1
|
Graf J, Samiee A, Flossmann T, Holthoff K, Kirmse K. Chemogenetic silencing reveals presynaptic G i/o protein-mediated inhibition of developing hippocampal synchrony in vivo. iScience 2024; 27:110997. [PMID: 39429781 PMCID: PMC11489827 DOI: 10.1016/j.isci.2024.110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/29/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Recent advances in understanding how neuronal activity shapes developing brain circuits increasingly rely on Gi/o-dependent inhibitory chemogenetic tools (Gi-DREADDs). However, their mechanisms of action and efficacy in neurons with immature Gi/o signaling are elusive. Here, we express the Gi-DREADD hM4Di in glutamatergic telencephalic neurons and analyze its impact on CA1 pyramidal neurons in neonatal mice. Using acousto-optic two-photon Ca2+ imaging, we report that activation of hM4Di leads to a complete arrest of spontaneous synchrony in CA1 in vitro. We demonstrate that hM4Di does not cause somatic hyperpolarization or shunting but rather mediates presynaptic silencing of glutamatergic neurotransmission. In vivo, inhibition through hM4Di potently suppresses early sharp waves (eSPWs) and discontinuous oscillatory network activity in CA1 of head-fixed mice before eye opening. Our findings provide insights into the role of Gi/o signaling in synchronized activity in the neonatal hippocampus and bear relevance for applying chemogenetic silencing at early developmental stages.
Collapse
Affiliation(s)
- Jürgen Graf
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Arash Samiee
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Tom Flossmann
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
- Institute of Physiology I, Jena University Hospital, 07743 Jena, Germany
| | - Knut Holthoff
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Knut Kirmse
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
2
|
Buzsáki G, Freund T, Fricker D, Gulyás AI, Huberfeld G, Menendez de la Prida L, Poncer JC, Tóth K, Traub R, Wittner L, Wong RKS. In Memoriam: Richard Miles: Neuroscience network has lost a key synapse. J Physiol 2024; 602:1863-1874. [PMID: 38598307 DOI: 10.1113/jp286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
- György Buzsáki
- NYU Neuroscience Institute, New York University, Langone Medical Center, New York, New York, USA
| | - Tamás Freund
- Institute of Experimental Medicine, Hungarian Research Network (HUN-REN), Budapest, Hungary
| | - Desdemona Fricker
- Integrative Neuroscience and Cognition Center, Université Paris Cité, CNRS UMR-S 8002, Paris, France
| | - Attila I Gulyás
- Institute of Experimental Medicine, Hungarian Research Network (HUN-REN), Budapest, Hungary
| | - Gilles Huberfeld
- Institute of Psychiatry and Neuroscience of Paris, Inserm, Université Paris Cité, UMR-S 1266, Neuronal Signaling in Epilepsy and Glioma, Paris, France
- Department of Neurology, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | | | | | - Katalin Tóth
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Roger Traub
- Exploratory Research, IBM T.J. Watson Research Center, Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Research Network, Budapest, Hungary
| | - Robert K S Wong
- Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA
| |
Collapse
|
3
|
Rahmati V, Kirmse K, Holthoff K, Schwabe L, Kiebel SJ. Developmental Emergence of Sparse Coding: A Dynamic Systems Approach. Sci Rep 2017; 7:13015. [PMID: 29026183 PMCID: PMC5638906 DOI: 10.1038/s41598-017-13468-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022] Open
Abstract
During neocortical development, network activity undergoes a dramatic transition from largely synchronized, so-called cluster activity, to a relatively sparse pattern around the time of eye-opening in rodents. Biophysical mechanisms underlying this sparsification phenomenon remain poorly understood. Here, we present a dynamic systems modeling study of a developing neural network that provides the first mechanistic insights into sparsification. We find that the rest state of immature networks is strongly affected by the dynamics of a transient, unstable state hidden in their firing activities, allowing these networks to either be silent or generate large cluster activity. We address how, and which, specific developmental changes in neuronal and synaptic parameters drive sparsification. We also reveal how these changes refine the information processing capabilities of an in vivo developing network, mainly by showing a developmental reduction in the instability of network’s firing activity, an effective availability of inhibition-stabilized states, and an emergence of spontaneous attractors and state transition mechanisms. Furthermore, we demonstrate the key role of GABAergic transmission and depressing glutamatergic synapses in governing the spatiotemporal evolution of cluster activity. These results, by providing a strong link between experimental observations and model behavior, suggest how adult sparse coding networks may emerge developmentally.
Collapse
Affiliation(s)
- Vahid Rahmati
- Department of Psychology, Technische Universität Dresden, 01187, Dresden, Germany.
