1
|
Foley RCA, Callaghan DH, Forman GN, Graham JD, Holmes MWR, La Delfa NJ. A comprehensive scoping review and meta-analysis of upper limb strength asymmetry. Sci Rep 2025; 15:4636. [PMID: 39920213 PMCID: PMC11806048 DOI: 10.1038/s41598-025-87413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
The "10% rule" of handedness asserts the dominant hand is 10% stronger than the non-dominant hand. Primarily derived from handgrip data, it is unclear if a generalized asymmetry exists across the upper limb. Understanding how strength asymmetry may be affected by handedness, sex, and exertion type has important implications for ergonomics design, sports performance, and clinical rehabilitation. The purpose of this study was to systematically synthesize currently available evidence examining upper limb strength asymmetry. 10,061 results were retrieved, and 174 studies remained after title/abstract screening. 87 studies were synthesized. Results are compiled by exertion type and manner of asymmetry comparison (i.e. right/left, dominant/non-dominant). Asymmetry ratios were calculated to examine the effects of handedness, exertion side, arm region, and sex. Strength differences were most frequently reported for grip exertions (n = 49). 25 studies reported other joint strength asymmetries. Overall, the right limb was 6.7% stronger than the left limb (n = 9342) and the dominant limb was 11.6% stronger than the non-dominant limb (n = 9327), though strength asymmetry varied across joints and movements (2.1% to 19.5%). This research demonstrates that the 10% rule is a good approximation for upper limb strength asymmetry. However, several factors, including joint, movement type, and sex, can affect this relationship.
Collapse
Affiliation(s)
- Ryan C A Foley
- Department of Kinesiology, Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada
| | - Danny H Callaghan
- Department of Kinesiology, Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada
| | - Garrick N Forman
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St Catharine's, ON, Canada
| | - Jeffrey D Graham
- Department of Kinesiology, Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St Catharine's, ON, Canada
| | - Michael W R Holmes
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St Catharine's, ON, Canada
| | - Nicholas J La Delfa
- Department of Kinesiology, Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada.
| |
Collapse
|
2
|
Aune MA, Roaas TV, Lorås HW, Nynes A, Aune TK. Bilateral Force Deficit in Proximal Effectors Versus Distal Effectors in Lower Extremities. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:140-148. [PMID: 37036383 DOI: 10.1080/02701367.2023.2166893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Purpose: Bilateral force deficit occurs when the maximal generated force during simultaneous bilateral muscle contractions is lower than the sum of forces generated unilaterally. Neural inhibition is stated as the main source for bilateral force deficit. Based on differences in bilateral neural organization, there might be a pronounced neural inhibition for proximal compared to distal effectors. The aim of the present experiment was to evaluate potential differences in bilateral force deficit in proximal compared to distal effectors in lower extremities. Methods: Fifteen young adults performed single-joint maximal voluntary contractions in isometric dorsiflexion of ankle (distal) and knee (proximal) extension unilaterally and bilaterally. Results: Results showed a significant absolute bilateral force deficit for both proximal (123.46 ± 59.51 N) and distal effectors (33.00 ± 35.60 N). Interestingly, the relative bilateral force deficit for knee extension was significantly larger compared to dorsiflexion of ankle, 19.98 ± 10.04% and 10.27 ± 9.57%, respectively. Our results indicate a significantly higher bilateral force deficit for proximal effectors compared to distal effectors. Conclusion: Plausible explanations are related to neuroanatomical and neurophysiological differences between proximal effectors and distal effectors where proximal muscles have a higher potential for bilateral communication compared to distal muscles. In addition, higher forces produced with proximal effectors could cause a higher perceived exertion and cause a more pronounced bilateral force deficit to proximal effectors.
Collapse
Affiliation(s)
| | | | - H W Lorås
- NTNU - Norwegian University of Science and Technology
| | | | | |
Collapse
|
3
|
Gioda J, Da Silva F, Monjo F, Corcelle B, Bredin J, Piponnier E, Colson SS. Immediate crossover fatigue after unilateral submaximal eccentric contractions of the knee flexors involves peripheral alterations and increased global perceived fatigue. PLoS One 2024; 19:e0293417. [PMID: 38346010 PMCID: PMC10861086 DOI: 10.1371/journal.pone.0293417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/11/2023] [Indexed: 02/15/2024] Open
Abstract
After a unilateral muscle exercise, the performance of the non-exercised contralateral limb muscle can be also impaired. This crossover fatigue phenomenon is still debated in the literature and very few studies have investigated the influence of eccentric contractions. This study was designed to assess neuromuscular adaptations involved in the crossover fatigue of the non-exercised contralateral knee flexor muscles. Seventeen healthy young men performed a unilateral submaximal eccentric exercise of the right knee flexors until a 20% reduction in maximal voluntary isometric contraction torque was attained in the exercised limb. Before (PRE), immediately after exercise cessation (POST) and 24 hours later (POST24), neuromuscular function and perceived muscle soreness were measured in both the exercised limb and non-exercised limb. In addition, global perceived fatigue was assessed at each measurement time. At POST, significant reductions in maximal voluntary isometric contraction were observed in the exercised limb (-28.1%, p < 0.001) and in the non-exercised limb (-8.5%, p < 0.05), evidencing crossover fatigue. At POST, voluntary activation decreased in the exercised limb only (-6.0%, p < 0.001), while electrically evoked potentiated doublet torque was impaired in both the exercised limb and the non-exercised limb (-11.6%, p = 0.001). In addition, global perceived fatigue significantly increased at POST (p < 0.001). At POST24, all measured variables returned to PRE values, except for perceived muscle soreness scores exhibiting greater values than PRE (p < 0.05). A possible cumulative interaction between peripheral alterations and global perceived fatigue may account for the immediate crossover fatigue observed in the non-exercised limb.
Collapse
Affiliation(s)
| | | | - Florian Monjo
- LAMHESS, Université Côte d’Azur, Nice, France
- LIBM, Université Savoie Mont Blanc, Chambéry, France
| | | | - Jonathan Bredin
- LAMHESS, Université Côte d’Azur, Nice, France
- Centre de Santé Institut Rossetti-PEP06, Nice, France
| | | | | |
Collapse
|
4
|
Generalization indicates asymmetric and interactive control networks for multi-finger dexterous movements. Cell Rep 2023; 42:112214. [PMID: 36924500 DOI: 10.1016/j.celrep.2023.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
Finger dexterity is manifested by coordinated patterns of muscle activity and generalization of learning across contexts. Some fingers flex, others extend, and some are immobile. Whether or not the neural control processes of these direction-specific actions are independent remains unclear. We characterized behavioral principles underlying learning and generalization of dexterous flexion and extension movements, within and across hands, using an isometric dexterity task that precisely measured finger individuation, force accuracy, and temporal synchronization. Two cohorts of participants trained for 3 days in either the flexion or extension direction. All dexterity measures in both groups showed post-training improvement, although finger extension exhibited inferior dexterity. Surprisingly, learning of finger extension generalized to the untrained flexion direction, but not vice versa. This flexion bias was also evident in the untrained hand. Our study indicates direction-specific control circuits for learning of finger flexion and extension that interact by partially, but asymmetrically, transferring between directions.
Collapse
|
5
|
Spectral properties of physiological mirror activity: an investigation of frequency features and common input between homologous muscles. Sci Rep 2022; 12:15965. [PMID: 36153347 PMCID: PMC9509371 DOI: 10.1038/s41598-022-20413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
During unilateral contractions, muscular activation can be detected in both active and resting limbs. In healthy populations, the latter is referred to as physiological mirror activity (pMA). The study of pMA holds implications for clinical applications as well as the understanding of bilateral motor control. However, the underlying mechanisms of pMA remain to be fully resolved. A commonality of prevailing explanatory approaches is the concept of shared neural input. With this study, we, therefore, aimed to investigate neural input in the form of multiple analyses of surface electromyography (sEMG) recordings in the frequency domain. For this purpose, 14 healthy, right-handed males aged 18–35 years were recruited. All participants performed a pinch-force task with the dominant hand in a blockwise manner. In total, 9 blocks of 5 contractions each were completed at 80% of maximum force output. Muscle activity was recorded via sEMG of the first dorsal interosseous muscle of the active and resting hand. We analyzed (1) spectral features as well as (2) intermuscular coherence (IMC). Our results demonstrate a blockwise increase in median frequency, mean frequency, and peak frequency in both hands. Frequency ratio analyses revealed a higher low-frequency component in the resting hand. Although we were able to demonstrate IMC on an individual level, results varied greatly and grand-averaged IMC failed to reach significance. Taken together, our findings imply an overlap of spectral properties between active and passive hands during repeated unilateral contractions. Combined with evidence from previous studies, this suggests a common neural origin between active and resting hands during unilateral contractions possibly resulting from a reduction in interhemispheric inhibition due to high force demands. Nevertheless, the exploratory nature of this study necessitates the classification of our results through follow-up studies.
