1
|
Bradley C, McCann E, Nydam AS, Dux PE, Mattingley JB. Causal evidence for increased theta and gamma phase consistency in a parieto-frontal network during the maintenance of visual attention. Neuropsychologia 2025; 208:109079. [PMID: 39826797 DOI: 10.1016/j.neuropsychologia.2025.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Endogenous visuo-spatial attention is under the control of a fronto-parietal network of brain regions. One key node in this network, the intra-parietal sulcus (IPS), plays a crucial role in maintaining endogenous attention, but little is known about its ongoing physiology and network dynamics during different attentional states. Here, we investigated the reactivity of the left IPS in response to brain stimulation under different states of selective attention. We recorded electroencephalography (EEG) in response to single pulses of transcranial magnetic stimulation (TMS) of the IPS, while participants (N = 44) viewed bilateral random-dot motion displays. Individual MRI-guided TMS pulses targeted the left IPS, while the left primary somatosensory cortex (S1) served as an active control site. In separate blocks of trials, participants were cued to attend covertly to the motion display in one hemifield (left or right) and to report brief coherent motion targets. The perceptual load of the task was manipulated by varying the degree of motion coherence of the targets. Excitability, variability and information content of the neural responses to TMS were assessed by analysing TMS-evoked potential (TEP) amplitude and inter-trial phase clustering (ITPC), and by performing multivariate decoding of attentional state. Results revealed that a left posterior region displayed reduced variability in the phase of theta and gamma oscillations following TMS of the IPS, but not of S1, when attention was directed contralaterally, rather than ipsilaterally to the stimulation site. A right frontal cluster also displayed reduced theta variability and increased amplitude of TEPs when attention was directed contralaterally rather than ipsilaterally, after TMS of the IPS but not S1. Reliable decoding of attentional state was achieved after TMS pulses of both S1 and IPS. Taken together, our findings suggest that endogenous control of visuo-spatial attention leads to changes in the intrinsic oscillatory properties of the IPS and its associated fronto-parietal network.
Collapse
Affiliation(s)
- Claire Bradley
- Queensland Brain Institute, The University of Queensland, Australia.
| | - Emily McCann
- Queensland Brain Institute, The University of Queensland, Australia
| | - Abbey S Nydam
- Centre for Vision Research VISTA, York University, Canada
| | - Paul E Dux
- School of Psychology, The University of Queensland, Australia
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Australia; School of Psychology, The University of Queensland, Australia; CIFAR, Canada
| |
Collapse
|
2
|
Ma C, Wang C, Zhu D, Chen M, Zhang M, He J. The Investigation of the Relationship Between Individual Pain Perception, Brain Electrical Activity, and Facial Expression Based on Combined EEG and Facial EMG Analysis. J Pain Res 2025; 18:21-32. [PMID: 39776765 PMCID: PMC11705972 DOI: 10.2147/jpr.s477658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Purpose Pain is a multidimensional, unpleasant emotional and sensory experience, and accurately assessing its intensity is crucial for effective management. However, individuals with cognitive impairments or language deficits may struggle to accurately report their pain. EEG provides insight into the neurological aspects of pain, while facial EMG captures the sensory and peripheral muscle responses. Our objective is to explore the relationship between individual pain perception, brain activity, and facial expressions through a combined analysis of EEG and facial EMG, aiming to provide an objective and multidimensional approach to pain assessment. Methods We investigated pain perception in response to electrical stimulation of the middle finger in 26 healthy subjects. The 32-channel EEG and 3-channel facial EMG signals were simultaneously recorded during a pain rating task. Group difference and correlation analysis were employed to investigate the relationship between individual pain perception, EEG, and facial EMG. The general linear model (GLM) was used for multidimensional pain assessment. Results The EEG analysis revealed that painful stimuli induced N2-P2 complex waveforms and gamma oscillations, with substantial variability in response to different stimuli. The facial EMG signals also demonstrated significant differences and variability correlated with subjective pain ratings. A combined analysis of EEG and facial EMG data using a general linear model indicated that both N2-P2 complex waveforms and the zygomatic muscle responses significantly contributed to pain assessment. Conclusion Facial EMG signals provide pain descriptions which are not sufficiently captured by EEG signals, and integrating both signals offers a more comprehensive understanding of pain perception. Our study underscores the potential of multimodal neurophysiological measurements in pain perception, offering a more comprehensive framework for evaluating pain.
Collapse
Affiliation(s)
- Chaozong Ma
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Military Medical Psychology School, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Chenxi Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi’an, People’s Republic of China
| | - Dan Zhu
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Mingfang Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Ming Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Medical Imaging, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Juan He
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
3
|
Gozzi N, Preatoni G, Ciotti F, Hubli M, Schweinhardt P, Curt A, Raspopovic S. Unraveling the physiological and psychosocial signatures of pain by machine learning. MED 2024; 5:1495-1509.e5. [PMID: 39116869 DOI: 10.1016/j.medj.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/12/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Pain is a complex subjective experience, strongly impacting health and quality of life. Despite many attempts to find effective solutions, present treatments are generic, often unsuccessful, and present significant side effects. Designing individualized therapies requires understanding of multidimensional pain experience, considering physical and emotional aspects. Current clinical pain assessments, relying on subjective one-dimensional numeric self-reports, fail to capture this complexity. METHODS To this aim, we exploited machine learning to disentangle physiological and psychosocial components shaping the pain experience. Clinical, psychosocial, and physiological data were collected from 118 chronic pain and healthy participants undergoing 40 pain trials (4,697 trials). FINDINGS To understand the objective response to nociception, we classified pain from the physiological signals (accuracy >0.87), extracting the most important biomarkers. Then, using multilevel mixed-effects models, we predicted the reported pain, quantifying the mismatch between subjective level and measured physiological response. From these models, we introduced two metrics: TIP (subjective index of pain) and Φ (physiological index). These represent possible added value in the clinical process, capturing psychosocial and physiological pain dimensions, respectively. Patients with high TIP are characterized by frequent sick leave from work and increased clinical depression and anxiety, factors associated with long-term disability and poor recovery, and are indicated for alternative treatments, such as psychological ones. By contrast, patients with high Φ show strong nociceptive pain components and could benefit more from pharmacotherapy. CONCLUSIONS TIP and Φ, explaining the multidimensionality of pain, might provide a new tool potentially leading to targeted treatments, thereby reducing the costs of inefficient generic therapies. FUNDING RESC-PainSense, SNSF-MOVE-IT197271.
Collapse
Affiliation(s)
- Noemi Gozzi
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Greta Preatoni
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Federico Ciotti
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland
| | - Petra Schweinhardt
- Department of Chiropractic Medicine, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
4
|
Hubli M, Leone C. Clinical neurophysiology of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:125-154. [PMID: 39580211 DOI: 10.1016/bs.irn.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Timely and accurate diagnosis of neuropathic pain is critical for optimizing therapeutic outcomes and minimizing treatment delays. According to current standards, the diagnosis of definite neuropathic pain requires objective confirmation of a lesion or disease affecting the somatosensory nervous system. This can be provided by specialized neurophysiological techniques as conventional methods like nerve conduction studies and somatosensory evoked potentials may not be sufficient as they do not assess pain pathways. These specialized techniques apply various stimuli, such as thermal, electrical, or mechanical, alongside assessments of spinal/cortical potential or electromyographic reflex recordings. The selection of techniques is guided by the patient's clinical history and examination. The most common neurophysiological tests used in clinical practice are pain-related evoked potentials (PREPs) providing an objective evaluation of nociceptive pathways. Four types of PREPs are employed: laser evoked potentials, contact-heat evoked potentials, intra-epidermal electrical stimulation evoked potentials, and pinprick evoked potentials, with the two former ones being the most robust and reliable ones. These techniques investigate small-diameter fibers, primarily Aδ-fibers, and spinothalamic tracts allowing the identification of peripheral or central nervous system lesions. Yet, they are limited in capturing neuronal mechanisms underlying neuropathic pain or in providing objective quantification of pain sensation. Two neurophysiological measures which investigate the pain system beyond its integrity are the nociceptive withdrawal reflex and the N13 component of somatosensory evoked potentials. Both of these methods are more commonly used in research than clinical practice, but they pose interesting approaches to quantify central sensitization, a key underlying mechanism of neuropathic pain. Future investigations in neuropathic pain are therefore warranted.
Collapse
Affiliation(s)
- Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Caterina Leone
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
5
|
Zhang LB, Chen YX, Li ZJ, Geng XY, Zhao XY, Zhang FR, Bi YZ, Lu XJ, Hu L. Advances and challenges in neuroimaging-based pain biomarkers. Cell Rep Med 2024; 5:101784. [PMID: 39383872 PMCID: PMC11513815 DOI: 10.1016/j.xcrm.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/24/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
Identifying neural biomarkers of pain has long been a central theme in pain neuroscience. Here, we review the state-of-the-art candidates for neural biomarkers of acute and chronic pain. We classify these potential neural biomarkers into five categories based on the nature of their target variables, including neural biomarkers of (1) within-individual perception, (2) between-individual sensitivity, and (3) discriminability for acute pain, as well as (4) assessment and (5) prospective neural biomarkers for chronic pain. For each category, we provide a synthesized review of candidate biomarkers developed using neuroimaging techniques including functional magnetic resonance imaging (fMRI), structural magnetic resonance imaging (sMRI), and electroencephalography (EEG). We also discuss the conceptual and practical challenges in developing neural biomarkers of pain. Addressing these challenges, optimal biomarkers of pain can be developed to deepen our understanding of how the brain represents pain and ultimately help alleviate patients' suffering and improve their well-being.
Collapse
Affiliation(s)
- Li-Bo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
| | - Yu-Xin Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Jiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Yi Geng
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yue Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Rui Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yan-Zhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Jing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
da-Silva M, Pereira AR, Sampaio A, Coutinho J, González-Villar AJ. The effects of C-tactile stimulation on temporal summation of second pain: A study of the central and peripheral neural correlates. Brain Res 2024; 1846:149267. [PMID: 39374838 DOI: 10.1016/j.brainres.2024.149267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Affective touch is mediated by specialized receptors sensitive to gentle and slow touch called C-tactile afferents (CT). The activation of these receptors has shown promise in reducing subjective pain ratings, however, how this type of touch can affect central sensitization processes is poorly studied. This work aimed to investigate if affective touch is able to modulate pain sensitization and its electrophysiological correlates during Temporal Summation of Second Pain (TSSP), a phenomenon characterized by an increase in pain perception due to repeated noxious stimuli. Thirty-seven participants underwent a TSSP protocol involving three conditions: TSSP alone, TSSP during vibrotactile stimulation, and TSSP during CT stimulation (administered with a brush mounted in a robot arm). We measured subjective pain ratings, electroencephalographic (N2-P2 complex) and electrocardiographic activity during these conditions. Participants reported a significantly lower increase of pain during CT stimulation compared to vibrotactile stimulation, but not to TSSP alone. In addition, TSSP was reduced when administered in the ipsilateral arm compared to the other somatosensory stimulation. Subjective reports of attention towards painful stimuli, amplitude of the N2-P2 complex, and heart rate were also reduced during CT stimulation. Conclusion: Our results indicated that the activation of CT receptors may reduce sensitization compared to other types of somatosensory stimulation, which is possibly related to the reduction of the attention devoted to nociceptive stimulation. Our results suggest that activation of CT receptors may alleviate the occurrence of central pain sensitization.
