive stimulation. Our results suggest that afferent input from the paw facilitates the spinal CPG for locomotion. These potent effects of afferent input from the paw should be taken into account when interpreting the results obtained with rats in an upright posture and when designing interventions for restoration of locomotion after spinal cord injury.
Collapse
Affiliation(s)
- Urszula Sławińska
- Laboratory of Neuromuscular Plasticity, Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland.
| | | | | | | |
Collapse
|
27
|
Miles GB, Sillar KT. Neuromodulation of Vertebrate Locomotor Control Networks. Physiology (Bethesda) 2011; 26:393-411. [DOI: 10.1152/physiol.00013.2011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vertebrate locomotion must be adaptable in light of changing environmental, organismal, and developmental demands. Much of the underlying flexibility in the output of central pattern generating (CPG) networks of the spinal cord and brain stem is endowed by neuromodulation. This review provides a synthesis of current knowledge on the way that various neuromodulators modify the properties of and connections between CPG neurons to sculpt CPG network output during locomotion.
Collapse
Affiliation(s)
- Gareth B. Miles
- School of Biology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| | - Keith T. Sillar
- School of Biology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| |
Collapse
|
28
|
Rossignol S, Frigon A. Recovery of Locomotion After Spinal Cord Injury: Some Facts and Mechanisms. Annu Rev Neurosci 2011; 34:413-40. [PMID: 21469957 DOI: 10.1146/annurev-neuro-061010-113746] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Serge Rossignol
- Groupe de Recherche sur le Système Nerveux Central (FRSQ), Department of Physiology, and Multidisciplinary Team in Locomotor Rehabilitation of the Canadian Institutes for Health Research, Université de Montréal, Montreal H3C 3J7, Canada;
| | - Alain Frigon
- Groupe de Recherche sur le Système Nerveux Central (FRSQ), Department of Physiology, and Multidisciplinary Team in Locomotor Rehabilitation of the Canadian Institutes for Health Research, Université de Montréal, Montreal H3C 3J7, Canada;
- Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke JIH 5N4, Canada
| |
Collapse
|
29
|
Filli L, Zörner B, Weinmann O, Schwab ME. Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome. ACTA ACUST UNITED AC 2011; 134:2261-73. [PMID: 21752788 DOI: 10.1093/brain/awr167] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cervical incomplete spinal cord injuries often lead to severe and persistent impairments of sensorimotor functions and are clinically the most frequent type of spinal cord injury. Understanding the motor impairments and the possible functional recovery of upper and lower extremities is of great importance. Animal models investigating motor dysfunction following cervical spinal cord injury are rare. We analysed the differential spontaneous recovery of fore- and hindlimb locomotion by detailed kinematic analysis in adult rats with unilateral C4/C5 hemisection, a lesion that leads to the Brown-Séquard syndrome in humans. The results showed disproportionately better performance of hindlimb compared with forelimb locomotion; hindlimb locomotion showed substantial recovery, whereas the ipsilesional forelimb remained in a very poor functional state. Such a differential motor recovery pattern is also known to occur in monkeys and in humans after similar spinal cord lesions. On the lesioned side, cortico-, rubro-, vestibulo- and reticulospinal tracts and the important modulatory serotonergic, dopaminergic and noradrenergic fibre systems were interrupted by the lesion. In an attempt to facilitate locomotion, different monoaminergic agonists were injected intrathecally. Injections of specific serotonergic and noradrenergic agonists in the chronic phase after the spinal cord lesion revealed remarkable, although mostly functionally negative, modulations of particular parameters of hindlimb locomotion. In contrast, forelimb locomotion was mostly unresponsive to these agonists. These results, therefore, show fundamental differences between fore- and hindlimb spinal motor circuitries and their functional dependence on remaining descending inputs and exogenous spinal excitation. Understanding these differences may help to develop future therapeutic strategies to improve upper and lower limb function in patients with incomplete cervical spinal cord injuries.