| | - Knut Kirmse
- Hans-Berger Department of Neurology, University Hospital Jena, 07747, Jena, Germany
| | - Knut Holthoff
- Hans-Berger Department of Neurology, University Hospital Jena, 07747, Jena, Germany
| | - Lars Schwabe
- Department of Computer Science and Electrical Engineering, University of Rostock, 18059, Rostock, Germany
| | - Stefan J Kiebel
- Department of Psychology, Technische Universität Dresden, 01187, Dresden, Germany
| |
Collapse
|
4
|
Lonardoni D, Di Marco S, Amin H, Maccione A, Berdondini L, Nieus T. High-density MEA recordings unveil the dynamics of bursting events in Cell Cultures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:3763-6. [PMID: 26737112 DOI: 10.1109/embc.2015.7319212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High density multielectrode arrays (MEAs) based on CMOS technology (CMOS-MEAs) can simultaneously record extracellular spiking activity in neuronal cultures from 4096 closely spaced microelectrodes. This allows for a finer investigation of neuronal network activity compared to conventional MEAs with a few tens of electrodes. However, the sensing properties of these devices differ. To highlight this aspect, here we investigate and discuss the differences observed when quantifying spontaneous synchronized bursting events (SBEs) in datasets acquired with conventional MEAs and high-density MEAs from comparable hippocampal cultures. We found that datasets acquired with high-density MEAs exhibit collective dynamics similar to conventional arrays, but are characterized by a higher percentage of random spikes, i.e. spikes that are not part of a burst, most probably resulting from the larger recording capability. Additionally, the percentage of electrodes that record a burst is remarkably small on high-density MEAs compared to what can be observed on conventional MEAs and SBEs appear to be propagating in time across the electrode array, by involving shorter sequences of spikes per electrode. Overall, these results highlight a lower level of network synchronization involved in SBEs compared to what has been debated for several decades based on conventional MEA recordings from cell cultures.
Collapse
|
5
|
Karlócai MR, Kohus Z, Káli S, Ulbert I, Szabó G, Máté Z, Freund TF, Gulyás AI. Physiological sharp wave-ripples and interictal events in vitro: what's the difference? ACTA ACUST UNITED AC 2014; 137:463-85. [PMID: 24390441 DOI: 10.1093/brain/awt348] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sharp wave-ripples and interictal events are physiological and pathological forms of transient high activity in the hippocampus with similar features. Sharp wave-ripples have been shown to be essential in memory consolidation, whereas epileptiform (interictal) events are thought to be damaging. It is essential to grasp the difference between physiological sharp wave-ripples and pathological interictal events to understand the failure of control mechanisms in the latter case. We investigated the dynamics of activity generated intrinsically in the Cornu Ammonis region 3 of the mouse hippocampus in vitro, using four different types of intervention to induce epileptiform activity. As a result, sharp wave-ripples spontaneously occurring in Cornu Ammonis region 3 disappeared, and following an asynchronous transitory phase, activity reorganized into a new form of pathological synchrony. During epileptiform events, all neurons increased their firing rate compared to sharp wave-ripples. Different cell types showed complementary firing: parvalbumin-positive basket cells and some axo-axonic cells stopped firing as a result of a depolarization block at the climax of the events in high potassium, 4-aminopyridine and zero magnesium models, but not in the gabazine model. In contrast, pyramidal cells began firing maximally at this stage. To understand the underlying mechanism we measured changes of intrinsic neuronal and transmission parameters in the high potassium model. We found that the cellular excitability increased and excitatory transmission was enhanced, whereas inhibitory transmission was compromised. We observed a strong short-term depression in parvalbumin-positive basket cell to pyramidal cell transmission. Thus, the collapse of pyramidal cell perisomatic inhibition appears to be a crucial factor in the emergence of epileptiform events.
Collapse
Affiliation(s)
- Mária R Karlócai
- 1 Laboratory of Cerebral Cortex, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hazra A, Rosenbaum R, Bodmann B, Cao S, Josić K, Žiburkus J. β-Adrenergic modulation of spontaneous spatiotemporal activity patterns and synchrony in hyperexcitable hippocampal circuits. J Neurophysiol 2012; 108:658-71. [PMID: 22496530 DOI: 10.1152/jn.00708.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A description of healthy and pathological brain dynamics requires an understanding of spatiotemporal patterns of neural activity and characteristics of its propagation between interconnected circuits. However, the structure and modulation of the neural activation maps underlying these patterns and their propagation remain elusive. We investigated effects of β-adrenergic receptor (β-AR) stimulation on the spatiotemporal characteristics of emergent activity in rat hippocampal circuits. Synchronized epileptiform-like activity, such as interictal bursts (IBs) and ictal-like events (ILEs), were evoked by 4-aminopyridine (4-AP), and their dynamics were studied using a combination of electrophysiology and fast voltage-sensitive dye imaging. Dynamic characterization of the spontaneous IBs showed that they originated in dentate gyrus/CA3 border and propagated toward CA1. To determine how β-AR modulates spatiotemporal characteristics of the emergent IBs, we used the β-AR agonist isoproterenol (ISO). ISO significantly reduced the spatiotemporal extent and propagation velocity of the IBs and significantly altered network activity in the 1- to 20-Hz range. Dual whole cell recordings of the IBs in CA3/CA1 pyramidal cells and optical analysis of those regions showed that ISO application reduced interpyramidal and interregional synchrony during the IBs. In addition, ISO significantly reduced duration not only of the shorter duration IBs but also the prolonged ILEs in 4-AP. To test whether the decrease in ILE duration was model dependent, we used a different hyperexcitability model, zero magnesium (0 Mg(2+)). Prolonged ILEs were readily formed in 0 Mg(2+), and addition of ISO significantly reduced their durations. Taken together, these novel results provide evidence that β-AR activation dynamically reshapes the spatiotemporal activity patterns in hyperexcitable circuits by altering network rhythmogenesis, propagation velocity, and intercellular/regional synchronization.