Collapse
Affiliation(s)
- Márcia da-Silva
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Ana Rita Pereira
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Adriana Sampaio
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Joana Coutinho
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Alberto J González-Villar
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal.
| |
Collapse
|
7
|
Coll MP, Walden Z, Bourgoin PA, Taylor V, Rainville P, Robert M, Nguyen DK, Jolicoeur P, Roy M. Pain reflects the informational value of nociceptive inputs. Pain 2024; 165:e115-e125. [PMID: 38713801 DOI: 10.1097/j.pain.0000000000003254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/13/2024] [Indexed: 05/09/2024]
Abstract
ABSTRACT Pain perception and its modulation are fundamental to human learning and adaptive behavior. This study investigated the hypothesis that pain perception is tied to pain's learning function. Thirty-one participants performed a threat conditioning task where certain cues were associated with a possibility of receiving a painful electric shock. The cues that signaled potential pain or safety were regularly changed, requiring participants to continually establish new associations. Using computational models, we quantified participants' pain expectations and prediction errors throughout the task and assessed their relationship with pain perception and electrophysiological responses. Our findings suggest that subjective pain perception increases with prediction error, that is, when pain was unexpected. Prediction errors were also related to physiological nociceptive responses, including the amplitude of nociceptive flexion reflex and electroencephalography markers of cortical nociceptive processing (N1-P2-evoked potential and gamma-band power). In addition, higher pain expectations were related to increased late event-related potential responses and alpha/beta decreases in amplitude during cue presentation. These results further strengthen the idea of a crucial link between pain and learning and suggest that understanding the influence of learning mechanisms in pain modulation could help us understand when and why pain perception is modulated in health and disease.
Collapse
Affiliation(s)
- Michel-Pierre Coll
- École de Psychologie, Université Laval, Québec, QC, Canada
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, QC, Canada
| | - Zoey Walden
- Department of Psychology, McGill University, 2001 McGill College, Montréal, QC, Canada
| | | | - Veronique Taylor
- Department of Epidemiology, Brown University, Providence, RI, United States
| | - Pierre Rainville
- Research Center of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada
- Department of Stomatology, Université de Montréal, Montréal, QC, Canada
| | - Manon Robert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Dang Khoa Nguyen
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Pierre Jolicoeur
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Mathieu Roy
- Department of Psychology, McGill University, 2001 McGill College, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Zidda F, Lyu Y, Nees F, Radev ST, Sitges C, Montoya P, Flor H, Andoh J. Neural dynamics of pain modulation by emotional valence. Cereb Cortex 2024; 34:bhae358. [PMID: 39245849 DOI: 10.1093/cercor/bhae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/10/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024] Open
Abstract
Definitions of human pain acknowledge at least two dimensions of pain, affective and sensory, described as separable and thus potentially differentially modifiable. Using electroencephalography, we investigated perceptual and neural changes of emotional pain modulation in healthy individuals. Painful electrical stimuli were applied after presentation of priming emotional pictures (negative, neutral, positive) and followed by pain intensity and unpleasantness ratings. We found that perceptual and neural event-related potential responses to painful stimulation were significantly modulated by emotional valence. Specifically, pain unpleasantness but not pain intensity ratings were increased when pain was preceded by negative compared to neutral or positive pictures. Amplitudes of N2 were higher when pain was preceded by neutral compared to negative and positive pictures, and P2 amplitudes were higher for negative compared to neutral and positive pictures. In addition, a hierarchical regression analysis revealed that P2 alone and not N2, predicted pain perception. Finally, source analysis showed the anterior cingulate cortex and the thalamus as main spatial clusters accounting for the neural changes in pain processing. These findings provide evidence for a separation of the sensory and affective dimensions of pain and open new perspectives for mechanisms of pain modulation.
Collapse
Affiliation(s)
- Francesca Zidda
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
| | - Yuanyuan Lyu
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, 24105, Kiel, Germany
| | - Stefan T Radev
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
| | - Carolina Sitges
- Department of Psychology, Research Institute of Health Sciences (IUNICS), Health Research Institute of the Balearic Islands (IdISBa), University of the Balearic Islands, 07122, Palma, Spain
| | - Pedro Montoya
- Department of Psychology, Research Institute of Health Sciences (IUNICS), Health Research Institute of the Balearic Islands (IdISBa), University of the Balearic Islands, 07122, Palma, Spain
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
| | - Jamila Andoh
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, J5, 68159, Mannheim, Germany
| |
Collapse
|
9
|
Kukkar KK, Rao N, Huynh D, Shah S, Contreras-Vidal JL, Parikh PJ. Context-dependent reduction in corticomuscular coupling for balance control in chronic stroke survivors. Exp Brain Res 2024; 242:2093-2112. [PMID: 38963559 DOI: 10.1007/s00221-024-06884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Balance control is an important indicator of mobility and independence in activities of daily living. How the functional coupling between the cortex and the muscle for balance control is affected following stroke remains to be known. We investigated the changes in coupling between the cortex and leg muscles during a challenging balance task over multiple frequency bands in chronic stroke survivors. Fourteen participants with stroke and ten healthy controls performed a challenging balance task. They stood on a computerized support surface that was either fixed (low difficulty condition) or sway-referenced with varying gain (medium and high difficulty conditions). We computed corticomuscular coherence between electrodes placed over the sensorimotor area (electroencephalography) and leg muscles (electromyography) and assessed balance performance using clinical and laboratory-based tests. We found significantly lower delta frequency band coherence in stroke participants when compared with healthy controls under medium difficulty condition, but not during low and high difficulty conditions. These differences were found for most of the distal but not for proximal leg muscle groups. No differences were found at other frequency bands. Participants with stroke showed poor balance clinical scores when compared with healthy controls, but no differences were found for laboratory-based tests. The observation of effects at distal but not at proximal muscle groups suggests differences in the (re)organization of the descending connections across two muscle groups for balance control. We argue that the observed group difference in delta band coherence indicates balance context-dependent alteration in mechanisms for the detection of somatosensory modulation resulting from sway-referencing of the support surface for balance maintenance following stroke.
Collapse
Affiliation(s)
- Komal K Kukkar
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA
| | - Nishant Rao
- Yale Child Study Center, Yale University, New Haven, Connecticut, USA
| | - Diana Huynh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA
| | - Sheel Shah
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA
| | - Jose L Contreras-Vidal
- Laboratory for Noninvasive Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Pranav J Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA.
| |
Collapse
|
10
|
Kittleson AR, Woodward ND, Heckers S, Sheffield JM. The insula: Leveraging cellular and systems-level research to better understand its roles in health and schizophrenia. Neurosci Biobehav Rev 2024; 160:105643. [PMID: 38531518 PMCID: PMC11796093 DOI: 10.1016/j.neubiorev.2024.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Schizophrenia is a highly heterogeneous disorder characterized by a multitude of complex and seemingly non-overlapping symptoms. The insular cortex has gained increasing attention in neuroscience and psychiatry due to its involvement in a diverse range of fundamental human experiences and behaviors. This review article provides an overview of the insula's cellular and anatomical organization, functional and structural connectivity, and functional significance. Focusing on specific insula subregions and using knowledge gained from humans and preclinical studies of insular tracings in non-human primates, we review the literature and discuss the functional roles of each subregion, including in somatosensation, interoception, salience processing, emotional processing, and social cognition. Building from this foundation, we then extend these findings to discuss reported abnormalities of these functions in individuals with schizophrenia, implicating insular involvement in schizophrenia pathology. This review underscores the insula's vast role in the human experience and how abnormal insula structure and function could result in the wide-ranging symptoms observed in schizophrenia.
Collapse
Affiliation(s)
- Andrew R Kittleson
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37235, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| |
Collapse
|
11
|
Kofler M, Hallett M, Iannetti GD, Versace V, Ellrich J, Téllez MJ, Valls-Solé J. The blink reflex and its modulation - Part 1: Physiological mechanisms. Clin Neurophysiol 2024; 160:130-152. [PMID: 38102022 PMCID: PMC10978309 DOI: 10.1016/j.clinph.2023.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
The blink reflex (BR) is a protective eye-closure reflex mediated by brainstem circuits. The BR is usually evoked by electrical supraorbital nerve stimulation but can be elicited by a variety of sensory modalities. It has a long history in clinical neurophysiology practice. Less is known, however, about the many ways to modulate the BR. Various neurophysiological techniques can be applied to examine different aspects of afferent and efferent BR modulation. In this line, classical conditioning, prepulse and paired-pulse stimulation, and BR elicitation by self-stimulation may serve to investigate various aspects of brainstem connectivity. The BR may be used as a tool to quantify top-down modulation based on implicit assessment of the value of blinking in a given situation, e.g., depending on changes in stimulus location and probability of occurrence. Understanding the role of non-nociceptive and nociceptive fibers in eliciting a BR is important to get insight into the underlying neural circuitry. Finally, the use of BRs and other brainstem reflexes under general anesthesia may help to advance our knowledge of the brainstem in areas not amenable in awake intact humans. This review summarizes talks held by the Brainstem Special Interest Group of the International Federation of Clinical Neurophysiology at the International Congress of Clinical Neurophysiology 2022 in Geneva, Switzerland, and provides a state-of-the-art overview of the physiology of BR modulation. Understanding the principles of BR modulation is fundamental for a valid and thoughtful clinical application (reviewed in part 2) (Gunduz et al., submitted).
Collapse
Affiliation(s)
- Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria.
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, NIH, USA.
| | - Gian Domenico Iannetti
- University College London, United Kingdom; Italian Institute of Technology (IIT), Rome, Italy.
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy.
| | - Jens Ellrich
- Friedrich-Alexander-University Erlangen-Nuremberg, Germany.
| | | | - Josep Valls-Solé
- IDIBAPS (Institut d'Investigació August Pi i Sunyer), University of Barcelona, Spain.
| |
Collapse
|
12
|
Novembre G, Lacal I, Benusiglio D, Quarta E, Schito A, Grasso S, Caratelli L, Caminiti R, Mayer AB, Iannetti GD. A Cortical Mechanism Linking Saliency Detection and Motor Reactivity in Rhesus Monkeys. J Neurosci 2024; 44:e0422232023. [PMID: 37949654 PMCID: PMC10851684 DOI: 10.1523/jneurosci.0422-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Sudden and surprising sensory events trigger neural processes that swiftly adjust behavior. To study the phylogenesis and the mechanism of this phenomenon, we trained two male rhesus monkeys to keep a cursor inside a visual target by exerting force on an isometric joystick. We examined the effect of surprising auditory stimuli on exerted force, scalp electroencephalographic (EEG) activity, and local field potentials (LFPs) recorded from the dorsolateral prefrontal cortex. Auditory stimuli elicited (1) a biphasic modulation of isometric force, a transient decrease followed by a corrective tonic increase, and (2) EEG and LFP deflections dominated by two large negative-positive waves (N70 and P130). The EEG potential was symmetrical and maximal at the scalp vertex, highly reminiscent of the human "vertex potential." Electrocortical potentials and force were tightly coupled: the P130 amplitude predicted the magnitude of the corrective force increase, particularly in the LFPs recorded from deep rather than superficial cortical layers. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to salient sensory events.Significance Statement Survival in the natural world depends on an animal's capacity to adapt ongoing behavior to abrupt unexpected events. To study the neural mechanisms underlying this capacity, we trained monkeys to apply constant force on a joystick while we recorded their brain activity from the scalp and the prefrontal cortex contralateral to the hand holding the joystick. Unexpected auditory stimuli elicited a biphasic force modulation: a transient reduction followed by a corrective adjustment. The same stimuli also elicited EEG and LFP responses, dominated by a biphasic wave that predicted the magnitude of the behavioral adjustment. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to unexpected events.
