1
|
Hana TA, Mousa VG, Lin A, Haj-Hussein RN, Michael AH, Aziz MN, Kamaridinova SU, Basnet S, Ormerod KG. Developmental and physiological impacts of pathogenic human huntingtin protein in the nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610525. [PMID: 39257834 PMCID: PMC11383668 DOI: 10.1101/2024.08.30.610525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder, part of the nine identified inherited polyglutamine (polyQ) diseases. Most commonly, HD pathophysiology manifests in middle-aged adults with symptoms including progressive loss of motor control, cognitive decline, and psychiatric disturbances. Associated with the pathophysiology of HD is the formation of insoluble fragments of the huntingtin protein (htt) that tend to aggregate in the nucleus and cytoplasm of neurons. To track both the intracellular progression of the aggregation phenotype as well as the physiological deficits associated with mutant htt, two constructs of human HTT were expressed with varying polyQ lengths, non-pathogenic-htt (Q15, NP-htt) and pathogenic-htt (Q138, P-htt), with an N-terminal RFP tag for in vivo visualization. P-htt aggregates accumulate in the ventral nerve cord cell bodies as early as 24 hours post hatching and significant aggregates form in the segmental nerve branches at 48 hours post hatching. Organelle trafficking up-and downstream of aggregates formed in motor neurons showed severe deficits in trafficking dynamics. To explore putative downstream deficits of htt aggregation, ultrastructural changes of presynaptic motor neurons and muscles were assessed, but no significant effects were observed. However, the force and kinetics of muscle contractions were severely affected in P-htt animals, reminiscent of human chorea. Reduced muscle force production translated to altered locomotory behavior. A novel HD aggregation model was established to track htt aggregation throughout adulthood in the wing, showing similar aggregation patterns with larvae. Expressing P-htt in the adult nervous system resulted in significantly reduced lifespan, which could be partially rescued by feeding flies the mTOR inhibitor rapamycin. These findings advance our understanding of htt aggregate progression as well the downstream physiological impacts on the nervous system and peripheral tissues.
Collapse
|
2
|
Peng YJ, Geng J, Wu Y, Pinales C, Langen J, Chang YC, Buser C, Chang KT. Minibrain kinase and calcineurin coordinate activity-dependent bulk endocytosis through synaptojanin. J Cell Biol 2021; 220:212674. [PMID: 34596663 PMCID: PMC8491876 DOI: 10.1083/jcb.202011028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Neurons use multiple modes of endocytosis, including clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE), during mild and intense neuronal activity, respectively, to maintain stable neurotransmission. While molecular players modulating CME are well characterized, factors regulating ADBE and mechanisms coordinating CME and ADBE activations remain poorly understood. Here we report that Minibrain/DYRK1A (Mnb), a kinase mutated in autism and up-regulated in Down's syndrome, plays a novel role in suppressing ADBE. We demonstrate that Mnb, together with calcineurin, delicately coordinates CME and ADBE by controlling the phosphoinositol phosphatase activity of synaptojanin (Synj) during varying synaptic demands. Functional domain analyses reveal that Synj's 5'-phosphoinositol phosphatase activity suppresses ADBE, while SAC1 activity is required for efficient ADBE. Consequently, Parkinson's disease mutation in Synj's SAC1 domain impairs ADBE. These data identify Mnb and Synj as novel regulators of ADBE and further indicate that CME and ADBE are differentially governed by Synj's dual phosphatase domains.
Collapse
Affiliation(s)
- Yi-Jheng Peng
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Junhua Geng
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ying Wu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Jennifer Langen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yen-Ching Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Karen T Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA.,Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
3
|
Guan Z, Quiñones-Frías MC, Akbergenova Y, Littleton JT. Drosophila Synaptotagmin 7 negatively regulates synaptic vesicle release and replenishment in a dosage-dependent manner. eLife 2020; 9:e55443. [PMID: 32343229 PMCID: PMC7224696 DOI: 10.7554/elife.55443] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023] Open
Abstract
Synchronous neurotransmitter release is triggered by Ca2+ binding to the synaptic vesicle protein Synaptotagmin 1, while asynchronous fusion and short-term facilitation is hypothesized to be mediated by plasma membrane-localized Synaptotagmin 7 (SYT7). We generated mutations in Drosophila Syt7 to determine if it plays a conserved role as the Ca2+ sensor for these processes. Electrophysiology and quantal imaging revealed evoked release was elevated 2-fold. Syt7 mutants also had a larger pool of readily-releasable vesicles, faster recovery following stimulation, and intact facilitation. Syt1/Syt7 double mutants displayed more release than Syt1 mutants alone, indicating SYT7 does not mediate the residual asynchronous release remaining in the absence of SYT1. SYT7 localizes to an internal membrane tubular network within the peri-active zone, but does not enrich at active zones. These findings indicate the two Ca2+ sensor model of SYT1 and SYT7 mediating all phases of neurotransmitter release and facilitation is not applicable at Drosophila synapses.