Collapse
|
6
|
Sabah HME, Labib HSA. Assessment of neuromuscular electrical stimulation effect on contralateral quadriceps muscle. J Bodyw Mov Ther 2022; 31:84-89. [DOI: 10.1016/j.jbmt.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/15/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
7
|
Colomer-Poveda D, Zijdewind I, Dolstra J, Márquez G, Hortobágyi T. Voluntary suppression of associated activity decreases force steadiness in the active hand. Eur J Neurosci 2021; 54:5075-5091. [PMID: 34184345 DOI: 10.1111/ejn.15371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/19/2021] [Indexed: 11/30/2022]
Abstract
Unilateral muscle contractions are often accompanied by the activation of the ipsilateral hemisphere, producing associated activity (AA) in the contralateral homologous muscles. However, the functional role of AA is not fully understood. We determined the effects of voluntary suppression of AA in the first dorsal interosseous (FDI), on force steadiness during a constant force isometric contraction of the contralateral FDI. Participants (n = 17, 25.5 years) performed two trials of isometric FDI contractions as steadily as possible. In Trial 1, they did not receive feedback or explicit instructions for suppressing the AA in the contralateral homologous FDI. In Trial 2, participants received feedback and were asked to voluntarily suppress the AA in the contralateral nontarget FDI. During both trials, corticospinal excitability and motor cortical inhibition were measured. The results show that participants effectively suppressed the AA in the nontarget contralateral FDI (-71%), which correlated with reductions in corticospinal excitability (-57%), and the suppression was also accompanied by increases in inhibition (27%) in the ipsilateral motor cortex. The suppression of AA impaired force steadiness, but the decrease in force steadiness did not correlate with the magnitude of suppression. The results show that voluntary suppression of AA decreases force steadiness in the active hand. However, due to the lack of association between suppression and decreased steadiness, we interpret these data to mean that specific elements of the ipsilateral brain activation producing AA in younger adults are neither contributing nor detrimental to unilateral motor control during a steady isometric contraction.
Collapse
Affiliation(s)
| | - Inge Zijdewind
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jurian Dolstra
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruna, Spain
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, Pécs, Hungary.,Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| |
Collapse
|
8
|
Tisseyre J, Amarantini D, Tallet J. Behavioural and cerebral asymmetries of mirror movements are specific to rhythmic task and related to higher attentional and executive control. Behav Brain Res 2021; 412:113429. [PMID: 34175358 DOI: 10.1016/j.bbr.2021.113429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
Mirror movements (MM) refer to the involuntary movements or contractions occurring in homologous muscles contralateral to the unilateral voluntary movements. This behavioural manifestation increases in elderly. In right-handed adults, some studies report asymmetry in MM production, with greater MM in the right dominant hand during voluntary movements of the left non-dominant hand than the opposite. However, other studies report contradictory results, suggesting that MM asymmetry could depend on the characteristics of the task. The present study investigates the behavioural asymmetry of MM and its associated cerebral correlates during a rhythmic task and a non-rhythmic task using low-force contractions (i.e., 25 % MVC). We determined the quantity and the intensity of MM using electromyography (EMG) and cerebral correlates through electroencephalography (EEG) in right-handed healthy young and middle-aged adults during unimanual rhythmic vs. non-rhythmic tasks. Overall, results revealed (1) behavioural asymmetry of MM specific to the rhythmic task and irrespective of age, (2) cerebral asymmetry of motor activations specific to the rhythmic task and irrespective of age and (3) greater attentional and executive activations in the rhythmic task compared to the non-rhythmic task. In line with our hypotheses, behavioural and cerebral motor asymmetries of MM seem to be specific to the rhythmic task. Results are discussed in terms of cognitive-motor interactions: greater attentional and executive control required in the rhythmic tasks could contribute to the increased occurrence of involuntary movements in both young and middle-aged adults.
Collapse
Affiliation(s)
- Joseph Tisseyre
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | - David Amarantini
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jessica Tallet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
9
|
Carr JC, Bemben MG, Stock MS, DeFreitas JM. Ipsilateral and contralateral responses following unimanual fatigue with and without illusionary mirror visual feedback. J Neurophysiol 2021; 125:2084-2093. [PMID: 33909484 DOI: 10.1152/jn.00077.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Illusionary mirror visual feedback alters interhemispheric communication and influences cross-limb interactions. Combining forceful unimanual contractions with the mirror illusion is a convenient way to provoke robust alterations within ipsilateral motor networks. It is unknown, however, if the mirror illusion affects cross-limb fatigability. We examine this concept by comparing the ipsilateral and contralateral handgrip force and electromyographic (EMG) responses following unimanual fatigue with and without illusionary mirror visual feedback. Participants underwent three experimental sessions (mirror, no-mirror, and control), performing a unimanual fatigue protocol with and without illusionary mirror visual feedback. Maximal handgrip force and EMG activity were measured before and after each session for both hands during maximal unimanual and bimanual contractions. The associated EMG activity from the inactive forearm during unimanual contraction was also examined. The novel findings demonstrate greater relative fatigability during bimanual versus unimanual contraction following unimanual fatigue (-31.8% vs. -23.4%, P < 0.01) and the mirror illusion attenuates this difference (-30.3% vs. -26.3%, P = 0.169). The results show no evidence for a cross-over effect of fatigue with (+0.62%, -2.72%) or without (+0.26%, -2.49%) the mirror illusion during unimanual or bimanual contraction. The mirror illusion resulted in significantly lower levels of associated EMG activity in the contralateral forearm. There were no sex differences for any of the measures of fatigability. These results demonstrate that the mirror illusion influences contraction-dependent fatigue during maximal handgrip contractions. Alterations in facilitatory and inhibitory transcallosal drive likely explain these findings.NEW & NOTEWORTHY Illusionary mirror visual feedback is a promising clinical tool for motor rehabilitation, yet many features of its influence on motor output are unknown. We show that maximal bimanual force output is compromised to a greater extent than unimanual force output following unimanual fatigue, yet illusionary mirror visual feedback attenuates this difference. The mirror illusion also reduces the unintended EMG activity of the inactive, contralateral forearm during unimanual contraction.
Collapse
Affiliation(s)
- Joshua C Carr
- Department of Kinesiology, Texas Christian University, Fort Worth, Texas.,Department of Medical Education, TCU and UNTHSC School of Medicine, Fort Worth, Texas
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Matt S Stock
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, Florida.,Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| | - Jason M DeFreitas
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
10
|
The effect of unilateral training on contralateral limb power in young women and men. Biol Sport 2020; 37:443-448. [PMID: 33795910 PMCID: PMC7996667 DOI: 10.5114/biolsport.2021.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/06/2020] [Accepted: 12/23/2020] [Indexed: 12/10/2022] Open
Abstract
The purpose of this study was to determine the effect of training of one side of the body on the muscle torques and power output on the trained and untrained side. Seventeen female and twenty-two male students were subject to a four-week knee joint power training regimen on a specially designed stand. The subjects were divided into two groups: a training group (female - N = 11 and male - N = 16) and a control group (female - N = 6 and male - N = 6). Effectiveness of power training on the stand described previously was estimated based on bilateral knee torque and power under static and isokinetic conditions. The experiment lasted for 39 days and was preceded by preliminary studies (pre-training). Control measurements in training groups were made after four weeks of training (post-training) and after the next two weeks (de-training). Power training caused an insignificant increase in force and power in both groups for the untrained leg and a significant increase in RMS EMG. Therefore, the study confirmed the hypothesis that resistance training performed in dynamic conditions can affect the contralateral limb and may also trigger delayed adaptations to training conditions during the detraining phase. Sex differences in adaptation to power training are not clear; however, the differences in gains in contralateral effects between men and women were not confirmed.
Collapse
|
11
|
Atkinson DA, Mendez L, Goodrich N, Aslan SC, Ugiliweneza B, Behrman AL. Muscle Activation Patterns During Movement Attempts in Children With Acquired Spinal Cord Injury: Neurophysiological Assessment of Residual Motor Function Below the Level of Lesion. Front Neurol 2019; 10:1295. [PMID: 31920919 PMCID: PMC6933608 DOI: 10.3389/fneur.2019.01295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/25/2019] [Indexed: 11/26/2022] Open
Abstract
Introduction: Characterization of residual neuromotor capacity after spinal cord injury (SCI) is challenging. The current gold standard for measurement of sensorimotor function after SCI, the International Society for Neurological Classification of Spinal Cord Injury (ISNCSCI) exam, seeks to determine isolated intentional muscle activation, however many individuals with SCI exhibit intentional movements and muscle activation patterns which are not confined to specific joint or muscle. Further, isolated muscle activation is a feature of the neuromuscular system that emerges during development, and thus may not be an appropriate measurement standard for children younger than 6. Methods: We utilized neurophysiological assessment methodology, long studied in adult SCI populations, to evaluate residual neuromotor capacity in 24 children with SCI, as well as 19 typically developing (TD) children. Surface electromyography (EMG) signals were recorded from 11 muscles bilaterally, representing spinal motor output from all regions (i.e., cervical, thoracic, and lumbosacral), during standardized movement attempts. EMG records were subjectively analyzed based on spatiotemporal muscle activation characteristics, while the voluntary response index (VRI) was utilized for objective analysis of unilateral leg movement tasks. Results: Evidence of intentional leg muscle activation below the level of lesion was found in 11/24 children with SCI, and was classified based on activation pattern. Trace activation, bilateral (generalized) activation, and unilateral or isolated activation occurred in 32, 49, and 8% of movement tasks, respectively. Similarly, VRI analyses objectively identified significant differences between TD and SCI children in both magnitude (p < 0.01) and similarity index (p < 0.05) for all unilateral leg movement tasks. Activation of the erector spinae muscles, recorded at the T10–T12 vertebral level, was observed in all children with SCI, regardless of injury level or severity. Conclusions: Residual descending influence on spinal motor circuits may be present after SCI in children. Assessment of multi-muscle activation patterns during intentional movement attempts can provide objective evidence of the presence and extent of such residual muscle activation, and may provide an indicator of motor recovery potential following injury. The presence of residual intentional muscle activation has important implications for rehabilitation following pediatric-onset SCI.