Collapse
Affiliation(s)
- Linard Filli
- Brain Research Institute, University and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | | | |
Collapse
|
30
|
Pearlstein E, Bras H, Deneris ES, Vinay L. Contribution of 5-HT to locomotion - the paradox of Pet-1(-/-) mice. Eur J Neurosci 2011; 33:1812-22. [PMID: 21501257 DOI: 10.1111/j.1460-9568.2011.07679.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serotonin (5-HT) plays a critical role in locomotor pattern generation by modulating the rhythm and the coordinations. Pet-1, a transcription factor selectively expressed in the raphe nuclei, controls the differentiation of 5-HT neurons. Surprisingly, inactivation of Pet-1 (Pet-1(-/-) mice) that causes a 70% reduction in the number of 5-HT-positive neurons in the raphe does not impair locomotion in adult mice. The goal of the present study was to investigate the operation of the locomotor central pattern generator (CPG) in neonatal Pet-1(-/-) mice. We first confirmed, by means of immunohistochemistry, that there is a marked reduction of 5-HT innervation in the lumbar spinal cord of Pet-1(-/-) mice. Fictive locomotion was induced in the in vitro neonatal mouse spinal cord preparation by bath application of N-methyl-d,l-Aspartate (NMA) alone or together with dopamine and 5-HT. A locomotor pattern characterized by left-right and flexor-extensor alternations was observed in both conditions. Increasing the concentration of 5-HT from 0.5 to 5 μm impaired the pattern in Pet-1(-/-) mice. We tested the role of endogenous 5-HT in the NMA-induced fictive locomotion. Application of 5-HT(2) or 5-HT(7) receptor antagonists affected the NMA-induced fictive locomotion in both heterozygous and homozygous mice although the effects were weaker in the latter strain. This may be, at least partly, explained by the reduced expression of 5-HT(2A) R as observed by means of immunohistochemistry. These results suggest that compensatory mechanisms take place in Pet-1(-/-) mice that make locomotion less dependent upon 5-HT.
Collapse
Affiliation(s)
- E Pearlstein
- Laboratoire Plasticité et Physio-Pathologie de la Motricité (P3M), CNRS & Université de la Méditerranée, UMR 6196, CNRS, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
31
|
Zaporozhets E, Cowley KC, Schmidt BJ. Neurochemical excitation of propriospinal neurons facilitates locomotor command signal transmission in the lesioned spinal cord. J Neurophysiol 2011; 105:2818-29. [PMID: 21451056 DOI: 10.1152/jn.00917.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previous studies of the in vitro neonatal rat brain stem-spinal cord showed that propriospinal relays contribute to descending transmission of a supraspinal command signal that is capable of activating locomotion. Using the same preparation, the present series examines whether enhanced excitation of thoracic propriospinal neurons facilitates propagation of the locomotor command signal in the lesioned spinal cord. First, we identified neurotransmitters contributing to normal endogenous propriospinal transmission of the locomotor command signal by testing the effect of receptor antagonists applied to cervicothoracic segments during brain stem-induced locomotor-like activity. Spinal cords were either intact or contained staggered bilateral hemisections located at right T1/T2 and left T10/T11 junctions designed to abolish direct long-projecting bulbospinal axons. Serotonergic, noradrenergic, dopaminergic, and glutamatergic, but not cholinergic, receptor antagonists blocked locomotor-like activity. Approximately 73% of preparations with staggered bilateral hemisections failed to generate locomotor-like activity in response to electrical stimulation of the brain stem alone; such preparations were used to test the effect of neuroactive substances applied to thoracic segments (bath barriers placed at T3 and T9) during brain stem stimulation. The percentage of preparations developing locomotor-like activity was as follows: 5-HT (43%), 5-HT/N-methyl-D-aspartate (NMDA; 33%), quipazine (42%), 8-hydroxy-2-(di-n-propylamino)tetralin (20%), methoxamine (45%), and elevated bath K(+) concentration (29%). Combined norepinephrine and dopamine increased the success rate (67%) compared with the use of either agent alone (4 and 7%, respectively). NMDA, Mg(2+) ion removal, clonidine, and acetylcholine were ineffective. The results provide proof of principle that artificial excitation of thoracic propriospinal neurons can improve supraspinal control over hindlimb locomotor networks in the lesioned spinal cord.
Collapse
Affiliation(s)
- Eugene Zaporozhets
- Department of Physiology, Section of Neurology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
32
|
Noga BR, Johnson DMG, Riesgo MI, Pinzon A. Locomotor-activated neurons of the cat. II. Noradrenergic innervation and colocalization with NEα 1a or NEα 2b receptors in the thoraco-lumbar spinal cord. J Neurophysiol 2011; 105:1835-49. [PMID: 21307324 DOI: 10.1152/jn.00342.