1
|
Lin W. Translating Genetic Discovery into a Mechanistic Understanding of Pediatric Movement Disorders: Lessons from Genetic Dystonias and Related Disorders. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200018. [PMID: 37288166 PMCID: PMC10242408 DOI: 10.1002/ggn2.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 06/09/2023]
Abstract
The era of next-generation sequencing has increased the pace of gene discovery in the field of pediatric movement disorders. Following the identification of novel disease-causing genes, several studies have aimed to link the molecular and clinical aspects of these disorders. This perspective presents the developing stories of several childhood-onset movement disorders, including paroxysmal kinesigenic dyskinesia, myoclonus-dystonia syndrome, and other monogenic dystonias. These stories illustrate how gene discovery helps focus the research efforts of scientists trying to understand the mechanisms of disease. The genetic diagnosis of these clinical syndromes also helps clarify the associated phenotypic spectra and aids the search for additional disease-causing genes. Collectively, the findings of previous studies have led to increased recognition of the role of the cerebellum in the physiology and pathophysiology of motor control-a common theme in many pediatric movement disorders. To fully exploit the genetic information garnered in the clinical and research arenas, it is crucial that corresponding multi-omics analyses and functional studies also be performed at scale. Hopefully, these integrated efforts will provide us with a more comprehensive understanding of the genetic and neurobiological bases of movement disorders in childhood.
Collapse
Affiliation(s)
- Wei‐Sheng Lin
- Department of PediatricsTaipei Veterans General HospitalTaipei11217Taiwan
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
| |
Collapse
|
2
|
Rey Hipolito AG, van der Heijden ME, Sillitoe RV. Physiology of Dystonia: Animal Studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:163-215. [PMID: 37482392 DOI: 10.1016/bs.irn.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is currently ranked as the third most prevalent motor disorder. It is typically characterized by involuntary muscle over- or co-contractions that can cause painful abnormal postures and jerky movements. Dystonia is a heterogenous disorder-across patients, dystonic symptoms vary in their severity, body distribution, temporal pattern, onset, and progression. There are also a growing number of genes that are associated with hereditary dystonia. In addition, multiple brain regions are associated with dystonic symptoms in both genetic and sporadic forms of the disease. The heterogeneity of dystonia has made it difficult to fully understand its underlying pathophysiology. However, the use of animal models has been used to uncover the complex circuit mechanisms that lead to dystonic behaviors. Here, we summarize findings from animal models harboring mutations in dystonia-associated genes and phenotypic animal models with overt dystonic motor signs resulting from spontaneous mutations, neural circuit perturbations, or pharmacological manipulations. Taken together, an emerging picture depicts dystonia as a result of brain-wide network dysfunction driven by basal ganglia and cerebellar dysfunction. In the basal ganglia, changes in dopaminergic, serotonergic, noradrenergic, and cholinergic signaling are found across different animal models. In the cerebellum, abnormal burst firing activity is observed in multiple dystonia models. We are now beginning to unveil the extent to which these structures mechanistically interact with each other. Such mechanisms inspire the use of pre-clinical animal models that will be used to design new therapies including drug treatments and brain stimulation.
Collapse
Affiliation(s)
- Alejandro G Rey Hipolito
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
3
|
Gray MM, Naik A, Ebner TJ, Carter RE. Altered brain state during episodic dystonia in tottering mice decouples primary motor cortex from limb kinematics. DYSTONIA 2023; 2:10974. [PMID: 37800168 PMCID: PMC10554815 DOI: 10.3389/dyst.2023.10974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Episodic Ataxia Type 2 (EA2) is a rare neurological disorder caused by a mutation in the CACNA1A gene, encoding the P/Q-type voltage-gated Ca2+ channel important for neurotransmitter release. Patients with this channelopathy exhibit both cerebellar and cerebral pathologies, suggesting the condition affects both regions. The tottering (tg/tg) mouse is the most commonly used EA2 model due to an orthologous mutation in the cacna1a gene. The tg/tg mouse has three prominent behavioral phenotypes: a dramatic episodic dystonia; absence seizures with generalized spike and wave discharges (GSWDs); and mild ataxia. We previously observed a novel brain state, transient low-frequency oscillations (LFOs) in the cerebellum and cerebral cortex under anesthesia. In this study, we examine the relationships among the dystonic attack, GSWDs, and LFOs in the cerebral cortex. Previous studies characterized LFOs in the motor cortex of anesthetized tg/tg mice using flavoprotein autofluorescence imaging testing the hypothesis that LFOs provide a mechanism for the paroxysmal dystonia. We sought to obtain a more direct understanding of motor cortex (M1) activity during the dystonic episodes. Using two-photon Ca2+ imaging to investigate neuronal activity in M1 before, during, and after the dystonic attack, we show that there is not a significant change in the activity of M1 neurons from baseline through the attack. We also conducted simultaneous, multi-electrode recordings to further understand how M1 cellular activity and local field potentials change throughout the progression of the dystonic attack. Neither putative pyramidal nor inhibitory interneuron firing rate changed during the dystonic attack. However, we did observe a near complete loss of GSWDs during the dystonic attack in M1. Finally, using spike triggered averaging to align simultaneously recorded limb kinematics to the peak Ca2+ response, and vice versa, revealed a reduction in the spike triggered average during the dystonic episodes. Both the loss of GSWDs and the reduction in the coupling suggest that, during the dystonic attack, M1 is effectively decoupled from other structures. Overall, these results indicate that the attack is not initiated or controlled in M1, but elsewhere in the motor circuitry. The findings also highlight that LFOs, GSWDs, and dystonic attacks represent three brain states in tg/tg mice.
Collapse
Affiliation(s)
- Madelyn M Gray
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Anant Naik
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Lévesque M, Gao H, Southward C, Langlois JMP, Léna C, Courtemanche R. Cerebellar Cortex 4-12 Hz Oscillations and Unit Phase Relation in the Awake Rat. Front Syst Neurosci 2020; 14:475948. [PMID: 33240052 PMCID: PMC7683574 DOI: 10.3389/fnsys.2020.475948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
Oscillations in the granule cell layer (GCL) of the cerebellar cortex have been related to behavior and could facilitate communication with the cerebral cortex. These local field potential (LFP) oscillations, strong at 4–12 Hz in the rodent cerebellar cortex during awake immobility, should also be an indicator of an underlying influence on the patterns of the cerebellar cortex neuronal firing during rest. To address this hypothesis, cerebellar cortex LFPs and simultaneous single-neuron activity were collected during LFP oscillatory periods in the GCL of awake resting rats. During these oscillatory episodes, different types of units across the GCL and Purkinje cell layers showed variable phase-relation with the oscillatory cycles. Overall, 74% of the Golgi cell firing and 54% of the Purkinje cell simple spike (SS) firing were phase-locked with the oscillations, displaying a clear phase relationship. Despite this tendency, fewer Golgi cells (50%) and Purkinje cell’s SSs (25%) showed an oscillatory firing pattern. Oscillatory phase-locked spikes for the Golgi and Purkinje cells occurred towards the peak of the LFP cycle. GCL LFP oscillations had a strong capacity to predict the timing of Golgi cell spiking activity, indicating a strong influence of this oscillatory phenomenon over the GCL. Phase-locking was not as prominent for the Purkinje cell SS firing, indicating a weaker influence over the Purkinje cell layer, yet a similar phase relation. Overall, synaptic activity underlying GCL LFP oscillations likely exert an influence on neuronal population firing patterns in the cerebellar cortex in the awake resting state and could have a preparatory neural network shaping capacity serving as a neural baseline for upcoming cerebellar operations.
Collapse
Affiliation(s)
- Maxime Lévesque
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - HongYing Gao
- Institut de Biologie, CNRS UMR 8197-U 1024, École Normale Supérieure, Paris, France
| | - Carla Southward
- Department of Health, Kinesiology and Applied Physiology, Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, QC, Canada
| | - J M Pierre Langlois
- Département de Génie Informatique et Génie Logiciel, Polytechnique Montréal, Montréal, QC, Canada
| | - Clément Léna
- Institut de Biologie, CNRS UMR 8197-U 1024, École Normale Supérieure, Paris, France
| | - Richard Courtemanche
- Department of Health, Kinesiology and Applied Physiology, Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, QC, Canada
| |
Collapse
|
5
|
Uehara K, Furuya S, Numazawa H, Kita K, Sakamoto T, Hanakawa T. Distinct roles of brain activity and somatotopic representation in pathophysiology of focal dystonia. Hum Brain Mapp 2019; 40:1738-1749. [PMID: 30570801 DOI: 10.1002/hbm.24486] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/25/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022] Open
Abstract
Two main neural mechanisms including loss of cortical inhibition and maladaptive plasticity have been thought to be involved in the pathophysiology of focal task-specific dystonia. Such loss of inhibition and maladaptive plasticity likely correspond to cortical overactivity and disorganized somatotopy, respectively. However, the most plausible mechanism of focal task-specific dystonia remains unclear. To address this question, we assessed brain activity and somatotopic representations of motor-related brain areas using functional MRI and behavioral measurement in healthy instrumentalists and patients with embouchure dystonia as an example of focal task-specific dystonia. Dystonic symptoms were measured as variability of fundamental frequency during long tone playing. We found no significant differences in brain activity between the embouchure dystonia and healthy wind instrumentalists in the motor-related areas. Assessment of somatotopy, however, revealed significant differences in the somatotopic representations of the mouth area for the right somatosensory cortex between the two groups. Multiple-regression analysis revealed brain activity in the primary motor and somatosensory cortices, cerebellum, and putamen was significantly associated with variability of fundamental frequency signals representing dystonic symptoms. Conversely, somatotopic representations in motor-related brain areas were not associated with variability of fundamental frequency signals in embouchure dystonia. The present findings suggest that abnormal motor-related network activity and aberrant somatotopy correlate with different aspects of mechanisms underlying focal task-specific dystonia.