Collapse
Affiliation(s)
- Giacomo Novembre
- Neuroscience of Perception & Action Lab, Italian Institute of Technology, Rome 00161, Italy
| | - Irene Lacal
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz-Institute for Primate Research, 37077 Göttingen, Germany
| | - Diego Benusiglio
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
- European Molecular Biology Laboratory (EMBL), Epigenetics and Neurobiology Unit, Rome 00015, Italy
| | - Eros Quarta
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Andrea Schito
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Stefano Grasso
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Ludovica Caratelli
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
| | | | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London WC1E6BT, United Kingdom
| |
Collapse
|
13
|
Song Y, Gordon PC, Metsomaa J, Rostami M, Belardinelli P, Ziemann U. Evoked EEG Responses to TMS Targeting Regions Outside the Primary Motor Cortex and Their Test-Retest Reliability. Brain Topogr 2024; 37:19-36. [PMID: 37996562 PMCID: PMC10771591 DOI: 10.1007/s10548-023-01018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Transcranial magnetic stimulation (TMS)-evoked electroencephalography (EEG) potentials (TEPs) provide unique insights into cortical excitability and connectivity. However, confounding EEG signals from auditory and somatosensory co-stimulation complicate TEP interpretation. Our optimized sham procedure established with TMS of primary motor cortex (Gordon in JAMA 245:118708, 2021) differentiates direct cortical EEG responses to TMS from those caused by peripheral sensory inputs. Using this approach, this study aimed to investigate TEPs and their test-retest reliability when targeting regions outside the primary motor cortex, specifically the left angular gyrus, supplementary motor area, and medial prefrontal cortex. We conducted three identical TMS-EEG sessions one week apart involving 24 healthy participants. In each session, we targeted the three areas separately using a figure-of-eight TMS coil for active TMS, while a second coil away from the head produced auditory input for sham TMS. Masking noise and electric scalp stimulation were applied in both conditions to achieve matched EEG responses to peripheral sensory inputs. High test-retest reliability was observed in both conditions. However, reliability declined for the 'cleaned' TEPs, resulting from the subtraction of evoked EEG response to the sham TMS from those to the active, particularly for latencies > 100 ms following the TMS pulse. Significant EEG differences were found between active and sham TMS at latencies < 90 ms for all targeted areas, exhibiting distinct spatiotemporal characteristics specific to each target. In conclusion, our optimized sham procedure effectively reveals EEG responses to direct cortical activation by TMS in brain areas outside primary motor cortex. Moreover, we demonstrate the impact of peripheral sensory inputs on test-retest reliability of TMS-EEG responses.
Collapse
Affiliation(s)
- Yufei Song
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Pedro C Gordon
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Johanna Metsomaa
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Maryam Rostami
- Faculty of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Paolo Belardinelli
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Center for Mind/Brain Sciences, CIMeC, University of Trento, Trento, Italy
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
14
|
Mancuso M, Cruciani A, Sveva V, Casula EP, Brown K, Rothwell JC, Di Lazzaro V, Koch G, Rocchi L. Somatosensory input in the context of transcranial magnetic stimulation coupled with electroencephalography: An evidence-based overview. Neurosci Biobehav Rev 2023; 155:105434. [PMID: 37890602 DOI: 10.1016/j.neubiorev.2023.105434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
The transcranial evoked potential (TEP) is a powerful technique to investigate brain dynamics, but some methodological issues limit its interpretation. A possible contamination of the TEP by electroencephalographic (EEG) responses evoked by the somatosensory input generated by transcranial magnetic stimulation (TMS) has been postulated; nonetheless, a characterization of these responses is lacking. The aim of this work was to review current evidence about possible somatosensory evoked potentials (SEP) induced by sources of somatosensory input in the craniofacial region. Among these, only contraction of craniofacial muscle and stimulation of free cutaneous nerve endings may be able to induce EEG responses, but direct evidence is lacking due to experimental difficulties in isolating these inputs. Notably, EEG evoked activity in this context is represented by a N100/P200 complex, reflecting a saliency-related multimodal response, rather than specific activation of the primary somatosensory cortex. Strategies to minimize or remove these responses by EEG processing still yield uncertain results; therefore, data inspection is of paramount importance to judge a possible contamination of the TEP by multimodal potentials caused by somatosensory input.
Collapse
Affiliation(s)
- M Mancuso
- Department of Human Neurosciences, University of Rome "Sapienza", Viale dell'Università 30, 00185 Rome, Italy
| | - A Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - V Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome "Sapienza", Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - E P Casula
- Department of System Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - K Brown
- Department of Kinesiology, University of Waterloo, 200 University Ave W, N2L 3G5 Waterloo, ON, Canada
| | - J C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, United Kingdom
| | - V Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - G Koch
- Non-Invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina, 306/354, 00179 Rome, Italy
| | - L Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato Blocco I S.S, 554 bivio per Sestu 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
15
|
Dreismickenbecker E, Zinn S, Romero-Richter M, Kohlhaas M, Fricker LR, Petzel-Witt S, Walter C, Kreuzer M, Toennes SW, Anders M. Electroencephalography-Based Effects of Acute Alcohol Intake on the Pain Matrix. Brain Sci 2023; 13:1659. [PMID: 38137107 PMCID: PMC10741681 DOI: 10.3390/brainsci13121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The effects of acute and chronic intakes of high doses of alcohol on pain perception are well known, ranging from short-term analgesic effects to long-term sensitization and polyneuropathies. The short-term analgesic effects of ethanol consumption on subjective pain perception have been well studied in the literature. Recent advances in neuroimaging allow for an insight into pain-related structures in the brain, fostering the mechanistic understanding of the processing of nociceptive input and pain. We aimed to utilize EEG, combined with standardized noxious mechanical/thermal stimulation and subjective pain testing, to research the effects of acute alcohol intake on nociceptive processing and pain perception. We recruited 12 healthy subjects in an unblinded cross-over study design and aimed at achieving a blood alcohol level of 0.1%. Our data revealed a significant reduction in subjective pain ratings to noxious thermal and mechanical stimuli after alcohol ingestion. Our EEG data revealed suppressing effects on the cortical structures responsible for processing pain, the "pain matrix". We conclude that in addition to its analgesic effects, as expressed by the reduction in subjective pain, alcohol has a further impact on the "pain matrix" and directly affects the salience to a nociceptive stimulus.
Collapse
Affiliation(s)
- Elias Dreismickenbecker
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center Mainz, 55131 Mainz, Germany
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Sebastian Zinn
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe University Frankfurt, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Mara Romero-Richter
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Madeline Kohlhaas
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe University Frankfurt, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Lukas R. Fricker
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Silvana Petzel-Witt
- Institute of Legal Medicine, University Hospital, Goethe University, 60590 Frankfurt, Germany
| | - Carmen Walter
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany
| | - Stefan W. Toennes
- Institute of Legal Medicine, University Hospital, Goethe University, 60590 Frankfurt, Germany
| | - Malte Anders
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| |
Collapse
|
16
|
Wittkopf PG, Boye Larsen D, Gregoret L, Graven-Nielsen T. Disrupted Cortical Homeostatic Plasticity Due to Prolonged Capsaicin-induced Pain. Neuroscience 2023; 533:1-9. [PMID: 37774909 DOI: 10.1016/j.neuroscience.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Homeostatic plasticity (HP) regulates cortical excitability (CE) stability but is disrupted in persistent pain conditions. This study investigated how prolonged experimental pain affects HP and if pain relief modulates disrupted HP. Twenty-four healthy participants were randomised into a PainRelief or NoPainRelief group and attended four sessions; two sessions on consecutive days, separated by two weeks. Transcranial magnetic stimulation motor-evoked potentials reflecting CE and quantitative sensory testing (QST) measures were recorded. A capsaicin (pain condition) or placebo (control condition) patch was applied to the hand. HP was induced by cathodal-cathodal transcranial direct current stimulation (HP1) with CE assessment before and after. The PainRelief group had ice applied to the patch, while the NoPainRelief group waited for five minutes; subsequently another HP induction (HP2) and CE assessment were performed. After 24 h with the patch on, HP induction (HP3), QST, and CE recordings were repeated. Capsaicin reduced CE and the pain condition showed disrupted homeostatic responses at all time points (HP1: showed CE inhibition instead of facilitation; HP2 & HP3: lack of CE facilitation). Conversely, homeostatic responses were induced at all time points for the placebo condition. Capsaicin pain disrupts HP which is not restored by ice-induced pain relief. Future research may explore the prevention of HP disruption by targeting capsaicin-induced nociception but not pain perception.
Collapse
Affiliation(s)
- Priscilla Geraldine Wittkopf
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Aalborg, Denmark
| | - Dennis Boye Larsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Aalborg, Denmark
| | - Luisina Gregoret
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Aalborg, Denmark.
| |
Collapse
|
17
|
Guiloff RJ, Campero M, Barraza GR, Treede RD, Matamala JM, Castillo JL. Pain-Related Vertex Evoked Potentials. Comparison of Surface Electrical to Heat Stimulation. J Clin Neurophysiol 2023; 40:616-624. [PMID: 37931163 DOI: 10.1097/wnp.0000000000000929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Demonstration of nociceptive fiber abnormality is important for diagnosing neuropathic pain and small fiber neuropathies. This is usually assessed by brief heat pulses using lasers, contact heat, or special electrodes. We hypothesized that pain-related evoked potentials to conventional surface electrical stimulation (PREPse) can index Aδ afferences despite tactile Aß fibers coactivation. PREPse may be more readily used clinically than contact heat evoked potentials (CHEPS). METHODS Twenty-eight healthy subjects. Vertex (Cz-A1/A2) recordings. Electrical stimulation of middle finger and second toe with conventional ring, and forearm/leg skin with cup, electrodes. Contact heat stimulation to forearm and leg. Compression ischemic nerve blockade. RESULTS PREPse peripheral velocities were within the midrange of Aδ fibers. N1-P1 amplitude increased with pain numerical rating scale graded (0-10) electrical stimulation (n = 25) and decreased with increasing stimulation frequency. Amplitudes were unchanged by different presentation orders of four stimulation intensities. PREPse N1 (∼130 milliseconds) and N2 (∼345 milliseconds) peaks were approximately 40 milliseconds earlier than that with CHEPS. PREPse and CHEPS N1-N2 interpeak latency (∼207 milliseconds) were similar. PREPse became unrecordable with nerve blockade of Aδ fibers. CONCLUSIONS PREPse earlier N1 and N2 peaks, and similar interpeak N1-N2 latencies and central conduction velocities, or synaptic delays, to CHEPS are consistent with direct stimulation of Aδ fibers. The relation of vertex PREPse amplitude and pain, or the differential effects of frequency stimulation, is similar to pain-related evoked potential to laser, special electrodes, or contact heat stimulation. The relationship to Aδ was validated by conduction velocity and nerve block. Clinical utility of PREPse compared with CHEPS needs validation in somatosensory pathways lesions.
Collapse
Affiliation(s)
- Roberto J Guiloff
- Faculty of Medicine University of Chile, Santiago, Chile
- Imperial College, London, United Kingdom
- Neuromuscular Unit, Department of Neurology and Neurosurgery, Hospital Clinico Universidad de Chile, Santiago, Chile
| | - Mario Campero
- Faculty of Medicine University of Chile, Santiago, Chile
- Neuromuscular Unit, Department of Neurology and Neurosurgery, Hospital Clinico Universidad de Chile, Santiago, Chile
| | - Gonzalo R Barraza
- Neuromuscular Unit, Department of Neurology and Neurosurgery, Hospital Clinico Universidad de Chile, Santiago, Chile
| | | | - Jose M Matamala
- Faculty of Medicine University of Chile, Santiago, Chile
- Department of Neurological Science, Hospital El Salvador, Santiago, Chile
| | - Jose L Castillo
- Department of Neurological Science, Hospital El Salvador, Santiago, Chile
| |
Collapse
|
18
|
Wei Z, Huang Y, Li X, Shao M, Qian H, He B, Meng J. The influence of aggressive exercise on responses to self-perceived and others' pain. Cereb Cortex 2023; 33:10802-10812. [PMID: 37715469 PMCID: PMC10629897 DOI: 10.1093/cercor/bhad324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/17/2023] Open
Abstract
Previous studies have reported relationships between exercise and pain. However, little is known about how aggressive exercise modulates individuals' responses to their own and others' pain. This present study addresses this question by conducting 2 studies employing event-related potential (ERP). Study 1 included 38 participants whose self-perceived pain was assessed after intervention with aggressive or nonaggressive exercises. Study 2 recruited 36 participants whose responses to others' pain were assessed after intervention with aggressive or nonaggressive exercise. Study 1's results showed that P2 amplitudes were smaller, reaction times were longer, and participants' judgments were less accurate in response to self-perceived pain stimuli, especially to high-pain stimuli, after intervention with aggressive exercise compared to nonaggressive exercise. Results of study 2 showed that both P3 and LPP amplitudes to others' pain were larger after intervention with aggressive exercise than with nonaggressive exercise. These results suggest that aggressive exercise decreases individuals' self-perceived pain and increases their empathic responses to others' pain.
