1
|
Honda M, Inoue R, Nishiyama K, Ueda T, Komuro A, Amano H, Sugisawa R, Dash S, Shirakawa J, Okada H. Vgll2 as an integrative regulator of mitochondrial function and contractility specific to skeletal muscle. J Cell Physiol 2024; 239:e31436. [PMID: 39286968 DOI: 10.1002/jcp.31436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
During skeletal muscle adaptation to physiological or pathophysiological signals, contractile apparatus and mitochondrial function are coordinated to alter muscle fiber type. Although recent studies have identified various factors involved in modifying contractile proteins and mitochondrial function, the molecular mechanisms coordinating contractile and metabolic functions during muscle fiber transition are not fully understood. Using a gene-deficient mouse approach, our previous studies uncovered that vestigial-like family member 2 (Vgll2), a skeletal muscle-specific transcription cofactor activated by exercise, is essential for fast-to-slow adaptation of skeletal muscle. The current study provides evidence that Vgll2 plays a role in increasing muscle mitochondrial mass and oxidative capacity. Transgenic Vgll2 overexpression in mice altered muscle fiber composition toward the slow type and enhanced exercise endurance, which contradicted the outcomes observed with Vgll2 deficiency. Vgll2 expression was positively correlated with the expression of genes related to mitochondrial function in skeletal muscle, mitochondrial DNA content, and protein abundance of oxidative phosphorylation complexes. Additionally, Vgll2 overexpression significantly increased the maximal respiration of isolated muscle fibers and enhanced the suppressive effects of endurance training on weight gain. Notably, no additional alteration in expression of myosin heavy chain genes was observed after exercise, suggesting that Vgll2 plays a direct role in regulating mitochondrial function, independent of its effect on contractile components. The observed increase in exercise endurance and metabolic efficiency may be attributed to the acute upregulation of genes promoting fatty acid utilization as a direct consequence of Vgll2 activation facilitated by endurance exercise. Thus, the current study establishes that Vgll2 is an integrative regulator of mitochondrial function and contractility in skeletal muscle.
Collapse
Affiliation(s)
- Masahiko Honda
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Gunma, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Kuniyuki Nishiyama
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Gunma, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohma, Kanagawa, Japan
| | - Takeshi Ueda
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Graduate School of Medical Sciences, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Akiyoshi Komuro
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Hisayuki Amano
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Ryoichi Sugisawa
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Suman Dash
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Graduate School of Medical Sciences, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Gunma, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hitoshi Okada
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Graduate School of Medical Sciences, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Antiaging Center, Kindai University, Higashi-Osaka, Osaka, Japan
| |
Collapse
|
2
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
3
|
Wang S, Shi M, Zhang Y, Niu J, Li W, Yuan J, Cai C, Yang Y, Gao P, Guo X, Li B, Lu C, Cao G. Construction of LncRNA-Related ceRNA Networks in Longissimus Dorsi Muscle of Jinfen White Pigs at Different Developmental Stages. Curr Issues Mol Biol 2024; 46:340-354. [PMID: 38248324 PMCID: PMC10814722 DOI: 10.3390/cimb46010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
The development of skeletal muscle in pigs might determine the quality of pork. In recent years, long non-coding RNAs (lncRNAs) have been found to play an important role in skeletal muscle growth and development. In this study, we investigated the whole transcriptome of the longissimus dorsi muscle (LDM) of Jinfen White pigs at three developmental stages (1, 90, and 180 days) and performed a comprehensive analysis of lncRNAs, mRNAs, and micro-RNAs (miRNAs), aiming to find the key regulators and interaction networks in Jinfen White pigs. A total of 2638 differentially expressed mRNAs (DE mRNAs) and 982 differentially expressed lncRNAs (DE lncRNAs) were identified. Compared with JFW_1d, there were 497 up-regulated and 698 down-regulated DE mRNAs and 212 up-regulated and 286 down-regulated DE lncRNAs in JFW_90d, respectively. In JFW_180d, there were 613 up-regulated and 895 down-regulated DE mRNAs and 184 up-regulated and 131 down-regulated DE lncRNAs compared with JFW_1d. There were 615 up-regulated and 477 down-regulated DE mRNAs and 254 up-regulated and 355 down-regulated DE lncRNAs in JFW_180d compared with JFW_90d. Compared with mRNA, lncRNA has fewer exons, fewer ORFs, and a shorter length. We performed GO and KEGG pathway functional enrichment analysis for DE mRNAs and the potential target genes of DE lncRNAs. As a result, several pathways are involved in muscle growth and development, such as the PI3K-Akt, MAPK, hedgehog, and hippo signaling pathways. These are among the pathways through which mRNA and lncRNAs function. As part of this study, bioinformatic screening was used to identify miRNAs and DE lncRNAs that could act as ceRNAs. Finally, we constructed an lncRNA-miRNA-mRNA regulation network containing 26 mRNAs, 7 miRNAs, and 17 lncRNAs; qRT-PCR was used to verify the key genes in these networks. Among these, XLOC_022984/miR-127/ENAH and XLOC_016847/miR-486/NRF1 may function as key ceRNA networks. In this study, we obtained transcriptomic profiles from the LDM of Jinfen White pigs at three developmental stages and screened out lncRNA-miRNA-mRNA regulatory networks that may provide crucial information for the further exploration of the molecular mechanisms during skeletal muscle development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, No. 1 Mingxian South Road, Taigu 030801, China; (S.W.); (M.S.); (Y.Z.); (J.N.); (W.L.); (J.Y.); (C.C.); (Y.Y.); (P.G.); (X.G.); (B.L.)