Collapse
Affiliation(s)
- Zhuo Guan
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Monica C Quiñones-Frías
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
4
|
Robinson SW, Bourgognon JM, Spiers JG, Breda C, Campesan S, Butcher A, Mallucci GR, Dinsdale D, Morone N, Mistry R, Smith TM, Guerra-Martin M, Challiss RAJ, Giorgini F, Steinert JR. Nitric oxide-mediated posttranslational modifications control neurotransmitter release by modulating complexin farnesylation and enhancing its clamping ability. PLoS Biol 2018; 16:e2003611. [PMID: 29630591 PMCID: PMC5890968 DOI: 10.1371/journal.pbio.2003611] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/20/2018] [Indexed: 11/18/2022] Open
Abstract
Nitric oxide (NO) regulates neuronal function and thus is critical for tuning neuronal communication. Mechanisms by which NO modulates protein function and interaction include posttranslational modifications (PTMs) such as S-nitrosylation. Importantly, cross signaling between S-nitrosylation and prenylation can have major regulatory potential. However, the exact protein targets and resulting changes in function remain elusive. Here, we interrogated the role of NO-dependent PTMs and farnesylation in synaptic transmission. We found that NO compromises synaptic function at the Drosophila neuromuscular junction (NMJ) in a cGMP-independent manner. NO suppressed release and reduced the size of available vesicle pools, which was reversed by glutathione (GSH) and occluded by genetic up-regulation of GSH-generating and de-nitrosylating glutamate-cysteine-ligase and S-nitroso-glutathione reductase activities. Enhanced nitrergic activity led to S-nitrosylation of the fusion-clamp protein complexin (cpx) and altered its membrane association and interactions with active zone (AZ) and soluble N-ethyl-maleimide-sensitive fusion protein Attachment Protein Receptor (SNARE) proteins. Furthermore, genetic and pharmacological suppression of farnesylation and a nitrosylation mimetic mutant of cpx induced identical physiological and localization phenotypes as caused by NO. Together, our data provide evidence for a novel physiological nitrergic molecular switch involving S-nitrosylation, which reversibly suppresses farnesylation and thereby enhances the net-clamping function of cpx. These data illustrate a new mechanistic signaling pathway by which regulation of farnesylation can fine-tune synaptic release.
Collapse
Affiliation(s)
- Susan W. Robinson
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | | | - Jereme G. Spiers
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Carlo Breda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Susanna Campesan
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Adrian Butcher
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Giovanna R. Mallucci
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David Dinsdale
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Nobuhiro Morone
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Raj Mistry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Tim M. Smith
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | | | - R. A. John Challiss
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Joern R. Steinert
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Guan Z, Bykhovskaia M, Jorquera RA, Sutton RB, Akbergenova Y, Littleton JT. A synaptotagmin suppressor screen indicates SNARE binding controls the timing and Ca 2+ cooperativity of vesicle fusion. eLife 2017; 6:28409. [PMID: 28895532 PMCID: PMC5617632 DOI: 10.7554/elife.28409] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/11/2017] [Indexed: 01/05/2023] Open
Abstract
The synaptic vesicle Ca2+ sensor Synaptotagmin binds Ca2+ through its two C2 domains to trigger membrane interactions. Beyond membrane insertion by the C2 domains, other requirements for Synaptotagmin activity are still being elucidated. To identify key residues within Synaptotagmin required for vesicle cycling, we took advantage of observations that mutations in the C2B domain Ca2+-binding pocket dominantly disrupt release from invertebrates to humans. We performed an intragenic screen for suppressors of lethality induced by expression of Synaptotagmin C2B Ca2+-binding mutants in Drosophila. This screen uncovered essential residues within Synaptotagmin that suggest a structural basis for several activities required for fusion, including a C2B surface implicated in SNARE complex interaction that is required for rapid synchronization and Ca2+ cooperativity of vesicle release. Using electrophysiological, morphological and computational characterization of these mutants, we propose a sequence of molecular interactions mediated by Synaptotagmin that promote Ca2+ activation of the synaptic vesicle fusion machinery.