Collapse
Affiliation(s)
- Kazumasa Uehara
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo, Japan.,Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, Japan.,Research fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shinichi Furuya
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo, Japan.,Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, Japan.,Sony Computer Science Laboratories Inc. (Sony CSL), Tokyo, Japan
| | - Hidemi Numazawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kahori Kita
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo, Japan.,Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, Japan.,Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Takashi Sakamoto
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Tokyo, Japan.,Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, Japan
| |
Collapse
|
6
|
Porcacchia P, Álvarez de Toledo P, Rodríguez-Baena A, Martín-Rodríguez JF, Palomar FJ, Vargas-González L, Jesús S, Koch G, Mir P. Abnormal cerebellar connectivity and plasticity in isolated cervical dystonia. PLoS One 2019; 14:e0211367. [PMID: 30682155 PMCID: PMC6347195 DOI: 10.1371/journal.pone.0211367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/12/2019] [Indexed: 11/29/2022] Open
Abstract
There is increasing evidence that supports the role of the cerebellum in the pathophysiology of dystonia. We used transcranial magnetic stimulation to test the hypothesis that patients with cervical dystonia may have a disrupted cerebellar cortical connectivity at rest, and that cerebellar plasticity is altered too. We enrolled 12 patients with isolated cervical dystonia and 13 controls. A paired-pulse transcranial magnetic stimulation protocol was applied over the right cerebellum and the left primary motor area. Changes in the amplitude of motor evoked potentials were analysed. Continuous and intermittent Theta Burst Stimulation over the cerebellum was also applied. The effects of these repetitive protocols on cortical excitability, on intra-cortical circuits and on cerebellar cortical inhibition were analysed. In healthy subjects, but not in dystonic patients, a conditioning stimulus over the cerebellum was able to inhibit the amplitude of the motor evoked potentials from primary motor cortex. In healthy subjects continuous and intermittent cerebellar Theta Burst Stimulation were able to decrease and increase respectively motor cortex excitability. Continuous Theta Burst Stimulation was able to abolish the cerebellar cortical inhibition observed in basal condition. These effects were not observed in patients with cervical dystonia. Cerebellar cortical connectivity and cerebellar plasticity is altered at rest in patients with cervical dystonia.
Collapse
Affiliation(s)
- Paolo Porcacchia
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Unidad de Neurofisiología Clínica, Servicio de Neurología y Neurofisiología Clínica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Paloma Álvarez de Toledo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio Rodríguez-Baena
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Francisco J. Palomar
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Unidad de Neurofisiología Clínica, Servicio de Neurología y Neurofisiología Clínica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Laura Vargas-González
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Giacomo Koch
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor Vergata, Rome, Italy
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville, Spain
- * E-mail:
| |
Collapse
|
7
|
Georgescu EL, Georgescu IA, Zahiu CDM, Şteopoaie AR, Morozan VP, Pană AŞ, Zăgrean AM, Popa D. Oscillatory Cortical Activity in an Animal Model of Dystonia Caused by Cerebellar Dysfunction. Front Cell Neurosci 2018; 12:390. [PMID: 30459559 PMCID: PMC6232371 DOI: 10.3389/fncel.2018.00390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
The synchronization of neuronal activity in the sensorimotor cortices is crucial for motor control and learning. This synchrony can be modulated by upstream activity in the cerebello-cortical network. However, many questions remain over the details of how the cerebral cortex and the cerebellum communicate. Therefore, our aim is to study the contribution of the cerebellum to oscillatory brain activity, in particular in the case of dystonia, a severely disabling motor disease associated with altered sensorimotor coupling. We used a kainic-induced dystonia model to evaluate cerebral cortical oscillatory activity and connectivity during dystonic episodes. We performed microinjections of low doses of kainic acid into the cerebellar vermis in mice and examined activities in somatosensory, motor and parietal cortices. We showed that repeated applications of kainic acid into the cerebellar vermis, for five consecutive days, generate reproducible dystonic motor behavior. No epileptiform activity was recorded on electrocorticogram (ECoG) during the dystonic postures or movements. We investigated the ECoG power spectral density and coherence between motor cortex, somatosensory and parietal cortices before and during dystonic attacks. During the baseline condition, we found a phenomenon of permanent adaptation with a change of baseline locomotor activity coupled to an ECoG gamma band increase in all cortices. In addition, after kainate administration, we observed an increase in muscular activity, but less signs of dystonia together with modulations of the ECoG power spectra with an increase in gamma band in motor, parietal and somatosensory cortices. Moreover, we found reduced coherence in all measured frequency bands between the motor cortex and somatosensory or parietal cortices compared to baseline. In conclusion, examination of cortical oscillatory activities in this animal model of chronic dystonia caused by cerebellar dysfunction reveals a disruption in the coordination of neuronal activity across the cortical sensorimotor/parietal network, which may underlie motor skill deficits.
Collapse
Affiliation(s)
- Elena Laura Georgescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Ioana Antoaneta Georgescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Carmen Denise Mihaela Zahiu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Alexandru Răzvan Şteopoaie
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Vlad Petru Morozan
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Adrian Ştefan Pană
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zăgrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Daniela Popa
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
8
|
Tara E, Vitenzon A, Hess E, Khodakhah K. Aberrant cerebellar Purkinje cell activity as the cause of motor attacks in a mouse model of episodic ataxia type 2. Dis Model Mech 2018; 11:11/9/dmm034181. [PMID: 30279196 PMCID: PMC6177005 DOI: 10.1242/dmm.034181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
Many cerebellar-induced neurological disorders, such as ataxias and cerebellar-induced dystonias, are associated with abnormal Purkinje cell activity. In tottering mice, a well-established mouse model of episodic ataxia type 2 (EA2), cerebellar Purkinje cells are required for the initiation of motor attacks. How Purkinje cells contribute to the initiation of attacks is not known, and to date there are no reports on the activity of Purkinje cells during motor attacks in the tottering mice. Here, we show that tottering Purkinje cells exhibit high-frequency burst firing during attacks, reminiscent of other mouse models of cerebellar-induced motor dysfunction. We recorded the activity of Purkinje cells in awake head-restrained tottering mice at baseline, or during caffeine-induced attacks. During motor attacks, firing of Purkinje cells transformed to high-frequency burst firing. Interestingly, the extent to which the activity of Purkinje cells was erratic was correlated with the severity of the motor dysfunction. In support of a causal role for erratic activity in generating motor dysfunction, we found that direct infusion of the small conductance calcium-activated potassium (SK) channel activator NS309 into the cerebellum of tottering mice in the midst of an attack normalized the firing of Purkinje cells and aborted attacks. Conversely, we found that inducing high-frequency burst firing of Purkinje cells in wild-type animals is sufficient to produce severe motor signs. We report that erratic activity of wild-type Purkinje cells results in ataxia and dystonic postures. Moreover, this aberrant activity is the cause of motor attacks in the tottering mice. Summary: Here, we report that in the well-established mouse model of episodic ataxia type 2, tottering, the severe episodic motor signs are caused by highly erratic activity of Purkinje cells.
Collapse
Affiliation(s)
- Esra Tara
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ariel Vitenzon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ellen Hess
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322-3090, USA
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
9
|
Cebolla AM, Palmero-Soler E, Leroy A, Cheron G. EEG Spectral Generators Involved in Motor Imagery: A swLORETA Study. Front Psychol 2017; 8:2133. [PMID: 29312028 PMCID: PMC5733067 DOI: 10.3389/fpsyg.2017.02133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/22/2017] [Indexed: 01/26/2023] Open
Abstract
In order to characterize the neural generators of the brain oscillations related to motor imagery (MI), we investigated the cortical, subcortical, and cerebellar localizations of their respective electroencephalogram (EEG) spectral power and phase locking modulations. The MI task consisted in throwing a ball with the dominant upper limb while in a standing posture, within an ecological virtual reality (VR) environment (tennis court). The MI was triggered by the visual cues common to the control condition, during which the participant remained mentally passive. As previously developed, our paradigm considers the confounding problem that the reference condition allows two complementary analyses: one which uses the baseline before the occurrence of the visual cues in the MI and control resting conditions respectively; and the other which compares the analog periods between the MI and the control resting-state conditions. We demonstrate that MI activates specific, complex brain networks for the power and phase modulations of the EEG oscillations. An early (225 ms) delta phase-locking related to MI was generated in the thalamus and cerebellum and was followed (480 ms) by phase-locking in theta and alpha oscillations, generated in specific cortical areas and the cerebellum. Phase-locking preceded the power modulations (mainly alpha-beta ERD), whose cortical generators were situated in the frontal BA45, BA11, BA10, central BA6, lateral BA13, and posterior cortex BA2. Cerebellar-thalamic involvement through phase-locking is discussed as an underlying mechanism for recruiting at later stages the cortical areas involved in a cognitive role during MI.
Collapse
Affiliation(s)
- Ana-Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Ernesto Palmero-Soler
- Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Axelle Leroy
- Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Electrophysiology, Université de Mons, Mons, Belgium
| |
Collapse
|
10
|
Shakkottai VG, Batla A, Bhatia K, Dauer WT, Dresel C, Niethammer M, Eidelberg D, Raike RS, Smith Y, Jinnah HA, Hess EJ, Meunier S, Hallett M, Fremont R, Khodakhah K, LeDoux MS, Popa T, Gallea C, Lehericy S, Bostan AC, Strick PL. Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia. THE CEREBELLUM 2017; 16:577-594. [PMID: 27734238 DOI: 10.1007/s12311-016-0825-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed: The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia. Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia. Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia. Overall points of consensus include: Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems. Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin.