Collapse
Affiliation(s)
- Zilong Wei
- Research Center for Brain and Cognitive Science, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
- Key Laboratory of Applied Psychology, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
| | - Yujuan Huang
- Guizhou Light Industry Technical College, No. 3, Dongqing Road, Guiyang 550025, China
| | - Xiong Li
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Chongqing 400715, China
| | - Min Shao
- Research Center for Brain and Cognitive Science, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
- Key Laboratory of Applied Psychology, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
| | - Huiling Qian
- Research Center for Brain and Cognitive Science, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
- Key Laboratory of Applied Psychology, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
| | - Bojun He
- Research Center for Brain and Cognitive Science, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
- Key Laboratory of Applied Psychology, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
| | - Jing Meng
- Research Center for Brain and Cognitive Science, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
- Key Laboratory of Applied Psychology, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
| |
Collapse
|
19
|
Kukkar KK, Rao N, Huynh D, Shah S, Contreras-Vidal JL, Parikh PJ. Task-dependent Alteration in Delta Band Corticomuscular Coherence during Standing in Chronic Stroke Survivors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.17.23292472. [PMID: 37503096 PMCID: PMC10371181 DOI: 10.1101/2023.07.17.23292472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Balance control is an important indicator of mobility and independence in activities of daily living. How the changes in functional integrity of corticospinal tract due to stroke affects the maintenance of upright stance remains to be known. We investigated the changes in functional coupling between the cortex and lower limb muscles during a challenging balance task over multiple frequency bands in chronic stroke survivors. Eleven stroke patients and nine healthy controls performed a challenging balance task. They stood on a computerized platform with/without somatosensory input distortion created by sway-referencing the support surface, thereby varying the difficulty levels of the task. We computed corticomuscular coherence between Cz (electroencephalography) and leg muscles and assessed balance performance using Berg Balance scale (BBS), Timed-up and go (TUG) and center of pressure (COP) measures. We found lower delta frequency band coherence in stroke patients when compared with healthy controls under medium difficulty condition for distal but not proximal leg muscles. For both groups, we found similar coherence at other frequency bands. On BBS and TUG, stroke patients showed poor balance. However, similar group differences were not consistently observed across COP measures. The presence of distal versus proximal effect suggests differences in the (re)organization of the corticospinal connections across the two muscles groups for balance control. We argue that the observed group difference in the delta coherence might be due to altered mechanisms for the detection of somatosensory modulation resulting from sway-referencing of the support platform for balance control.
Collapse
Affiliation(s)
- Komal K. Kukkar
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Nishant Rao
- Haskins Laboratories, Yale University, New Haven, Connecticut
| | - Diana Huynh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Sheel Shah
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Jose L. Contreras-Vidal
- Laboratory for Noninvasive Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, Texas
| | - Pranav J. Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| |
Collapse
|
20
|
Spampinato DA, Ibanez J, Rocchi L, Rothwell J. Motor potentials evoked by transcranial magnetic stimulation: interpreting a simple measure of a complex system. J Physiol 2023; 601:2827-2851. [PMID: 37254441 PMCID: PMC10952180 DOI: 10.1113/jp281885] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique that is increasingly used to study the human brain. One of the principal outcome measures is the motor-evoked potential (MEP) elicited in a muscle following TMS over the primary motor cortex (M1), where it is used to estimate changes in corticospinal excitability. However, multiple elements play a role in MEP generation, so even apparently simple measures such as peak-to-peak amplitude have a complex interpretation. Here, we summarize what is currently known regarding the neural pathways and circuits that contribute to the MEP and discuss the factors that should be considered when interpreting MEP amplitude measured at rest in the context of motor processing and patients with neurological conditions. In the last part of this work, we also discuss how emerging technological approaches can be combined with TMS to improve our understanding of neural substrates that can influence MEPs. Overall, this review aims to highlight the capabilities and limitations of TMS that are important to recognize when attempting to disentangle sources that contribute to the physiological state-related changes in corticomotor excitability.
Collapse
Affiliation(s)
- Danny Adrian Spampinato
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Jaime Ibanez
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- BSICoS group, I3A Institute and IIS AragónUniversity of ZaragozaZaragozaSpain
- Department of Bioengineering, Centre for NeurotechnologiesImperial College LondonLondonUK
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | - John Rothwell
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
| |
Collapse
|
21
|
Cristofari A, De Santis M, Lucidi S, Rothwell J, Casula EP, Rocchi L. Machine Learning-Based Classification to Disentangle EEG Responses to TMS and Auditory Input. Brain Sci 2023; 13:866. [PMID: 37371346 DOI: 10.3390/brainsci13060866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) offers an unparalleled opportunity to study cortical physiology by characterizing brain electrical responses to external perturbation, called transcranial-evoked potentials (TEPs). Although these reflect cortical post-synaptic potentials, they can be contaminated by auditory evoked potentials (AEPs) due to the TMS click, which partly show a similar spatial and temporal scalp distribution. Therefore, TEPs and AEPs can be difficult to disentangle by common statistical methods, especially in conditions of suboptimal AEP suppression. In this work, we explored the ability of machine learning algorithms to distinguish TEPs recorded with masking of the TMS click, AEPs and non-masked TEPs in a sample of healthy subjects. Overall, our classifier provided reliable results at the single-subject level, even for signals where differences were not shown in previous works. Classification accuracy (CA) was lower at the group level, when different subjects were used for training and test phases, and when three stimulation conditions instead of two were compared. Lastly, CA was higher when average, rather than single-trial TEPs, were used. In conclusion, this proof-of-concept study proposes machine learning as a promising tool to separate pure TEPs from those contaminated by sensory input.
Collapse
Affiliation(s)
- Andrea Cristofari
- Department of Civil Engineering and Computer Science Engineering, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Marianna De Santis
- Department of Computer, Automatic and Management Engineering, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Stefano Lucidi
- Department of Computer, Automatic and Management Engineering, "Sapienza" University of Rome, 00185 Rome, Italy
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Elias P Casula
- Department of System Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
22
|
Fong PY, Spampinato D, Michell K, Mancuso M, Brown K, Ibáñez J, Santo AD, Latorre A, Bhatia K, Rothwell JC, Rocchi L. EEG responses induced by cerebellar TMS at rest and during visuomotor adaptation. Neuroimage 2023; 275:120188. [PMID: 37230209 DOI: 10.1016/j.neuroimage.2023.120188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Connections between the cerebellum and the cortex play a critical role in learning and executing complex behaviours. Dual-coil transcranial magnetic stimulation (TMS) can be used non-invasively to probe connectivity changes between the lateral cerebellum and motor cortex (M1) using the motor evoked potential as an outcome measure (cerebellar-brain inhibition, CBI). However, it gives no information about cerebellar connections to other parts of cortex. OBJECTIVES We used electroencephalography (EEG) to investigate whether it was possible to detect activity evoked in any areas of cortex by single-pulse TMS of the cerebellum (cerebellar TMS evoked potentials, cbTEPs). A second experiment tested if these responses were influenced by the performance of a cerebellar-dependent motor learning paradigm. METHODS In the first series of experiments, TMS was applied over either the right or left cerebellar cortex, and scalp EEG was recorded simultaneously. Control conditions that mimicked auditory and somatosensory inputs associated with cerebellar TMS were included to identify responses due to non-cerebellar sensory stimulation. We conducted a follow-up experiment that evaluated whether cbTEPs are behaviourally sensitive by assessing individuals before and after learning a visuomotor reach adaptation task. RESULTS A TMS pulse over the lateral cerebellum evoked EEG responses that could be distinguished from those caused by auditory and sensory artefacts. Significant positive (P80) and negative peaks (N110) over the contralateral frontal cerebral area were identified with a mirrored scalp distribution after left vs. right cerebellar stimulation. The P80 and N110 peaks were replicated in the cerebellar motor learning experiment and changed amplitude at different stages of learning. The change in amplitude of the P80 peak was associated with the degree of learning that individuals retained following adaptation. Due to overlap with sensory responses, the N110 should be interpreted with caution. CONCLUSIONS Cerebral potentials evoked by TMS of the lateral cerebellum provide a neurophysiological probe of cerebellar function that complements the existing CBI method. They may provide novel insight into mechanisms of visuomotor adaptation and other cognitive processes.
Collapse
Affiliation(s)
- Po-Yu Fong
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Division of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan; Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Danny Spampinato
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Non-invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00142, Rome, Italy
| | - Kevin Michell
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marco Mancuso
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Katlyn Brown
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Jaime Ibáñez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain; Department of Bioengineering, Imperial College, London, UK
| | - Alessandro Di Santo
- NEuroMuscular Omnicentre (NEMO), Serena Onlus, AOS Monaldi, Naples, Italy; Unit of Neurology, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kailash Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
23
|
Bucsea O, Rupawala M, Shiff I, Wang X, Meek J, Fitzgerald M, Fabrizi L, Pillai Riddell R, Jones L. Clinical thresholds in pain-related facial activity linked to differences in cortical network activation in neonates. Pain 2023; 164:1039-1050. [PMID: 36633530 PMCID: PMC10108588 DOI: 10.1097/j.pain.0000000000002798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023]
Abstract
ABSTRACT In neonates, a noxious stimulus elicits pain-related facial expression changes and distinct brain activity as measured by electroencephalography, but past research has revealed an inconsistent relationship between these responses. Facial activity is the most commonly used index of neonatal pain in clinical settings, with clinical thresholds determining if analgesia should be provided; however, we do not know if these thresholds are associated with differences in how the neonatal brain processes a noxious stimulus. The objective of this study was to examine whether subclinical vs clinically significant levels of pain-related facial activity are related to differences in the pattern of nociceptive brain activity in preterm and term neonates. We recorded whole-head electroencephalography and video in 78 neonates (0-14 days postnatal age) after a clinically required heel lance. Using an optimal constellation of Neonatal Facial Coding System actions (brow bulge, eye squeeze, and nasolabial furrow), we compared the serial network engagement (microstates) between neonates with and without clinically significant pain behaviour. Results revealed a sequence of nociceptive cortical network activation that was independent of pain-related behavior; however, a separate but interleaved sequence of early activity was related to the magnitude of the immediate behavioural response. Importantly, the degree of pain-related behavior is related to how the brain processes a stimulus and not simply the degree of cortical activation. This suggests that neonates who exhibit clinically significant pain behaviours process the stimulus differently and that neonatal pain-related behaviours reflect just a portion of the overall cortical pain response.