Collapse
Affiliation(s)
- Zhuo Guan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Maria Bykhovskaia
- Department of Neurology, School of Medicine, Wayne State University, Detroit, United States
| | - Ramon A Jorquera
- Neuroscience Department, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - Roger Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, United States
| | - Yulia Akbergenova
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - J Troy Littleton
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
6
|
Complexin Mutants Reveal Partial Segregation between Recycling Pathways That Drive Evoked and Spontaneous Neurotransmission. J Neurosci 2017; 37:383-396. [PMID: 28077717 DOI: 10.1523/jneurosci.1854-16.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 11/21/2022] Open
Abstract
Synaptic vesicles fuse at morphological specializations in the presynaptic terminal termed active zones (AZs). Vesicle fusion can occur spontaneously or in response to an action potential. Following fusion, vesicles are retrieved and recycled within nerve terminals. It is still unclear whether vesicles that fuse spontaneously or following evoked release share similar recycling mechanisms. Genetic deletion of the SNARE-binding protein complexin dramatically increases spontaneous fusion, with the protein serving as the synaptic vesicle fusion clamp at Drosophila synapses. We examined synaptic vesicle recycling pathways at complexin null neuromuscular junctions, where spontaneous release is dramatically enhanced. We combined loading of the lipophilic dye FM1-43 with photoconversion, electron microscopy, and electrophysiology to monitor evoked and spontaneous recycling vesicle pools. We found that the total number of recycling vesicles was equal to those retrieved through spontaneous and evoked pools, suggesting that retrieval following fusion is partially segregated for spontaneous and evoked release. In addition, the kinetics of FM1-43 destaining and synaptic depression measured in the presence of the vesicle-refilling blocker bafilomycin indicated that spontaneous and evoked recycling pools partially intermix during the release process. Finally, FM1-43 photoconversion combined with electron microscopy analysis indicated that spontaneous recycling preferentially involves synaptic vesicles in the vicinity of AZs, whereas vesicles recycled following evoked release involve a larger intraterminal pool. Together, these results suggest that spontaneous and evoked vesicles use separable recycling pathways and then partially intermix during subsequent rounds of fusion. SIGNIFICANCE STATEMENT Neurotransmitter release involves fusion of synaptic vesicles with the plasma membrane in response to an action potential, or spontaneously in the absence of stimulation. Upon fusion, vesicles are retrieved and recycled, and it is unclear whether recycling pathways for evoked and spontaneous vesicles are segregated after fusion. We addressed this question by taking advantage of preparations lacking the synaptic protein complexin, which have elevated spontaneous release that enables reliable tracking of the spontaneous recycling pool. Our results suggest that spontaneous and evoked recycling pathways are segregated during the retrieval process but can partially intermix during stimulation.
Collapse
|
7
|
Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools. J Neurosci 2017; 36:8882-94. [PMID: 27559170 DOI: 10.1523/jneurosci.1470-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/14/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools. SIGNIFICANCE STATEMENT Synaptic vesicle endocytosis sustains communication between neurons during a wide range of neuronal activities by recycling used vesicle membrane and protein components. Here we identify that Synaptojanin, a protein with a known role in synaptic vesicle endocytosis, is phosphorylated at S1029 in vivo by the Minibrain kinase. We further demonstrate that the phosphorylation status of Synaptojanin at S1029 differentially regulates its participation in the recycling of distinct synaptic vesicle pools. Our results reveal a new role for Synaptojanin in maintaining synaptic vesicle pool size and in reserve vesicle endocytosis. As Synaptojanin and Minibrain perturbations are associated with various neurological disorders, such as Parkinson's, autism, and Down syndrome, understanding mechanisms modulating Synaptojanin function provides valuable insights into processes affecting neuronal communication.
Collapse
|
8
|
Tao J, Bulgari D, Deitcher DL, Levitan ES. Limited distal organelles and synaptic function in extensive monoaminergic innervation. J Cell Sci 2017; 130:2520-2529. [PMID: 28600320 DOI: 10.1242/jcs.201111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/05/2017] [Indexed: 12/20/2022] Open
Abstract
Organelles such as neuropeptide-containing dense-core vesicles (DCVs) and mitochondria travel down axons to supply synaptic boutons. DCV distribution among en passant boutons in small axonal arbors is mediated by circulation with bidirectional capture. However, it is not known how organelles are distributed in extensive arbors associated with mammalian dopamine neuron vulnerability, and with volume transmission and neuromodulation by monoamines and neuropeptides. Therefore, we studied presynaptic organelle distribution in Drosophila octopamine neurons that innervate ∼20 muscles with ∼1500 boutons. Unlike in smaller arbors, distal boutons in these arbors contain fewer DCVs and mitochondria, although active zones are present. Absence of vesicle circulation is evident by proximal nascent DCV delivery, limited impact of retrograde transport and older distal DCVs. Traffic studies show that DCV axonal transport and synaptic capture are not scaled for extensive innervation, thus limiting distal delivery. Activity-induced synaptic endocytosis and synaptic neuropeptide release are also reduced distally. We propose that limits in organelle transport and synaptic capture compromise distal synapse maintenance and function in extensive axonal arbors, thereby affecting development, plasticity and vulnerability to neurodegenerative disease.