Collapse
Affiliation(s)
- Vikram G Shakkottai
- Department of Neurology, University of Michigan, Room 4009, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA. .,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-2200, USA.
| | - Amit Batla
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, UK
| | - Kailash Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, UK
| | - William T Dauer
- Department of Neurology, University of Michigan, Room 4009, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christian Dresel
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Martin Niethammer
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Robert S Raike
- Global Research Organization, Medtronic Inc. Neuromodulation, Minneapolis, MN, USA
| | - Yoland Smith
- Yerkes National Primate Center and Department of Neurology, Emory University, Atlanta, GA, USA
| | - H A Jinnah
- Department of Neurology, Human Genetics and Pediatrics, Emory University, Atlanta, GA, USA
| | - Ellen J Hess
- Departments of Pharmacology and Neurology, Emory University, Atlanta, GA, USA
| | - Sabine Meunier
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR, S 1127, Paris, France.,Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Rachel Fremont
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, and The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Mark S LeDoux
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Traian Popa
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Cécile Gallea
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,Centre de NeuroImagerie de Recherche - CENIR, ICM, F-75013, Paris, France
| | - Stéphane Lehericy
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Andreea C Bostan
- Systems Neuroscience Institute and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter L Strick
- Systems Neuroscience Institute and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Abbasi S, Abbasi A, Sarbaz Y, Janahmadi M. Power Spectral Density Analysis of Purkinje Cell Tonic and Burst Firing Patterns From a Rat Model of Ataxia and Riluzole Treated. Basic Clin Neurosci 2017; 8:61-68. [PMID: 28446951 PMCID: PMC5396175 DOI: 10.15412/j.bcn.03080108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction: Purkinje Cell (PC) output displays a complex firing pattern consisting of high frequency sodium spikes and low frequency calcium spikes, and disruption in this firing behavior may contribute to cerebellar ataxia. Riluzole, neuroprotective agent, has been demonstrated to have neuroprotective effects in cerebellar ataxia. Here, the spectral analysis of PCs firing in control, 3-acetylpyridine (3-AP), neurotoxin agent, treated alone and riluzole plus 3-AP treated were investigated to determine changes in the firing properties. Difference in the power spectra of tonic and burst firing was assessed. Furthermore, the role of calcium-activated potassium channels in the power spectra was evaluated. Methods: Analysis was performed using Matlab. Power spectral density (PSD) of PCs output were obtained. Peak frequencies were extracted from the spectrum and statistical comparisons were done. In addition, a multi-compartment computational model of a Purkinje cell was used. This computational stimulation allowed us to study the changes in the power spectral density of the PC output as a result of alteration in ion channels. Results: Spectral analysis showed that in the spectrum of tonic and burst firing pattern only high sodium frequency and low calcium frequency was seen, respectively. In addition, there was a significant difference between the frequency components of PCs firing obtained from normal, ataxia and riluzole treated rats. Results indicated that sodium firing frequency of normal, ataxic and treated PCs occurred in approximate frequency of 22.53±5.49, 6.46±0.23, and 31.34±4.07 Hz, respectively; and calcium frequency occurred in frequency of 4.22±2.02, 1.52±1.19, and 3.88±1.37 Hz, respectively. The simulation results demonstrated that blockade of calcium-activated potassium channels in the PC model changed the PSD of the PC model firing activity. This change was similar to PSD changes in ataxia condition. Conclusion: These alterations in the spectrum of PC output may be a basis for developing possible new treatment strategies to improve cerebellar ataxia.
Collapse
Affiliation(s)
- Samira Abbasi
- Computational Neuroscience Laboratory, Department of Biomedical Engineering, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Ataollah Abbasi
- Computational Neuroscience Laboratory, Department of Biomedical Engineering, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Yashar Sarbaz
- Department of Mechatronics, School of Engineering- Emerging Technologies, University of Tabriz, Tabriz, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Abstract
The mechanism by which a learnt synaptic weight change can contribute to learning or adaptation of brain function is a type of credit assignment problem, which is a key issue for many parts of the brain. In the cerebellum, detailed knowledge not only of the local circuitry connectivity but also of the topography of different sources of afferent/external information makes this problem particularly tractable. In addition, multiple forms of synaptic plasticity and their general rules of induction have been identified. In this review, we will discuss the possible roles of synaptic and cellular plasticity at specific locations in contributing to behavioral changes. Focus will be on the parts of the cerebellum that are devoted to limb control, which constitute a large proportion of the cortex and where the knowledge of the external connectivity is particularly well known. From this perspective, a number of sites of synaptic plasticity appear to primarily have the function of balancing the overall level of activity in the cerebellar circuitry, whereas the locations at which synaptic plasticity leads to functional changes in terms of limb control are more limited. Specifically, the postsynaptic forms of long-term potentiation (LTP) and long-term depression (LTD) at the parallel fiber synapses made on interneurons and Purkinje cells, respectively, are the types of plasticity that mediate the widest associative capacity and the tightest link between the synaptic change and the external functions that are to be controlled.
Collapse
Affiliation(s)
- Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
13
|
Abnormal excitability and episodic low-frequency oscillations in the cerebral cortex of the tottering mouse. J Neurosci 2015; 35:5664-79. [PMID: 25855180 DOI: 10.1523/jneurosci.3107-14.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Ca(2+) channelopathies caused by mutations of the CACNA1A gene that encodes the pore-forming subunit of the human Cav2.1 (P/Q-type) voltage-gated Ca(2+) channel include episodic ataxia type 2 (EA2). Although, in EA2 the emphasis has been on cerebellar dysfunction, patients also exhibit episodic, nonmotoric abnormalities involving the cerebral cortex. This study demonstrates episodic, low-frequency oscillations (LFOs) throughout the cerebral cortex of tottering (tg/tg) mice, a widely used model of EA2. Ranging between 0.035 and 0.11 Hz, the LFOs in tg/tg mice can spontaneously develop very high power, referred to as a high-power state. The LFOs in tg/tg mice are mediated in part by neuronal activity as tetrodotoxin decreases the oscillations and cortical neuron discharge contain the same low frequencies. The high-power state involves compensatory mechanisms because acutely decreasing P/Q-type Ca(2+) channel function in either wild-type (WT) or tg/tg mice does not induce the high-power state. In contrast, blocking l-type Ca(2+) channels, known to be upregulated in tg/tg mice, reduces the high-power state. Intriguingly, basal excitatory glutamatergic neurotransmission constrains the high-power state because blocking ionotropic or metabotropic glutamate receptors results in high-power LFOs in tg/tg but not WT mice. The high-power LFOs are decreased markedly by acetazolamide and 4-aminopyridine, the primary treatments for EA2, suggesting disease relevance. Together, these results demonstrate that the high-power LFOs in the tg/tg cerebral cortex represent a highly abnormal excitability state that may underlie noncerebellar symptoms that characterize CACNA1A mutations.
Collapse
|
14
|
Abstract
Dystonia is a neurologic disorder characterized by sustained involuntary muscle contractions. Lesions responsible for unilateral secondary dystonia are confined to the putamen, caudate, globus pallidus, and thalamus. Dysfunction of these structures is suspected to play a role in both primary and secondary dystonia. Recent evidence has suggested that the cerebellum may play a role in the pathophysiology of dystonia. The role of the cerebellum in ataxia, a disorder of motor incoordination is well established. How may the cerebellum contribute to two apparently very different movement disorders? This review will discuss the idea of whether in some cases, ataxia and dystonia lie in the same clinical spectrum and whether graded perturbations in cerebellar function may explain a similar causative role for the cerebellum in these two different motor disorders. The review also proposes a model for cerebellar dystonia based on the available animal models of this disorder.
Collapse
|
15
|
Hess EJ, Jinnah H. Mouse Models of Dystonia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Stahl JS, Thumser ZC. Flocculus Purkinje cell signals in mouse Cacna1a calcium channel mutants of escalating severity: an investigation of the role of firing irregularity in ataxia. J Neurophysiol 2014; 112:2647-63. [PMID: 25143538 DOI: 10.1152/jn.00129.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutation of the Cacna1a gene for the P/Q (CaV2.1) calcium channel invariably leads to cerebellar dysfunction. The dysfunction has been attributed to disrupted rhythmicity of cerebellar Purkinje cells, but the hypothesis remains unproven. If irregular firing rates cause cerebellar dysfunction, then the irregularity and behavioral deficits should covary in a series of mutant strains of escalating severity. We compared firing irregularity in floccular and anterior vermis Purkinje cells in the mildly affected rocker and moderately affected tottering Cacna1a mutants and normal C57BL/6 mice. We also measured the amplitude and timing of modulations of floccular Purkinje cell firing rate during the horizontal vestibuloocular reflex (VOR, 0.25-1 Hz) and the horizontal and vertical optokinetic reflex (OKR, 0.125-1 Hz). We recorded Purkinje cells selective for rotational stimulation about the vertical axis (VAPCs) and a horizontal axis (HAPCs). Irregularity scaled with behavioral deficit severity in the flocculus but failed to do so in the vermis, challenging the irregularity hypothesis. Mutant VAPCs exhibited unusually strong modulation during VOR and OKR, the response augmentation scaling with phenotypic severity. HAPCs exhibited increased OKR modulation but in tottering only. The data contradict prior claims that modulation amplitude is unaffected in tottering but support the idea that attenuated compensatory eye movements in Cacna1a mutants arise from defective transfer of Purkinje cell signals to downstream circuitry, rather than attenuated synaptic transmission within the cerebellar cortex. Shifts in the relative sizes of the VAPC and HAPC populations raise the possibility that Cacna1a mutations influence the development of floccular zone architecture.