Collapse
Affiliation(s)
- Anupam Hazra
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | | | | | |
Collapse
|
7
|
Cherubini E, Griguoli M, Safiulina V, Lagostena L. The Depolarizing Action of GABA Controls Early Network Activity in the Developing Hippocampus. Mol Neurobiol 2010; 43:97-106. [DOI: 10.1007/s12035-010-8147-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 10/19/2010] [Indexed: 01/29/2023]
|
8
|
Juuri J, Clarke VRJ, Lauri SE, Taira T. Kainate receptor-induced ectopic spiking of CA3 pyramidal neurons initiates network bursts in neonatal hippocampus. J Neurophysiol 2010; 104:1696-706. [PMID: 20660426 DOI: 10.1152/jn.00840.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kainate receptors (KARs) are expressed at high levels in the brain during early development and may be critical for the proper development of neuronal networks. Here we elucidated a physiological role of high-affinity KARs in developing hippocampal network by studying the effects of 25-100 nM kainate (KA) on intrinsic network activity in slice preparations. Whereas 100 nM KA resulted in hyperexcitability of the network and the disruption of natural activity patterns, ≤ 50 nM KA concentrations enhanced the initiation of network bursts yet preserved the characteristic patterns of endogenous activity. This was not dependent on changes in GABAergic transmission or on activation of GluK1 subunit containing KARs. However, the activation of high-affinity KARs increased glutamatergic drive by promoting spontaneous firing of CA3 pyramidal neurons without affecting action potential independent glutamate release. This was not because of changes in the intrinsic somatic properties of pyramidal neurons but seemed to reside in an electrically remote site, most probably in an axonal compartment. Although application of KAR agonists has mainly been used to study pathological type of network activities, this study provides a novel mechanism by which endogenous activity of KARs can modulate intrinsic activities of the emerging neuronal network in a physiologically relevant manner. The results support recent studies that KARs play a central role in the activity-dependent maturation of synaptic circuitries.
Collapse
Affiliation(s)
- Juuso Juuri
- Neuroscience Center and Department of Biosciences, University of Helsinki, Finland
| | | | | | | |
Collapse
|
9
|
Tabak J, Mascagni M, Bertram R. Mechanism for the universal pattern of activity in developing neuronal networks. J Neurophysiol 2010; 103:2208-21. [PMID: 20164396 DOI: 10.1152/jn.00857.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spontaneous episodic activity is a fundamental mode of operation of developing networks. Surprisingly, the duration of an episode of activity correlates with the length of the silent interval that precedes it, but not with the interval that follows. Here we use a modeling approach to explain this characteristic, but thus far unexplained, feature of developing networks. Because the correlation pattern is observed in networks with different structures and components, a satisfactory model needs to generate the right pattern of activity regardless of the details of network architecture or individual cell properties. We thus developed simple models incorporating excitatory coupling between heterogeneous neurons and activity-dependent synaptic depression. These models robustly generated episodic activity with the correct correlation pattern. The correlation pattern resulted from episodes being triggered at random levels of recovery from depression while they terminated around the same level of depression. To explain this fundamental difference between episode onset and termination, we used a mean field model, where only average activity and average level of recovery from synaptic depression are considered. In this model, episode onset is highly sensitive to inputs. Thus noise resulting from random coincidences in the spike times of individual neurons led to the high variability at episode onset and to the observed correlation pattern. This work further shows that networks with widely different architectures, different cell types, and different functions all operate according to the same general mechanism early in their development.
Collapse
Affiliation(s)
- Joël Tabak
- Dept. of Biological Science, BRF 206, Florida State Univ., Tallahassee, FL 32306, USA.
| | | | | |
Collapse
|
10
|
Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, Represa A, Ben-Ari Y, Cossart R. GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks. Science 2009; 326:1419-24. [PMID: 19965761 DOI: 10.1126/science.1175509] [Citation(s) in RCA: 452] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- P Bonifazi
- Institut de Neurobiologie de la Méditerranée INSERM U901, Universitéde la Méditerranée, Parc Scientifique de Luminy, Boîte Postale 13, 13273 Marseille Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
We previously showed in dissociated cultures of fetal rat spinal cord that disinhibition-induced bursting is based on intrinsic spiking, network recruitment, and a network refractory period after the bursts. A persistent sodium current (I(NaP)) underlies intrinsic spiking, which, by recurrent excitation, generates the bursting activity. Although full blockade of I(NaP) with riluzole disrupts such bursting, the present study shows that partial blockade of I(NaP) with low doses of riluzole maintains bursting activity with unchanged burst rate and burst duration. More important, low doses of riluzole turned bursts composed of persistent activity into bursts composed of oscillatory activity at around 5 Hz. In a search for the mechanisms underlying the generation of such intraburst oscillations, we found that activity-dependent synaptic depression was not changed with low doses of riluzole. On the other hand, low doses of riluzole strongly increased spike-frequency adaptation and led to early depolarization block when bursts were simulated by injecting long current pulses into single neurons in the absence of fast synaptic transmission. Phenytoin is another I(NaP) blocker. When applied in doses that reduced intrinsic activity by 80-90%, as did low doses of riluzole, it had no effect either on spike-frequency adaptation or on depolarization block. Nor did phenytoin induce intraburst oscillations after disinhibition. A theoretical model incorporating a depolarization block mechanism could reproduce the generation of intraburst oscillations at the network level. From these findings we conclude that riluzole-induced intraburst oscillations are a network-driven phenomenon whose major accommodation mechanism is depolarization block arising from strong sodium channel inactivation.