Collapse
Affiliation(s)
- Darryn A Atkinson
- Doctor of Physical Therapy Program, University of St. Augustine for Health Sciences, Austin, TX, United States
| | - Laura Mendez
- Kosair Charities Center for Pediatric NeuroRecovery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Natalie Goodrich
- Kosair Charities Center for Pediatric NeuroRecovery, University of Louisville, Louisville, KY, United States.,Pediatric Neurorecovery Program, Frazier Rehab Institute, Louisville, KY, United States
| | - Sevda C Aslan
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Andrea L Behrman
- Kosair Charities Center for Pediatric NeuroRecovery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| |
Collapse
|
12
|
Morrison S, Kavanagh JJ, Newell KM. Cross-limb dynamics of postural tremor due to limb loading to fatigue: neural overflow but not coupling. J Neurophysiol 2019; 122:572-584. [DOI: 10.1152/jn.00199.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many experiments have shown independence of the index finger dynamics under bilateral postural tremor protocols. Here we investigated in young adults the dynamics of bilateral multidirectional postural tremor and forearm muscle activity under the progressively fatiguing conditions supporting an external weight to the point of induced postural failure. When no loads were applied, tremor in the vertical (VT) and mediolateral (ML) directions was similar with prominent peaks within 2- to 4-Hz and 8- to 12-Hz bandwidths. Contrastingly tremor in the anterior-posterior (AP) direction was characterized by a single peak between 0 and 2 Hz. Although no tremor coupling occurred cross limbs, strong within-limb coupling was found between ML and VT directions when no loads were applied (coherence range: 0.77–0.85), implying that these oscillations are related and likely derived from mechanical sources. Applying an external load to the index finger(s) led to significant increases in the amplitude of VT tremor and EMG activity within that limb but also caused increases in tremor directions not aligned with the gravitational vector (AP and ML). Significant increases in VT and ML tremor and EMG activity in the contralateral (unloaded) limb were also found when a single index finger was loaded; however, this bilateral increase did not align with increases in interlimb coupling (coherence <0.21). The effects of fatigue caused by prolonged loading were widespread, affecting tremor and muscle activity in both limbs through a combination of neural and mechanical mechanisms. The single- and dual-limb loading to fatigue increased neural overflow but not tremor coupling between the index fingers. NEW & NOTEWORTHY This study investigated bilateral multidirectional tremor under unloaded and loaded conditions. We found that tremor in the mediolateral and vertical directions within a limb were strongly coupled, a result not reported previously. Furthermore, when holding a weight to failure, tremor in all directions increased. Tremor also increased in the contralateral (unloaded) limb despite no interlimb coupling. This contralateral increase in tremor following loading a limb until fatigue is hypothesized to stem from motor-overflow effects.
Collapse
Affiliation(s)
- Steven Morrison
- School of Rehabilitation Sciences, Old Dominion University, Norfolk, Virginia
| | - Justin J. Kavanagh
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Karl M. Newell
- Department of Kinesiology, University of Georgia, Athens, Georgia
| |
Collapse
|
13
|
Maudrich T, Kenville R, Nikulin VV, Maudrich D, Villringer A, Ragert P. Inverse relationship between amplitude and latency of physiological mirror activity during repetitive isometric contractions. Neuroscience 2019; 406:300-313. [DOI: 10.1016/j.neuroscience.2019.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
14
|
Sex comparisons of the bilateral deficit in proximal and distal upper body limb muscles. Hum Mov Sci 2019; 64:329-337. [PMID: 30836207 DOI: 10.1016/j.humov.2019.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 01/28/2023]
Abstract
Bilateral deficit (BLD) describes a phenomenon that the force produced during maximal simultaneous bilateral contraction is lower than the sum of those produced unilaterally. The aim of this study was to examine the potential sex-related differences in BLD in upper body proximal and distal limb muscles. Ten men and eight women performed single-joint maximal contractions with their elbow flexors and index finger abductors at separate laboratory visits, during which the maximal isometric voluntary contractions (MVICs) were performed unilaterally and bilaterally with a randomized order in the designated muscle group. Surface electromyographic (EMG) signals were recorded from the prime movers of the designated muscle groups (biceps brachii and first dorsal interosseous) during the maximal contractions. Both men and women demonstrated BLD in their elbow flexors (deficit: men = -11.0 ± 6.3%; women = -10.2 ± 5.0%). Accompanied by this force deficit was the reduced EMG amplitude from the dominant biceps brachii (collapsed across sex: p = 0.045). For the index finger abductors, only men (deficit = -13.7 ± 6.1%), but not women showed BLD. Our results suggested that the BLD in the proximal muscle group is likely induced by the decreased maximal muscle activity from the dominant prime mover. The absence of BLD in women's index finger muscle is largely due to the inter-subject variability possibly related to the sex hormone flux and unique levels of interhemispheric inhibition.
Collapse
|
15
|
Prak RF, van der Naalt J, Zijdewind I. Self-Reported Fatigue After Mild Traumatic Brain Injury Is Not Associated With Performance Fatigability During a Sustained Maximal Contraction. Front Physiol 2019; 9:1919. [PMID: 30687127 PMCID: PMC6335345 DOI: 10.3389/fphys.2018.01919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/20/2018] [Indexed: 01/05/2023] Open
Abstract
Patients with mild traumatic brain injury (mTBI) are frequently affected by fatigue. However, hardly any data is available on the fatigability of the motor system. We evaluated fatigue using the Fatigue Severity Scale (FSS) and Modified Fatigue Impact Scale (MFIS) questionnaires in 20 participants with mTBI (>3 months post injury; 8 females) and 20 age- and sex matched controls. Furthermore, index finger abduction force and electromyography of the first dorsal interosseous muscle of the right hand were measured during brief and sustained maximal voluntary contractions (MVC). Double pulse stimulation (100 Hz) was applied to the ulnar nerve to evoke doublet-forces before and after the sustained contraction. Seven superimposed twitches were evoked during the sustained MVC to quantify voluntary muscle activation. mTBI participants reported higher FSS scores (mTBI: 5.2 ± 0.8 SD vs. control: 2.8 ± 0.8 SD; P < 0.01). During the sustained MVC, force declined to similar levels in mTBI (30.0 ± 9.9% MVC) and control participants (32.7 ± 9.8% MVC, P = 0.37). The decline in doublet-forces after the sustained MVC (mTBI: to 37.2 ± 12.1 vs. control: to 41.4 ± 14.0% reference doublet, P = 0.32) and the superimposed twitches evoked during the sustained MVC (mTBI: median 9.3, range: 2.2-32.9 vs. control: median 10.3, range: 1.9-31.0% doubletpre, P = 0.34) also did not differ between groups. Force decline was associated with decline in doublet-force (R 2 = 0.50, P < 0.01) for both groups. Including a measure of voluntary muscle activation resulted in more explained variance for mTBI participants only. No associations between self-reported fatigue and force decline or voluntary muscle activation were found in mTBI participants. However, the physical subdomain of the MFIS was associated with the decline in doublet-force after the sustained MVC (R 2 = 0.23, P = 0.04). These results indicate that after mTBI, increased levels of self-reported physical fatigue reflected increased fatigability due to changes in peripheral muscle properties, but not force decline or muscle activation. Additionally, muscle activation was more important to explain the decline in voluntary force (performance fatigability) after mTBI than in control participants.
Collapse
Affiliation(s)
- Roeland F Prak
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Inge Zijdewind
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Doix ACM, Wachholz F, Marterer N, Immler L, Insam K, Federolf PA. Is the cross-over effect of a unilateral high-intensity leg extension influenced by the sex of the participants? Biol Sex Differ 2018; 9:29. [PMID: 29954447 PMCID: PMC6022493 DOI: 10.1186/s13293-018-0188-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/13/2018] [Indexed: 12/02/2022] Open
Abstract
Background While performing a unilateral muscle contraction, electrical muscle activity also arises in the contralateral homologous muscle, muscle group, or limb. When the muscle contraction induces muscle fatigue, females show not only a greater resistance than males but also a reduced contralateral muscle activation. The study aimed at investigating whether, during a high-intensity 30-s unilateral maximal effort isometric leg extension exercise, the contralateral non-exercising limb (NEL) knee extensor muscle activation would differ between females and males. Methods Twenty participants, 11 females (23.80 ± 2.15 years old) and 9 males (26.50 ± 2.45 years old), performed a unilateral 30-s exercise while surface electromyography (sEMG) was measured from the vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) on both limbs. The maximal voluntary contraction (MVC) was measured for both the exercising limb (EL) and the NEL before (MVC PRE) and after (MVC POST) the 30-s exercise to assess muscle fatigue. Results While both females and males exhibited muscle fatigue in the EL (p = 0.015), females exhibited a lower MVC reduction than males (p = 0.042), suggesting that females were less fatigued than males. Although no muscle fatigue, i.e., no MVC force reduction was found in the NEL for either group before and after the 30-s exercise, the muscle activity of the VL was found to be of greater magnitude during the MVC POST only for females (p = 0.047) while it remained unchanged for males. During the 30-s exercise, the force output of the EL decreased only for males (p = 0.029) while females showed a preservation of the force output (p > 0.05). The sEMG activity of the NEL during the 30-s unilateral exercise increased for both groups in all measured muscles (all p-values < 0.03). Conclusions Likely, different underlying muscle fatigue mechanisms occurred in the EL between females and males. Yet, our findings suggest that the cross-over effect to the NEL during the 30-s exercise occurred in a similar fashion in both groups. The current study suggests that the contralateral muscle activation seen with a unilateral exercise is independent of the sex of individuals. Therefore, unilateral training or rehabilitation-based protocols would similarly impact females and males.