Collapse
Affiliation(s)
- Oana Bucsea
- Psychology, Faculty of Health, York University, Toronto, ON, Canada
| | - Mohammed Rupawala
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Ilana Shiff
- Psychology, Faculty of Health, York University, Toronto, ON, Canada
| | - Xiaogang Wang
- Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Judith Meek
- University College London Hospital, London, United Kingdom
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Rebecca Pillai Riddell
- Psychology, Faculty of Health, York University, Toronto, ON, Canada
- Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
- Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Laura Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
24
|
Fu X, Riecke L. Effects of continuous tactile stimulation on auditory-evoked cortical responses depend on the audio-tactile phase. Neuroimage 2023; 274:120140. [PMID: 37120042 DOI: 10.1016/j.neuroimage.2023.120140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
Auditory perception can benefit from stimuli in non-auditory sensory modalities, as for example in lip-reading. Compared with such visual influences, tactile influences are still poorly understood. It has been shown that single tactile pulses can enhance the perception of auditory stimuli depending on their relative timing, but whether and how such brief auditory enhancements can be stretched in time with more sustained, phase-specific periodic tactile stimulation is still unclear. To address this question, we presented tactile stimulation that fluctuated coherently and continuously at 4Hz with an auditory noise (either in-phase or anti-phase) and assessed its effect on the cortical processing and perception of an auditory signal embedded in that noise. Scalp-electroencephalography recordings revealed an enhancing effect of in-phase tactile stimulation on cortical responses phase-locked to the noise and a suppressive effect of anti-phase tactile stimulation on responses evoked by the auditory signal. Although these effects appeared to follow well-known principles of multisensory integration of discrete audio-tactile events, they were not accompanied by corresponding effects on behavioral measures of auditory signal perception. Our results indicate that continuous periodic tactile stimulation can enhance cortical processing of acoustically-induced fluctuations and mask cortical responses to an ongoing auditory signal. They further suggest that such sustained cortical effects can be insufficient for inducing sustained bottom-up auditory benefits.
Collapse
Affiliation(s)
- Xueying Fu
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
25
|
Shekhar V, Choudhary N, Rathore P, Singh SP, Bhatnagar S. Non-Invasive Objective Markers to Measure Pain: A Direction to Develop a Pain Device - A Narrative Review. Indian J Palliat Care 2023; 29:217-222. [PMID: 37325263 PMCID: PMC10261936 DOI: 10.25259/ijpc_257_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/11/2023] [Indexed: 06/17/2023] Open
Abstract
Objective To review the literature regarding non-invasive objective measurements of pain. Measuring pain is of uttermost importance, but it can be an inconvenient task, especially in terms of the interpretation of patient's information. Reiterating, there is no "standard" that provides the physician with a method to objectively quantify this problem of patient's pain. For assessing the pain, physician relies solely on unidimensional assessment tools or questionnaire-based pain assessment. Although pain is a subjective experience of the patient, but there is a need to measure pain sometimes in the individuals who cannot communicate their quality and severity of pain. Material and Methods The articles from PubMed and Google Scholar without any year and age limit were searched in the current narrative review. A total of 16 markers were searched and their relation to pain was studied. Results Studies have shown that these markers change in relation to pain and it can be considered a valuable tool for pain measurement but there are multiple factors like psychological and emotional factors which affect these markers. Conclusion There is lack of evidence to show which marker can be used for measuring pain accurately. This narrative review is an attempt to look into the various pain-related markers that can be used and it calls for further studies including clinical trials with different diseases and taking into accounts different factors affecting pain to give an accurate measurement of pain.
Collapse
Affiliation(s)
- Varun Shekhar
- Department of Onco-Anaesthesia and Palliative Medicine, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Nandan Choudhary
- Department of Onco-Anaesthesia and Palliative Medicine, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Puneet Rathore
- Department of Onco-Anaesthesia and Palliative Medicine, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Suraj Pal Singh
- Department of Onco-Anaesthesia and Palliative Medicine, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Sushma Bhatnagar
- Department of Onco-Anaesthesia and Palliative Medicine, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
26
|
Wang S, Su Q, Qin W, Yu C, Liang M. Both fine-grained and coarse-grained spatial patterns of neural activity measured by functional MRI show preferential encoding of pain in the human brain. Neuroimage 2023; 272:120049. [PMID: 36963739 DOI: 10.1016/j.neuroimage.2023.120049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
How pain emerges from human brain remains an unresolved question in pain neuroscience. Neuroimaging studies have suggested that all brain areas activated by painful stimuli were also activated by tactile stimuli, and vice versa. Nonetheless, pain-preferential spatial patterns of voxel-level activation in the brain have been observed when distinguishing painful and tactile brain activations using multivariate pattern analysis (MVPA). According to two hypotheses, the neural activity pattern preferentially encoding pain could exist at a global, coarse-grained, regional level, corresponding to the "pain connectome" hypothesis proposing that pain-preferential information may be encoded by the synchronized activity across multiple distant brain regions, and/or exist at a local, fine-grained, voxel level, corresponding to the "intermingled specialized/preferential neurons" hypothesis proposing that neurons responding specially or preferentially to pain could be present and intermingled with non-pain neurons within a voxel. Here, we systematically investigated the spatial scales of pain-distinguishing information in the human brain measured by fMRI using machine learning techniques, and found that pain-distinguishing information could be detected at both coarse-grained spatial scales across widely distributed brain regions and fine-grained spatial scales within many local areas. Importantly, the spatial distribution of pain-distinguishing information in the brain varies across individuals and such inter-individual variations may be related to a person's trait about pain perception, particularly the pain vigilance and awareness. These results provide new insights into the long-standing question of how pain is represented in the human brain and help the identification of characteristic neuroimaging measurements of pain.
Collapse
Affiliation(s)
- Sijia Wang
- School of Medical Technology, School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin 300060, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunshui Yu
- School of Medical Technology, School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China; Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Liang
- School of Medical Technology, School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
27
|
Gamma-band oscillations of pain and nociception: A systematic review and meta-analysis of human and rodent studies. Neurosci Biobehav Rev 2023; 146:105062. [PMID: 36682424 DOI: 10.1016/j.neubiorev.2023.105062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Pain-induced gamma-band oscillations (GBOs) are one of the most promising biomarkers of the pain experience. Although GBOs reliably encode pain perception across different individuals and species, considerable heterogeneity could be observed in the characteristics and functions of GBOs. However, such heterogeneity of GBOs and its underlying sources have rarely been detailed previously. Here, we conducted a systematic review and meta-analysis to characterize the temporal, frequential, and spatial characteristics of GBOs and summarize the functional significance of distinct GBOs. We found that GBO heterogeneity was mainly related to pain types, with a higher frequency (∼66 Hz) GBOs at the sensorimotor cortex elicited by phasic pain and a lower frequency (∼55 Hz) GBOs at the prefrontal cortex associated with tonic and chronic pains. Positive correlations between GBO magnitudes and pain intensity were observed in healthy participants. Notably, the characteristics and functions of GBOs seemed to be phylogenetically conserved across humans and rodents. Altogether, we provided a comprehensive description of heterogeneous GBOs in pain and nociception, laying the foundation for clinical applications of GBOs.
Collapse
|
28
|
Multifocal tDCS Targeting the Motor Network Modulates Event-Related Cortical Responses During Prolonged Pain. THE JOURNAL OF PAIN 2023; 24:226-236. [PMID: 36162791 DOI: 10.1016/j.jpain.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023]
Abstract
Multifocal transcranial direct current stimulation (tDCS) targeting several brain regions is promising for inducing cortical plasticity. It remains unknown whether multifocal tDCS aimed at the resting-state motor network (network-tDCS) can revert N2-P2 cortical responses otherwise attenuated during prolonged experimental pain. Thirty-eight healthy subjects participated in 2 sessions separated by 24 hours (Day1, Day2) of active (n = 19) or sham (n = 19) network-tDCS. Experimental pain induced by topical capsaicin was maintained for 24 hours and assessed using a numerical rating scale. Electrical detection and pain thresholds, and N2-P2 evoked potentials (electroencephalography) to noxious electrical stimulation were recorded before capsaicin-induced pain (Day1-baseline), after capsaicin application (Day1-post-cap), and after 2 sessions of network-tDCS (Day2). Capsaicin induced moderate pain at Day1-post-cap, which further increased at Day2 in both groups (P = .01). Electrical detection/pain thresholds did not change over time. N2-P2 responses were reduced on Day1-post-cap compared to Day1-baseline (P = .019). At Day2 compared with Day1-post-cap, N2-P2 responses were significantly higher in the Active network-tDCS group (P<.05), while the sham group remained inhibited. These results suggest that tDCS targeting regions associated with the motor network may modulate the late evoked brain responses to noxious peripheral stimulation otherwise initially inhibited by capsaicin-induced pain. PERSPECTIVE: This study extends the evidence of N2-P2 reduction due to capsaicin-induced pain from 30 minutes to 24 hrs. Moreover, 2 sessions of tDCS targeting the motor network in the early stage of nociceptive pain may revert the inhibition of N2-P2 associated with capsaicin-induced pain.
Collapse
|
29
|
Interpersonal synchronization of spontaneously generated body movements. iScience 2023; 26:106104. [PMID: 36852275 PMCID: PMC9958360 DOI: 10.1016/j.isci.2023.106104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Interpersonal movement synchrony (IMS) is central to social behavior in several species. In humans, IMS is typically studied using structured tasks requiring participants to produce specific body movements. Instead, spontaneously generated (i.e., not instructed) movements have received less attention. To test whether spontaneous movements synchronize interpersonally, we recorded full-body kinematics from dyads of participants who were only asked to sit face-to-face and to look at each other. We manipulated interpersonal (i) visual contact and (ii) spatial proximity. We found that spontaneous movements synchronized across participants only when they could see each other and regardless of interpersonal spatial proximity. This synchronization emerged very rapidly and did not selectively entail homologous body parts (as in mimicry); rather, the synchrony generalized to nearly all possible combinations of body parts. Hence, spontaneous behavior alone can lead to IMS. More generally, our results highlight that IMS can be studied under natural and unconstrained conditions.
Collapse
|
30
|
Pinto AM, Geenen R, Wager TD, Lumley MA, Häuser W, Kosek E, Ablin JN, Amris K, Branco J, Buskila D, Castelhano J, Castelo-Branco M, Crofford LJ, Fitzcharles MA, López-Solà M, Luís M, Marques TR, Mease PJ, Palavra F, Rhudy JL, Uddin LQ, Castilho P, Jacobs JWG, da Silva JAP. Emotion regulation and the salience network: a hypothetical integrative model of fibromyalgia. Nat Rev Rheumatol 2023; 19:44-60. [PMID: 36471023 DOI: 10.1038/s41584-022-00873-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/09/2022]
Abstract
Fibromyalgia is characterized by widespread pain, fatigue, sleep disturbances and other symptoms, and has a substantial socioeconomic impact. Current biomedical and psychosocial treatments are unsatisfactory for many patients, and treatment progress has been hindered by the lack of a clear understanding of the pathogenesis of fibromyalgia. We present here a model of fibromyalgia that integrates current psychosocial and neurophysiological observations. We propose that an imbalance in emotion regulation, reflected by an overactive 'threat' system and underactive 'soothing' system, might keep the 'salience network' (also known as the midcingulo-insular network) in continuous alert mode, and this hyperactivation, in conjunction with other mechanisms, contributes to fibromyalgia. This proposed integrative model, which we term the Fibromyalgia: Imbalance of Threat and Soothing Systems (FITSS) model, should be viewed as a working hypothesis with limited supporting evidence available. We hope, however, that this model will shed new light on existing psychosocial and biological observations, and inspire future research to address the many gaps in our knowledge about fibromyalgia, ultimately stimulating the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Ana Margarida Pinto
- University of Coimbra, Center for Research in Neuropsychology and Cognitive and Behavioral Intervention (CINEICC), Faculty of Psychology and Educational Sciences, Coimbra, Portugal
- University of Coimbra, University Clinic of Rheumatology, Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Psychological Medicine Institute, Faculty of Medicine, Coimbra, Portugal
| | - Rinie Geenen
- Department of Psychology, Utrecht University, Utrecht, The Netherlands
- Altrecht Psychosomatic Medicine Eikenboom, Zeist, The Netherlands
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Mark A Lumley
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Winfried Häuser
- Department Psychosomatic Medicine and Psychotherapy, Technical University of Munich, Munich, Germany
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jacob N Ablin
- Internal Medicine H, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Kirstine Amris
- The Parker Institute, Department of Rheumatology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Jaime Branco
- Rheumatology Department, Egas Moniz Hospital - Lisboa Ocidental Hospital Centre (CHLO-EPE), Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), Chronic Diseases Research Centre (CEDOC), NOVA Medical School, NOVA University Lisbon (NMS/UNL), Lisbon, Portugal
| | - Dan Buskila
- Ben Gurion University of the Negev Beer-Sheba, Beersheba, Israel
| | - João Castelhano
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), ICNAS, Coimbra, Portugal
| | - Miguel Castelo-Branco
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), ICNAS, Coimbra, Portugal
| | - Leslie J Crofford
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary-Ann Fitzcharles
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Marina López-Solà
- Serra Hunter Programme, Department of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Mariana Luís
- Rheumatology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Tiago Reis Marques
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip J Mease
- Swedish Medical Center/Providence St. Joseph Health, Seattle, WA, USA
- University of Washington School of Medicine, Seattle, WA, USA
| | - Filipe Palavra
- Centre for Child Development, Neuropediatric Unit, Paediatric Hospital, Coimbra Hospital and University Centre, Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (i.CBR), Faculty of Medicine, Coimbra, Portugal
| | - Jamie L Rhudy
- Department of Psychology, University of Tulsa, Tulsa, OK, USA
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Paula Castilho
- University of Coimbra, Center for Research in Neuropsychology and Cognitive and Behavioral Intervention (CINEICC), Faculty of Psychology and Educational Sciences, Coimbra, Portugal
| | - Johannes W G Jacobs
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - José A P da Silva
- University of Coimbra, University Clinic of Rheumatology, Faculty of Medicine, Coimbra, Portugal.