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Norepinephrine (NE) is a strong modulator and/or activator of spinal locomotor networks. Thus noradrenergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the noradrenergic innervation of functionally related, locomotor-activated neurons within the thoraco-lumbar spinal cord. This was accomplished by immunohistochemical colocalization of noradrenergic fibers using dopamine-β-hydroxylase or NEα(1A) and NEα(2B) receptors with cells expressing the c-fos gene activity-dependent marker Fos. Experiments were performed on paralyzed, precollicular-postmamillary decerebrate cats, in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. The majority of Fos labeled neurons, especially abundant in laminae VII and VIII throughout the thoraco-lumbar (T13-L7) region of locomotor animals, showed close contacts with multiple noradrenergic boutons. A small percentage (10-40%) of Fos neurons in the T7-L7 segments showed colocalization with NEα(1A) receptors. In contrast, NEα(2B) receptor immunoreactivity was observed in 70-90% of Fos cells, with no obvious rostrocaudal gradient. In comparison with results obtained from our previous study on the same animals, a significantly smaller proportion of Fos labeled neurons were innervated by noradrenergic than serotonergic fibers, with significant differences observed for laminae VII and VIII in some segments. In lamina VII of the lumbar segments, the degree of monoaminergic receptor subtype/Fos colocalization examined statistically generally fell into the following order: NEα(2B) = 5-HT(2A) ≥ 5-HT(7) = 5-HT(1A) > NEα(1A). These results suggest that noradrenergic modulation of locomotion involves NEα(1A)/NEα(2B) receptors on noradrenergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments. Further study of the functional role of these receptors in locomotion is warranted.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
33
|
Martinez M, Rossignol S. Changes in CNS structures after spinal cord lesions implications for BMI. PROGRESS IN BRAIN RESEARCH 2011; 194:191-202. [PMID: 21867804 DOI: 10.1016/b978-0-444-53815-4.00007-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well established that a spinal circuitry can generate locomotor movements of the hindlimbs in absence of descending supraspinal inputs. This is based, among others, on the observation that after a complete spinalization, cats can walk with the hindlimbs on a treadmill. Does this spinal pattern generator (CPG) also participate in the recovery of locomotion after a partial spinal cord lesion (SCI)? After such SCI, functional reorganization can occur spontaneously along the whole neuraxis, namely the spinal cord circuitry below the lesion (CPG) and in supraspinal structures still partially connected to the spinal cord. This review focuses mainly on the capacity of the spinal and supraspinal structures to reorganize spontaneously after incomplete SCI in animals (rats and cats). BMI approaches to foster recovery of functions after various types of SCI should take into account these changes at the various levels of the CNS.
Collapse
Affiliation(s)
- M Martinez
- Department of Physiology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, SensoriMotor Rehabilitation Research Team of the Canadian Institute for Health Research, Montréal, Québec, Canada
| | | |
Collapse
|
34
|
Rossignol S, Frigon A, Barrière G, Martinez M, Barthélemy D, Bouyer L, Bélanger M, Provencher J, Chau C, Brustein E, Barbeau H, Giroux N, Marcoux J, Langlet C, Alluin O. Chapter 16--spinal plasticity in the recovery of locomotion. PROGRESS IN BRAIN RESEARCH 2011; 188:229-41. [PMID: 21333814 DOI: 10.1016/b978-0-444-53825-3.00021-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Locomotion is a very robust motor pattern which can be optimized after different types of lesions to the central and/or peripheral nervous system. This implies that several plastic mechanisms are at play to re-express locomotion after such lesions. Here, we review some of the key observations that helped identify some of these plastic mechanisms. At the core of this plasticity is the existence of a spinal central pattern generator (CPG) which is responsible for hindlimb locomotion as observed after a complete spinal cord section. However, normally, the CPG pattern is adapted by sensory inputs to take the environment into account and by supraspinal inputs in the context of goal-directed locomotion. We therefore also review some of the sensory and supraspinal mechanisms involved in the recovery of locomotion after partial spinal injury. We particularly stress a recent development using a dual spinal lesion paradigm in which a first partial spinal lesion is made which is then followed, some weeks later, by a complete spinalization. The results show that the spinal cord below the spinalization has been changed by the initial partial lesion suggesting that, in the recovery of locomotion after partial spinal lesion, plastic mechanisms within the spinal cord itself are very important.
Collapse
Affiliation(s)
- Serge Rossignol
- Groupe de Recherche sur le Système Nerveux Central, Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Boulenguez P, Vinay L. Strategies to restore motor functions after spinal cord injury. Curr Opin Neurobiol 2009; 19:587-600. [PMID: 19896827 DOI: 10.1016/j.conb.2009.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/23/2009] [Accepted: 10/12/2009] [Indexed: 12/20/2022]
Abstract
This review presents recent advances in the development of strategies to restore posture and locomotion after spinal cord injury (SCI). A set of strategies focusing on the lesion site includes prevention of secondary damages, promotion of axonal sprouting/regeneration, and replacement of lost cells. Other strategies focus on spinal central pattern generators (CPGs). Training promotes functional recovery by enhancing the plasticity of CPGs and these sublesional networks can be reactivated by means of pharmacological or electrical stimulation. It is now clear that substantial functional recovery will require a combination of strategies adapted to each phase following SCI. Finally, improvements in the understanding of the mechanisms underlying spasticity may lead to new treatments of this disabling complication affecting patients with SCI.