Collapse
Affiliation(s)
- Cédric Yvon
- Department of Physiology, University of Bern, Switzerland.
| | | | | |
Collapse
|
12
|
Hunt PN, McCabe AK, Gust J, Bosma MM. Spatial restriction of spontaneous activity towards the rostral primary initiating zone during development of the embryonic mouse hindbrain. ACTA ACUST UNITED AC 2006; 66:1225-38. [PMID: 16902989 DOI: 10.1002/neu.20260] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the developing embryonic mouse hindbrain, we have previously shown that synchronized spontaneous activity is driven by midline serotonergic neurons at E11.5. This is mediated, at least in part, by the 5-HT2A receptor, which is expressed laterally in the hindbrain. Activity at E11.5 is widespread within the hindbrain tissue, propagating from the midline to more lateral regions. Using rapid acquisition of [Ca2+]i events along the midline, we now show that the rostral midline, primarily in the region of former rhombomere r2, is the primary initiating zone for this activity. We propose that at E11.5, the combined events along the rostral-caudal axis in combination with events propagating along the medial-lateral axis could assign positional information to developing neurons within the hindbrain. With further development, to E13.5, both the lateral and caudal dimensions of spontaneous activity retract to the rostral midline, occupying an area only 14% of that exhibited at E11.5. We also show that increased levels of [K+]o (to 8 mM) at E13.5 are able to increase the spread of spontaneous activity laterally and rostro-caudally. This suggests that spontaneous activity in the hindbrain depends in a dynamic way on the dominant initiating zone of the rostral midline, and that this relationship changes over development.
Collapse
Affiliation(s)
- P N Hunt
- Department of Biology, University of Washington, Seattle, Washington 89195-1800, USA
| | | | | | | |
Collapse
|
13
|
Lauri SE, Segerstråle M, Vesikansa A, Maingret F, Mulle C, Collingridge GL, Isaac JTR, Taira T. Endogenous activation of kainate receptors regulates glutamate release and network activity in the developing hippocampus. J Neurosci 2006; 25:4473-84. [PMID: 15872094 PMCID: PMC6725041 DOI: 10.1523/jneurosci.4050-04.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kainate receptors (KARs) are highly expressed throughout the neonatal brain, but their function during development is unclear. Here, we show that the maturation of the hippocampus is associated with a switch in the functional role of presynaptic KARs. In a developmental period restricted to the first postnatal week, endogenous L-glutamate tonically activates KARs at CA3 glutamatergic synapses to regulate release in an action potential-independent manner. At synapses onto pyramidal cells, KARs inhibit glutamate release via a G-protein and PKC-dependent mechanism. In contrast, at glutamatergic terminals onto CA3 interneurons, presynaptic KARs can facilitate release in a G-protein-independent mechanism. In both cell types, however, KAR activation strongly upregulates inhibitory transmission. We show that, through the interplay of these novel diverse mechanisms, KARs strongly regulate the characteristic synchronous network activity observed in the neonatal hippocampus. By virtue of this, KARs are likely to play a central role in the development of hippocampal synaptic circuits.
Collapse
Affiliation(s)
- Sari E Lauri
- Neuroscience Center and Department of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sipilä ST, Huttu K, Soltesz I, Voipio J, Kaila K. Depolarizing GABA acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in the immature hippocampus. J Neurosci 2006; 25:5280-9. [PMID: 15930375 PMCID: PMC6725004 DOI: 10.1523/jneurosci.0378-05.2005] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Spontaneous periodic network events are a characteristic feature of developing neuronal networks, and they are thought to play a crucial role in the maturation of neuronal circuits. In the immature hippocampus, these types of events are seen in intracellular recordings as giant depolarizing potentials (GDPs) during the stage of neuronal development when GABA(A)-mediated transmission is depolarizing. However, the precise mechanism how GABAergic transmission promotes GDP occurrence is not known. Using whole-cell, cell-attached, perforated-patch, and field-potential recordings in hippocampal slices, we demonstrate here that CA3 pyramidal neurons in the newborn rat generate intrinsic bursts when depolarized. Furthermore, the characteristic rhythmicity of GDP generation is not based on a temporally patterned output of the GABAergic interneuronal network. However, GABAergic depolarization plays a key role in promoting voltage-dependent, intrinsic pyramidal bursting activity. The present data indicate that glutamatergic CA3 neurons have an instructive, pacemaker role in the generation of GDPs, whereas both synaptic and tonic depolarizing GABAergic mechanisms exert a temporally nonpatterned, facilitatory action in the generation of these network events.
Collapse
Affiliation(s)
- Sampsa T Sipilä
- Department of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
15
|
de la Prida LM, Huberfeld G, Cohen I, Miles R. Threshold Behavior in the Initiation of Hippocampal Population Bursts. Neuron 2006; 49:131-42. [PMID: 16387645 DOI: 10.1016/j.neuron.2005.10.034] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 08/29/2005] [Accepted: 10/20/2005] [Indexed: 11/17/2022]
Abstract
Hippocampal population discharges such as sharp waves, epileptiform firing, and GDPs recur at long and variable intervals. The mechanisms for their precise timing are not well understood. Here, we show that population bursts in the disinhibited CA3 region are initiated at a threshold level of population firing after recovery from a previous event. Each population discharge follows an active buildup period when synaptic traffic and cell firing increase to threshold levels. Single-cell firing can advance burst onset by increasing population firing to suprathreshold values. Population synchrony is suppressed when threshold frequencies cannot be reached due to reduced cellular excitability or synaptic efficacy. Reducing synaptic strength reveals partially synchronous population bursts that are curtailed by GABA(B)-mediated conductances. Excitatory glutamatergic transmission and delayed GABA(B)-mediated signals have opposing feedback effects on CA3 cell firing and so determine threshold behavior for population synchrony.