Collapse
Affiliation(s)
- Aude-Clémence M Doix
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, 6020, Innsbruck, Austria.
| | - Felix Wachholz
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, 6020, Innsbruck, Austria
| | - Natalie Marterer
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, 6020, Innsbruck, Austria
| | - Lorenz Immler
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, 6020, Innsbruck, Austria
| | - Kathrin Insam
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, 6020, Innsbruck, Austria
| | - Peter A Federolf
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, 6020, Innsbruck, Austria
| |
Collapse
|
17
|
Maudrich T, Kenville R, Lepsien J, Villringer A, Ragert P. Structural Neural Correlates of Physiological Mirror Activity During Isometric Contractions of Non-Dominant Hand Muscles. Sci Rep 2018; 8:9178. [PMID: 29907835 PMCID: PMC6003937 DOI: 10.1038/s41598-018-27471-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
Mirror Activity (MA) describes involuntarily occurring muscular activity in contralateral homologous limbs during unilateral movements. This phenomenon has not only been reported in patients with neurological disorders (i.e. Mirror Movements) but has also been observed in healthy adults referred to as physiological Mirror Activity (pMA). However, despite recent hypotheses, the underlying neural mechanisms and structural correlates of pMA still remain insufficiently described. We investigated the structural correlates of pMA during isometric contractions of hand muscles with increasing force demands on a whole-brain level by means of voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS). We found significant negative correlations between individual tendencies to display pMA and grey matter volume (GMV) in the right anterior cingulate cortex (ACC) as well as fractional anisotropy (FA) of white matter (WM) tracts of left precuneus (PrC) during left (non-dominant) hand contractions. No significant structural associations for contractions of the right hand were found. Here we extend previously reported functional associations between ACC/PrC and the inhibtion of intrinsically favoured mirror-symmetrical movement tendencies to an underlying structural level. We provide novel evidence that the individual structural state of higher order motor/executive areas upstream of primary/secondary motor areas might contribute to the phenomen of pMA.
Collapse
Affiliation(s)
- Tom Maudrich
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, 04109, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Rouven Kenville
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, 04109, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Jöran Lepsien
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany.,Clinic for Cognitive Neurology, University of Leipzig, Leipzig, 04103, Germany.,Berlin School of Mind and Brain, Mind and Brain Institute, Berlin, 10099, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, 04109, Germany. .,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany.
| |
Collapse
|
18
|
Sars V, Prak RF, Hortobágyi T, Zijdewind I. Age- and Sex-Related Differences in Motor Performance During Sustained Maximal Voluntary Contraction of the First Dorsal Interosseous. Front Physiol 2018; 9:637. [PMID: 29899705 PMCID: PMC5989487 DOI: 10.3389/fphys.2018.00637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/11/2018] [Indexed: 02/02/2023] Open
Abstract
Age and sex affect the neuromuscular system including performance fatigability. Data on performance fatigability and underlying mechanisms in hand muscles are scarce. Therefore, we determined the effects of age and sex on force decline, and the mechanisms contributing to force decline, during a sustained isometric maximal voluntary contraction (MVC) with the index finger abductor (first dorsal interosseous, FDI). Subjects (n = 51, age range: 19–77 years, 25 females) performed brief and a 2-min sustained MVC with the right FDI. Abduction force and root mean squared electromyographic activity (rms-EMG) were recorded in both hands. Double-pulse stimulation was applied to the ulnar nerve during (superimposed twitch) and after (doublet-force) the brief and sustained MVCs. Compared to females, males were stronger (134%, p < 0.001) and exhibited a greater decline in voluntary (difference: 8%, p = 0.010) and evoked (doublet) force (difference: 12%, p = 0.010) during and after the sustained MVC. Age did not affect MVC, force decline and superimposed twitch. The ratio between the doublet- and MVC-force was greater in females (0.33, p = 0.007) and in older (0.38, p = 0.06) individuals than in males (0.30) and younger (0.30) individuals; after the sustained MVC this ratio increased with age and the increase was larger for females compared to males (p = 0.04). The inadvertent contralateral, left force and rms-EMG activity increased over time (2.7–13.6% MVC and 5.4–17.7% MVC, respectively). Males had higher contralateral forces than females (p = 0.012) and contralateral force was higher at the start of the contralateral contraction in older compared with young subjects (difference: 29%, p = 0.008). In conclusion, our results suggest that the observed sex-differences in performance fatigability were mainly due to differences in peripheral muscle properties. Yet the reduced amount of contralateral activity and the larger difference in evoked versus voluntary force in female subjects indicate that sex-differences in voluntary activation should not be overlooked. These data obtained in neurological healthy adults provides a framework and help the interpretation and referencing of neurophysiological measures in patients suffering from neuromuscular diseases, who often present with symptoms of performance fatigability.
Collapse
Affiliation(s)
- Valerie Sars
- Department of Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Roeland F Prak
- Department of Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Inge Zijdewind
- Department of Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Chiou SY, Strutton PH, Perez MA. Crossed corticospinal facilitation between arm and trunk muscles in humans. J Neurophysiol 2018; 120:2595-2602. [PMID: 29847230 DOI: 10.1152/jn.00178.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A voluntary contraction of muscles with one arm increases the excitability of corticospinal projections to the contralateral resting arm, a phenomenon known as crossed facilitation. Although many motor tasks engage simultaneous activation of the arm and trunk, interactions between corticospinal projections targeting these segments remain largely unknown. Using transcranial magnetic stimulation over the trunk representation of the primary motor cortex, we examined motor-evoked potentials (MEPs) in the resting erector spinae (ES) muscle when the contralateral arm remained at rest or performed 20% of isometric maximal voluntary contraction (MVC) into index finger abduction, thumb abduction, elbow flexion, and elbow extension. We found that MEP size in the ES increased during all voluntary contractions, with greater facilitation occurring during elbow flexion and index finger abduction. To further examine the origin of changes in MEP size, we measured short-interval intracortical inhibition (SICI) and cervicomedullary MEPs (CMEPs) in the ES muscle during elbow flexion and index finger abduction and when the arm remained at rest. Notably, SICI decreased and CMEPs remained unchanged in the ES during both voluntary contractions compared with rest, suggesting a cortical origin for the effects. Our findings reveal crossed facilitatory interactions between trunk extensor and proximal and distal arm muscles, particularly for elbow flexor and index finger muscles, likely involving cortical mechanisms. These interactions might reflect the different role of these muscles during functionally relevant arm and trunk movements. NEW & NOTEWORTHY Many of the tasks of daily life involve simultaneous activation of the arm and trunk. We found that responses in the erector spinae muscles evoked by motor cortical stimulation increased in size during elbow flexion and extension and during index finger abduction and thumb abduction. Crossed facilitation with the trunk was more pronounced during elbow flexion and index finger abduction. These results might reflect the different role of these muscles during arm and trunk movements.
Collapse
Affiliation(s)
- Shin-Yi Chiou
- Faculty of Medicine, The Nick Davey Laboratory, Division of Surgery, Department of Surgery and Cancer, Imperial College London , London , United Kingdom.,Department of Physical Medicine and Rehabilitation, Systems Neuroscience Institute, University of Pittsburgh, Pennsylvania
| | - Paul H Strutton
- Faculty of Medicine, The Nick Davey Laboratory, Division of Surgery, Department of Surgery and Cancer, Imperial College London , London , United Kingdom
| | - Monica A Perez
- Department of Physical Medicine and Rehabilitation, Systems Neuroscience Institute, University of Pittsburgh, Pennsylvania.,Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami , Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| |
Collapse
|
20
|
O'Neill J, Hartman ME, O'Neill DA, Lewinski WJ. Further analysis of the unintentional discharge of firearms in law enforcement. APPLIED ERGONOMICS 2018; 68:267-272. [PMID: 29409643 DOI: 10.1016/j.apergo.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Empirical analysis of the contexts in which UDs occur in law enforcement have only recently begun to emerge. We analyzed a novel sample of UD reports (N = 171) that occurred between 1992 and 2016, collected from one non-U.S. and three U.S. law enforcement entities. Using an established antecedent-behavior-consequence (A-B-C) taxonomy, reports were analyzed by context, officer behavior, type of firearm, injuries, deaths, and property damages. This study is the first to empirically document reports of UDs caused by the startle response and the first to analyze a substantial sample of UDs that involved handguns with a double-action only trigger mechanism. An expanded analysis of UD consequences suggested that deaths and injuries might be more prevalent than previously reported.
Collapse
Affiliation(s)
- John O'Neill
- Division of Research, Force Science(®) Institute Ltd., Mankato, MN 56001, USA.
| | - Mark E Hartman
- Division of Research, Force Science(®) Institute Ltd., Mankato, MN 56001, USA; Department of Kinesiology, Iowa State University, Ames, IA 50011, USA
| | - Dawn A O'Neill
- Division of Research, Force Science(®) Institute Ltd., Mankato, MN 56001, USA
| | - William J Lewinski
- Division of Research, Force Science(®) Institute Ltd., Mankato, MN 56001, USA
| |
Collapse
|
21
|
Gruevski KM, Hodder JN, Keir PJ. Upper Extremity Muscle Activity During In-Phase and Anti-Phase Continuous Pushing Tasks. HUMAN FACTORS 2017; 59:1066-1077. [PMID: 28605604 DOI: 10.1177/0018720817714367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To determine the effect of anti-phase, in-phase bimanual and unimanual simulated industrial pushing tasks and frequency on upper extremity muscle activity. BACKGROUND Research investigating symmetrical (in-phase) and asymmetrical (anti-phase) pushing exertions is limited despite a high prevalence in industry. METHODS Fifteen female participants completed five pushing tasks using a dual handle apparatus at three frequencies: 15 cycles per minute (cpm), 30 cpm, and self-selected. Tasks included two bimanual symmetrical pushes (constrained and unconstrained), two bimanual asymmetrical pushes (reciprocating and continuous), and one right unimanual push. Surface electromyography (EMG) from the right anterior, middle, and posterior deltoid (AD, MD, and PD); right and left trapezius (RT and LT); right pectoralis major (PM); and right and left external obliques (REO and LEO) was collected and normalized to maximum voluntary effort. RESULTS There was a task by frequency interaction in the AD, MD, PD, and RT ( p < .005), where activity in AD, MD, and PD was highest in the continuous task at 15 cpm, but activity was similar across task in 30 cpm and self-selected. Muscle activity coefficient of variation was lowest during continuous task across all frequencies. CONCLUSION Continuous, anti-phase pushes and constrained, in-phase pushes had the highest muscle activity demands and the least amount of variability in muscle activity and therefore may present the greatest risk of injury. APPLICATION Anti-phase pushing is known to have a greater cognitive demand, and this study demonstrated that it also has a greater physical demand when performed continuously.