Collapse
Affiliation(s)
- John S Stahl
- Neurology Division, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio; and Department of Neurology, Case Western Reserve University, Cleveland, Ohio
| | - Zachary C Thumser
- Neurology Division, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio; and
| |
Collapse
|
17
|
Koch G, Porcacchia P, Ponzo V, Carrillo F, Cáceres-Redondo MT, Brusa L, Desiato MT, Arciprete F, Di Lorenzo F, Pisani A, Caltagirone C, Palomar FJ, Mir P. Effects of Two Weeks of Cerebellar Theta Burst Stimulation in Cervical Dystonia Patients. Brain Stimul 2014; 7:564-72. [DOI: 10.1016/j.brs.2014.05.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/27/2014] [Accepted: 05/01/2014] [Indexed: 10/25/2022] Open
|
18
|
Luna-Cancalon K, Sikora KM, Pappas SS, Singh V, Wulff H, Paulson HL, Burmeister M, Shakkottai VG. Alterations in cerebellar physiology are associated with a stiff-legged gait in Atcay(ji-hes) mice. Neurobiol Dis 2014; 67:140-8. [PMID: 24727095 DOI: 10.1016/j.nbd.2014.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 01/17/2023] Open
Abstract
Recent evidence suggests that dystonia, a movement disorder characterized by sustained involuntary muscle contractions, can be associated with cerebellar abnormalities. The basis for how functional changes in the cerebellum can cause dystonia is poorly understood. Here we identify alterations in physiology in Atcay(ji-hes) mice which in addition to ataxia, have an abnormal gait with hind limb extension and toe walking, reminiscent of human dystonic gait. No morphological abnormalities in the brain accompany the dystonia, but partial cerebellectomy causes resolution of the stiff-legged gait, suggesting that cerebellar dysfunction contributes to the dystonic gait of Atcay(ji-hes) mice. Recordings from Purkinje and deep cerebellar nuclear (DCN) neurons in acute brain slices were used to determine the physiological correlates of dystonia in the Atcay(ji-hes) mice. Approximately 50% of cerebellar Purkinje neurons fail to display the normal repetitive firing characteristic of these cells. In addition, DCN neurons exhibit increased intrinsic firing frequencies with a subset of neurons displaying bursts of action potentials. This increased intrinsic excitability of DCN neurons is accompanied by a reduction in after-hyperpolarization currents mediated by small-conductance calcium-activated potassium (SK) channels. An activator of SK channels reduces DCN neuron firing frequency in acute cerebellar slices and improves the dystonic gait of Atcay(ji-hes) mice. These results suggest that a combination of reduced Purkinje neuron activity and increased DCN intrinsic excitability can result in a combination of ataxia and a dystonia-like gait in mice.
Collapse
Affiliation(s)
| | - Kristine M Sikora
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel S Pappas
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vikrant Singh
- Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margit Burmeister
- Molecular & Behavioral Neuroscience Institute, Departments of Psychiatry, Computational Medicine & Bioinformatics and Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
19
|
Wilson BK, Hess EJ. Animal models for dystonia. Mov Disord 2014; 28:982-9. [PMID: 23893454 DOI: 10.1002/mds.25526] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/19/2013] [Accepted: 04/29/2013] [Indexed: 01/28/2023] Open
Abstract
Symptomatic animal models have clinical features consistent with human disorders and are often used to identify the anatomical and physiological processes involved in the expression of symptoms and to experimentally demonstrate causality where it would be infeasible in the patient population. Rodent and primate models of dystonia have identified basal ganglia abnormalities, including alterations in striatal GABAergic (ie, transmitting or secreting γ-aminobutyric acid) and dopaminergic transmission. Symptomatic animal models have also established the critical role of the cerebellum in dystonia, particularly abnormal glutamate signaling and aberrant Purkinje cell activity. Further, experiments suggest that the basal ganglia and cerebellum are nodes in an integrated network that is dysfunctional in dystonia. The knowledge gained from experiments in symptomatic animal models may serve as the foundation for the development of novel therapeutic interventions to treat dystonia. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Bethany K Wilson
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
20
|
Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience 2013; 260:23-35. [PMID: 24333801 DOI: 10.1016/j.neuroscience.2013.11.062] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 01/02/2023]
Abstract
The dystonias are a group of disorders defined by sustained or intermittent muscle contractions that result in involuntary posturing or repetitive movements. There are many different clinical manifestations and causes. Although they traditionally have been ascribed to dysfunction of the basal ganglia, recent evidence has suggested dysfunction may originate from other regions, particularly the cerebellum. This recent evidence has led to an emerging view that dystonia is a network disorder that involves multiple brain regions. The new network model for the pathogenesis of dystonia has raised many questions, particularly regarding the role of the cerebellum. For example, if dystonia may arise from cerebellar dysfunction, then why are there no cerebellar signs in dystonia? Why are focal cerebellar lesions or degenerative cerebellar disorders more commonly associated with ataxia rather than dystonia? Why is dystonia more commonly associated with basal ganglia lesions rather than cerebellar lesions? Can answers obtained from animals be extrapolated to humans? Is there any evidence that the cerebellum is not involved? Finally, what is the practical value of this new model of pathogenesis for the neuroscientist and clinician? This article explores potential answers to these questions.
Collapse
|
21
|
Subtle microstructural changes of the cerebellum in a knock-in mouse model of DYT1 dystonia. Neurobiol Dis 2013; 62:372-80. [PMID: 24121114 DOI: 10.1016/j.nbd.2013.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/02/2013] [Indexed: 01/21/2023] Open
Abstract
The dystonias are a group of disorders characterized by involuntary twisting and repetitive movements. DYT1 dystonia is an inherited form of dystonia caused by a mutation in the TOR1A gene, which encodes torsinA. TorsinA is expressed in many regions of the nervous system, and the regions responsible for causing dystonic movements remain uncertain. Most prior studies have focused on the basal ganglia, although there is emerging evidence for abnormalities in the cerebellum too. In the current studies, we examined the cerebellum for structural abnormalities in a knock-in mouse model of DYT1 dystonia. The gross appearance of the cerebellum appeared normal in the mutant mice, but stereological measures revealed the cerebellum to be 5% larger in mutant compared to control mice. There were no changes in the numbers of Purkinje cells, granule cells, or neurons of the deep cerebellar nuclei. However, Golgi histochemical studies revealed Purkinje cells to have thinner dendrites, and fewer and less complex dendritic spines. There also was a higher frequency of heterotopic Purkinje cells displaced into the molecular layer. These results reveal subtle structural changes of the cerebellum that are similar to those reported for the basal ganglia in the DYT1 knock-in mouse model.
Collapse
|
22
|
Hisatsune C, Miyamoto H, Hirono M, Yamaguchi N, Sugawara T, Ogawa N, Ebisui E, Ohshima T, Yamada M, Hensch TK, Hattori M, Mikoshiba K. IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice. Front Neural Circuits 2013; 7:156. [PMID: 24109434 PMCID: PMC3790101 DOI: 10.3389/fncir.2013.00156] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/14/2013] [Indexed: 11/23/2022] Open
Abstract
The type 1 inositol 1,4,5- trisphosphate receptor (IP3R1) is a Ca2+ channel on the endoplasmic reticulum and is a predominant isoform in the brain among the three types of IP3Rs. Mice lacking IP3R1 show seizure-like behavior; however the cellular and neural circuit mechanism by which IP3R1 deletion causes the abnormal movements is unknown. Here, we found that the conditional knockout mice lacking IP3R1 specifically in the cerebellum and brainstem experience dystonia and show that cerebellar Purkinje cell (PC) firing patterns were coupled to specific dystonic movements. Recordings in freely behaving mice revealed epochs of low and high frequency PC complex spikes linked to body extension and rigidity, respectively. Remarkably, dystonic symptoms were independent of the basal ganglia, and could be rescued by inactivation of the cerebellum, inferior olive or in the absence of PCs. These findings implicate IP3R1-dependent PC firing patterns in cerebellum in motor coordination and the expression of dystonia through the olivo-cerebellar pathway.
Collapse
Affiliation(s)
- Chihiro Hisatsune
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute , Wako, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Reevaluation of the beam and radial hypotheses of parallel fiber action in the cerebellar cortex. J Neurosci 2013; 33:11412-24. [PMID: 23843513 DOI: 10.1523/jneurosci.0711-13.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of parallel fibers (PFs) in cerebellar physiology remains controversial. Early studies inspired the "beam" hypothesis whereby granule cell (GC) activation results in PF-driven, postsynaptic excitation of beams of Purkinje cells (PCs). However, the "radial" hypothesis postulates that the ascending limb of the GC axon provides the dominant input to PCs and generates patch-like responses. Using optical imaging and single-cell recordings in the mouse cerebellar cortex in vivo, this study reexamines the beam versus radial controversy. Electrical stimulation of mossy fibers (MFs) as well as microinjection of NMDA in the granular layer generates beam-like responses with a centrally located patch-like response. Remarkably, ipsilateral forepaw stimulation evokes a beam-like response in Crus I. Discrete molecular layer lesions demonstrate that PFs contribute to the peripherally generated responses in Crus I. In contrast, vibrissal stimulation induces patch-like activation of Crus II and GABAA antagonists fail to convert this patch-like activity into a beam-like response, implying that molecular layer inhibition does not prevent beam-like responses. However, blocking excitatory amino acid transporters (EAATs) generates beam-like responses in Crus II. These beam-like responses are suppressed by focal inhibition of MF-GC synaptic transmission. Using EAAT4 reporter transgenic mice, we show that peripherally evoked patch-like responses in Crus II are aligned between parasagittal bands of EAAT4. This is the first study to demonstrate beam-like responses in the cerebellar cortex to peripheral, MF, and GC stimulation in vivo. Furthermore, the spatial pattern of the responses depends on extracellular glutamate and its local regulation by EAATs.