Collapse
Affiliation(s)
- Juan Tao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dinara Bulgari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David L Deitcher
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Edwin S Levitan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
9
|
Vasin A, Volfson D, Littleton JT, Bykhovskaia M. Interaction of the Complexin Accessory Helix with Synaptobrevin Regulates Spontaneous Fusion. Biophys J 2016; 111:1954-1964. [PMID: 27806277 PMCID: PMC5102999 DOI: 10.1016/j.bpj.2016.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022] Open
Abstract
Neuronal transmitters are released from nerve terminals via the fusion of synaptic vesicles with the plasma membrane. Vesicles attach to membranes via a specialized protein machinery composed of membrane-attached (t-SNARE) and vesicle-attached (v-SNARE) proteins that zipper together to form a coiled-coil SNARE bundle that brings the two fusing membranes into close proximity. Neurotransmitter release may occur either in response to an action potential or through spontaneous fusion. A cytosolic protein, Complexin (Cpx), binds the SNARE complex and restricts spontaneous exocytosis by acting as a fusion clamp. We previously proposed a model in which the interaction between Cpx and the v-SNARE serves as a spring to prevent premature zippering of the SNARE complex, thereby reducing the likelihood of fusion. To test this model, we combined molecular-dynamics (MD) simulations and site-directed mutagenesis of Cpx and SNAREs in Drosophila. MD simulations of the Drosophila Cpx-SNARE complex demonstrated that Cpx's interaction with the v-SNARE promotes unraveling of the v-SNARE off the core SNARE bundle. We investigated clamping properties in the syx3-69 paralytic mutant, which has a single-point mutation in the t-SNARE and displays enhanced spontaneous release. MD simulations demonstrated an altered interaction of Cpx with the SNARE bundle that hindered v-SNARE unraveling by Cpx, thus compromising clamping. We used our model to predict mutations that should enhance the ability of Cpx to prevent full assembly of the SNARE complex. MD simulations predicted that a weakened interaction between the Cpx accessory helix and the v-SNARE would enhance Cpx flexibility and thus promote separation of SNAREs, reducing spontaneous fusion. We generated transgenic Drosophila with mutations in Cpx and the v-SNARE that disrupted a salt bridge between these two proteins. As predicted, both lines demonstrated a selective inhibition in spontaneous release, suggesting that Cpx acts as a fusion clamp that restricts full SNARE zippering.
Collapse
Affiliation(s)
- Alexander Vasin
- Department of Neurology, Wayne State University, Detroit, Michigan
| | - Dina Volfson
- Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Maria Bykhovskaia
- Department of Neurology, Wayne State University, Detroit, Michigan; Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan.
| |
Collapse
|
10
|
Winther ÅME, Vorontsova O, Rees KA, Näreoja T, Sopova E, Jiao W, Shupliakov O. An Endocytic Scaffolding Protein together with Synapsin Regulates Synaptic Vesicle Clustering in the Drosophila Neuromuscular Junction. J Neurosci 2015; 35:14756-70. [PMID: 26538647 PMCID: PMC6605226 DOI: 10.1523/jneurosci.1675-15.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 11/21/2022] Open
Abstract
Many endocytic proteins accumulate in the reserve pool of synaptic vesicles (SVs) in synapses and relocalize to the endocytic periactive zone during neurotransmitter release. Currently little is known about their functions outside the periactive zone. Here we show that in the Drosophila neuromuscular junction (NMJ), the endocytic scaffolding protein Dap160 colocalizes during the SV cycle and forms a functional complex with the SV-associated phosphoprotein synapsin, previously implicated in SV clustering. This direct interaction is strongly enhanced under phosphorylation-promoting conditions and is essential for proper localization of synapsin at NMJs. In a dap160 rescue mutant lacking the interaction between Dap160 and synapsin, perturbed reclustering of SVs during synaptic activity is observed. Our data indicate that in addition to the function in endocytosis, Dap160 is a component of a network of protein-protein interactions that serves for clustering of SVs in conjunction with synapsin. During the SV cycle, Dap160 interacts with synapsin dispersed from SVs and helps direct synapsin back to vesicles. The proteins function in synergy to achieve efficient clustering of SVs in the reserve pool. SIGNIFICANCE STATEMENT We provide the first evidence for the function of the SH3 domain interaction in synaptic vesicle (SV) organization at the synaptic active zone. Using Drosophila neuromuscular junction as a model synapse, we describe the molecular mechanism that enables the protein implicated in SV clustering, synapsin, to return to the pool of vesicles during neurotransmitter release. We also identify the endocytic scaffolding complex that includes Dap160 as a regulator of the events linking exocytosis and endocytosis in synapses.