Collapse
|
22
|
Maudrich T, Kenville R, Lepsien J, Villringer A, Ragert P, Steele CJ. Mirror Electromyografic Activity in the Upper and Lower Extremity: A Comparison between Endurance Athletes and Non-Athletes. Front Hum Neurosci 2017; 11:485. [PMID: 29085288 PMCID: PMC5649197 DOI: 10.3389/fnhum.2017.00485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
During unimanual motor tasks, muscle activity may not be restricted to the contracting muscle, but rather occurs involuntarily in the contralateral resting limb, even in healthy individuals. This phenomenon has been referred to as mirror electromyographic activity (MEMG). To date, the physiological (non-pathological) form of MEMG has been observed predominately in upper extremities (UE), while remaining sparsely described in lower extremities (LE). Accordingly, evidence regarding the underlying mechanisms and modulation capability of MEMG, i.e., the extent of MEMG in dependency of exerted force during unilateral isometric contractions are insufficiently investigated in terms of LE. Furthermore, it still remains elusive if and how MEMG is affected by long-term exercise training. Here, we provide novel quantitative evidence for physiological MEMG in homologous muscles of LE (tibialis anterior (TA), rectus femoris (RF)) during submaximal unilateral dorsiflexion in healthy young adults. Furthermore, endurance athletes (EA, n = 11) show a higher extent of MEMG in LE compared to non-athletes (NA, n = 11) at high force demands (80% MVC, maximum voluntary contraction). While the underlying neurophysiological mechanisms of MEMG still remain elusive, our study indicates, at least indirectly, that sport-related long-term training might affect the amount of MEMG during strong isometric contractions specifically in trained limbs. To support this assumption of exercise-induced limb-specific MEMG modulation, future studies including different sports disciplines with contrasting movement patterns and parameters should additionally be performed.
Collapse
Affiliation(s)
- Tom Maudrich
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Rouven Kenville
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jöran Lepsien
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christopher J Steele
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Watanabe H, Kanehisa H, Yoshitake Y. Unintended activity in homologous muscle during intended unilateral contractions increases with greater task difficulty. Eur J Appl Physiol 2017; 117:2009-2019. [DOI: 10.1007/s00421-017-3689-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/20/2017] [Indexed: 11/30/2022]
|
24
|
O'Neill J, O'Neill DA, Lewinski WJ. Toward a taxonomy of the unintentional discharge of firearms in law enforcement. APPLIED ERGONOMICS 2017; 59:283-292. [PMID: 27890139 DOI: 10.1016/j.apergo.2016.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
An unintentional discharge (UD) is an activation of the trigger mechanism that results in an unplanned discharge that is outside of the firearm's prescribed use. UDs can result in injury or death, yet have been understudied in scientific literature. Pre-existing (1974-2015) UD reports (N = 137) from seven law enforcement agencies in the United States of America were analyzed by context, officer behavior, type of firearm, and injuries. Over 50% of UDs occurred in contexts with low threat potential while engaged in routine firearm tasks. The remaining UDs occurred in contexts with elevated to high threat potential during muscle co-activation, unfamiliar firearm tasks, contact with inanimate objects, and a medical condition. An antecedent-behavior-consequence (A-B-C) taxonomy as well as a standardized reporting form, based on the current findings and the existing literature, are offered as tools for identifying the conditions under which UDs may be likely to occur.
Collapse
Affiliation(s)
- John O'Neill
- Force Science(®)Institute Ltd., Mankato, MN 56001, USA.
| | | | | |
Collapse
|
25
|
Kavanagh JJ, Feldman MR, Simmonds MJ. Maximal intermittent contractions of the first dorsal interosseous inhibits voluntary activation of the contralateral homologous muscle. J Neurophysiol 2016; 116:2272-2280. [PMID: 27605530 DOI: 10.1152/jn.00367.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/28/2016] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate how maximal intermittent contractions for a hand muscle influence cortical and reflex activity, as well as the ability to voluntarily activate, the homologous muscle in the opposite limb. Twelve healthy subjects (age: 24 ± 3 years, all right hand dominant) performed maximal contractions of the dominant limb first dorsal interosseous (FDI), and activity of the contralateral FDI was examined in a series of experiments. Index finger abduction force, FDI EMG, motor evoked potentials and heteronomous reflexes were obtained from the contralateral limb during brief non-fatiguing contractions. The same measures, as well as the ability to voluntarily activate the contralateral FDI, were then assessed in an extended intermittent contraction protocol that elicited fatigue. Brief contractions under non-fatigued conditions increased index finger abduction force, FDI EMG, and motor evoked potential amplitude of the contralateral limb. However, when intermittent maximal contractions were continued until fatigue, there was an inability to produce maximal force with the contralateral limb (~30%) which was coupled to a decrease in the level of voluntary activation (~20%). These declines were present without changes in reflex activity, and regardless of whether cortical or motor point stimulation was used to assess voluntary activation. It is concluded that performing maximal intermittent contractions with a single limb causes an inability of the CNS to maximally drive the homologous muscle of the contralateral limb. This was, in part, mediated by mechanisms that involve the motor cortex ipsilateral to the contracting limb.
Collapse
|
26
|
Bilateral deficit in maximal force production. Eur J Appl Physiol 2016; 116:2057-2084. [DOI: 10.1007/s00421-016-3458-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|
27
|
Chieffo R, Straffi L, Inuggi A, Gonzalez-Rosa JJ, Spagnolo F, Coppi E, Nuara A, Houdayer E, Comi G, Leocani L. Motor Cortical Plasticity to Training Started in Childhood: The Example of Piano Players. PLoS One 2016; 11:e0157952. [PMID: 27336584 PMCID: PMC4918920 DOI: 10.1371/journal.pone.0157952] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 06/07/2016] [Indexed: 11/25/2022] Open
Abstract
Converging evidence suggest that motor training is associated with early and late changes of the cortical motor system. Transcranial magnetic stimulation (TMS) offers the possibility to study plastic rearrangements of the motor system in physiological and pathological conditions. We used TMS to characterize long-term changes in upper limb motor cortical representation and interhemispheric inhibition associated with bimanual skill training in pianists who started playing in an early age. Ipsilateral silent period (iSP) and cortical TMS mapping of hand muscles were obtained from 30 strictly right-handed subjects (16 pianists, 14 naïve controls), together with electromyographic recording of mirror movements (MMs) to voluntary hand movements. In controls, motor cortical representation of hand muscles was larger on the dominant (DH) than on the non-dominant hemisphere (NDH). On the contrary, pianists showed symmetric cortical output maps, being their DH less represented than in controls. In naïve subjects, the iSP was smaller on the right vs left abductor pollicis brevis (APB) indicating a weaker inhibition from the NDH to the DH. In pianists, interhemispheric inhibition was more symmetric as their DH was better inhibited than in controls. Electromyographic MMs were observed only in naïve subjects (7/14) and only to voluntary movement of the non-dominant hand. Subjects with MM had a lower iSP area on the right APB compared with all the others. Our findings suggest a more symmetrical motor cortex organization in pianists, both in terms of muscle cortical representation and interhemispheric inhibition. Although we cannot disentangle training-related from preexisting conditions, it is possible that long-term bimanual practice may reshape motor cortical representation and rebalance interhemispheric interactions, which in naïve right-handed subjects would both tend to favour the dominant hemisphere.
Collapse
Affiliation(s)
- Raffaella Chieffo
- Department of Neurology, Scientific Institute Hospital San Raffaele, Milan Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), Scientific Institute Hospital San Raffaele, Milan Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Laura Straffi
- Department of Neurology, Scientific Institute Hospital San Raffaele, Milan Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), Scientific Institute Hospital San Raffaele, Milan Italy
| | - Alberto Inuggi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), Scientific Institute Hospital San Raffaele, Milan Italy
| | - Javier J. Gonzalez-Rosa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), Scientific Institute Hospital San Raffaele, Milan Italy
| | - Francesca Spagnolo
- Department of Neurology, Scientific Institute Hospital San Raffaele, Milan Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), Scientific Institute Hospital San Raffaele, Milan Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Elisabetta Coppi
- Department of Neurology, Scientific Institute Hospital San Raffaele, Milan Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), Scientific Institute Hospital San Raffaele, Milan Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Arturo Nuara
- Department of Neurology, Scientific Institute Hospital San Raffaele, Milan Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), Scientific Institute Hospital San Raffaele, Milan Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Elise Houdayer
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), Scientific Institute Hospital San Raffaele, Milan Italy
| | - Giancarlo Comi
- Department of Neurology, Scientific Institute Hospital San Raffaele, Milan Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), Scientific Institute Hospital San Raffaele, Milan Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Letizia Leocani
- Department of Neurology, Scientific Institute Hospital San Raffaele, Milan Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), Scientific Institute Hospital San Raffaele, Milan Italy
- * E-mail:
| |
Collapse
|
28
|
ZULT TJERK, GOODALL STUART, THOMAS KEVIN, SOLNIK STANISLAW, HORTOBÁGYI TIBOR, HOWATSON GLYN. Mirror Training Augments the Cross-education of Strength and Affects Inhibitory Paths. Med Sci Sports Exerc 2016; 48:1001-13. [DOI: 10.1249/mss.0000000000000871] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Visually guided targeting enhances bilateral force variability in healthy older adults. Neurobiol Aging 2015; 37:127-137. [PMID: 26521134 DOI: 10.1016/j.neurobiolaging.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/19/2015] [Accepted: 10/04/2015] [Indexed: 11/23/2022]
Abstract
This study observed the effect of visual feedback on between-limb force variability relationships in young and older adults. Abduction force was examined in healthy young (n = 15, 25 ± 4 years) and older adults (n = 18, 71 ± 6 years) during simultaneous isometric contractions of both index fingers. Target forces ranged from 5% to 30% maximum voluntary contraction (MVC), where force variability and first dorsal interosseus activity were measured while (1) subjects viewed visual targets for both index fingers, (2) a visual target was provided for the dominant index finger only, and (3) visual targets were removed for both index fingers during bilateral isometric contractions. When subjects were provided with bilateral visual feedback during simultaneous contractions at low forces (5% and 10% MVC), older adults produced greater force variability than younger subjects (p = 0.002). However, when bilateral visual feedback was removed, age-related differences in variability were no longer present. Between-limb force variability differences existed at higher force outputs (20% and 30% MVC) when visual feedback was removed for the nondominant limb during bilateral isometric index finger abduction (p = 0.002). The control of bilateral force variability is compromised in older adults when visuomotor processes are engaged. However, age-related differences in force variability are abolished when no task-related visual feedback is available, and isometric contractions are based on internally guided feedback.