Collapse
Affiliation(s)
- Pascale Boulenguez
- Laboratoire Plasticité et Physio-Pathologie de Motricité (UMR6196), Centre National de Recherche Scientifique (CNRS) & Aix-Marseille Université, CNRS, 31 chemin Joseph Aiguier, F-13402 Marseille cx 20, France
| | | |
Collapse
|
36
|
Presynaptic G-protein-coupled receptors dynamically modify vesicle fusion, synaptic cleft glutamate concentrations, and motor behavior. J Neurosci 2009; 29:10221-33. [PMID: 19692597 DOI: 10.1523/jneurosci.1404-09.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding how neuromodulators regulate behavior requires investigating their effects on functional neural systems, but also their underlying cellular mechanisms. Utilizing extensively characterized lamprey motor circuits, and the unique access to reticulospinal presynaptic terminals in the intact spinal cord that initiate these behaviors, we investigated effects of presynaptic G-protein-coupled receptors on locomotion from the systems level, to the molecular control of vesicle fusion. 5-HT inhibits neurotransmitter release via a Gbetagamma interaction with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex that promotes kiss-and-run vesicle fusion. In the lamprey spinal cord, we demonstrate that, although presynaptic 5-HT receptors inhibit evoked neurotransmitter release from reticulospinal command neurons, their activation does not abolish locomotion but rather modulates locomotor rhythms. Liberation of presynaptic Gbetagamma causes substantial inhibition of AMPA receptor-mediated synaptic responses but leaves NMDA receptor-mediated components of neurotransmission mostly intact. Because Gbetagamma binding to the SNARE complex is displaced by Ca(2+)-synaptotagmin binding, 5-HT-mediated inhibition displays Ca(2+) sensitivity. We show that, as Ca(2+) accumulates presynaptically during physiological bouts of activity, 5-HT/Gbetagamma-mediated presynaptic inhibition is relieved, leading to a frequency-dependent increase in synaptic concentrations of glutamate. This frequency-dependent phenomenon mirrors a shift in the vesicle fusion mode and a recovery of AMPA receptor-mediated EPSCs from inhibition without a modification of NMDA receptor EPSCs. We conclude that activation of presynaptic 5-HT G-protein-coupled receptors state-dependently alters vesicle fusion properties to shift the weight of NMDA versus AMPA receptor-mediated responses at excitatory synapses. We have therefore identified a novel mechanism in which modification of vesicle fusion modes may profoundly alter locomotor behavior.
Collapse
|
37
|
Noga BR, Johnson DMG, Riesgo MI, Pinzon A. Locomotor-activated neurons of the cat. I. Serotonergic innervation and co-localization of 5-HT7, 5-HT2A, and 5-HT1A receptors in the thoraco-lumbar spinal cord. J Neurophysiol 2009; 102:1560-76. [PMID: 19571190 DOI: 10.1152/jn.91179.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Monoamines are strong modulators and/or activators of spinal locomotor networks. Thus monoaminergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the serotonergic innervation of locomotor-activated neurons within the thoraco-lumbar spinal cord following induction of hindlimb locomotion. This was determined by immunohistochemical co-localization of serotonin (5-HT) fibers or 5-HT(7)/5-HT2A/5-HT1A receptors with cells expressing the activity-dependent marker c-fos. Experiments were performed on paralyzed, decerebrate cats in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. Abundant c-fos immunoreactive cells were observed in laminae VII and VIII throughout the thoraco-lumbar segments of locomotor animals. Control sections from the same segments showed significantly fewer labeled neurons, mostly within the dorsal horn. Multiple serotonergic boutons were found in close apposition to the majority (80-100%) of locomotor cells, which were most abundant in lumbar segments L3-7. 5-HT7 receptor immunoreactivity was observed on cells across the thoraco-lumbar segments (T7-L7), in a dorsoventral gradient. Most locomotor-activated cells co-localized with 5-HT7, 5-HT2A, and 5-HT1A receptors, with largest numbers in laminae VII and VIII. Co-localization of c-fos and 5-HT7 receptor was highest in the L5-L7 segments (>90%) and decreased rostrally (to approximately 50%) due to the absence of receptors on cells within the intermediolateral nucleus. In contrast, 60-80 and 35-80% of c-fos immunoreactive cells stained positive for 5-HT2A and 5-HT1A receptors, respectively, with no rostrocaudal gradient. These results indicate that serotonergic modulation of locomotion likely involves 5-HT(7)/5-HT2A/5-HT1A receptors located on the soma and proximal dendrites of serotonergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
38
|
Rossignol S, Barrière G, Alluin O, Frigon A. Re-expression of Locomotor Function After Partial Spinal Cord Injury. Physiology (Bethesda) 2009; 24:127-39. [DOI: 10.1152/physiol.00042.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
After a complete spinal section, quadruped mammals (cats, rats, and mice) can generally regain hindlimb locomotion on a treadmill because the spinal cord below the lesion can express locomotion through a neural circuitry termed the central pattern generator (CPG). In this review, we propose that the spinal CPG also plays a crucial role in the locomotor recovery after incomplete spinal cord injury.