Collapse
|
24
|
Courtemanche R, Robinson JC, Aponte DI. Linking oscillations in cerebellar circuits. Front Neural Circuits 2013; 7:125. [PMID: 23908606 PMCID: PMC3725427 DOI: 10.3389/fncir.2013.00125] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 07/11/2013] [Indexed: 11/13/2022] Open
Abstract
In many neuroscience fields, the study of local and global rhythmicity has been receiving increasing attention. These network influences could directly impact on how neuronal groups interact together, organizing for different contexts. The cerebellar cortex harbors a variety of such local circuit rhythms, from the rhythms in the cerebellar cortex per se, or those dictated from important afferents. We present here certain cerebellar oscillatory phenomena that have been recorded in rodents and primates. Those take place in a range of frequencies: from the more known oscillations in the 4-25 Hz band, such as the olivocerebellar oscillatory activity and the granule cell layer oscillations, to the more recently reported slow (<1 Hz oscillations), and the fast (>150 Hz) activity in the Purkinje cell layer. Many of these oscillations appear spontaneously in the circuits, and are modulated by behavioral imperatives. We review here how those oscillations are recorded, some of their modulatory mechanisms, and also identify some of the cerebellar nodes where they could interact. A particular emphasis has been placed on how these oscillations could be modulated by movement and certain neuropathological manifestations. Many of those oscillations could have a definite impact on the way information is processed in the cerebellum and how it interacts with other structures in a variety of contexts.
Collapse
Affiliation(s)
- Richard Courtemanche
- Department of Exercise Science, Groupe de Recherche en Neurobiologie Comportementale/Center for Studies in Behavioral Neurobiology, Concordia UniversityMontréal, QC, Canada
| | | | | |
Collapse
|
25
|
Iwabuchi S, Kakazu Y, Koh JY, Harata NC. Abnormal cytoplasmic calcium dynamics in central neurons of a dystonia mouse model. Neurosci Lett 2013; 548:61-6. [PMID: 23748075 DOI: 10.1016/j.neulet.2013.05.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
Increased activities of cytoplasmic calcium and the excitatory neurotransmitter glutamate have been independently implicated in dystonia pathophysiology. However, cellular-level evidence linking these two features is not available. Here we show that glutamate-dependent changes in neuronal calcium dynamics occur in a knock-in mouse model of DYT1 dystonia, the most common hereditary form of this disorder. Fluorescence-based analysis of the dynamics of cytoplasmic calcium concentration ([Ca(2+)]c) in cultured hippocampal neurons shows that electrical stimulation depolarizes the neurons and increases the dendritic [Ca(2+)]c, which then decays slowly to the pre-stimulus level. Whereas the peak amplitude of [Ca(2+)]c was not affected, the decay period was prolonged in neurons of heterozygous mice whose genotype reflects the human condition. We found that this effect was blocked by the antagonists of ionotropic glutamate receptors, and confirmed that glutamate receptors are present in these neurons. As the [Ca(2+)]c is readout and regulator of neuronal excitability, its abnormality represents an important cellular phenotype of dystonia.
Collapse
Affiliation(s)
- Sadahiro Iwabuchi
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
26
|
Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci 2013; 17:241-54. [PMID: 23579055 PMCID: PMC3645327 DOI: 10.1016/j.tics.2013.03.003] [Citation(s) in RCA: 518] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 01/18/2023]
Abstract
The dominant view of cerebellar function has been that it is exclusively concerned with motor control and coordination. Recent findings from neuroanatomical, behavioral, and imaging studies have profoundly changed this view. Neuroanatomical studies using virus transneuronal tracers have demonstrated that cerebellar output reaches vast areas of the neocortex, including regions of prefrontal and posterior parietal cortex. Furthermore, it has recently become clear that the cerebellum is reciprocally connected with the basal ganglia, which suggests that the two subcortical structures are part of a densely interconnected network. Taken together, these findings elucidate the neuroanatomical substrate for cerebellar involvement in non-motor functions mediated by the prefrontal and posterior parietal cortex, as well as in processes traditionally associated with the basal ganglia.
Collapse
Affiliation(s)
- Andreea C. Bostan
- Center for the Neural Basis of Cognition, Systems Neuroscience Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Richard P. Dum
- Center for the Neural Basis of Cognition, Systems Neuroscience Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Peter L. Strick
- Pittsburgh Veterans Affairs Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
- Center for the Neural Basis of Cognition, Systems Neuroscience Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
27
|
Prudente C, Pardo C, Xiao J, Hanfelt J, Hess E, LeDoux M, Jinnah H. Neuropathology of cervical dystonia. Exp Neurol 2013; 241:95-104. [PMID: 23195594 PMCID: PMC3570661 DOI: 10.1016/j.expneurol.2012.11.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 10/20/2012] [Accepted: 11/13/2012] [Indexed: 01/13/2023]
Abstract
The aim of this study was to search for neuropathological changes in postmortem brain tissue of individuals with cervical dystonia (CD). Multiple regions of formalin-preserved brains were collected from patients with CD and controls and examined with an extensive battery of histopathological stains in a two-stage study design. In stage one, 4 CD brains underwent a broad screening neuropathological examination. In stage two, these 4 CD brains were combined with 2 additional CD brains, and the subjective findings were quantified and compared to 16 age-matched controls. The initial subjective neuropathological assessment revealed only two regions with relatively consistent changes. The substantia nigra had frequent ubiquitin-positive intranuclear inclusions known as Marinesco bodies. Additionally, the cerebellum showed patchy loss of Purkinje cells, areas of focal gliosis and torpedo bodies. Other brain regions showed minor or inconsistent changes. In the second stage of the analysis, quantitative studies failed to reveal significant differences in the numbers of Marinesco bodies in CD versus controls, but confirmed a significantly lower Purkinje cell density in CD. Molecular investigations revealed 4 of the CD cases and 2 controls to harbor sequence variants in non-coding regions of THAP1, and these cases had lower Purkinje cell densities regardless of whether they had CD. The findings suggest that subtle neuropathological changes such as lower Purkinje cell density may be found in primary CD when relevant brain regions are investigated with appropriate methods.
Collapse
Affiliation(s)
| | - C.A. Pardo
- Dept. of Neurology & Neuropathology, Johns Hopkins University, Baltimore MD -
| | - J. Xiao
- Dept. of Neurology, University of Tennessee Health Science Center, Memphis TN -
| | - J. Hanfelt
- Dept. of Biostatistics & Bioinformatics, Emory University, Atlanta GA -
| | - E.J. Hess
- Dept. of Pharmacology & Neurology, Emory University, Atlanta GA -
| | - M.S. LeDoux
- Dept. of Neurology, University of Tennessee Health Science Center, Memphis TN -
| | - H.A. Jinnah
- Dept. of Neurology, Human Genetics & Pediatrics, Emory University, Atlanta GA
| |
Collapse
|
28
|
4-aminopyridine does not enhance flocculus function in tottering, a mouse model of vestibulocerebellar dysfunction and ataxia. PLoS One 2013; 8:e57895. [PMID: 23451282 PMCID: PMC3581497 DOI: 10.1371/journal.pone.0057895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/27/2013] [Indexed: 01/06/2023] Open
Abstract
The potassium channel antagonist 4-aminopyridine (4-AP) improves a variety of motor abnormalities associated with disorders of the cerebellum. The most rigorous quantitative data relate to 4-AP's ability to improve eye movement deficits in humans referable to dysfunction of the cerebellar flocculus. Largely based on work in the ataxic mouse mutant tottering (which carries a mutation of the Cacna1a gene of the P/Q voltage-activated calcium channel), 4-AP is hypothesized to function by enhancing excitability or rhythmicity of floccular Purkinje cells. We tested this hypothesis by determining whether systemic or intrafloccular administration of 4-AP would ameliorate the eye movement deficits in tottering that are attributable to flocculus dysfunction, including the reductions in amplitude of the yaw-axis vestibulo-ocular reflex (VOR) and vision-enhanced vestibulo-ocular reflex (VVOR), and the optokinetic reflex (OKR) about yaw and roll axes. Because tottering's deficits increase with age, both young and elderly mutants were tested to detect any age-dependent 4-AP effects. 4-AP failed to improve VOR, VVOR, and OKR gains during sinusoidal stimuli, although it may have reduced the tendency of the mutants' responses to VOR and VVOR to decline over the course of a one-hour recording session. For constant-velocity optokinetic stimuli, 4-AP generated some enhancement of yaw OKR and upward-directed roll OKR, but the effects were also seen in normal C57BL/6 controls, and thus do not represent a specific reversal of the electrophysiological consequences of the tottering mutation. Data support a possible extra-floccular locus for the effects of 4-AP on habituation and roll OKR. Unilateral intrafloccular 4-AP injections did not affect ocular motility, except to generate mild eye elevations, consistent with reduced floccular output. Because 4-AP did not produce the effects expected if it normalized outputs of floccular Purkinje cells, there is a need for further studies to elucidate the drug's mechanism of action on cerebellar motor dysfunction.