Collapse
|
30
|
Gaddis A, Rosch KS, Dirlikov B, Crocetti D, MacNeil L, Barber AD, Muschelli J, Caffo B, Pekar JJ, Mostofsky SH. Motor overflow in children with attention-deficit/hyperactivity disorder is associated with decreased extent of neural activation in the motor cortex. Psychiatry Res 2015; 233:488-95. [PMID: 26272039 PMCID: PMC4554770 DOI: 10.1016/j.pscychresns.2015.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 11/29/2022]
Abstract
Motor overflow is a developmental phenomenon that typically disappears by late childhood. Abnormal persistence of motor overflow is often present in children with attention-deficit/hyperactivity disorder (ADHD). This study employed functional magnetic resonance imaging (fMRI) during a finger-sequencing task to examine whether excessive motor overflow in children with ADHD is associated with decreased extent of motor circuit activation. Thirty-four right-handed children (18 typically developing controls, 16 ADHD) completed fMRI while performing a finger-sequencing task. Motor overflow was evaluated during a finger-sequencing task and a motor examination (the PANESS) performed outside the scanner. Diagnostic differences in behavioral measures of overflow and extent of activation in the contralateral and ipsilateral motor network ROIs were examined, along with correlations between overflow and extent of activation. Children with ADHD demonstrated greater overflow and lesser extent of activation in left primary motor cortex (BA4) and bilateral premotor cortex (BA6) and supplementary motor area (SMA) during right-hand finger-sequencing compared to controls. Decreased extent of primary motor and premotor activation correlated with increased hand-related overflow movements in children with ADHD but not controls. These findings suggest that overflow movements in children with ADHD may reflect decreased recruitment of neural circuitry involved in active inhibition of homologous motor circuitry unnecessary to task execution.
Collapse
Affiliation(s)
- Andrew Gaddis
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Keri S. Rosch
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA,Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA,Corresponding author: 716 North Broadway, Baltimore, MD 21205, USA; Tel.: +1 (443)923-9465; Fax: +1 (443)923-9279;
| | - Benjamin Dirlikov
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Lindsey MacNeil
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Anita D. Barber
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - John Muschelli
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA,Department of Biostatistics, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brian Caffo
- Department of Biostatistics, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James J. Pekar
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stewart H. Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA,The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Prak RF, Doestzada M, Thomas CK, Tepper M, Zijdewind I. Reduced voluntary drive during sustained but not during brief maximal voluntary contractions in the first dorsal interosseous weakened by spinal cord injury. J Appl Physiol (1985) 2015; 119:1320-9. [PMID: 26404618 DOI: 10.1152/japplphysiol.00399.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/22/2015] [Indexed: 11/22/2022] Open
Abstract
In able-bodied (AB) individuals, voluntary muscle activation progressively declines during sustained contractions. However, few data are available on voluntary muscle activation during sustained contractions in muscles weakened by spinal cord injury (SCI), where greater force declines may limit task performance. SCI-related impairment of muscle activation complicates interpretation of the interpolated twitch technique commonly used to assess muscle activation. We attempted to estimate and correct for the SCI-related-superimposed twitch. Seventeen participants, both AB and with SCI (American Spinal Injury Association Impairment Scale C/D) produced brief and sustained (2-min) maximal voluntary contractions (MVCs) with the first dorsal interosseous. Force and electromyography were recorded together with superimposed (doublet) twitches. MVCs of participants with SCI were weaker than those of AB participants (20.3 N, SD 7.1 vs. 37.9 N, SD 9.5; P < 0.001); MVC-superimposed twitches were larger in participants with SCI (SCI median 10.1%, range 2.0-63.2%; AB median 4.7%, range 0.0-18.4% rest twitch; P = 0.007). No difference was found after correction for the SCI-related-superimposed twitch (median 6.7%, 0.0-17.5% rest twitch, P = 0.402). Thus during brief contractions, the maximal corticofugal output that participants with SCI could exert was similar to that of AB participants. During the sustained contraction, force decline (SCI, 58.0%, SD 15.1; AB, 57.2% SD 13.3) was similar (P = 0.887) because participants with SCI developed less peripheral (P = 0.048) but more central fatigue than AB participants. The largest change occurred at the start of the sustained contraction when the (corrected) superimposed twitches increased more in participants with SCI (SCI, 16.3% rest twitch, SD 20.8; AB, 2.7%, SD 4.7; P = 0.01). The greater reduction in muscle activation after SCI may relate to a reduced capacity to overcome fast fatigue-related excitability changes at the spinal level.
Collapse
Affiliation(s)
- Roeland F Prak
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Marwah Doestzada
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Christine K Thomas
- The Miami Project to Cure Paralysis, Departments of Neurological Surgery, Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Marga Tepper
- Department of Rehabilitation Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Inge Zijdewind
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, The Netherlands;
| |
Collapse
|
32
|
Beretta-Piccoli M, D’Antona G, Barbero M, Fisher B, Dieli-Conwright CM, Clijsen R, Cescon C. Evaluation of central and peripheral fatigue in the quadriceps using fractal dimension and conduction velocity in young females. PLoS One 2015; 10:e0123921. [PMID: 25880369 PMCID: PMC4400165 DOI: 10.1371/journal.pone.0123921] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 03/09/2015] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Over the past decade, linear and non-linear surface electromyography descriptors for central and peripheral components of fatigue have been developed. In the current study, we tested fractal dimension (FD) and conduction velocity (CV) as myoelectric descriptors of central and peripheral fatigue, respectively. To this aim, we analyzed FD and CV slopes during sustained fatiguing contractions of the quadriceps femoris in healthy humans. METHODS A total of 29 recreationally active women (mean age±standard deviation: 24±4 years) and two female elite athletes (one power athlete, age 24 and one endurance athlete, age 30 years) performed two knee extensions: (1) at 20% maximal voluntary contraction (MVC) for 30 s, and (2) at 60% MVC held until exhaustion. Surface EMG signals were detected from the vastus lateralis and vastus medialis using bidimensional arrays. RESULTS Central and peripheral fatigue were described as decreases in FD and CV, respectively. A positive correlation between FD and CV (R=0.51, p<0.01) was found during the sustained 60% MVC, probably as a result of simultaneous motor unit synchronization and a decrease in muscle fiber CV during the fatiguing task. CONCLUSIONS Central and peripheral fatigue can be described as changes in FD and CV, at least in young, healthy women. The significant correlation between FD and CV observed at 60% MVC suggests that a mutual interaction between central and peripheral fatigue can arise during submaximal isometric contractions.
Collapse
Affiliation(s)
- Matteo Beretta-Piccoli
- Rehabilitation Research Laboratory, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, Manno, Switzerland
- * E-mail:
| | - Giuseppe D’Antona
- Department of Molecular Medicine and Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Marco Barbero
- Rehabilitation Research Laboratory, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, Manno, Switzerland
| | - Beth Fisher
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, United States of America
| | - Christina M. Dieli-Conwright
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, United States of America
| | - Ron Clijsen
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, Landquart, Switzerland
| | - Corrado Cescon
- Rehabilitation Research Laboratory, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, Manno, Switzerland
| |
Collapse
|
33
|
Zult T, Goodall S, Thomas K, Hortobágyi T, Howatson G. Mirror illusion reduces motor cortical inhibition in the ipsilateral primary motor cortex during forceful unilateral muscle contractions. J Neurophysiol 2015; 113:2262-70. [PMID: 25632077 DOI: 10.1152/jn.00686.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/15/2015] [Indexed: 01/28/2023] Open
Abstract
Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp (2) = 0.005; ECR: P = 0.712, ηp (2) = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp (2) = 0.049; ECR: P = 0.343, ηp (2) = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions.
Collapse
Affiliation(s)
- Tjerk Zult
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands;
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom; and
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom; and
| | - Tibor Hortobágyi
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands; Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom; and
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom; and Water Research Group, School of Biological Sciences, North West University, Potchefstroom, South Africa
| |
Collapse
|
34
|
Morrison S, Cortes N, Newell KM, Kerr G. The pattern of coupling dynamics between postural motion, isotonic hand movements and physiological tremor. Neurosci Lett 2014; 580:41-6. [PMID: 25067826 DOI: 10.1016/j.neulet.2014.07.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
This study was designed to examine differences in the coupling dynamics between upper limb motion, physiological tremor and whole body postural sway in young healthy adults. Acceleration of the hand and fingers, forearm EMG activity and postural sway data were recorded. Estimation of the degree of bilateral and limb motion-postural sway coupling was determined by cross correlation, coherence and Cross-ApEn analyses. The results revealed that, under postural tremor conditions, there was no significant coupling between limbs, muscles or sway across all metrics of coupling. In contrast, performing a rapid alternating flexion/extension movement about the wrist joint (with one or both limbs) resulted in stronger coupling between limb motion and postural sway. These results support the view that, for physiological tremor responses, the control of postural sway is maintained independent to tremor in the upper limb. However, increasing the level of movement about a distal segment of one arm (or both) leads to increased coupling throughout the body. The basis for this increased coupling would appear to be related to the enhanced neural drive to task-specific muscles within the upper limb.