Collapse
|
16
|
Bolea S, Sanchez-Andres JV, Huang X, Wu JY. Initiation and Propagation of Neuronal Coactivation in the Developing Hippocampus. J Neurophysiol 2006; 95:552-61. [PMID: 16177178 DOI: 10.1152/jn.00321.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Correlated neuronal activity is ubiquitous in developing nervous systems, where it may introduce spatiotemporal coherence and contribute to the organization of functional circuits. In this report, we used voltage-sensitive dyes and optical imaging to examine the spatiotemporal pattern of a spontaneous network activity, giant depolarizing potentials (GDPs), in rat hippocampal slices during the first postnatal week. The propagation pattern of the GDP is closely correlated to the anatomical organization of the network. In the hilus, where mossy cells and interneurons are not organized in layers, GDPs propagate at the same velocity in all directions. In CA3 and CA1, the activation is synchronous along the axis of the pyramidal cells' dendritic tree. The velocity of wave propagation is significantly different in three hippocampal subfields: it is slowest in the hilus, faster in CA3, and fastest in CA1. The velocity of horizontal propagation (along the axis of the pyramidal layer) has a large variation from trial to trial, suggesting that the horizontal velocity is determined to some extent by dynamic network factors. Imaging revealed that each GDP event is initiated from a small focus. The location of the initiation focus differs from event to event. All together, our data suggest that GDP is a propagating excitation wave, initiated from a small site, and propagating to the whole hippocampus. The spatiotemporal patterns of the wave in CA3 and CA1 areas show better synchrony along the pyramidal cell dendritic trees and progressive activation along the axis of the pyramidal cell layer.
Collapse
Affiliation(s)
- Sonia Bolea
- Dept. of Physiology and Biophysics, Georgetown Univ., 3970 Reservoir Rd. NW, Washington, DC 20057-1421, USA
| | | | | | | |
Collapse
|
17
|
Galindo R, Zamudio PA, Valenzuela CF. Alcohol is a potent stimulant of immature neuronal networks: implications for fetal alcohol spectrum disorder. J Neurochem 2005; 94:1500-11. [PMID: 16000153 DOI: 10.1111/j.1471-4159.2005.03294.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ethanol consumption during development affects the maturation of hippocampal circuits by mechanisms that are not fully understood. Ethanol acts as a depressant in the mature CNS and it has been assumed that this also applies to immature neurons. We investigated whether ethanol targets the neuronal network activity that is involved in the refinement of developing hippocampal synapses. This activity appears during the growth spurt period in the form of giant depolarizing potentials (GDPs). GDPs are generated by the excitatory actions of GABA and glutamate via a positive feedback circuit involving pyramidal neurons and interneurons. We found that ethanol potently increases GDP frequency in the CA3 hippocampal region of slices from neonatal rats. It also increased the frequency of GDP-driven Ca2+ transients in pyramidal neurons and increased the frequency of GABA(A) receptor-mediated spontaneous postsynaptic currents in CA3 pyramidal cells and interneurons. The ethanol-induced potentiation of GABAergic activity is probably the result of increased quantal GABA release at interneuronal synapses but not enhanced neuronal excitability. These findings demonstrate that ethanol is a potent stimulant of developing neuronal circuits, which might contribute to the abnormal hippocampal development associated with fetal alcohol syndrome and alcohol-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rafael Galindo
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 871310001, USA
| | | | | |
Collapse
|
18
|
Percha B, Dzakpasu R, Zochowski M, Parent J. Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:031909. [PMID: 16241484 DOI: 10.1103/physreve.72.031909] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 06/03/2005] [Indexed: 05/05/2023]
Abstract
Temporal correlations in the brain are thought to have very dichotomous roles. On one hand they are ubiquitously present in the healthy brain and are thought to underlie feature binding during information processing. On the other hand, large-scale synchronization is an underlying mechanism of epileptic seizures. In this paper we show a potential mechanism for the transition to pathological coherence underlying seizure generation. We show that properties of phase synchronization in a two-dimensional lattice of nonidentical coupled Hindmarsh-Rose neurons change radically depending on the connectivity structure of the network. We modify the connectivity using the small world network paradigm and measure properties of phase synchronization using a previously developed measure based on assessment of the distributions of relative interspike intervals. We show that the temporal ordering undergoes a dramatic change as a function of topology of the network from local coherence strongly dependent on the distance between two neurons, to global coherence exhibiting a larger degree of ordering and spanning the whole network.
Collapse
Affiliation(s)
- Bethany Percha
- Department of Physics and Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
19
|
Moody WJ, Bosma MM. Ion Channel Development, Spontaneous Activity, and Activity-Dependent Development in Nerve and Muscle Cells. Physiol Rev 2005; 85:883-941. [PMID: 15987798 DOI: 10.1152/physrev.00017.2004] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
At specific stages of development, nerve and muscle cells generate spontaneous electrical activity that is required for normal maturation of intrinsic excitability and synaptic connectivity. The patterns of this spontaneous activity are not simply immature versions of the mature activity, but rather are highly specialized to initiate and control many aspects of neuronal development. The configuration of voltage- and ligand-gated ion channels that are expressed early in development regulate the timing and waveform of this activity. They also regulate Ca2+influx during spontaneous activity, which is the first step in triggering activity-dependent developmental programs. For these reasons, the properties of voltage- and ligand-gated ion channels expressed by developing neurons and muscle cells often differ markedly from those of adult cells. When viewed from this perspective, the reasons for complex patterns of ion channel emergence and regression during development become much clearer.