Collapse
|
29
|
Filip P, Lungu OV, Bareš M. Dystonia and the cerebellum: a new field of interest in movement disorders? Clin Neurophysiol 2013; 124:1269-76. [PMID: 23422326 DOI: 10.1016/j.clinph.2013.01.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 01/06/2013] [Accepted: 01/08/2013] [Indexed: 11/17/2022]
Abstract
Although dystonia has traditionally been regarded as a basal ganglia dysfunction, recent provocative evidence has emerged of cerebellar involvement in the pathophysiology of this enigmatic disease. This review synthesizes the data suggesting that the cerebellum plays an important role in dystonia etiology, from neuroanatomical research of complex networks showing that the cerebellum is connected to a wide range of other central nervous system structures involved in movement control to animal models indicating that signs of dystonia are due to cerebellum dysfunction and completely disappear after cerebellectomy, and finally to clinical observations in secondary dystonia patients with various types of cerebellar lesions. We propose that dystonia is a large-scale dysfunction, involving not only cortico-basal ganglia-thalamo-cortical pathways, but the cortico-ponto-cerebello-thalamo-cortical loop as well. Even in the absence of traditional "cerebellar signs" in most dystonia patients, there are more subtle indications of cerebellar dysfunction. It is clear that as long as the cerebellum's role in dystonia genesis remains unexamined, it will be difficult to significantly improve the current standards of dystonia treatment or to provide curative treatment.
Collapse
Affiliation(s)
- Pavel Filip
- Central European Institute of Technology, CEITEC MU, Behavioral and Social Neuroscience Research Group, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|
30
|
Raike RS, Weisz C, Hoebeek FE, Terzi MC, Zeeuw CID, van den Maagdenberg AM, Jinnah H, Hess EJ. Stress, caffeine and ethanol trigger transient neurological dysfunction through shared mechanisms in a mouse calcium channelopathy. Neurobiol Dis 2013; 50:151-9. [PMID: 23009754 PMCID: PMC3534906 DOI: 10.1016/j.nbd.2012.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/14/2012] [Indexed: 12/22/2022] Open
Abstract
Several episodic neurological disorders are caused by ion channel gene mutations. In patients, transient neurological dysfunction is often evoked by stress, caffeine and ethanol, but the mechanisms underlying these triggers are unclear because each has diverse and diffuse effects on the CNS. Attacks of motor dysfunction in the Ca(V)2.1 calcium channel mouse mutant tottering are also triggered by stress, caffeine and ethanol. Therefore, we used the tottering mouse attacks to explore the pathomechanisms of the triggers. Despite the diffuse physiological effects of these triggers, ryanodine receptor blockers prevented attacks induced by all of them. In contrast, compounds that potentiate ryanodine receptors triggered attacks suggesting a convergent biochemical pathway. Tottering mouse attacks were both induced and blocked within the cerebellum suggesting that the triggers act locally to instigate attacks. In fact, stress, caffeine and alcohol precipitated attacks in Ca(V)2.1 mutant mice in which genetic pathology was limited to cerebellar Purkinje cells, suggesting that the triggers initiate dysfunction within a specific brain region. The surprising biochemical and anatomical specificity of the triggers and the discovery that the triggers operate through shared mechanisms suggest that it is possible to develop targeted therapies aimed at blocking the induction of episodic neurological dysfunction, rather than treating the symptoms once provoked.
Collapse
Affiliation(s)
- Robert S. Raike
- Department of Pharmacology Emory University School of Medicine, Atlanta, GA 30322
| | - Catherine Weisz
- Department of Neuroscience Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Freek E. Hoebeek
- Department of Neuroscience Erasmus Medical Centre, 3015 GE, Rotterdam, The Netherlands
| | - Matthew C. Terzi
- Department of Neurology Emory University School of Medicine, Atlanta, GA 30322
| | - Chris I. De Zeeuw
- Department of Neuroscience Erasmus Medical Centre, 3015 GE, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience Royal Dutch Academy of Arts & Sciences, Meibergdreef 47, Amsterdam, The Netherlands
| | - Arn M. van den Maagdenberg
- Departments of Human Genetics and Neurology Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - H.A. Jinnah
- Department of Neurology Emory University School of Medicine, Atlanta, GA 30322
- Department of Human Genetics Emory University School of Medicine, Atlanta, GA 30322
| | - Ellen J. Hess
- Department of Pharmacology Emory University School of Medicine, Atlanta, GA 30322
- Department of Neurology Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
31
|
Avanzino L, Abbruzzese G. How does the cerebellum contribute to the pathophysiology of dystonia? ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.baga.2012.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Fasano A, Espay AJ, Morgante F. Finding gaps and building bridges in movement disorders. Expert Rev Neurother 2012; 12:781-4. [PMID: 22853786 DOI: 10.1586/ern.12.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Movement disorders are one of the most rapidly growing fields of neurology from both the clinical and neurobiological perspectives. Despite many recent advances in genetic, pathogenetic, clinical and therapeutic fields, several shortcomings remain in the diagnostic and therapeutic realms, with a plethora of challenges threatening further advances. Aimed at recognizing and bridging these knowledge gaps, the 2nd International Conference on Knowledge Gaps in Parkinson's Disease and Other Movement Disorders was held last February in Santa Margherita Ligure, Italy, with the support of the Movement Disorder Society and the Italian Association for Parkinson's Disease and Extrapyramidal Disorders. The 3-day symposium, which was attended by approximately 300 clinicians and researchers from around the world, gathered around 27 leading young and senior clinical scientists, each of whom addressed the field's main knowledge gaps and brainstormed on how to bridge or minimize their impact. This meeting report summarizes the topics that gathered the most attention from the speakers and the audience.
Collapse
Affiliation(s)
- Alfonso Fasano
- Department of Neuroscience, Catholic University, Rome, Italy
| | | | | |
Collapse
|
33
|
Sensory stimulation-dependent plasticity in the cerebellar cortex of alert mice. PLoS One 2012; 7:e36184. [PMID: 22563448 PMCID: PMC3338584 DOI: 10.1371/journal.pone.0036184] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/03/2012] [Indexed: 11/19/2022] Open
Abstract
In vitro studies have supported the occurrence of cerebellar long-term depression (LTD), an interaction between the parallel fibers and Purkinje cells (PCs) that requires the combined activation of the parallel and climbing fibers. To demonstrate the existence of LTD in alert animals, we investigated the plasticity of local field potentials (LFPs) evoked by electrical stimulation of the whisker pad. The recorded LFP showed two major negative waves corresponding to trigeminal (broken into the N2 and N3 components) and cortical responses. PC unitary extracellular recording showed that N2 and N3 occurred concurrently with PC evoked simple spikes, followed by an evoked complex spike. Polarity inversion of the N3 component at the PC level and N3 amplitude reduction after electrical stimulation of the parallel fiber volley applied on the surface of the cerebellum 2 ms earlier strongly suggest that N3 was related to the parallel fiber–PC synapse activity. LFP measurements elicited by single whisker pad stimulus were performed before and after trains of electrical stimuli given at a frequency of 8 Hz for 10 min. We demonstrated that during this later situation, the stimulation of the PC by parallel and climbing fibers was reinforced. After 8-Hz stimulation, we observed long-term modifications (lasting at least 30 min) characterized by a specific decrease of the N3 amplitude accompanied by an increase of the N2 and N3 latency peaks. These plastic modifications indicated the existence of cerebellar LTD in alert animals involving both timing and synaptic modulations. These results corroborate the idea that LTD may underlie basic physiological functions related to calcium-dependent synaptic plasticity in the cerebellum.
Collapse
|
34
|
Abrams ZR, Warrier A, Wang Y, Trauner D, Zhang X. Tunable oscillations in the Purkinje neuron. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041905. [PMID: 22680496 DOI: 10.1103/physreve.85.041905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/18/2012] [Indexed: 06/01/2023]
Abstract
In this paper, we experimentally study the dynamics of slow oscillations in Purkinje neurons in vitro, and derive a strong association with a forced parametric oscillator model. We observed the precise rhythmicity of these oscillations in Purkinje neurons, as well as a dynamic tunability of this oscillation using a photoswitchable compound. We found that this slow oscillation can be induced in every Purkinje neuron measured, having periods ranging between 10 and 25 s. Starting from a Hodgkin-Huxley model, we demonstrate that this oscillation can be externally modulated, and that the neurons will return to their intrinsic firing frequency after the forced oscillation is concluded. These findings signify an additional timing functional role of tunable oscillations within the cerebellum, as well as a dynamic control of a time scale in the brain in the range of seconds.