Collapse
Affiliation(s)
- S Morrison
- School of Physical Therapy and Athletic Training, Old Dominion University, United States.
| | - N Cortes
- School of Recreation, Health, and Tourism, George Mason University, United States
| | - K M Newell
- Department of Kinesiology, Pennsylvania State University, United States
| | - G Kerr
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Australia
| |
Collapse
|
35
|
Removing visual feedback for a single limb alters between-limb force tremor relationships during isometric bilateral contractions. Exp Brain Res 2014; 233:115-24. [DOI: 10.1007/s00221-014-4098-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|
36
|
McNulty PA, Lin G, Doust CG. Single motor unit firing rate after stroke is higher on the less-affected side during stable low-level voluntary contractions. Front Hum Neurosci 2014; 8:518. [PMID: 25100969 PMCID: PMC4102083 DOI: 10.3389/fnhum.2014.00518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 06/26/2014] [Indexed: 01/10/2023] Open
Abstract
Muscle weakness is the most common outcome after stroke and a leading cause of adult-acquired motor disability. Single motor unit properties provide insight into the mechanisms of post-stroke motor impairment. Motor units on the more-affected side are reported to have lower peak firing rates, reduced discharge variability and a more compressed dynamic range than healthy subjects. The activity of 169 motor units was discriminated from surface electromyography in 28 stroke patients during sustained voluntary contractions 10% of maximal and compared to 110 units recorded in 16 healthy subjects. Motor units were recorded in three series: ankle dorsiflexion, wrist flexion and elbow flexion. Mean firing rates after stroke were significantly lower on the more-affected than the less-affected side (p < 0.001) with no differences between dominant and non-dominant sides for healthy subjects. When data were combined, firing rates on the less-affected side were significantly higher than those either on the more-affected side or healthy subjects (p < 0.001). Motor unit mean firing rate was higher in the upper-limb than the lower-limb (p < 0.05). The coefficient of variation of motor unit discharge rate was lower for motor units after stroke compared to controls for wrist flexion (p < 0.05) but not ankle dorsiflexion. However the dynamic range of motor units was compressed only for motor units on the more-affected side during wrist flexion. Our results show that the pathological change in motor unit firing rate occurs on the less-affected side after stroke and not the more-affected side as previously reported, and suggest that motor unit behavior recorded in a single muscle after stroke cannot be generalized to muscles acting on other joints even within the same limb. These data emphasize that the less-affected side does not provide a valid control for physiological studies on the more-affected side after stroke and that both sides should be compared to data from age- and sex-matched healthy subjects.
Collapse
Affiliation(s)
- Penelope A McNulty
- Neuroscience Research Australia Sydney, NSW, Australia ; School of Medical Sciences, UNSW Australia Sydney, NSW, Australia
| | - Gaven Lin
- Neuroscience Research Australia Sydney, NSW, Australia
| | - Catherine G Doust
- Neuroscience Research Australia Sydney, NSW, Australia ; School of Medical Sciences, UNSW Australia Sydney, NSW, Australia
| |
Collapse
|
37
|
Shahine EM, Shafshak TS. Central neuroplasticity and functional outcome of swinging upper limbs following repetitive locomotor training of lower limbs in stroke patients. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2014. [DOI: 10.4103/1110-161x.128130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Heetkamp J, Hortobágyi T, Zijdewind I. Increased bilateral interactions in middle-aged subjects. Front Aging Neurosci 2014; 6:5. [PMID: 24478699 PMCID: PMC3901301 DOI: 10.3389/fnagi.2014.00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/10/2014] [Indexed: 11/13/2022] Open
Abstract
A hallmark of the age-related neural reorganization is that old versus young adults execute typical motor tasks by a more diffuse neural activation pattern including stronger ipsilateral activation during unilateral tasks. Whether such changes in neural activation are present already at middle age and affect bimanual interactions is unknown. We compared the amount of associated activity, i.e., muscle activity and force produced by the non-task hand and motor evoked potentials (MEPs) produced by magnetic brain stimulation between young (mean 24 years, n = 10) and middle-aged (mean 50 years, n = 10) subjects during brief unilateral (seven levels of % maximal voluntary contractions, MVCs) and bilateral contractions (4 × 7 levels of % MVC combinations), and during a 120-s-long MVC of sustained unilateral index finger abduction. During the force production, the excitability of the ipsilateral (iM1) or contralateral primary motor cortex (cM1) was assessed. The associated activity in the "resting" hand was ~2-fold higher in middle-aged (28% of MVC) versus young adults (11% of MVC) during brief unilateral MVCs. After controlling for the background muscle activity, MEPs in iM1 were similar in the two groups during brief unilateral contractions. Only at low (bilateral) forces, MEPs evoked in cM1 were 30% higher in the middle-aged versus young adults. At the start of the sustained contraction, the associated activity was higher in the middle-aged versus young subjects and increased progressively in both groups (30 versus 15% MVC at 120 s, respectively). MEPs were greater at the start of the sustained contraction in middle-aged subjects but increased further during the contraction only in young adults. Under these experimental conditions, the data provide evidence for the reorganization of neural control of unilateral force production as early as age 50. Future studies will determine if the altered neural control of such inter-manual interactions are of functional significance.
Collapse
Affiliation(s)
- Jolien Heetkamp
- Department of Neuroscience, University Medical Center Groningen, University of Groningen , Groningen , Netherlands ; Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen , Groningen , Netherlands ; Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , UK
| | - Inge Zijdewind
- Department of Neuroscience, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
39
|
Kenway LC, Bisset LM, Kavanagh JJ. The effect of isometric contraction on the regulation of force tremor in the contralateral limb. Neurosci Lett 2014; 558:126-31. [DOI: 10.1016/j.neulet.2013.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 11/26/2022]
|
40
|
Activation and intermuscular coherence of distal arm muscles during proximal muscle contraction. Exp Brain Res 2013; 232:739-52. [PMID: 24317552 DOI: 10.1007/s00221-013-3784-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/19/2013] [Indexed: 01/03/2023]
Abstract
In the human upper extremity (UE), unintended effects of proximal muscle activation on muscles controlling the hand could be an important aspect of motor control due to the necessary coordination of distal and proximal segments during functional activities. This study aimed to elucidate the effects of concurrent activation of elbow muscles on the coordination between hand muscles performing a grip task. Eleven healthy subjects performed precision grip tasks while a constant extension or flexion moment was applied to their elbow joints, inducing a sustained submaximal contraction of elbow muscles to counter the applied torque. Activation of four hand muscles was measured during each task condition using surface electromyography (EMG). When concurrent activation of elbow muscles was induced, significant changes in the activation levels of the hand muscles were observed, with greater effects on the extrinsic finger extensor (23.2 % increase under 30 % elbow extensor activation; p = 0.003) than extrinsic finger flexor (14.2 % increase under 30 % elbow flexor activation; p = 0.130). Elbow muscle activation also induced involuntary changes in the intrinsic thumb flexor activation (44.6 % increase under 30 % elbow extensor activation; p = 0.005). EMG-EMG coherence analyses revealed that elbow muscle activation significantly reduced intermuscular coherence between distal muscle pairs, with its greatest effects on coherence in the β-band (13-25 Hz) (average of 17 % decrease under 30 % elbow flexor activation). The results of this study provide evidence for involuntary, muscle-specific interactions between distal and proximal UE muscles, which may contribute to UE motor performance in health and disease.
Collapse
|
41
|
Vieluf S, Godde B, Reuter EM, Voelcker-Rehage C. Effects of age and fine motor expertise on the bilateral deficit in force initiation. Exp Brain Res 2013; 231:107-16. [DOI: 10.1007/s00221-013-3673-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/02/2013] [Indexed: 11/28/2022]
|
42
|
Addamo PK, Farrow M, Bradshaw JL, Moss S, Georgiou-Karistianis N. Characterizing the developmental profile of effort-induced motor overflow across a timed trial. AMERICAN JOURNAL OF PSYCHOLOGY 2013; 126:227-34. [PMID: 23858955 DOI: 10.5406/amerjpsyc.126.2.0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Motor overflow is overt involuntary movement that accompanies voluntary movement. This study investigated the change in overflow production across a timed trial and the factors that affected this profile. Seventeen children (aged 8-11 years), 17 young adults (aged 18-35 years), and 17 older adults (aged 60-80 years) performed a 5-s finger pressing task by exerting 33% or 66% of their maximal force output using either index finger. Overflow was recorded as force from the alternative index finger. Young adult overflow remained stable over the 5 s. The rate of overflow increase over time was significantly greater for children than young adults. There was also a tendency for a greater overflow increase in older adults than in young adults. This overflow gradient was also greater in the right hand, particularly for children. These findings indicate that the neurological processes underlying overflow production are age dependent. Overflow progressed in a dynamic fashion over the course of a trial in children and older adults, probably because of increased bilateral cortical activation and the facilitation of motor task performance. This study is unique in quantitatively capturing the dynamic profile of overflow production in healthy participants across the life span.