Collapse
Affiliation(s)
- Åsa M E Winther
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Olga Vorontsova
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kathryn A Rees
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tuomas Näreoja
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Elena Sopova
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Wei Jiao
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Oleg Shupliakov
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
11
|
Disruption of Endocytosis with the Dynamin Mutant shibirets1 Suppresses Seizures in Drosophila. Genetics 2015; 201:1087-102. [PMID: 26341658 DOI: 10.1534/genetics.115.177600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
One challenge in modern medicine is to control epilepsies that do not respond to currently available medications. Since seizures consist of coordinated and high-frequency neural activity, our goal was to disrupt neurotransmission with a synaptic transmission mutant and evaluate its ability to suppress seizures. We found that the mutant shibire, encoding dynamin, suppresses seizure-like activity in multiple seizure-sensitive Drosophila genotypes, one of which resembles human intractable epilepsy in several aspects. Because of the requirement of dynamin in endocytosis, increased temperature in the shi(ts1) mutant causes impairment of synaptic vesicle recycling and is associated with suppression of the seizure-like activity. Additionally, we identified the giant fiber neuron as critical in the seizure circuit and sufficient to suppress seizures. Overall, our results implicate mutant dynamin as an effective seizure suppressor, suggesting that targeting or limiting the availability of synaptic vesicles could be an effective and general method of controlling epilepsy disorders.
Collapse
|
12
|
Kisiel M, McKenzie K, Stewart B. Localization and mobility of synaptic vesicles in Myosin VI mutants of Drosophila. PLoS One 2014; 9:e102988. [PMID: 25062032 PMCID: PMC4111356 DOI: 10.1371/journal.pone.0102988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/26/2014] [Indexed: 11/25/2022] Open
Abstract
Background At the Drosophila neuromuscular junction (NMJ), synaptic vesicles are mobile; however, the mechanisms that regulate vesicle traffic at the nerve terminal are not fully understood. Myosin VI has been shown to be important for proper synaptic physiology and morphology at the NMJ, likely by functioning as a vesicle tether. Here we investigate vesicle dynamics in Myosin VI mutants of Drosophila. Results In Drosophila, Myosin VI is encoded by the gene, jaguar (jar). To visualize active vesicle cycling we used FM dye loading and compared loss of function alleles of jar with controls. These studies revealed a differential distribution of vesicles at the jar mutant nerve terminal, with the newly endocytosed vesicles observed throughout the mutant boutons in contrast to the peripheral localization visualized at control NMJs. This finding is consistent with a role for Myosin VI in restraining vesicle mobility at the synapse to ensure proper localization. To further investigate regulation of vesicle dynamics by Myosin VI, FRAP analysis was used to analyze movement of GFP-labeled synaptic vesicles within individual boutons. FRAP revealed that synaptic vesicles are moving more freely in the jar mutant boutons, indicated by changes in initial bleach depth and rapid recovery of fluorescence following photobleaching. Conclusion This data provides insights into the role for Myosin VI in mediating synaptic vesicle dynamics at the nerve terminal. We observed mislocalization of actively cycling vesicles and an apparent increase in vesicle mobility when Myosin VI levels are reduced. These observations support the notion that a major function of Myosin VI in the nerve terminal is tethering synaptic vesicles to proper sub-cellular location within the bouton.
Collapse
Affiliation(s)
- Marta Kisiel
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Kristopher McKenzie
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Bryan Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
13
|
Bykhovskaia M, Jagota A, Gonzalez A, Vasin A, Littleton JT. Interaction of the complexin accessory helix with the C-terminus of the SNARE complex: molecular-dynamics model of the fusion clamp. Biophys J 2014; 105:679-90. [PMID: 23931316 DOI: 10.1016/j.bpj.2013.06.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/05/2013] [Accepted: 06/14/2013] [Indexed: 11/25/2022] Open
Abstract
SNARE complexes form between the synaptic vesicle protein synaptobrevin and the plasma membrane proteins syntaxin and SNAP25 to drive membrane fusion. A cytosolic protein, complexin (Cpx), binds to the SNARE bundle, and its accessory helix (AH) functions to clamp synaptic vesicle fusion. We performed molecular-dynamics simulations of the SNARE/Cpx complex and discovered that at equilibrium the Cpx AH forms tight links with both synaptobrevin and SNAP25. To simulate the effect of electrostatic repulsion between vesicle and membrane on the SNARE complex, we calculated the electrostatic force and performed simulations with an external force applied to synaptobrevin. We found that the partially unzipped state of the SNARE bundle can be stabilized by interactions with the Cpx AH, suggesting a simple mechanistic explanation for the role of Cpx in fusion clamping. To test this model, we performed experimental and computational characterizations of the syx(3-69)Drosophila mutant, which has a point mutation in syntaxin that causes increased spontaneous fusion. We found that this mutation disrupts the interaction of the Cpx AH with synaptobrevin, partially imitating the cpx null phenotype. Our results support a model in which the Cpx AH clamps fusion by binding to the synaptobrevin C-terminus, thus preventing full SNARE zippering.