Collapse
Affiliation(s)
- Ze'ev R Abrams
- NSF Nanoscale Science and Engineering Center, 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
35
|
Todorov B, Kros L, Shyti R, Plak P, Haasdijk ED, Raike RS, Frants RR, Hess EJ, Hoebeek FE, De Zeeuw CI, van den Maagdenberg AMJM. Purkinje cell-specific ablation of Cav2.1 channels is sufficient to cause cerebellar ataxia in mice. CEREBELLUM (LONDON, ENGLAND) 2012; 11:246-58. [PMID: 21870131 PMCID: PMC3311848 DOI: 10.1007/s12311-011-0302-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
The Cacna1a gene encodes the α(1A) subunit of voltage-gated Ca(V)2.1 Ca(2+) channels that are involved in neurotransmission at central synapses. Ca(V)2.1-α(1)-knockout (α1KO) mice, which lack Ca(V)2.1 channels in all neurons, have a very severe phenotype of cerebellar ataxia and dystonia, and usually die around postnatal day 20. This early lethality, combined with the wide expression of Ca(V)2.1 channels throughout the cerebellar cortex and nuclei, prohibited determination of the contribution of particular cerebellar cell types to the development of the severe neurobiological phenotype in Cacna1a mutant mice. Here, we crossed conditional Cacna1a mice with transgenic mice expressing Cre recombinase, driven by the Purkinje cell-specific Pcp2 promoter, to specifically ablate the Ca(V)2.1-α(1A) subunit and thereby Ca(V)2.1 channels in Purkinje cells. Purkinje cell Ca(V)2.1-α(1A)-knockout (PCα1KO) mice aged without difficulties, rescuing the lethal phenotype seen in α1KO mice. PCα1KO mice exhibited cerebellar ataxia starting around P12, much earlier than the first signs of progressive Purkinje cell loss, which appears in these mice between P30 and P45. Secondary cell loss was observed in the granular and molecular layers of the cerebellum and the volume of all individual cerebellar nuclei was reduced. In this mouse model with a cell type-specific ablation of Ca(V)2.1 channels, we show that ablation of Ca(V)2.1 channels restricted to Purkinje cells is sufficient to cause cerebellar ataxia. We demonstrate that spatial ablation of Ca(V)2.1 channels may help in unraveling mechanisms of human disease.
Collapse
Affiliation(s)
- Boyan Todorov
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lieke Kros
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Reinald Shyti
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Petra Plak
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Robert S. Raike
- Department of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Rune R. Frants
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ellen J. Hess
- Department of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Sciences (KNAW), Amsterdam, The Netherlands
| | - Arn M. J. M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
36
|
Fan X, Hughes KE, Jinnah HA, Hess EJ. Selective and sustained α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation in cerebellum induces dystonia in mice. J Pharmacol Exp Ther 2011; 340:733-41. [PMID: 22171094 DOI: 10.1124/jpet.111.190082] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dystonia is a neurological disorder characterized by involuntary muscle contractions that cause twisting movements and abnormal postures. Functional imaging consistently reveals cerebellar overactivity in dystonic patients regardless of the type or etiology of the disorder. To explore mechanisms that might explain the basis for the cerebellar overactivity in dystonia, normal mice were challenged with intracerebellar application of a variety of agents that induce hyperexcitability. A nonspecific increase in cerebellar excitability, such as that produced by picrotoxin, was not associated with dystonia. Instead, glutamate receptor activation, specifically AMPA receptor activation, was necessary to evoke dystonia. AMPA receptor agonists induced dystonia, and AMPA receptor antagonists reduced the dystonia induced by glutamate receptor agonists. AMPA receptor antagonists also ameliorated the dystonia exhibited by the dystonic mouse mutant tottering, suggesting that AMPA receptors may play a role in some other genetic models of dystonia. Furthermore, AMPA receptor desensitization mediated the expression of dystonia. Preventing AMPA receptor desensitization with cyclothiazide or the nondesensitizing agonist kainic acid exacerbated the dystonic response. These results suggest the novel hypothesis that the cerebellar overactivity observed in neuroimaging studies of patients with dystonia may be an indirect reflection of abnormal glutamate signaling. In addition, these results imply that reducing AMPA receptor activation by blocking AMPA receptors and promoting AMPA receptor desensitization or negative allosteric modulators may prove to be beneficial for treating dystonia.
Collapse
Affiliation(s)
- Xueliang Fan
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
37
|
Thompson VB, Jinnah HA, Hess EJ. Convergent mechanisms in etiologically-diverse dystonias. Expert Opin Ther Targets 2011; 15:1387-403. [PMID: 22136648 DOI: 10.1517/14728222.2011.641533] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Dystonia is a neurological disorder associated with twisting motions and abnormal postures, which compromise normal movements and can be both painful and debilitating. It can affect a single body part (focal), several contiguous regions (segmental), or the entire body (generalized), and can arise as a result of numerous causes, both genetic and acquired. Despite the diversity of causes and manifestations, shared clinical features suggest that common mechanisms of pathogenesis may underlie many dystonias. AREAS COVERED Shared themes in etiologically-diverse dystonias exist at several biological levels. At the cellular level, abnormalities in the dopaminergic system, mitochondrial function and calcium regulation are often present. At the anatomical level, the basal ganglia and the cerebellum are frequently implicated. Global CNS dysfunction, specifically aberrant neuronal plasticity, inhibition and sensorimotor integration, are also observed in a number of dystonias. Using clinical data and data from animal models, this article seeks to highlight shared pathways that may be critical in understanding mechanisms and identifying novel therapeutic strategies in dystonia. EXPERT OPINION Identifying shared features of pathogenesis can provide insight into the biological processes that underlie etiologically diverse dystonias, and can suggest novel targets for therapeutic intervention that may be effective in a broad group of affected individuals.
Collapse
Affiliation(s)
- Valerie B Thompson
- Emory University School of Medicine, Department of Pharmacology, Woodruff Memorial Research Building, Suite 6000, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
38
|
Abnormalities in the climbing fiber-Purkinje cell circuitry contribute to neuronal dysfunction in ATXN1[82Q] mice. J Neurosci 2011; 31:12778-89. [PMID: 21900557 DOI: 10.1523/jneurosci.2579-11.2011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One fundamental unanswered question in the field of polyglutamine diseases concerns the pathophysiology of neuronal dysfunction. Is there dysfunction in a specific neuronal population or circuit initially that contributes the onset of behavioral abnormalities? This study used a systems-level approach to investigate the functional integrity of the excitatory cerebellar cortical circuitry in vivo from several transgenic ATXN1 mouse lines. We tested the hypotheses that there are functional climbing fiber (CF)-Purkinje cell (PC) and parallel fiber (PF)-PC circuit abnormalities using flavoprotein autofluorescence optical imaging and extracellular field potential recordings. In early-symptomatic and symptomatic animals expressing ATXN1[82Q], there is a marked reduction in PC responsiveness to CF activation. Immunostaining of vesicular glutamate transporter type 2 demonstrated a decrement in CF extension on PC dendrites in symptomatic ATXN1[82Q] mice. In contrast, responses to PF stimulation were relatively normal. Importantly, the deficits in CF-PC synaptic transmission required expression of pathogenic ataxin-1 (ATXN1[82Q]) and for its entrance into the nucleus of PCs. Loss of endogenous mouse Atxn1 had no discernible effects. Furthermore, the abnormalities in CF-PC synaptic transmission were ameliorated when mutant transgene expression was prevented during postnatal cerebellar development. The results demonstrate the preferential susceptibility of the CF-PC circuit to the effects of ATXN1[82Q]. Further, this deficit likely contributes to the abnormal motor phenotype of ATXN1[82Q] mice. For polyglutamine diseases generally, the findings support a model whereby specific neuronal circuits suffer insults that alter function before cell death.
Collapse
|
39
|
Abrams ZR, Zhang X. Signals and circuits in the purkinje neuron. Front Neural Circuits 2011; 5:11. [PMID: 21980311 PMCID: PMC3180174 DOI: 10.3389/fncir.2011.00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/05/2011] [Indexed: 11/23/2022] Open
Abstract
Purkinje neurons (PN) in the cerebellum have over 100,000 inputs organized in an orthogonal geometry, and a single output channel. As the sole output of the cerebellar cortex layer, their complex firing pattern has been associated with motor control and learning. As such they have been extensively modeled and measured using tools ranging from electrophysiology and neuroanatomy, to dynamic systems and artificial intelligence methods. However, there is an alternative approach to analyze and describe the neuronal output of these cells using concepts from electrical engineering, particularly signal processing and digital/analog circuits. By viewing the PN as an unknown circuit to be reverse-engineered, we can use the tools that provide the foundations of today’s integrated circuits and communication systems to analyze the Purkinje system at the circuit level. We use Fourier transforms to analyze and isolate the inherent frequency modes in the PN and define three unique frequency ranges associated with the cells’ output. Comparing the PN to a signal generator that can be externally modulated adds an entire level of complexity to the functional role of these neurons both in terms of data analysis and information processing, relying on Fourier analysis methods in place of statistical ones. We also re-describe some of the recent literature in the field, using the nomenclature of signal processing. Furthermore, by comparing the experimental data of the past decade with basic electronic circuitry, we can resolve the outstanding controversy in the field, by recognizing that the PN can act as a multivibrator circuit.