- Rheumatology Department, Coimbra Hospital and University Centre, Coimbra, Portugal.
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (i.CBR), Faculty of Medicine, Coimbra, Portugal.
| |
Collapse
|
31
|
Zhang LB, Lu XJ, Huang G, Zhang HJ, Tu YH, Kong YZ, Hu L. Selective and replicable neuroimaging-based indicators of pain discriminability. Cell Rep Med 2022; 3:100846. [PMID: 36473465 PMCID: PMC9798031 DOI: 10.1016/j.xcrm.2022.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/18/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Neural indicators of pain discriminability have far-reaching theoretical and clinical implications but have been largely overlooked previously. Here, to directly identify the neural basis of pain discriminability, we apply signal detection theory to three EEG (Datasets 1-3, total N = 366) and two fMRI (Datasets 4-5, total N = 399) datasets where participants receive transient stimuli of four sensory modalities (pain, touch, audition, and vision) and two intensities (high and low) and report perceptual ratings. Datasets 1 and 4 are used for exploration and others for validation. We find that most pain-evoked EEG and fMRI brain responses robustly encode pain discriminability, which is well replicated in validation datasets. The neural indicators are also pain selective since they cannot track tactile, auditory, or visual discriminability, even though perceptual ratings and sensory discriminability are well matched between modalities. Overall, we provide compelling evidence that pain-evoked brain responses can serve as replicable and selective neural indicators of pain discriminability.
Collapse
Affiliation(s)
- Li-Bo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Jing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Hui-Juan Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Heng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Zhuo Kong
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding author
| |
Collapse
|
32
|
Investigating the Origin of TMS-evoked Brain Potentials Using Topographic Analysis. Brain Topogr 2022; 35:583-598. [DOI: 10.1007/s10548-022-00917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/10/2022] [Indexed: 11/02/2022]
|
33
|
Young EL, Mista CA, Jure FA, Andersen OK, Biurrun Manresa JA. An analytical method to separate modality-specific and nonspecific sensory components of event-related potentials. Eur J Neurosci 2022; 56:5090-5105. [PMID: 35983754 DOI: 10.1111/ejn.15798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 01/07/2023]
Abstract
Several models have been developed to analyse cortical activity in response to salient events constituted by multiple sensory modalities. In particular, additive models compare event-related potentials (ERPs) in response to stimuli from two or more concomitant sensory modalities with the ERPs evoked by unimodal stimuli, in order to study sensory interactions. In this approach, components that are not specific to a sensory modality are commonly disregarded, although they likely carry information about stimulus expectation and evaluation, attentional orientation and other cognitive processes. In this study, we present an analytical method to assess the contribution of modality-specific and nonspecific components to the ERP. We developed an experimental setup that recorded ERPs in response to four stimulus types (visual, auditory, and two somatosensory modalities to test for stimulus specificity) in three different conditions (unimodal, bimodal and trimodal stimulation) and recorded the saliency of these stimuli relative to the sensory background. Stimuli were delivered in pairs, in order to study the effects of habituation. To this end, spatiotemporal features (peak amplitudes and latencies at different scalp locations) were analysed using linear mixed models. Results showed that saliency relative to the sensory background increased with the number of concomitant stimuli. We also observed that the spatiotemporal features of modality-specific components derived from this method likely reflect the amount and type of sensory input. Furthermore, the nonspecific component reflected habituation occurring for the second stimulus in the pair. In conclusion, this method provides an alternative to study neural mechanisms of responses to multisensory stimulation.
Collapse
Affiliation(s)
- Elizabeth Loreley Young
- Institute for Research and Development in Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina.,Centre for Rehabilitation Engineering and Neuromuscular and Sensory Research (CIRINS), Faculty of Engineering, National University of Entre Ríos, Oro Verde, Argentina
| | - Christian Ariel Mista
- Institute for Research and Development in Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina.,Centre for Rehabilitation Engineering and Neuromuscular and Sensory Research (CIRINS), Faculty of Engineering, National University of Entre Ríos, Oro Verde, Argentina
| | - Fabricio Ariel Jure
- Neurorehabilitation Systems, Department of Health Science and Technology (HST), Aalborg University, Aalborg, Denmark
| | | | - José A Biurrun Manresa
- Institute for Research and Development in Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina.,Centre for Rehabilitation Engineering and Neuromuscular and Sensory Research (CIRINS), Faculty of Engineering, National University of Entre Ríos, Oro Verde, Argentina.,Centre for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| |
Collapse
|
34
|
Pai J, Ogasawara T, Bromberg-Martin ES, Ogasawara K, Gereau RW, Monosov IE. Laser stimulation of the skin for quantitative study of decision-making and motivation. CELL REPORTS METHODS 2022; 2:100296. [PMID: 36160041 PMCID: PMC9499993 DOI: 10.1016/j.crmeth.2022.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/26/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Neuroeconomics studies how decision-making is guided by the value of rewards and punishments. But to date, little is known about how noxious experiences impact decisions. A challenge is the lack of an aversive stimulus that is dynamically adjustable in intensity and location, readily usable over many trials in a single experimental session, and compatible with multiple ways to measure neuronal activity. We show that skin laser stimulation used in human studies of aversion can be used for this purpose in several key animal models. We then use laser stimulation to study how neurons in the orbitofrontal cortex (OFC), an area whose many roles include guiding decisions among different rewards, encode the value of rewards and punishments. We show that some OFC neurons integrated the positive value of rewards with the negative value of aversive laser stimulation, suggesting that the OFC can play a role in more complex choices than previously appreciated.
Collapse
Affiliation(s)
- Julia Pai
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Takaya Ogasawara
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Kei Ogasawara
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert W. Gereau
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University, St. Louis, MO, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Ilya E. Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Neurosurgery, Washington University, St. Louis, MO, USA
- Department of Electrical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
35
|
Sharvit G, Schweinhardt P. The influence of social signals on the self-experience of pain: A neuroimaging review. Front Neurol 2022; 13:856874. [PMID: 36090868 PMCID: PMC9459049 DOI: 10.3389/fneur.2022.856874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Researchers in cognitive neuroscience have investigated extensively how psychological factors shape the processing and perception of pain using behavioral, physiological, and neuroimaging methods. However, social influences of pain, an essential part of biopsychosocial pain models, have received relatively little attention. This is particularly true for the neurobiological mechanisms underlying social modulations on pain. Therefore, this review discusses the findings of recent neuroimaging studies measuring the effects of social manipulations on pain perception (e.g., verbal and non-verbal social signals, social interaction style, conformity, social support, and sociocultural mediators). Finally, a schematic summary of the different social modulatory themes is presented.
Collapse
Affiliation(s)
- Gil Sharvit
- Department of Chiropractic Medicine, Integrative Spinal Research, Balgrist University Hospital, University of Zurich (UZH), Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
- *Correspondence: Gil Sharvit
| | - Petra Schweinhardt
- Department of Chiropractic Medicine, Integrative Spinal Research, Balgrist University Hospital, University of Zurich (UZH), Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
36
|
Hewitt D, Newton-Fenner A, Henderson J, Fallon NB, Brown C, Stancak A. Intensity-dependent modulation of cortical somatosensory processing during external, low-frequency peripheral nerve stimulation in humans. J Neurophysiol 2022; 127:1629-1641. [PMID: 35611988 PMCID: PMC9190739 DOI: 10.1152/jn.00511.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
External low-frequency peripheral nerve stimulation (LFS) has been proposed as a novel method for neuropathic pain relief. Previous studies have reported that LFS elicits long-term depression-like effects on human pain perception when delivered at noxious intensities, whereas lower intensities are ineffective. To shed light on cortical regions mediating the effects of LFS, we investigated changes in somatosensory-evoked potentials (SEPs) during four LFS intensities. LFS was applied to the radial nerve (600 pulses, 1 Hz) of 24 healthy participants at perception (1 times), low (5 times), medium (10 times), and high intensities (15 times detection threshold). SEPs were recorded during LFS, and averaged SEPs in 10 consecutive 1-min epochs of LFS were analyzed using source dipole modeling. Changes in resting electroencephalography (EEG) were investigated after each LFS block. Source activity in the midcingulate cortex (MCC) decreased linearly during LFS, with greater attenuation at stronger LFS intensities, and in the ipsilateral operculo-insular cortex during the two lowest LFS stimulus intensities. Increased LFS intensities resulted in greater augmentation of contralateral primary sensorimotor cortex (SI/MI) activity. Stronger LFS intensities were followed by increased α (alpha, 9-11 Hz) band power in SI/MI and decreased θ (theta, 3-5 Hz) band power in MCC. Intensity-dependent attenuation of MCC activity with LFS is consistent with a state of long-term depression. Sustained increases in contralateral SI/MI activity suggests that effects of LFS on somatosensory processing may also be dependent on satiation of SI/MI. Further research could clarify if the activation of SI/MI during LFS competes with nociceptive processing in neuropathic pain.NEW & NOTEWORTHY Somatosensory-evoked potentials during low-frequency stimulation of peripheral nerves were examined at graded stimulus intensities. Low-frequency stimulation was associated with decreased responsiveness in the midcingulate cortex and increased responsiveness in primary sensorimotor cortex. Greater intensities were associated with increased midcingulate cortex θ band power and decreased sensorimotor cortex α band power. Results further previous evidence of an inhibition of somatosensory processing during and after low-frequency stimulation and point toward a potential augmentation of activity in somatosensory processing regions.