Collapse
Affiliation(s)
- Maria Bykhovskaia
- Neuroscience Department, Universidad Central del Caribe, Bayamon, Puerto Rico.
| | | | | | | | | |
Collapse
|
14
|
Wu WH, Cooper R. Physiological separation of vesicle pools in low- and high-output nerve terminals. Neurosci Res 2013; 75:275-82. [DOI: 10.1016/j.neures.2013.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/18/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
15
|
The regulation and packaging of synaptic vesicles as related to recruitment within glutamatergic synapses. Neuroscience 2012; 225:185-98. [DOI: 10.1016/j.neuroscience.2012.08.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 11/18/2022]
|
16
|
Ratnayaka A, Marra V, Bush D, Burden JJ, Branco T, Staras K. Recruitment of resting vesicles into recycling pools supports NMDA receptor-dependent synaptic potentiation in cultured hippocampal neurons. J Physiol 2012; 590:1585-97. [PMID: 22271866 PMCID: PMC3413500 DOI: 10.1113/jphysiol.2011.226688] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Most presynaptic terminals in the central nervous system are characterized by two functionally distinct vesicle populations: a recycling pool, which supports action potential-driven neurotransmitter release via vesicle exocytosis, and a resting pool. The relative proportions of these two pools are highly variable between individual synapses, prompting speculation on their specific relationship, and on the possible functions of the resting pool. Using fluorescence imaging of FM-styryl dyes and synaptophysinI-pHluorin (sypHy) as well as correlative electron microscopy approaches, we show here that Hebbian plasticity-dependent changes in synaptic strength in rat hippocampal neurons can increase the recycling pool fraction at the expense of the resting pool in individual synaptic terminals. This recruitment process depends on NMDA-receptor activation, nitric oxide signalling and calcineurin and is accompanied by an increase in the probability of neurotransmitter release at individual terminals. Blockade of actin-mediated intersynaptic vesicle exchange does not prevent recycling pool expansion demonstrating that vesicle recruitment is intrasynaptic. We propose that the conversion of resting pool vesicles to the functionally recycling pool provides a rapid mechanism to implement long-lasting changes in presynaptic efficacy.
Collapse
Affiliation(s)
- Arjuna Ratnayaka
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | | | | | | | | | |
Collapse
|
17
|
Long R, Hui CY, Jagota A, Bykhovskaia M. Adhesion energy can regulate vesicle fusion and stabilize partially fused states. J R Soc Interface 2012; 9:1555-67. [PMID: 22258550 DOI: 10.1098/rsif.2011.0827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Release of neurotransmitters from nerve terminals occurs by fusion of synaptic vesicles with the plasma membrane, and this process is highly regulated. Although major molecular components that control docking and fusion of vesicles to the synaptic membrane have been identified, the detailed mechanics of this process is not yet understood. We have developed a mathematical model that predicts how adhesion forces imposed by docking and fusion molecular machinery would affect the fusion process. We have computed the membrane stress that is produced by adhesion-driven vesicle bending and find that it is compressive. Further, our computations of the membrane curvature predict that strong adhesion can create a metastable state with a partially opened pore that would correspond to the 'kiss and run' release mode. Our model predicts that the larger the vesicle size, the more likely the metastable state with a transiently opened pore. These results contribute to understanding the mechanics of the fusion process, including possible clamping of the fusion by increasing molecular adhesion, and a balance between 'kiss and run' and full collapse fusion modes.
Collapse
Affiliation(s)
- Rong Long
- Field of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY, USA.
| | | | | | | |
Collapse
|
18
|
Bykhovskaia M. Synapsin regulation of vesicle organization and functional pools. Semin Cell Dev Biol 2011; 22:387-92. [PMID: 21827866 DOI: 10.1016/j.semcdb.2011.07.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022]
Abstract
Synaptic vesicles are organized in clusters, and synapsin maintains vesicle organization and abundance in nerve terminals. At the functional level, vesicles can be subdivided into three pools: the releasable pool, the recycling pool, and the reserve pool, and synapsin mediates transitions between these pools. Synapsin directs vesicles into the reserve pool, and synapsin II isoform has a primary role in this function. In addition, synapsin actively delivers vesicles to active zones. Finally, synapsin I isoform mediates coupling release events to action potentials at the latest stages of exocytosis. Thus, synapsin is involved in multiple stages of the vesicle cycle, including vesicle clustering, maintaining the reserve pool, vesicle delivery to active zones, and synchronizing release events. These processes are regulated via a dynamic synapsin phosphorylation/dephosphorylation cycle which involves multiple phosphorylation sites and several pathways. Different synapsin isoforms have unique and non-redundant roles in the multifaceted synapsin function.