Collapse
Affiliation(s)
- S. Rossignol
- Department of Physiology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montreal, Canada; and
- Multidisciplinary Team in Locomotor Rehabilitation after Spinal Cord Injury, Canadian Institutes of Health Research (CIHR)
| | - G. Barrière
- Department of Physiology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montreal, Canada; and
- Multidisciplinary Team in Locomotor Rehabilitation after Spinal Cord Injury, Canadian Institutes of Health Research (CIHR)
| | - O. Alluin
- Department of Physiology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montreal, Canada; and
- Multidisciplinary Team in Locomotor Rehabilitation after Spinal Cord Injury, Canadian Institutes of Health Research (CIHR)
| | - A. Frigon
- Department of Physiology, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montreal, Canada; and
| |
Collapse
|
39
|
Lyalka VF, Orlovsky GN, Deliagina TG. Impairment of postural control in rabbits with extensive spinal lesions. J Neurophysiol 2009; 101:1932-40. [PMID: 19164112 PMCID: PMC2695648 DOI: 10.1152/jn.00009.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 01/15/2009] [Indexed: 11/22/2022] Open
Abstract
Our previous studies on rabbits demonstrated that the ventral spinal pathways are of primary importance for postural control in the hindquarters. After ventral hemisection, postural control did not recover, whereas after dorsal or lateral hemisection it did. The aim of this study was to examine postural capacity of rabbits after more extensive lesion (3/4 section of the spinal cord at T(12) level), that is, with only one ventral quadrant spared (VQ animals). They were tested before (control) and after lesion on the platform periodically tilted in the frontal plane. In control animals, tilts of the platform regularly elicited coordinated electromyographic (EMG) responses in the hindlimbs, which resulted in generation of postural corrections and in maintenance of balance. In VQ rabbits, the EMG responses appeared only in a part of tilt cycles, and they could be either correctly or incorrectly phased in relation to tilts. Because of a reduced value and incorrect phasing of EMG responses on both sides, this muscle activity did not cause postural corrective movements in the majority of rabbits, and the body swayed together with the platform. In these rabbits, the ability to perform postural corrections did not recover during the whole period of observation (< or =30 days). Low probability of correct EMG responses to tilts in most rabbits as well as an appearance of incorrect responses to tilts suggest that the spinal reflex chains, necessary for postural control, have not been specifically selected by a reduced supraspinal drive transmitted via a single ventral quadrant.
Collapse
Affiliation(s)
- V. F. Lyalka
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - G. N. Orlovsky
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - T. G. Deliagina
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| |
Collapse
|
40
|
Lyalka VF, Musienko PE, Orlovsky GN, Grillner S, Deliagina TG. Effect of intrathecal administration of serotoninergic and noradrenergic drugs on postural performance in rabbits with spinal cord lesions. J Neurophysiol 2008; 100:723-32. [PMID: 18497353 PMCID: PMC2525719 DOI: 10.1152/jn.90218.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 05/16/2008] [Indexed: 11/22/2022] Open
Abstract
Our previous studies have shown that extensive spinal lesions at T12 in the rabbit [ventral hemisection (VHS) or 3/4-section that spares one ventral quadrant (VQ)] severely damaged the postural system. When tested on the platform periodically tilted in the frontal plane, VHS and VQ animals typically were not able to perform postural corrective movements by their hindlimbs, although EMG responses (correctly or incorrectly phased) could be observed. We attempted to restore postural control in VHS and VQ rabbits by applying serotoninergic and noradrenergic drugs to the spinal cord below the lesion through the intrathecal cannula. It was found that serotonin and quipazine (5-HT1,2,3 agonist) did not re-establish postural corrective movements. However, when applied during a 10-day period after lesion, these drugs produced a twofold increase of the proportion of correct EMG responses to tilts. It was also found that methoxamine (alpha1 noradrenergic agonist), as well as the mixture of methoxamine and quipazine, did not re-establish postural corrective movements and did not increase the proportion of correct EMG responses. Serotonin (at later stages) and methoxamine induced periodical bursting in EMGs, suggesting activation of spinal rhythm-generating networks. Appearance of bursting seems to perturb normal operation of postural mechanisms, as suggested by methoxamine-induced abolishment of postural effects of quipazine. When applied in an intact animal, none of the tested drugs affected the value of postural corrections or evoked periodical bursting. We conclude that activation of the serotoninergic system (but not the noradrenergic one) causes selective enhancement of spinal postural reflexes during the earlier postlesion period.