Collapse
Affiliation(s)
- William J Moody
- Department of Biology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
20
|
Menendez de la Prida L, Gal B. Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro. J Neurosci 2004; 24:5525-36. [PMID: 15201325 PMCID: PMC6729319 DOI: 10.1523/jneurosci.0309-04.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The subiculum, which has a strategic position in controlling hippocampal activity, is receiving significant attention in epilepsy research. However, the functional organization of subicular circuits remains unknown. Here, we combined different recording and analytical methods to study focal and widespread population activity in the isolated subiculum in zero Mg2+ media. Patch and field recordings were combined to examine the contribution of different cell types to population activity. The properties of cells leading field activity were examined. Predictive factors for a cell to behave as leader included exhibiting the bursting phenotype, displaying a low firing threshold, and having more distal apical dendrites. A subset of bursting cells constituted the first glutamatergic type that led a recruitment process that subsequently activated additional excitatory as well as inhibitory cells. This defined a sequence of synaptic excitation and inhibition that was studied by measuring the associated conductance changes and the evolution of the composite reversal potential. It is shown that inhibition was time-locked to excitation, which shunted excitatory inputs and suppressed firing during focal activity. This was recorded extracellularly as a multi-unit ensemble of active cells, the spatial boundaries of which were controlled by inhibition in contrast to widespread epileptiform activity. Focal activity was not dependent on the preparation or the developmental state because it was also recorded under 5 mm [K+]o and in adult tissue. Our data indicate that the subicular networks can be spontaneously organized as leader-follower local circuits in which excitation is mainly driven by a subset of bursting cells and inhibition controls spatiotemporal firing.
Collapse
Affiliation(s)
- L Menendez de la Prida
- Departamento de Neurobiología-Investigación, Hospital Ramón y Cajal, Madrid 28034, Spain.
| | | |
Collapse
|
21
|
Gramowski A, Jügelt K, Weiss DG, Gross GW. Substance identification by quantitative characterization of oscillatory activity in murine spinal cord networks on microelectrode arrays. Eur J Neurosci 2004; 19:2815-25. [PMID: 15147315 DOI: 10.1111/j.0953-816x.2004.03373.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper presents a novel and comprehensive method to identify substances on the basis of electrical activity and is a substantial improvement for drug screening. The spontaneous activity of primary neuronal networks is influenced by neurotransmitters, ligands, and other substances in a similar fashion as known from in vivo pharmacology. However, quantitative methods for the identification of substances through their characteristic effects on network activity states have not yet been reported. We approached this problem by creating a database including native activity and five drug-induced oscillatory activity states from extracellular multisite recordings from microelectrode arrays. The response profiles consisted of 30 activity features derived from the temporal distribution of action potentials, integrated burst properties, calculated coefficients of variation, and features of Gabor fits to autocorrelograms. The different oscillatory states were induced by blocking neurotransmitter receptors for: (i) GABA(A); (ii) glycine; (iii) GABA(A) and glycine; (iv) all major synaptic types except AMPA, and (v) all major synapses except NMDA. To test the identification capability of the six substance-specific response profiles, five blind experiments were performed. The response features from the unknown substances were compared to the database using proximity measures using the normalized Euclidian distance to each activity state. This process created six identification coefficients where the smallest correctly identified the unknown substances. Such activity profiles are expected to become substance-specific 'finger prints' that classify unique responses to known and unknown substances. It is anticipated that this kind of approach will help to quantify pharmacological responses of networks used as biosensors.
Collapse
Affiliation(s)
- Alexandra Gramowski
- Institute of Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany.
| | | | | | | |
Collapse
|
22
|
The role of the hyperpolarization-activated cationic current I(h) in the timing of interictal bursts in the neonatal hippocampus. J Neurosci 2003. [PMID: 12736337 DOI: 10.1523/jneurosci.23-09-03658.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Under both pathological and experimental conditions, area CA3 of the adult or juvenile hippocampus generates periodic population discharges known as interictal bursts. Whereas the ionic and synaptic basis of individual bursts has been comprehensively studied experimentally and computationally, the pacemaker mechanisms underlying interictal rhythmicity remain conjectural. We showed previously that rhythmic population discharges resembling interictal bursts can be induced in hippocampal slices from first postnatal week mice, in Mg2+-free solution with GABA(A) receptor-mediated inhibition blocked. Here we show that these neonatal bursts occurred with high temporal precision and that their frequency and regularity were greatly reduced by the bradycardic agent ZD-7288 when applied at concentrations and durations that selectively block the hyperpolarization-activated, cationic current I(h). Augmenting I(h) by elevating intracellular cAMP dramatically increased burst frequency in a protein kinase A-independent manner. Burst amplitudes were strongly correlated with the preceding, but not the following, interburst intervals. The experimentally observed distribution of interburst intervals was modeled by assuming that a burst was triggered whenever the instantaneous rate of spontaneous EPSPs (sEPSPs) exceeded a threshold and that the mean sEPSP rate was minimal immediately after a burst and then relaxed exponentially to a steady-state level. The effect of blocking I(h) in any given slice could be modeled by decreasing only the steady-state sEPSP rate, suggesting that the instantaneous rate of sEPSPs is governed by the level of I(h) activation and raising the novel possibility that interburst intervals reflected the slow activation kinetics of I(h) in the neonatal CA3.