Collapse
Affiliation(s)
- Maria Bykhovskaia
- Universidad Central del Caribe, Neuroscience Department, 2U6 Ave Laurel, Bayamon, PR 00956, USA.
| |
Collapse
|
19
|
Modla S, Czymmek KJ. Correlative microscopy: a powerful tool for exploring neurological cells and tissues. Micron 2011; 42:773-92. [PMID: 21782457 DOI: 10.1016/j.micron.2011.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 11/24/2022]
Abstract
Imaging tools for exploring the neurological samples have seen a rapid transformation over the last decade. Approaches that allow clear and specific delineation of targeted tissues, individual neurons, and their cell-cell connections as well as subcellular constituents have been especially valuable. Considering the significant complexity and extent to which the nervous system interacts with every organ system in the body, one non-trivial challenge has been how to identify and target specific structures and pathologies by microscopy. To this end, correlative methods enable one to view the same exact structure of interest utilizing the capabilities of typically separate, but powerful, microscopy platforms. As such, correlative microscopy is well-positioned to address the three critical problems of identification, scale, and resolution inherent to neurological systems. Furthermore, the application of multiple imaging platforms to the study of singular biological events enables more detailed investigations of structure-function relationships to be conducted, greatly facilitating our understanding of relevant phenomenon. This comprehensive review provides an overview of methods for correlative microscopy, including histochemistry, transgenic markers, immunocytochemistry, photo-oxidation as well as various probes and tracers. An emphasis is placed on correlative light and electron microscopic strategies used to facilitate relocation of neurological structures. Correlative microscopy is an invaluable tool for neurological research, and we fully anticipate developments in automation of the process, and the increasing availability of genomic and transgenic tools will facilitate the adoption of correlative microscopy as the method of choice for many imaging experiments.
Collapse
Affiliation(s)
- Shannon Modla
- Delaware Biotechnology Institute, Bio-Imaging Center, 15 Innovation Way, Suite 117, Newark, DE 19711, USA.
| | | |
Collapse
|
20
|
Seabrooke S, Stewart BA. Synaptic transmission and plasticity are modulated by nonmuscle myosin II at the neuromuscular junction of Drosophila. J Neurophysiol 2011; 105:1966-76. [PMID: 21325687 DOI: 10.1152/jn.00718.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The synaptic vesicle population in a nerve terminal is traditionally divided into subpopulations according to physiological criteria; the readily releasable pool (RRP), the recycling pool, and the reserve pool. It is recognized that the RRP subserves synaptic transmission evoked by low-frequency neural activity and that the recycling and reserve populations are called on to supply vesicles as neural activity increases. Here we investigated the contribution of nonmuscle myosin II (NMMII) to synaptic transmission with emphasis on the role a motor protein could play in the supply of vesicles. We used Drosophila genetics to manipulate NMMII and assessed synaptic transmission at the larval neuromuscular junction. We observed a positive correlation between synaptic strength at low-frequency stimulation and NMMII expression: reducing NMMII reduced the evoked response, while increasing NMMII increased the evoked response. Further, we found that NMMII contributed to the spontaneous release of vesicles differentially from evoked release, suggesting differential contribution to these two release mechanisms. By measuring synaptic responses under conditions of differing external calcium concentration in saline, we found that NMMII is important for normal synaptic transmission under high-frequency stimulation. This research identifies diverse functions for NMMII in synaptic transmission and suggests that this motor protein is an active contributor to the physiology of synaptic vesicle recruitment.
Collapse
Affiliation(s)
- Sara Seabrooke
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | | |
Collapse
|
21
|
Denker A, Rizzoli SO. Synaptic vesicle pools: an update. Front Synaptic Neurosci 2010; 2:135. [PMID: 21423521 PMCID: PMC3059705 DOI: 10.3389/fnsyn.2010.00135] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 08/02/2010] [Indexed: 12/04/2022] Open
Abstract
During the last few decades synaptic vesicles have been assigned to a variety of functional and morphological classes or “pools”. We have argued in the past (Rizzoli and Betz, 2005) that synaptic activity in several preparations is accounted for by the function of three vesicle pools: the readily releasable pool (docked at active zones and ready to go upon stimulation), the recycling pool (scattered throughout the nerve terminals and recycling upon moderate stimulation), and finally the reserve pool (occupying most of the vesicle clusters and only recycling upon strong stimulation). We discuss here the advancements in the vesicle pool field which took place in the ensuing years, focusing on the behavior of different pools under both strong stimulation and physiological activity. Several new findings have enhanced the three-pool model, with, for example, the disparity between recycling and reserve vesicles being underlined by the observation that the former are mobile, while the latter are “fixed”. Finally, a number of altogether new concepts have also evolved such as the current controversy on the identity of the spontaneously recycling vesicle pool.