Collapse
Affiliation(s)
- Patricia K Addamo
- Institute of Sports, Exercise and Active Living, Victoria University, Victoria, Australia.
| | | | | | | | | |
Collapse
|
43
|
Time course of the cross-over effect of fatigue on the contralateral muscle after unilateral exercise. PLoS One 2013; 8:e64910. [PMID: 23741417 PMCID: PMC3669025 DOI: 10.1371/journal.pone.0064910] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/19/2013] [Indexed: 11/19/2022] Open
Abstract
We investigated the cross-over effect of muscle fatigue and its time course on the non-exercising contralateral limb (NEL) after unilateral fatiguing contractions of the ipsilateral exercising limb (EL). For this purpose, 15 males performed two bouts of 100-second maximal isometric knee extensions with the exercising limb, and neuromuscular function of both the EL and NEL was assessed before (PRE), after a first fatiguing exercise (MID) and after a second fatiguing exercise (POST). Maximal voluntary isometric torque production declined in the EL after the first bout of exercise (-9.6%; p<0.001) while in the NEL, the decrease occurred after the second bout of exercise (-10.6%; p<0.001). At MID, torque decline of the EL was strictly associated to an alteration of the mechanical twitch properties evoked by neurostimulation of the femoral nerve (i.e., peak twitch torque, maximal rate of twitch development). According to these markers, we suggest that peripheral fatigue occurred. At POST, after the second bout of exercise, the voluntary activation level of the knee extensor muscles was altered from PRE (-9.1%; p<0.001), indicating an overall central failure in both the EL and NEL. These findings indicate that two bouts of unilateral fatiguing exercise were needed to induce a cross-over effect of muscle fatigue on the non-exercising contralateral limb. Differential adjustments of the motor pathway (peripheral fatigue vs. central fatigue) might contribute to the respective torque decline in the EL and the NEL. Given that our unilateral fatiguing exercise induced immediate maximal torque reduction in the EL and postponed the loss of torque production in the NEL, it is also concluded that the time course of muscle fatigue differed between limbs.
Collapse
|
44
|
Aune TK, Aune MA, Ettema G, Vereijken B. Comparison of bilateral force deficit in proximal and distal joints in upper extremities. Hum Mov Sci 2013; 32:436-44. [PMID: 23719626 DOI: 10.1016/j.humov.2013.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 12/21/2012] [Accepted: 01/09/2013] [Indexed: 10/26/2022]
Abstract
Bilateral force deficit refers to the phenomenon that maximal generated force during simultaneous bilateral muscle contractions is lower than the sum of forces generated unilaterally. Based on the notion that neural inhibition is the main source for bilateral force deficit and existing differences in neural inhibiting interhemispheric organization of proximal and distal muscles, we expected differences in bilateral deficit in proximal and distal joints. The aim of the current behavioral experiment was to compare bilateral force deficit in proximal compared to distal upper extremity joints. Ten young adults performed single-joint maximal voluntary contractions in isometric flexions of the shoulder and index finger unilaterally and bilaterally. The results showed a significant absolute bilateral force deficit for both proximal (140.01 ± 86.99 N) and distal muscles (4.64 ± 4.86 N). More importantly, relative bilateral force deficit for shoulder flexion was significantly larger than for index finger flexion, -20.51 ± 7.8% and -5.07 ± 3.84% respectively. The hypothesis of a more pronounced bilateral force deficit for proximal compared to distal muscles was confirmed in our results. Thus, our findings, in combination with the neuroanatomical differences for proximal and distal muscles, make it worthwhile to further explore the hypothesis that the commissural fibers provide differences in interhemispheric inhibitory interactions during bimanual actions for proximal and distal muscles.
Collapse
Affiliation(s)
- T K Aune
- Department of Sport Sciences, Nord-Trøndelag University College, Levanger, Norway.
| | | | | | | |
Collapse
|
45
|
Kavanagh JJ, Cresswell AG, Sabapathy S, Carroll TJ. Bilateral tremor responses to unilateral loading and fatiguing muscle contractions. J Neurophysiol 2013; 110:431-40. [PMID: 23636728 DOI: 10.1152/jn.00228.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although physiological tremor has been extensively studied within a single limb, tremor relationships between limbs are not well understood. Early investigations proposed that tremor in each limb is driven by CNS oscillators operating in parallel. However, recent evidence suggests that tremor in both limbs arises from shared neural inputs and is more likely to be observed under perturbed conditions. In the present study, postural tremor about the elbow joint and elbow flexor EMG activity were examined on both sides of the body in response to unilateral loading and fatiguing muscle contractions. Applying loads of 0.5, 1.0, 1.5, and 3.0 kg to a single limb increased tremor and muscle activity in the loaded limb but did not affect the unloaded limb, indicating that manipulating the inertial characteristics of a limb does not evoke bilateral tremor responses. In contrast, maximal-effort unilateral isometric contractions resulted in increased tremor and muscle activity in both the active limb and the nonactive limb without any changes in between-limb tremor or muscle coupling. When unilateral contractions were repeated intermittently, to the extent that maximum torque generation about the elbow joint declined by 50%, different tremor profiles were observed in each limb. Specifically, unilateral fatigue altered coupling between limbs and generated a bilateral response such that tremor and brachioradialis EMG decreased for the fatigued limb and increased in the contralateral nonfatigued limb. Our results demonstrate that activity in the nonactive limb may be due to a "spillover" effect rather than directly coupled neural output to both arms and that between-limb coupling for tremor and muscle activity is only altered under considerably perturbed conditions, such as fatigue-inducing contractions.
Collapse
Affiliation(s)
- Justin J Kavanagh
- Centre for Musculoskeletal Research, Griffith University, Gold Coast, Queensland, Australia.
| | | | | | | |
Collapse
|
46
|
Interhemispheric control of unilateral movement. Neural Plast 2012; 2012:627816. [PMID: 23304559 PMCID: PMC3523159 DOI: 10.1155/2012/627816] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/04/2012] [Indexed: 11/25/2022] Open
Abstract
To perform strictly unilateral movements, the brain relies on a large cortical and subcortical network. This network enables healthy adults to perform complex unimanual motor tasks without the activation of contralateral muscles. However, mirror movements (involuntary movements in ipsilateral muscles that can accompany intended movement) can be seen in healthy individuals if a task is complex or fatiguing, in childhood, and with increasing age. Lateralization of movement depends on complex interhemispheric communication between cortical (i.e., dorsal premotor cortex, supplementary motor area) and subcortical (i.e., basal ganglia) areas, probably coursing through the corpus callosum (CC). Here, we will focus on transcallosal interhemispheric inhibition (IHI), which facilitates complex unilateral movements and appears to play an important role in handedness, pathological conditions such as Parkinson's disease, and stroke recovery.
Collapse
|
47
|
Huysmans MA, Hoozemans MJM, van der Beek AJ, de Looze MP, van Dieën JH. Submovement organization, pen pressure, and muscle activity are modulated to precision demands in 2D tracking. J Mot Behav 2012; 44:379-88. [PMID: 23092353 DOI: 10.1080/00222895.2012.727916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The authors investigated how tracking performance, submovement organization, pen pressure and muscle activity in forearm and shoulder muscles were affected by target size in a 2D tracking task performed with a pen on a digitizer tablet. Twenty-six subjects took part in an experiment, in which either a small dot or a large dot was tracked, while it moved quasirandomly across a computer screen at a constant velocity of 2 cm/s. The manipulation of precision level was successful, because mean distance to target and the standard deviation of this distance were significantly smaller with the small target than with the large target. With a small target, subjects trailed more behind the center of target and used submovements with larger amplitudes and of shorter duration, resulting in higher tracking accuracy. This change in submovement organization was accompanied by higher pen pressure, while at the same time muscle activity in the forearm extensors and flexors was increased, indicating higher endpoint stability. In conclusion, increased precision demands were accommodated by both a different organization of submovements and higher endpoint stability in a 2D tracking task performed with a pen on a digitizer tablet.
Collapse
Affiliation(s)
- Maaike A Huysmans
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Nieboer TE, Massa M, Weinans MJN, Vierhout ME, Kluivers KB, Stegeman DF. Does Training of the Nondominant Upper Extremity Reduce the Surgeon’s Muscular Strain During Laparoscopy? Surg Innov 2012; 20:292-8. [DOI: 10.1177/1553350612456099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction. In laparoscopy, suboptimal ergonomics frequently lead to morbidity for surgeons. Physical complaints are more commonly reported on the dominant upper extremity. This may be the consequence of challenging laparoscopic tasks being easier to perform with the dominant side. The authors hypothesized that specific training of the nondominant upper extremity may equip this side better and lead to a more equal distribution of physical load. Materials and methods. Participants (medical doctors) were randomized to a 3-week training schedule or no training. The training program consisted of training the nondominant upper extremity. Participants were not allowed to train on a laparoscopic box or virtual reality trainer during the study period. Baseline and outcome measurements after 3 weeks were examined with the use of EMG measurements during a validated task on a laparoscopic box trainer. Muscle strain of the trapezius and deltoid muscles and effective alternation of brachioradial and abductor pollicis brevis muscles were used as outcome variables. Results. In all, 26 participants were included. EMG analysis revealed that participants in both intervention and control groups showed a decrease in muscle strain of trapezius and deltoid muscles. However, there were no significant differences between groups. Those in the intervention group showed significantly better alternation in the brachioradial muscle. Conclusion. Training the nondominant upper extremity leads to better alternated use of lower-arm muscles during a validated box trainer task. Repeating the task after 3 weeks led to less muscle tension in the trapezius and deltoid muscles.
Collapse
Affiliation(s)
| | - Mark Massa
- Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | | | - Mark E. Vierhout
- Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | | | - Dick F. Stegeman
- Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
- VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
49
|
Salomoni SE, Graven-Nielsen T. Muscle fatigue increases the amplitude of fluctuations of tangential forces during isometric contractions. Hum Mov Sci 2012; 31:758-71. [DOI: 10.1016/j.humov.2011.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 07/05/2011] [Accepted: 08/21/2011] [Indexed: 11/26/2022]
|
50
|
Mechanisms underlying muscle fatigue differ between multiple sclerosis patients and controls: A combined electrophysiological and neuroimaging study. Neuroimage 2012; 59:3110-8. [DOI: 10.1016/j.neuroimage.2011.11.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/23/2011] [Accepted: 11/11/2011] [Indexed: 11/30/2022] Open
|