Collapse
Affiliation(s)
- Danielle Hewitt
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Alice Newton-Fenner
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,2Institute for Risk and Uncertainty, University of Liverpool, Liverpool, United Kingdom
| | - Jessica Henderson
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Nicholas B. Fallon
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Christopher Brown
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Andrej Stancak
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,2Institute for Risk and Uncertainty, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
37
|
Somervail R, Bufacchi RJ, Salvatori C, Neary-Zajiczek L, Guo Y, Novembre G, Iannetti GD. Brain Responses to Surprising Stimulus Offsets: Phenomenology and Functional Significance. Cereb Cortex 2022; 32:2231-2244. [PMID: 34668519 PMCID: PMC9113248 DOI: 10.1093/cercor/bhab352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/15/2022] Open
Abstract
Abrupt increases of sensory input (onsets) likely reflect the occurrence of novel events or objects in the environment, potentially requiring immediate behavioral responses. Accordingly, onsets elicit a transient and widespread modulation of ongoing electrocortical activity: the Vertex Potential (VP), which is likely related to the optimisation of rapid behavioral responses. In contrast, the functional significance of the brain response elicited by abrupt decreases of sensory input (offsets) is more elusive, and a detailed comparison of onset and offset VPs is lacking. In four experiments conducted on 44 humans, we observed that onset and offset VPs share several phenomenological and functional properties: they (1) have highly similar scalp topographies across time, (2) are both largely comprised of supramodal neural activity, (3) are both highly sensitive to surprise and (4) co-occur with similar modulations of ongoing motor output. These results demonstrate that the onset and offset VPs largely reflect the activity of a common supramodal brain network, likely consequent to the activation of the extralemniscal sensory system which runs in parallel with core sensory pathways. The transient activation of this system has clear implications in optimizing the behavioral responses to surprising environmental changes.
Collapse
Affiliation(s)
- R Somervail
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), WC1E 6BT, London, UK
| | - R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - C Salvatori
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - L Neary-Zajiczek
- Department of Computer Science, University College London (UCL), WC1E 6BT, London, UK
| | - Y Guo
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - G Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), WC1E 6BT, London, UK
| |
Collapse
|
38
|
Courtin AS, Mouraux A. Combining Topical Agonists With the Recording of Event-Related Brain Potentials to Probe the Functional Involvement of TRPM8, TRPA1 and TRPV1 in Heat and Cold Transduction in the Human Skin. THE JOURNAL OF PAIN 2022; 23:754-771. [PMID: 34863944 DOI: 10.1016/j.jpain.2021.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
TRP channels play a central role in the transduction of thermal and nociceptive stimuli by free nerve endings. Most of the research on these channels has been conducted in vitro or in vivo in nonhuman animals and translation of these results to humans must account for potential experimental biases and interspecific differences. This study aimed at evaluating the involvement of TRPM8, TRPA1 and TRPV1 channels in the transduction of heat and cold stimuli by the human thermonociceptive system. For this purpose, we evaluated the effects of topical agonists of these 3 channels (menthol, cinnamaldehyde and capsaicin) on the event-related brain potentials (ERPs) elicited by phasic thermal stimuli (target temperatures: 10°C, 42°C, and 60°C) selected to activate cold Aδ thermoreceptors, warm sensitive C thermoreceptors and heat sensitive Aδ polymodal nociceptors. Sixty-four participants were recruited, 16 allocated to each agonist solution group (20% menthol, 10% cinnamaldehyde, .025% capsaicin and 1% capsaicin). Participants were treated sequentially with the active solution on one forearm and vehicle only on the other forearm for 20 minutes. Menthol decreased the amplitude and increased the latency of cold and heat ERPs. Cinnamic aldehyde decreased the amplitude and increased the latency of heat but not cold ERPs. Capsaicin decreased the amplitude and increased the latency of heat ERPs and decreased the amplitude of the N2P2 complex of the cold ERPs without affecting the earlier N1 wave or the latencies of the peaks. These findings are compatible with previous evidence indicating that TRPM8 is involved in innocuous cold transduction and that TRPV1 and TRPA1 are involved in noxious heat transduction in humans. PERSPECTIVE: By chemically modulating TRPM8, TRPA1 and TRPV1 reactivity (key molecules in the transduction of temperature) and assessing how this affected EEG responses to the activation of cold thermoreceptors and heat nociceptors, we aimed at confirming the role of these channels in a functional healthy human model.
Collapse
Affiliation(s)
- Arthur S Courtin
- Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium.
| | - André Mouraux
- Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
39
|
Observation of nociceptive detection thresholds and cortical evoked potentials: Go/no-go versus two-interval forced choice. Atten Percept Psychophys 2022; 84:1359-1369. [PMID: 35381960 PMCID: PMC9076717 DOI: 10.3758/s13414-022-02484-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/02/2022]
Abstract
Pain scientists and clinicians search for objective measures of altered nociceptive processing to study and stratify chronic pain patients. Nociceptive processing can be studied by observing a combination of nociceptive detection thresholds and evoked potentials. However, it is unknown whether the nociceptive detection threshold measured using a go-/no-go (GN) procedure can be biased by a response criterion. In this study, we compared nociceptive detection thresholds, psychometric slopes, and central evoked potentials obtained during a GN procedure with those obtained during a two-interval forced choice (2IFC) procedure to determine (1) if the nociceptive detection threshold during a GN procedure is biased by a criterion and (2) to determine if nociceptive evoked potentials observed in response to stimuli around the detection threshold are biased by a criterion. We found that the detection threshold was higher when assessed using a GN procedure in comparison with the 2IFC procedure. During a GN procedure, the average P2 component increased proportionally when averaged with respect to detection probability, but showed on-off behavior when averaged with respect to stimulus detection. During a 2IFC procedure, the average P2 component increased nonlinearly when averaged with respect to detection probability. These data suggest that nociceptive detection thresholds estimated using a GN procedure are subject to a response criterion.
Collapse
|
40
|
van den Berg B, Vanwinsen L, Jansen N, Buitenweg JR. Real-time estimation of perceptual thresholds based on the electroencephalogram using a deep neural network. J Neurosci Methods 2022; 374:109580. [DOI: 10.1016/j.jneumeth.2022.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
|
41
|
Wang H, Guo Y, Tu Y, Peng W, Lu X, Bi Y, Iannetti GD, Hu L. Neural processes responsible for the translation of sustained nociceptive inputs into subjective pain experience. Cereb Cortex 2022; 33:634-650. [PMID: 35244170 PMCID: PMC9890464 DOI: 10.1093/cercor/bhac090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Tracking and predicting the temporal structure of nociceptive inputs is crucial to promote survival, as proper and immediate reactions are necessary to avoid actual or potential bodily injury. Neural activities elicited by nociceptive stimuli with different temporal structures have been described, but the neural processes responsible for translating nociception into pain perception are not fully elucidated. To tap into this issue, we recorded electroencephalographic signals from 48 healthy participants receiving thermo-nociceptive stimuli with 3 different durations and 2 different intensities. We observed that pain perception and several brain responses are modulated by stimulus duration and intensity. Crucially, we identified 2 sustained brain responses that were related to the emergence of painful percepts: a low-frequency component (LFC, < 1 Hz) originated from the insula and anterior cingulate cortex, and an alpha-band event-related desynchronization (α-ERD, 8-13 Hz) generated from the sensorimotor cortex. These 2 sustained brain responses were highly coupled, with the α-oscillation amplitude that fluctuated with the LFC phase. Furthermore, the translation of stimulus duration into pain perception was serially mediated by α-ERD and LFC. The present study reveals how brain responses elicited by nociceptive stimulation reflect the complex processes occurring during the translation of nociceptive information into pain perception.
Collapse
Affiliation(s)
- Hailu Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Guo
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome 30 16163, Italy,Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Peng
- Brain Function and Psychological Science Research Center, Shenzhen University, Shenzhen 518061, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome 30 16163, Italy,Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Li Hu
- Corresponding author: CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
42
|
van den Berg B, Manoochehri M, Schouten AC, van der Helm FCT, Buitenweg JR. Nociceptive Intra-epidermal Electric Stimulation Evokes Steady-State Responses in the Secondary Somatosensory Cortex. Brain Topogr 2022; 35:169-181. [PMID: 35050427 PMCID: PMC8860817 DOI: 10.1007/s10548-022-00888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Recent studies have established the presence of nociceptive steady-state evoked potentials (SSEPs), generated in response to thermal or intra-epidermal electric stimuli. This study explores cortical sources and generation mechanisms of nociceptive SSEPs in response to intra-epidermal electric stimuli. Our method was to stimulate healthy volunteers (n = 22, all men) with 100 intra-epidermal pulse sequences. Each sequence had a duration of 8.5 s, and consisted of pulses with a pulse rate between 20 and 200 Hz, which was frequency modulated with a multisine waveform of 3, 7 and 13 Hz (n = 10, 1 excluded) or 3 and 7 Hz (n = 12, 1 excluded). As a result, evoked potentials in response to stimulation onset and contralateral SSEPs at 3 and 7 Hz were observed. The SSEPs at 3 and 7 Hz had an average time delay of 137 ms and 143 ms respectively. The evoked potential in response to stimulation onset had a contralateral minimum (N1) at 115 ms and a central maximum (P2) at 300 ms. Sources for the multisine SSEP at 3 and 7 Hz were found through beamforming near the primary and secondary somatosensory cortex. Sources for the N1 were found near the primary and secondary somatosensory cortex. Sources for the N2-P2 were found near the supplementary motor area. Harmonic and intermodulation frequencies in the SSEP power spectrum remained below a detectable level and no evidence for nonlinearity of nociceptive processing, i.e. processing of peripheral firing rate into cortical evoked potentials, was found.
Collapse
Affiliation(s)
- Boudewijn van den Berg
- Biomedical Signals and Systems, Technical Medical Centre, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands.
| | - Mana Manoochehri
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Alfred C Schouten
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA.,Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Frans C T van der Helm
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Jan R Buitenweg
- Biomedical Signals and Systems, Technical Medical Centre, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
43
|
Verdugo RJ, Matamala JM, Inui K, Kakigi R, Valls-Solé J, Hansson P, Bernhard Nilsen K, Lombardi R, Lauria G, Petropoulos IN, Malik RA, Treede RD, Baumgärtner U, Jara PA, Campero M. Review of techniques useful for the assessment of sensory small fiber neuropathies: Report from an IFCN expert group. Clin Neurophysiol 2022; 136:13-38. [DOI: 10.1016/j.clinph.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/09/2023]
|
44
|
Gong W, Yi B, Liu X, Luo F. The subsequent interruptive effects of pain on attention. Eur J Pain 2021; 26:786-795. [PMID: 34970813 DOI: 10.1002/ejp.1904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/26/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Pain is known to interrupt attentional performance selectively. In a previous study we showed that the interruptive effect of thermal pain on attention could persist up to 1500 ms after painful stimulus offset, but whether the pain modality affects this subsequent interruptive effect remains unclear. METHODS The present study was conducted to determine the time course of the interruptive effect of electrically induced pain on orienting and executive attention using various intervals between electric stimulation and attentional tasks (0, 250, 500, 750, 1000, 1250, and 1500 ms) and three study groups (pain, non-pain, and control). We performed two separate experiments in which participants performed a spatial cue task (experiment 1) and the Stroop task (experiment 2). Participants in the pain and non-pain groups received brief electric somatosensory stimulation, and those in the control group received no physical stimulus. We compared the performance of the three groups under the interstimulus interval (ISI) conditions. RESULTS The impairment of orienting attention prevailed under the first six ISI conditions in the pain and non-pain groups (F2, 63 = 5.72, P < 0.01); executive attention was not affected (F1,66 = 1.64, P = 0.20), confirming the persistence of the interruptive effect after stimulus offset. CONCLUSIONS This study demonstrated the interruptive effect of somatic stimulation on subsequent orienting attention performance, with no effect on executive attention. These findings suggest that pain has differential effects on the components of attention, depending on its modality and salience.