Collapse
Affiliation(s)
- Annette Denker
- European Neuroscience Institute, DFG Center for Molecular Physiology of the Brain Göttingen, Germany
| | | |
Collapse
|
22
|
Akbergenova Y, Bykhovskaia M. Synapsin regulates vesicle organization and activity-dependent recycling at Drosophila motor boutons. Neuroscience 2010; 170:441-52. [PMID: 20638447 DOI: 10.1016/j.neuroscience.2010.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 07/08/2010] [Accepted: 07/12/2010] [Indexed: 11/28/2022]
Abstract
Synapsin is a phosphoprotein reversibly associated with synaptic vesicles. We investigated synapsin function in mediating synaptic activity during intense stimulation at Drosophila motor boutons. Electron microscopy analysis of synapsin(-) boutons demonstrated that synapsin maintains vesicle clustering over the periphery of the bouton. Cyclosporin A pretreatment disrupted peripheral vesicle clustering, presumably due to increasing synapsin phosphorylated state. Labeling recycling vesicles with a fluorescent dye FM1-43 followed by photoconversion of the dye into electron dense product demonstrated that synapsin deficiency does not affect mixing of the reserve and recycling vesicle pools but selectively reduces the size of the reserve pool. Intense stimulation produced a significant increase in vesicle abundance and vesicle redistribution toward the central core of synapsin (+) boutons, while in synapsin (-) boutons the area occupied by vesicles did not change and the increase in vesicle numbers was not as prominent. However, intense stimulation produced an increase in basal release at synapsin(-) but not in synapsin(+) boutons, suggesting that synapsin may direct vesicles to the reserve pool. Finally, synapsin deficiency inhibited an increase in quantal size and formation of endosome-like cisternae, which was activated either by intense electrical stimulation or by high K(+) application. Taken together, these results elucidate a novel synapsin function, specifically, promoting vesicle reuptake and reserve pool formation upon intense stimulation.
Collapse
Affiliation(s)
- Y Akbergenova
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA
| | | |
Collapse
|
23
|
Seabrooke S, Qiu X, Stewart BA. Nonmuscle Myosin II helps regulate synaptic vesicle mobility at the Drosophila neuromuscular junction. BMC Neurosci 2010; 11:37. [PMID: 20233422 PMCID: PMC2853426 DOI: 10.1186/1471-2202-11-37] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 03/16/2010] [Indexed: 11/22/2022] Open
Abstract
Background Although the mechanistic details of the vesicle transport process from the cell body to the nerve terminal are well described, the mechanisms underlying vesicle traffic within nerve terminal boutons is relatively unknown. The actin cytoskeleton has been implicated but exactly how actin or actin-binding proteins participate in vesicle movement is not clear. Results In the present study we have identified Nonmuscle Myosin II as a candidate molecule important for synaptic vesicle traffic within Drosophila larval neuromuscular boutons. Nonmuscle Myosin II was found to be localized at the Drosophila larval neuromuscular junction; genetics and pharmacology combined with the time-lapse imaging technique FRAP were used to reveal a contribution of Nonmuscle Myosin II to synaptic vesicle movement. FRAP analysis showed that vesicle dynamics were highly dependent on the expression level of Nonmuscle Myosin II. Conclusion Our results provide evidence that Nonmuscle Myosin II is present presynaptically, is important for synaptic vesicle mobility and suggests a role for Nonmuscle Myosin II in shuttling vesicles at the Drosophila neuromuscular junction. This work begins to reveal the process by which synaptic vesicles traverse within the bouton.
Collapse
Affiliation(s)
- Sara Seabrooke
- Department of Biology, University of Toronto, Mississauga, ON L5L 1C6, Canada
| | | | | |
Collapse
|
24
|
Abstract
Central nerve terminals release neurotransmitter in response to a wide variety of stimuli. Because maintenance of neurotransmitter release is dependent on the continual supply of synaptic vesicles (SVs), nerve terminals possess an array of endocytosis modes to retrieve and recycle SV membrane and proteins. During mild stimulation conditions, single SV retrieval modes such as clathrin-mediated endocytosis predominate. However, during increased neuronal activity, additional SV retrieval capacity is required, which is provided by activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mechanism during elevated neuronal activity. It is a high capacity SV retrieval mode that is immediately triggered during such stimulation conditions. This review will summarize the current knowledge regarding the molecular mechanism of ADBE, including molecules required for its triggering and subsequent steps, including SV budding from bulk endosomes. The molecular relationship between ADBE and the SV reserve pool will also be discussed. It is becoming clear that an understanding of the molecular physiology of ADBE will be of critical importance in attempts to modulate both normal and abnormal synaptic function during intense neuronal activity.
Collapse
Affiliation(s)
- Emma L. Clayton
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Scotland, U.K
| | - Michael A. Cousin
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Scotland, U.K
| |
Collapse
|