Collapse
|
23
|
Abstract
Synchronization between CA1 pyramidal neurons was studied using dual-cell patch-clamp techniques simultaneous with an extracellular measurement of network activity. We explored various linear and nonlinear methods to detect weak synchronization in this network, using cross-correlation, mutual information in one and two dimensions, and phase correlation in both broad and narrow band. The linear and nonlinear methods demonstrated different patterns of sensitivity to detect synchrony in this network, depending on the dynamical state of the network. Bursts in 4-amino-pyridine (4AP) were highly synchronous events. Unexpectedly, seizure-like events in 4AP were desynchronous events, both in comparison with interictal periods preceding the seizure without bursts (cut Schaffer collateral tract) and in comparison with bursts preceding the seizures (intact Schaffer collateral tract). The finding that seizure-like events are associated with desynchronization in such networks is consistent with recent theoretical work, suggesting that asynchrony is necessary to maintain a high level of activity in neuronal networks for sustained periods of time and that synchrony may disrupt such activity.
Collapse
|
24
|
The role of activity-dependent network depression in the expression and self-regulation of spontaneous activity in the developing spinal cord. J Neurosci 2001. [PMID: 11698607 DOI: 10.1523/jneurosci.21-22-08966.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spontaneous episodic activity occurs throughout the developing nervous system because immature circuits are hyperexcitable. It is not fully understood how the temporal pattern of this activity is regulated. Here, we study the role of activity-dependent depression of network excitability in the generation and regulation of spontaneous activity in the embryonic chick spinal cord. We demonstrate that the duration of an episode of activity depends on the network excitability at the beginning of the episode. We found a positive correlation between episode duration and the preceding inter-episode interval, but not with the following interval, suggesting that episode onset is stochastic whereas episode termination occurs deterministically, when network excitability falls to a fixed level. This is true over a wide range of developmental stages and under blockade of glutamatergic or GABAergic/glycinergic synapses. We also demonstrate that during glutamatergic blockade the remaining part of the network becomes more excitable, compensating for the loss of glutamatergic synapses and allowing spontaneous activity to recover. This compensatory increase in the excitability of the remaining network reflects the progressive increase in synaptic efficacy that occurs in the absence of activity. Therefore, the mechanism responsible for the episodic nature of the activity automatically renders this activity robust to network disruptions. The results are presented using the framework of our computational model of spontaneous activity in the developing cord. Specifically, we show how they follow logically from a bistable network with a slow activity-dependent depression switching periodically between the active and inactive states.
Collapse
|
25
|
Keefer EW, Gramowski A, Gross GW. NMDA receptor-dependent periodic oscillations in cultured spinal cord networks. J Neurophysiol 2001; 86:3030-42. [PMID: 11731558 DOI: 10.1152/jn.2001.86.6.3030] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cultured spinal cord networks grown on microelectrode arrays display complex patterns of spontaneous burst and spike activity. During disinhibition with bicuculline and strychnine, synchronized burst patterns routinely emerge. However, the variability of both intra- and interculture burst periods and durations are typically large under these conditions. As a further step in simplification of synaptic interactions, we blocked excitatory AMPA synapses with 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzoquinoxaline-7-sulphonamide (NBQX), resulting in network activity mediated through the N-methyl-D-aspartate (NMDA) receptor (NMDA(ONLY)). This activity was APV sensitive. The oscillation under NMDA(ONLY) conditions at 37 degrees C was characterized by a period of 2.9 +/- 0.3 s (16 separate cultures). More than 98% of all neurons recorded participated in this highly rhythmic activity. The temporal coefficients of variation, reflecting the rhythmic nature of the oscillation, were 3.7, 4.7, and 4.9% for burst rate, burst duration, and interburst interval, respectively [mean coefficients of variation (CVs) for 16 cultures]. The oscillation persisted for at least 12 h without change (maximum observation time). Once established, it was not perturbed by agents that block mGlu receptors, GABA(B) receptors, cholinergic receptors, purinergic receptors, tachykinin receptors, serotonin (5-HT) receptors, dopamine receptors, electrical synapses, burst afterhyperpolarization, NMDA receptor desensitization, or the hyperpolarization-activated current. However, the oscillation was destroyed by bath application of NMDA (20-50 microM). These results suggest a presynaptic mechanism underlying this periodic rhythm that is solely dependent on the NMDA synapse. When the AMPA/kainate synapse was the sole driving force (n = 6), the resulting burst patterns showed much higher variability and did not develop the highly periodic, synchronized nature of the NMDA(ONLY) activity. Network size or age did not appear to influence the reliability of expression of the NMDA(ONLY) activity pattern. For this reason, we suggest that the NMDA(ONLY) condition unmasks a fundamental rhythmogenic mechanism of possible functional importance during periods of NMDA receptor-dominated activity, such as embryonic and early postnatal development.