Collapse
Affiliation(s)
- Wenxiao Gong
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, P.R. China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Bing Yi
- Department of Psychology, Renmin University of China, Beijing, 100872, P.R. China
| | - Xiaoqian Liu
- School of Sociology, China University of Political Science and Law, Beijing, 100088, P.R. China
| | - Fei Luo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, P.R. China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
45
|
Lindenbaum L, Zehe S, Anlauff J, Hermann T, Kissler JM. Different Patterns of Attention Modulation in Early N140 and Late P300 sERPs Following Ipsilateral vs. Contralateral Stimulation at the Fingers and Cheeks. Front Hum Neurosci 2021; 15:781778. [PMID: 34938169 PMCID: PMC8685294 DOI: 10.3389/fnhum.2021.781778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Intra-hemispheric interference has been often observed when body parts with neighboring representations within the same hemisphere are stimulated. However, patterns of interference in early and late somatosensory processing stages due to the stimulation of different body parts have not been explored. Here, we explore functional similarities and differences between attention modulation of the somatosensory N140 and P300 elicited at the fingers vs. cheeks. In an active oddball paradigm, 22 participants received vibrotactile intensity deviant stimulation either ipsilateral (within-hemisphere) or contralateral (between-hemisphere) at the fingers or cheeks. The ipsilateral deviant always covered a larger area of skin than the contralateral deviant. Overall, both N140 and P300 amplitudes were higher following stimulation at the cheek and N140 topographies differed between fingers and cheek stimulation. For the N140, results showed higher deviant ERP amplitudes following contralateral than ipsilateral stimulation, regardless of the stimulated body part. N140 peak latency differed between stimulated body parts with shorter latencies for the stimulation at the fingers. Regarding P300 amplitudes, contralateral deviant stimulation at the fingers replicated the N140 pattern, showing higher responses and shorter latencies than ipsilateral stimulation at the fingers. For the stimulation at the cheeks, ipsilateral deviants elicited higher P300 amplitudes and longer latencies than contralateral ones. These findings indicate that at the fingers ipsilateral deviant stimulation leads to intra-hemispheric interference, with significantly smaller ERP amplitudes than in contralateral stimulation, both at early and late processing stages. By contrast, at the cheeks, intra-hemispheric interference is selective for early processing stages. Therefore, the mechanisms of intra-hemispheric processing differ from inter-hemispheric ones and the pattern of intra-hemispheric interference in early and late processing stages is body-part specific.
Collapse
Affiliation(s)
- Laura Lindenbaum
- Department of Psychology, Bielefeld University, Bielefeld, Germany.,Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Sebastian Zehe
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany.,Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Jan Anlauff
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany.,Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Thomas Hermann
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany.,Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Johanna Maria Kissler
- Department of Psychology, Bielefeld University, Bielefeld, Germany.,Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
46
|
Koberskaya NN, Tabeeva GR. [A role of cognitive and emotional factors in formation of pain]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:111-118. [PMID: 34932296 DOI: 10.17116/jnevro2021121111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pain is influenced by multiple emotional and cognitive factors. This paper provides an overview of the most important emotional and cognitive factors affecting pain, which has been confirmed in experimental and clinical studies. Emotional factors that increase pain perception include anxiety, depression, and other negative emotions. Positive emotions lead to a decrease in pain. Cognitive factors such as attention, expectation anxiety, and pain assessment can both increase and decrease pain sensations, depending on their specific focus. It becomes clear that pain is not just a reflection of nociceptive irritation, but also a feeling formed by psychological factors that can be individual in each case.
Collapse
Affiliation(s)
- N N Koberskaya
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - G R Tabeeva
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
47
|
Novembre G, Iannetti GD. Towards a unified neural mechanism for reactive adaptive behaviour. Prog Neurobiol 2021; 204:102115. [PMID: 34175406 PMCID: PMC7611662 DOI: 10.1016/j.pneurobio.2021.102115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/27/2022]
Abstract
Surviving in natural environments requires animals to sense sudden events and swiftly adapt behaviour accordingly. The study of such Reactive Adaptive Behaviour (RAB) has been central to a number of research streams, all orbiting around movement science but progressing in parallel, with little cross-field fertilization. We first provide a concise review of these research streams, independently describing four types of RAB: (1) cortico-muscular resonance, (2) stimulus locked response, (3) online motor correction and (4) action stopping. We then highlight remarkable similarities across these four RABs, suggesting that they might be subserved by the same neural mechanism, and propose directions for future research on this topic.
Collapse
Affiliation(s)
- Giacomo Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London, UK.
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London, UK.
| |
Collapse
|
48
|
Leandri M, Di Stefano G, Truini A, Marinelli L. Early nociceptive evoked potentials (NEPs) recorded from the scalp. Clin Neurophysiol 2021; 132:2896-2906. [PMID: 34226125 DOI: 10.1016/j.clinph.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Neurophysiological investigation of nociceptive pathway has so far been limited to late cortical responses. We sought to detect early components of the cortical evoked potentials possibly reflecting primary sensory activity. METHODS The 150 IDE micropatterned electrode was used to selectively activate Aδ intraepidermic fibres of the right hand dorsum in 25 healthy subjects and 3 patients suffering from trigeminal neuralgia. Neurographic recordings were performed to assess type of stimulated fibres and check selectivity. Cortical evoked potentials were recorded from C3'-Fz and Cz-Au1. RESULTS Neurographic recordings confirmed selective activation of Aδ fibres. Early components were detected after repetitive stimulation (0.83/s rate and 250-500 averages); the first negative component occured at 40 ms (N40) on the contralateral scalp. CONCLUSIONS The provided data support the hypothesis that N40 could be the cortical primary response conducted by fast Aδ fibres. SIGNIFICANCE This is the first report of early, possibly primary, cortical responses in humans by nociceptive peripheral stimulation. Although not perfected yet to allow widespread diagnostic use, this is probably the only method to allow fully objective evaluation of the nociceptive system, with important future implications in experimental and clinical neurophysiology.
Collapse
Affiliation(s)
- Massimo Leandri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, L.go Daneo 3, 16132 Genova, Italy.
| | - Giulia Di Stefano
- Department of Human Neuroscience, Sapienza University, Viale dell'Università 30, 00185 Roma, Italy.
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Viale dell'Università 30, 00185 Roma, Italy.
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, L.go Daneo 3, 16132 Genova, Italy; Department of Neuroscience, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
49
|
Provencher B, Northon S, Gevers Montoro C, O'Shaughnessy J, Piché M. Effects of chiropractic spinal manipulation on laser-evoked pain and brain activity. J Physiol Sci 2021; 71:20. [PMID: 34167458 PMCID: PMC10717656 DOI: 10.1186/s12576-021-00804-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
The aim of this study was to examine the mechanisms underlying hypoalgesia induced by spinal manipulation (SM). Eighty-two healthy volunteers were assigned to one of the four intervention groups: no intervention, SM at T4 (homosegmental to pain), SM at T8 (heterosegmental to pain) or light mechanical stimulus at T4 (placebo). Eighty laser stimuli were applied on back skin at T4 to evoke pain and brain activity related to Aδ- and C-fibers activation. The intervention was performed after 40 stimuli. Laser pain was decreased by SM at T4 (p = 0.028) but not T8 (p = 0.13), compared with placebo. However, brain activity related to Aδ-fibers activation was not significantly modulated (all p > 0.05), while C-fiber activity could not be measured reliably. This indicates that SM produces segmental hypoalgesia through inhibition of nociceptive processes that are independent of Aδ fibers. It remains to be clarified whether the effect is mediated by the inhibition of C-fiber activity.
Collapse
Affiliation(s)
- Benjamin Provencher
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Stéphane Northon
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Carlos Gevers Montoro
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
- Madrid College of Chiropractic, Madrid, Spain
| | - Julie O'Shaughnessy
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 boul. des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada.
| |
Collapse
|
50
|
Mouraux A, Bloms-Funke P, Boesl I, Caspani O, Chapman SC, Di Stefano G, Finnerup NB, Garcia-Larrea L, Goetz M, Kostenko A, Pelz B, Pogatzki-Zahn E, Schubart K, Stouffs A, Truini A, Tracey I, Troconiz IF, Van Niel J, Vela JM, Vincent K, Vollert J, Wanigasekera V, Wittayer M, Phillips KG, Treede RD. IMI2-PainCare-BioPain-RCT3: a randomized, double-blind, placebo-controlled, crossover, multi-center trial in healthy subjects to investigate the effects of lacosamide, pregabalin, and tapentadol on biomarkers of pain processing observed by electroencephalography (EEG). Trials 2021; 22:404. [PMID: 34140041 PMCID: PMC8212499 DOI: 10.1186/s13063-021-05272-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Background IMI2-PainCare-BioPain-RCT3 is one of four similarly designed clinical studies aiming at profiling a set of functional biomarkers of drug effects on the nociceptive system that could serve to accelerate the future development of analgesics, by providing a quantitative understanding between drug exposure and effects of the drug on nociceptive signal processing in human volunteers. IMI2-PainCare-BioPain-RCT3 will focus on biomarkers derived from non-invasive electroencephalographic (EEG) measures of brain activity. Methods This is a multisite single-dose, double-blind, randomized, placebo-controlled, 4-period, 4-way crossover, pharmacodynamic (PD) and pharmacokinetic (PK) study in healthy subjects. Biomarkers derived from scalp EEG measurements (laser-evoked brain potentials [LEPs], pinprick-evoked brain potentials [PEPs], resting EEG) will be obtained before and three times after administration of three medications known to act on the nociceptive system (lacosamide, pregabalin, tapentadol) and placebo, given as a single oral dose in separate study periods. Medication effects will be assessed concurrently in a non-sensitized normal condition and a clinically relevant hyperalgesic condition (high-frequency electrical stimulation of the skin). Patient-reported outcomes will also be collected. A sequentially rejective multiple testing approach will be used with overall alpha error of the primary analysis split between LEP and PEP under tapentadol. Remaining treatment arm effects on LEP or PEP or effects on EEG are key secondary confirmatory analyses. Complex statistical analyses and PK-PD modeling are exploratory. Discussion LEPs and PEPs are brain responses related to the selective activation of thermonociceptors and mechanonociceptors. Their amplitudes are dependent on the responsiveness of these nociceptors and the state of the pathways relaying nociceptive input at the level of the spinal cord and brain. The magnitude of resting EEG oscillations is sensitive to changes in brain network function, and some modulations of oscillation magnitude can relate to perceived pain intensity, variations in vigilance, and attentional states. These oscillations can also be affected by analgesic drugs acting on the central nervous system. For these reasons, IMI2-PainCare-BioPain-RCT3 hypothesizes that EEG-derived measures can serve as biomarkers of target engagement of analgesic drugs for future Phase 1 clinical trials. Phase 2 and 3 clinical trials could also benefit from these tools for patient stratification. Trial registration This trial was registered 25/06/2019 in EudraCT (2019%2D%2D001204-37).
Collapse
Affiliation(s)
- André Mouraux
- Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium.
| | - Petra Bloms-Funke
- Translational Science & Intelligence, Grünenthal GmbH, Aachen, Germany
| | - Irmgard Boesl
- Clinical Science Development, Grünenthal GmbH, Aachen, Germany
| | - Ombretta Caspani
- Department of Neurophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | - Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Luis Garcia-Larrea
- Lyon Neurosciences Center Research Unit Inserm U 1028, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Lyon 1 University, Lyon, France
| | | | - Anna Kostenko
- Department of Neurophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Esther Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | | | | | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Iñaki F Troconiz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | | | - Jose Miguel Vela
- Drug Discovery & Preclinical Development, ESTEVE Pharmaceuticals, Barcelona, Spain
| | - Katy Vincent
- Nuffield Department of Women's and Reproductive Health (NDWRH), University of Oxford, Oxford, UK
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Vishvarani Wanigasekera
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Matthias Wittayer
- Department of Neurophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Rolf-Detlef Treede
- Department of Neurophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|