Collapse
Affiliation(s)
- V F Lyalka
- Department of Neuroscience, Karolinska Institute, SE-17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Mushahwar VK, Jacobs PL, Normann RA, Triolo RJ, Kleitman N. New functional electrical stimulation approaches to standing and walking. J Neural Eng 2007; 4:S181-97. [PMID: 17873417 DOI: 10.1088/1741-2560/4/3/s05] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological trauma that is prevalent predominantly in young individuals. Several interventions in the areas of neuroregeneration, pharmacology and rehabilitation engineering/neuroscience are currently under investigation for restoring function after SCI. In this paper, we focus on the use of neuroprosthetic devices for restoring standing and ambulation as well as improving general health and wellness after SCI. Four neuroprosthetic approaches are discussed along with their demonstrated advantages and their future needs for improved clinical applicability. We first introduce surface functional electrical stimulation (FES) devices for restoring ambulation and highlight the importance of these devices for facilitating exercise activities and systemic physiological activation. Implanted muscle-based FES devices for restoring standing and walking that are currently undergoing clinical trials are then presented. The use of implanted peripheral nerve intraneural arrays of multi-site microelectrodes for providing fine and graded control of force during sit-to-stand maneuvers is subsequently demonstrated. Finally, intraspinal microstimulation (ISMS) of the lumbosacral spinal cord for restoring standing and walking is introduced and its results to date are presented. We conclude with a general discussion of the common needs of the neuroprosthetic devices presented in this paper and the improvements that may be incorporated in the future to advance their clinical utility and user satisfaction.
Collapse
Affiliation(s)
- Vivian K Mushahwar
- Department of Cell Biology and Center for Neuroscience, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
43
|
Grau JW, Crown ED, Ferguson AR, Washburn SN, Hook MA, Miranda RC. Instrumental learning within the spinal cord: underlying mechanisms and implications for recovery after injury. ACTA ACUST UNITED AC 2007; 5:191-239. [PMID: 17099112 DOI: 10.1177/1534582306289738] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Using spinally transected rats, research has shown that neurons within the L4-S2 spinal cord are sensitive to response-outcome (instrumental) relations. This learning depends on a form of N-methyl-D-aspartate (NMDA)-mediated plasticity. Instrumental training enables subsequent learning, and this effect has been linked to the expression of brain-derived neurotrophic factor. Rats given uncontrollable stimulation later exhibit impaired instrumental learning, and this deficit lasts up to 48 hr. The induction of the deficit can be blocked by prior training with controllable shock, the concurrent presentation of a tonic stimulus that induces antinociception, or pretreatment with an NMDA or gamma-aminobutyric acid-A antagonist. The expression of the deficit depends on a kappa opioid. Uncontrollable stimulation enhances mechanical reactivity (allodynia), and treatments that induce allodynia (e.g., inflammation) inhibit learning. In intact animals, descending serotonergic neurons exert a protective effect that blocks the adverse consequences of uncontrollable stimulation. Uncontrollable, but not controllable, stimulation impairs the recovery of function after a contusion injury.
Collapse
Affiliation(s)
- James W Grau
- Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Rossignol S. Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals. Philos Trans R Soc Lond B Biol Sci 2006; 361:1647-71. [PMID: 16939980 PMCID: PMC1664667 DOI: 10.1098/rstb.2006.1889] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review discusses some aspects of plasticity of connections after spinal injury in adult animal models as a basis for functional recovery of locomotion. After reviewing some pitfalls that must be avoided when claiming functional recovery and the importance of a conceptual framework for the control of locomotion, locomotor recovery after spinal lesions, mainly in cats, is summarized. It is concluded that recovery is partly due to plastic changes within the existing spinal locomotor networks. Locomotor training appears to change the excitability of simple reflex pathways as well as more complex circuitry. The spinal cord possesses an intrinsic capacity to adapt to lesions of central tracts or peripheral nerves but, as a rule, adaptation to lesions entails changes at both spinal and supraspinal levels. A brief summary of the spinal capacity of the rat, mouse and human to express spinal locomotor patterns is given, indicating that the concepts derived mainly from work in the cat extend to other adult mammals. It is hoped that some of the issues presented will help to evaluate how plasticity of existing connections may combine with and potentiate treatments designed to promote regeneration to optimize remaining motor functions.
Collapse
Affiliation(s)
- Serge Rossignol
- Department of Physiology, Centre for Research in Neurological Sciences, Faculty of Medicine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, Québec, Canada H3C 3J7.
| |
Collapse
|
45
|
Majczyński H, Cabaj A, Sławińska U, Górska T. Intrathecal administration of yohimbine impairs locomotion in intact rats. Behav Brain Res 2006; 175:315-22. [PMID: 17010450 DOI: 10.1016/j.bbr.2006.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/30/2006] [Accepted: 08/31/2006] [Indexed: 11/20/2022]
Abstract
The effects of upper lumbar level intrathecal injection of yohimbine, an alpha2-noradrenergic antagonist, on overground locomotion in intact rats was studied. This treatment caused dose-dependent impairment of hindlimb locomotor movement, which varied from transient hindlimb paralysis at a dose of 200 microg/20 microl to transient trunk instability at 50 microg/20 microl. Repetitive (every 48 h) injections of yohimbine at high (200 microg/20 microl) and medium (100 microg/20 microl) doses caused tachyphylaxis, which usually led to a lack of reaction to the third injection. This phenomenon was not observed after repetitive injections of the low (50 microg/20 microl) dose of the drug. These results show that the noradrenergic system is involved in the control of locomotion, since intrathecal administration of a specific antagonist affects this activity in intact rats.