Collapse
Affiliation(s)
- E W Keefer
- The Neurosciences Institute, San Diego, California 92121, USA.
| | | | | |
Collapse
|
26
|
Wenner P, O'Donovan MJ. Mechanisms that initiate spontaneous network activity in the developing chick spinal cord. J Neurophysiol 2001; 86:1481-98. [PMID: 11535692 DOI: 10.1152/jn.2001.86.3.1481] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many developing networks exhibit a transient period of spontaneous activity that is believed to be important developmentally. Here we investigate the initiation of spontaneous episodes of rhythmic activity in the embryonic chick spinal cord. These episodes recur regularly and are separated by quiescent intervals of many minutes. We examined the role of motoneurons and their intraspinal synaptic targets (R-interneurons) in the initiation of these episodes. During the latter part of the inter-episode interval, we recorded spontaneous, transient ventral root depolarizations that were accompanied by small, spatially diffuse fluorescent signals from interneurons retrogradely labeled with a calcium-sensitive dye. A transient often could be resolved at episode onset and was accompanied by an intense pre-episode (approximately 500 ms) motoneuronal discharge (particularly in adductor and sartorius) but not by interneuronal discharge monitored from the ventrolateral funiculus (VLF). An important role for this pre-episode motoneuron discharge was suggested by the finding that electrical stimulation of motor axons, sufficient to activate R-interneurons, could trigger episodes prematurely. This effect was mediated through activation of R-interneurons because it was prevented by pharmacological blockade of either the cholinergic motoneuronal inputs to R-interneurons or the GABAergic outputs from R-interneurons to other interneurons. Whole-cell recording from R-interneurons and imaging of calcium dye-labeled interneurons established that R-interneuron cell bodies were located dorsomedial to the lateral motor column (R-interneuron region). This region became active before other labeled interneurons when an episode was triggered by motor axon stimulation. At the beginning of a spontaneous episode, whole-cell recordings revealed that R-interneurons fired a high-frequency burst of spikes and optical recordings demonstrated that the R-interneuron region became active before other labeled interneurons. In the presence of cholinergic blockade, however, episode initiation slowed and the inter-episode interval lengthened. In addition, optical activity recorded from the R-interneuron region no longer led that of other labeled interneurons. Instead the initial activity occurred bilaterally in the region medial to the motor column and encompassing the central canal. These findings are consistent with the hypothesis that transient depolarizations and firing in motoneurons, originating from random fluctuations of interneuronal synaptic activity, activate R-interneurons, which then trigger the recruitment of the rest of the spinal interneuronal network. This unusual function for R-interneurons is likely to arise because the output of these interneurons is functionally excitatory during development.
Collapse
Affiliation(s)
- P Wenner
- Laboratory of Neural Control, Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke/NIH, 49 Convent Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
27
|
Menendez de la Prida L, Sanchez-Andres JV. Heterogeneous populations of cells mediate spontaneous synchronous bursting in the developing hippocampus through a frequency-dependent mechanism. Neuroscience 2000; 97:227-41. [PMID: 10799755 DOI: 10.1016/s0306-4522(00)00029-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Under normal conditions, hippocampal slices from newborn rats and rabbits (postnatal days 0-8) show spontaneous synchronous bursts known as giant depolarizing potentials. These bursts are recorded from CA3, CA1 and the fascia dentata in both intact slices and isolated hipocampal regions. Giant depolarizing potentials are network-driven events resulting from the synergistic activation of N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxadepropionate and GABA(A) receptors, the latter playing an excitatory role. Recently, we showed that they spontaneously emerge in an all-or-none manner after the increase of synaptic and cellular activity beyond a threshold frequency [Menendez de la Prida L. and Sanchez-Andres J. V. (1999) J. Neurophysiol. 82, 202-208]. Under this framework, background levels of spontaneous activity at individual neurons build up network synchronization 100-300ms prior to the onset of giant depolarizing potentials. However, the role of distinct cellular populations and connectivity in determining the threshold frequency has not been examined. By performing simultaneous intracellular recordings from pyramidal cells, non-pyramidal cells and interneurons, we investigated their participation in the generation of giant depolarizing potentials. Electrodes containing Neurobiotin were used to examine the cellular morphology. We found that giant depolarizing potentials were not initiated from a single pacemaker cellular group; instead, they involved recurrent cooperation among these groups, which contributed differently according to their intrinsic firing capability. In all the neurons examined, the onset of these bursts took place in an all-or-none frequency-dependent manner, both spontaneously (depending on the frequency of the excitatory postsynaptic potentials) or when triggered by extracellular stimulation. The CA3 threshold of frequency was at 12Hz in both pyramidal cells and interneurons, while in the fascia dentata it was 17Hz. The application of 6-cyano-7-nitroquinoxaline-2,3-dione increased CA3 threshold of frequency up to 50Hz, suggesting that it is determined by combined synaptic components. We examined the role of postsynaptic summation on the threshold of frequency. Heterogeneity is present among the cellular groups, pyramidal neurons from CA1 and CA3 showing less evidence of postsynaptic summation prior to giant depolarizing potentials. Cells showing stronger evidence of postsynaptic summation were more typically recorded at the hilus, the granule layer of the fascia dentata and the CA3/CA4 area. Nevertheless, for a given cell, not all the giant depolarizing potentials were preceded by summation of postsynaptic potentials. These outcomes, together with the long and variable time delays recorded between different areas, strongly suggest that giant depolarizing potentials are locally generated from different initiation sites and not from a single region. We discuss these results in view of the principles underlying hyperexcitability in hippocampal slices, i.e. the intrinsic firing properties of individual cells and the connectivity patterns.
Collapse
Affiliation(s)
- L Menendez de la Prida
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, Paseo Juan XXIII, 1, 28040, Madrid, Spain.
| | | |
Collapse
|