Collapse
Affiliation(s)
- Zéev R Abrams
- Applied Science and Technology, Graduate Program University of California Berkeley Berkeley, CA, USA
| | | |
Collapse
|
40
|
Reinert KC, Gao W, Chen G, Wang X, Peng YP, Ebner TJ. Cellular and metabolic origins of flavoprotein autofluorescence in the cerebellar cortex in vivo. CEREBELLUM (LONDON, ENGLAND) 2011; 10:585-99. [PMID: 21503591 PMCID: PMC4126810 DOI: 10.1007/s12311-011-0278-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Flavoprotein autofluorescence imaging, an intrinsic mitochondrial signal, has proven useful for monitoring neuronal activity. In the cerebellar cortex, parallel fiber stimulation evokes a beam-like response consisting of an initial, short-duration increase in fluorescence (on-beam light phase) followed by a longer duration decrease (on-beam dark phase). Also evoked are parasagittal bands of decreased fluorescence due to molecular layer inhibition. Previous work suggests that the on-beam light phase is due to oxidative metabolism in neurons. The present study further investigated the metabolic and cellular origins of the flavoprotein signal in vivo, testing the hypotheses that the dark phase is mediated by glia activation and the inhibitory bands reflect decreased flavoprotein oxidation and increased glycolysis in neurons. Blocking postsynaptic ionotropic and metabotropic glutamate receptors abolished the on-beam light phase and the parasagittal bands without altering the on-beam dark phase. Adding glutamate transporter blockers reduced the dark phase. Replacing glucose with lactate (or pyruvate) or adding lactate to the bathing media abolished the on-beam dark phase and reduced the inhibitory bands without affecting the light phase. Blocking monocarboxylate transporters eliminated the on-beam dark phase and increased the light phase. These results confirm that the on-beam light phase is due primarily to increased oxidative metabolism in neurons. They also show that the on-beam dark phase involves activation of glycolysis in glia resulting in the generation of lactate that is transferred to neurons. Oxidative savings in neurons contributes to the decrease in fluorescence characterizing the inhibitory bands. These findings provide strong in vivo support for the astrocyte-neuron lactate shuttle hypothesis.
Collapse
Affiliation(s)
- Kenneth C. Reinert
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wangcai Gao
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN 55455, USA
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN 55455, USA
| | - Xinming Wang
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN 55455, USA
| | - Yu-Ping Peng
- Nantong University, Nantong, Jiangsu 226001, People’s Republic of China
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN 55455, USA,
| |
Collapse
|
41
|
Delayed postnatal loss of P/Q-type calcium channels recapitulates the absence epilepsy, dyskinesia, and ataxia phenotypes of genomic Cacna1a mutations. J Neurosci 2011; 31:4311-26. [PMID: 21411672 DOI: 10.1523/jneurosci.5342-10.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inherited loss of P/Q-type calcium channel function causes human absence epilepsy, episodic dyskinesia, and ataxia, but the molecular "birthdate" of the neurological syndrome and its dependence on prenatal pathophysiology is unknown. Since these channels mediate transmitter release at synapses throughout the brain and are expressed early in embryonic development, delineating the critical circuitry and onset underlying each of the emergent phenotypes requires targeted control of gene expression. To visualize P/Q-type Ca(2+) channels and dissect their role in neuronal networks at distinct developmental stages, we created a novel conditional Cacna1a knock-in mouse by inserting the floxed green fluorescent protein derivative Citrine into the first exon of Cacna1a and then crossed it with a postnatally expressing PCP2-Cre line for delayed Purkinje cell (PC) gene deletion within the cerebellum and sparsely in forebrain (purky). PCs in purky mice lacked P/Q-type calcium channel protein and currents within the first month after birth, displayed altered spontaneous firing, and showed impaired neurotransmission. Unexpectedly, adult purky mice exhibited the full spectrum of neurological deficits seen in mice with genomic Cacna1a ablation. Our results show that the ataxia, dyskinesia, and absence epilepsy caused by inherited disorders of the P/Q-type channel arise from signaling defects beginning in late infancy, revealing an early window of opportunity for therapeutic intervention.
Collapse
|
42
|
Neychev VK, Gross RE, Lehéricy S, Hess EJ, Jinnah HA. The functional neuroanatomy of dystonia. Neurobiol Dis 2011; 42:185-201. [PMID: 21303695 DOI: 10.1016/j.nbd.2011.01.026] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/08/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022] Open
Abstract
Dystonia is a neurological disorder characterized by involuntary twisting movements and postures. There are many different clinical manifestations, and many different causes. The neuroanatomical substrates for dystonia are only partly understood. Although the traditional view localizes dystonia to basal ganglia circuits, there is increasing recognition that this view is inadequate for accommodating a substantial portion of available clinical and experimental evidence. A model in which several brain regions play a role in a network better accommodates the evidence. This network model accommodates neuropathological and neuroimaging evidence that dystonia may be associated with abnormalities in multiple different brain regions. It also accommodates animal studies showing that dystonic movements arise with manipulations of different brain regions. It is consistent with neurophysiological evidence suggesting defects in neural inhibitory processes, sensorimotor integration, and maladaptive plasticity. Finally, it may explain neurosurgical experience showing that targeting the basal ganglia is effective only for certain subpopulations of dystonia. Most importantly, the network model provides many new and testable hypotheses with direct relevance for new treatment strategies that go beyond the basal ganglia. This article is part of a Special Issue entitled "Advances in dystonia".
Collapse
|
43
|
Bostan AC, Strick PL. The cerebellum and basal ganglia are interconnected. Neuropsychol Rev 2010; 20:261-70. [PMID: 20811947 DOI: 10.1007/s11065-010-9143-9] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 08/22/2010] [Indexed: 11/28/2022]
Abstract
The cerebellum and the basal ganglia are major subcortical nuclei that control multiple aspects of behavior largely through their interactions with the cerebral cortex. Discrete multisynaptic loops connect both the cerebellum and the basal ganglia with multiple areas of the cerebral cortex. Interactions between these loops have traditionally been thought to occur mainly at the level of the cerebral cortex. Here, we review a series of recent anatomical studies in nonhuman primates that challenge this perspective. We show that the anatomical substrate exists for substantial interactions between the cerebellum and the basal ganglia. Furthermore, we discuss how these pathways may provide a useful framework for understanding cerebellar contributions to the manifestation of two prototypical basal ganglia disorders, Parkinson's disease and dystonia.
Collapse
Affiliation(s)
- Andreea C Bostan
- Center for the Neural Basis of Cognition, Systems Neuroscience Institute, and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
44
|
Sirotin YB, Das A. Spatial Relationship between Flavoprotein Fluorescence and the Hemodynamic Response in the Primary Visual Cortex of Alert Macaque Monkeys. FRONTIERS IN NEUROENERGETICS 2010; 2:6. [PMID: 20577638 PMCID: PMC2890124 DOI: 10.3389/fnene.2010.00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/10/2010] [Indexed: 11/13/2022]
Abstract
Flavoprotein fluorescence imaging (FFI) is a novel intrinsic optical signal that is steadily gaining ground as a valuable imaging tool in neuroscience research due to its closer relationship with local metabolism relative to the more commonly used hemodynamic signals. We have developed a technique for FFI imaging in the primary visual cortex (V1) of alert monkeys. Due to the nature of neurovascular coupling, hemodynamic signals are known to spread beyond the locus of metabolic activity. To determine whether FFI signals could provide a more focal measure of cortical activity in alert animals, we compared FFI and hemodynamic point spreads (i.e. responses to a minimal visual stimulus) and functional mapping signals over V1 in macaques performing simple fixation tasks. FFI responses were biphasic, with an early and focal fluorescence increase followed by a delayed and spatially broader fluorescence decrease. As expected, the early fluorescence increase, indicating increased local oxidative metabolism, was somewhat narrower than the simultaneously observed hemodynamic response. However, the later FFI decrease was broader than the hemodynamic response and started prior to the cessation of visual stimulation suggesting different mechanisms underlying the two phases of the fluorescence signal. FFI mapping signals were free of vascular artifacts and comparable in amplitude to hemodynamic mapping signals. These results indicate that the FFI response may be a more local and direct indicator of cortical metabolism than the hemodynamic response in alert animals.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW In the past 18 months, several important studies in neuroimaging, epidemiology of dystonia and animal models have been published. Moreover, new advances in genetics have broadened the spectrum of dystonia. Here, we discuss these findings and their implication in the pathophysiology of dystonia. RECENT FINDINGS From neurophysiological studies and animal models, converging arguments support the role of combined corticostriatal, cerebellar and dopaminergic dysfunctions in the pathophysiology of dystonia. A large study in epidemiology identified several risk factors associated with writer's cramp (time spent handwriting each day and the additional burden of an abrupt increase in the writing time in the year before onset). Important studies on the abnormal structure-function relationship in hereditary and sporadic dystonia explored the relationship between genotype, phenotype and endophenotype. SUMMARY Different pathophysiological mechanisms may underlie similar phenotypes whereas different genotypes may share similar functional abnormalities. The respective roles of corticostriatal-cortical and cerebellar loops remain to be clarified as the original causative process (either degenerative or developmental) is accompanied by functional reorganization.
Collapse
|
46
|
The oscillating brain: complex and reliable. Neuroimage 2009; 49:1432-45. [PMID: 19782143 DOI: 10.1016/j.neuroimage.2009.09.037] [Citation(s) in RCA: 1122] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/18/2009] [Accepted: 09/17/2009] [Indexed: 11/22/2022] Open
Abstract
The human brain is a complex dynamic system capable of generating a multitude of oscillatory waves in support of brain function. Using fMRI, we examined the amplitude of spontaneous low-frequency oscillations (LFO) observed in the human resting brain and the test-retest reliability of relevant amplitude measures. We confirmed prior reports that gray matter exhibits higher LFO amplitude than white matter. Within gray matter, the largest amplitudes appeared along mid-brain structures associated with the "default-mode" network. Additionally, we found that high-amplitude LFO activity in specific brain regions was reliable across time. Furthermore, parcellation-based results revealed significant and highly reliable ranking orders of LFO amplitudes among anatomical parcellation units. Detailed examination of individual low frequency bands showed distinct spatial profiles. Intriguingly, LFO amplitudes in the slow-4 (0.027-0.073 Hz) band, as defined by Buzsáki et al., were most robust in the basal ganglia, as has been found in spontaneous electrophysiological recordings in the awake rat. These results suggest that amplitude measures of LFO can contribute to further between-group characterization of existing and future "resting-state" fMRI datasets.
Collapse
|