Collapse
Affiliation(s)
- Henryk Majczyński
- Department of Neurophysiology, Nencki Institute of Experimental Biology, 3 Pasteura Str., 02-093 Warsaw, Poland.
| | | | | | | |
Collapse
|
46
|
Landry ES, Lapointe NP, Rouillard C, Levesque D, Hedlund PB, Guertin PA. Contribution of spinal 5-HT1A and 5-HT7 receptors to locomotor-like movement induced by 8-OH-DPAT in spinal cord-transected mice. Eur J Neurosci 2006; 24:535-46. [PMID: 16836640 DOI: 10.1111/j.1460-9568.2006.04917.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Growing evidence from in vitro studies suggests that spinal serotonin (5-HT) receptor subtypes 5-HTR(1A) and 5-HTR(7) are associated with an induction of central pattern generator activity. However, the possibility of a specific role for these receptor subtypes in locomotor rhythmogenesis in vivo remains unclear. Here, we studied the effects of a single dose (1 mg/kg, i.p.) of 8-hydroxy-2-(di-N-propylamino)-tetralin (8-OH-DPAT), a potent and selective 5-HTR(1A/7) agonist, in mice spinal cord transected at the low-thoracic level (Th9/10). The results show that 8-OH-DPAT acutely induced, within 15 min, hindlimb movements that share some characteristics with normal locomotion. Paraplegic mice pretreated with the selective 5-HTR(1A) antagonists, WAY100,135 or WAY100,635, displayed significantly less 8-OH-DPAT-induced movement. A similar reduction of 8-OH-DPAT-induced movements was found in animals pretreated with SB269970, a selective 5-HTR(7) antagonist. Moreover, a near complete blockade of 8-OH-DPAT-induced movement was obtained in wild-type mice pretreated with 5-HTR(1A) and 5-HTR(7) antagonists, and in 5-HTR(7)-/- mice pretreated with 5-HTR(1A) antagonists. Overall, these results clearly demonstrate that 8-OH-DPAT potently induces locomotor-like movement in the previously paralysed hindlimbs of low-thoracic-transected mice. The results, with selective antagonists and knockout animals, provide compelling evidence of a specific contribution of both receptor subtypes to spinal locomotor rhythmogenesis in vivo.
Collapse
|
47
|
Fong AJ, Cai LL, Otoshi CK, Reinkensmeyer DJ, Burdick JW, Roy RR, Edgerton VR. Spinal cord-transected mice learn to step in response to quipazine treatment and robotic training. J Neurosci 2006; 25:11738-47. [PMID: 16354932 PMCID: PMC6726027 DOI: 10.1523/jneurosci.1523-05.2005] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, concurrent treatment with robotic step training and a serotonin agonist, quipazine, generated significant recovery of locomotor function in complete spinal cord-transected mice (T7-T9) that otherwise could not step. The extent of recovery achieved when these treatments were combined exceeded that obtained when either treatment was applied independently. We quantitatively analyzed the stepping characteristics of spinal mice after alternatively administering no training, manual training, robotic training, quipazine treatment, or a combination of robotic training with quipazine treatment, to examine the mechanisms by which training and quipazine treatment promote functional recovery. Using fast Fourier transform and principal components analysis, significant improvements in the step rhythm, step shape consistency, and number of weight-bearing steps were observed in robotically trained compared with manually trained or nontrained mice. In contrast, manual training had no effect on stepping performance, yielding no improvement compared with nontrained mice. Daily bolus quipazine treatment acutely improved the step shape consistency and number of steps executed by both robotically trained and nontrained mice, but these improvements did not persist after quipazine was withdrawn. At the dosage used (0.5 mg/kg body weight), quipazine appeared to facilitate, rather than directly generate, stepping, by enabling the spinal cord neural circuitry to process specific patterns of sensory information associated with weight-bearing stepping. Via this mechanism, quipazine treatment enhanced kinematically appropriate robotic training. When administered intermittently during an extended period of robotic training, quipazine revealed training-induced stepping improvements that were masked in the absence of the pharmacological treatment.
Collapse
Affiliation(s)
- Andy J Fong
- Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
BACKGROUND/OBJECTIVE In the course of examining spinal motor function in many hundreds of people with traumatic spinal cord injury, we encountered 6 individuals who developed involuntary and rhythmic contractions in muscles of their legs. Although there are many reports of unusual muscle activation patterns associated with different forms of myoclonus, we believe that certain aspects of the patterns seen with these 6 subjects have not been previously reported. These patterns share many features with those associated with a spinal central pattern generator for walking. METHODS Subjects in this case series had a history of chronic injury to the cervical spinal cord, resulting in either complete (ASIA A; n = 4) or incomplete (ASIA D; n = 2) quadriplegia. We used multi-channel electromyography recordings of trunk and leg muscles of each subject to document muscle activation patterns associated with different postures and as influenced by a variety of sensory stimuli. RESULTS Involuntary contractions spanned multiple leg muscles bilaterally, sometimes including weak abdominal contractions. Contractions were smooth and graded and were highly reproducible in rate for a given subject (contraction rates were 0.3-0.5 Hz). These movements did not resemble the brief rapid contractions (ie, "jerks") ascribed to some forms of spinal myoclonus. For all subjects, the onset of involuntary muscle contraction was dependent upon hip angle; contractions did not occur unless the hips (and knees) were extended (ie, subjects were supine). In the 4 ASIA A subjects, contractions occurred simultaneously in all muscles (agonists and antagonists) bilaterally. In sharp contrast, contractions in the 2 ASIA D subjects were reciprocal between agonists and antagonists within a limb and alternated between limbs, such that movements in these 2 subjects looked just like repetitive stepping. Finally, each of the 6 subjects had a distinct pathology of their spinal cord, nerve roots, distal trunk, or thigh; in 4 of these subjects, treatment of the pathology eliminated the involuntary movements. CONCLUSION The timing, distribution, and reliance upon hip angle suggest that these movement patterns reflect some elements of a central pattern generator for stepping. Emergence of these movements in persons with chronic spinal cord injury is extremely rare and appears to depend upon a combination of the more rostrally placed injury and a pathologic process leading to a further enhancement of excitability in the caudal spinal cord.
Collapse
Affiliation(s)
- Blair Calancie
- Department of Neurosurgery, SUNY Upstate Medical University, 750 E. Adams Street, IHP 1213, Syracuse, NY 13210, USA.
| |
Collapse
|
49
|
Frigon A, Rossignol S. Functional plasticity following spinal cord lesions. PROGRESS IN BRAIN RESEARCH 2006; 157:231-260. [PMID: 17167915 DOI: 10.1016/s0079-6123(06)57016-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Spinal cord injury results in marked modification and reorganization of several reflex pathways caudal to the injury. The sudden loss or disruption of descending input engenders substantial changes at the level of primary afferents, interneurons, and motoneurons thus dramatically influencing sensorimotor interactions in the spinal cord. As a general rule reflexes are initially depressed following spinal cord injury due to severe reductions in motoneuron excitability but recover and in some instances become exaggerated. It is thought that modified inhibitory connections and/or altered transmission in some of these reflex pathways after spinal injury as well as the recovery and enhancement of membrane properties in motoneurons underlie several symptoms such as spasticity and may explain some characteristics of spinal locomotion observed in spinally transected animals. Indeed, after partial or complete spinal lesions at the last thoracic vertebra cats recover locomotion when the hindlimbs are placed on a treadmill. Although some deficits in spinal locomotion are related to lesion of specific descending motor pathways, other characteristics can also be explained by changes in the excitability of reflex pathways mentioned above. Consequently it may be the case that to reestablish a stable walking pattern that modified afferent inflow to the spinal cord incurred after injury must be normalized to enable a more normal re-expression of locomotor rhythm generating networks. Indeed, recent evidence demonstrates that step training, which has extensively been shown to facilitate and ameliorate locomotor recovery in spinal animals, directly influences transmission in simple reflex pathways after complete spinal lesions.
Collapse
Affiliation(s)
- Alain Frigon
- Center and Group for Neurological Sciences, CIHR Group in Neurological Sciences, CIHR Regenerative Medicine and Nanomedicine Team, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
50
|
Bouyer LJ. Animal Models for Studying Potential Training Strategies in Persons with Spinal Cord Injury. J Neurol Phys Ther 2005; 29:117-25. [PMID: 16398944 DOI: 10.1097/01.npt.0000282244.31158.40] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the late 1980s, it was clearly demonstrated that adult spinal cats can be re-trained to walk after a complete spinal cord transection, using treadmill training. This has led to profound changes in the rehabilitation of persons with spinal cord injury. The use of animal models to study training-induced locomotor plasticity after spinal cord injury has expanded since this original demonstration. The goal of the present review is to summarize findings obtained with these animal models that may be of relevance to the re-training of humans with spinal cord injury. From the complete spinal cord transection models, adaptive capacity, retention of training, task-specificity, role of cutaneous inputs, effect of training with robotic devices, and spinal cord stimulation will be discussed. From the partial spinal lesion models, the effect of ventral or dorsal lesions of the cord will be presented. Finally, the effects of drugs on training will be compared between the complete and partial spinal lesions models.
Collapse
Affiliation(s)
- Laurent J Bouyer
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Departement de Readaptation, Universite Laval, Canada G7K 1P4.
| |
Collapse
|