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, No. 1 Mingxian South Road, Taigu 030801, China; (S.W.); (M.S.); (Y.Z.); (J.N.); (W.L.); (J.Y.); (C.C.); (Y.Y.); (P.G.); (X.G.); (B.L.)
| |
Collapse
|
4
|
Zhang J, Li J, Liu Y, Liang R, Mao Y, Yang X, Zhang Y, Zhu L. Effect of resveratrol on skeletal slow-twitch muscle fiber expression via AMPK/PGC-1α signaling pathway in bovine myotubes. Meat Sci 2023; 204:109287. [PMID: 37490793 DOI: 10.1016/j.meatsci.2023.109287] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
The purpose of this study was to evaluate the impact of resveratrol on slow-twitch muscle fiber expression in bovine myotubes. The results revealed that resveratrol enhanced slow myosin heavy chain (MyHC) and suppressed fast MyHC protein expression, accompanied by increased MyHC I/IIa and decreased MyHC IIx/IIb mRNA levels in bovine myotubes (P < 0.05). Resveratrol also enhanced the activities of succinic dehydrogenase (SDH), malate dehydrogenase (MDH) and the mitochondrial DNA (mtDNA) content, but reduced lactate dehydrogenase (LDH) activity (P < 0.05). Meanwhile, the protein and gene expression of AMPK, SIRT1 and PGC-1α were upregulated by resveratrol (P < 0.05). Furthermore, PGC-1α inhibitor SR-18292 could attenuate resveratrol-induced muscle fiber conversion from fast-twitch to slow-twitch. These results suggest that resveratrol might promote muscle fiber type transition from fast-twitch to slow-twitch through the AMPK/PGC-1α signaling pathway and mitochondrial biogenesis in bovine myotubes.
Collapse
Affiliation(s)
- Jingyue Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Jiqiang Li
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yunge Liu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
5
|
Hoh JFY. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J Comp Physiol B 2023:10.1007/s00360-023-01499-0. [PMID: 37277594 DOI: 10.1007/s00360-023-01499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
The kinetics of myosin controls the speed and power of muscle contraction. Mammalian skeletal muscles express twelve kinetically different myosin heavy chain (MyHC) genes which provides a wide range of muscle speeds to meet different functional demands. Myogenic progenitors from diverse craniofacial and somitic mesoderm specify muscle allotypes with different repertoires for MyHC expression. This review provides a brief synopsis on the historical and current views on how cell lineage, neural impulse patterns, and thyroid hormone influence MyHC gene expression in muscles of the limb allotype during development and in adult life and the molecular mechanisms thereof. During somitic myogenesis, embryonic and foetal myoblast lineages form slow and fast primary and secondary myotube ontotypes which respond differently to postnatal neural and thyroidal influences to generate fully differentiated fibre phenotypes. Fibres of a given phenotype may arise from myotubes of different ontotypes which retain their capacity to respond differently to neural and thyroidal influences during postnatal life. This gives muscles physiological plasticity to adapt to fluctuations in thyroid hormone levels and patterns of use. The kinetics of MyHC isoforms vary inversely with animal body mass. Fast 2b fibres are specifically absent in muscles involved in elastic energy saving in hopping marsupials and generally absent in large eutherian mammals. Changes in MyHC expression are viewed in the context of the physiology of the whole animal. The roles of myoblast lineage and thyroid hormone in regulating MyHC gene expression are phylogenetically the most ancient while that of neural impulse patterns the most recent.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- , PO Box 152, Killara, NSW, 2071, Australia.
| |
Collapse
|
6
|
Redmond AK, Davies TM, Schofield MR, Sheard PW. New tools for the investigation of muscle fiber-type spatial distributions across histological sections. Skelet Muscle 2023; 13:7. [PMID: 37087439 PMCID: PMC10122286 DOI: 10.1186/s13395-023-00316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/16/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND The functional and metabolic properties of skeletal muscles are partly a function of the spatial arrangement of fibers across the muscle belly. Many muscles feature a non-uniform spatial pattern of fiber types, and alterations to the arrangement can reflect age or disease and correlate with changes in muscle mass and strength. Despite the significance of this event, descriptions of spatial fiber-type distributions across a muscle section are mainly provided qualitatively, by eye. Whilst several quantitative methods have been proposed, difficulties in implementation have meant that robust statistical analysis of fiber type distributions has not yielded new insight into the biological processes that drive the age- or disease-related changes in fiber type distributions. METHODS We review currently available approaches for analysis of data reporting fast/slow fiber type distributions on muscle sections before proposing a new method based on a generalized additive model. We compare current approaches with our new method by analysis of sections of three mouse soleus muscles that exhibit visibly different spatial fiber patterns, and we also apply our model to a dataset representing the fiber type proportions and distributions of the mouse tibialis anterior. RESULTS We highlight how current methods can lead to differing interpretations when applied to the same dataset and demonstrate how our new method is the first to permit location-based estimation of fiber-type probabilities, in turn enabling useful graphical representation. CONCLUSIONS We present an open-access online application that implements current methods as well as our new method and which aids the interpretation of a variety of statistical tools for the spatial analysis of muscle fiber distributions.
Collapse
Affiliation(s)
- Anna K Redmond
- Department of Mathematics & Statistics, University of Otago, Dunedin, 9016, New Zealand
| | - Tilman M Davies
- Department of Mathematics & Statistics, University of Otago, Dunedin, 9016, New Zealand.
| | - Matthew R Schofield
- Department of Mathematics & Statistics, University of Otago, Dunedin, 9016, New Zealand
| | - Philip W Sheard
- Department of Physiology, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
7
|
Kohn TA, Anley MJ, Magwaza SN, Adamson L, Hoffman LC, Brand TS. Muscle fiber type and metabolic profiles of four muscles from the African black ostrich. Meat Sci 2023; 200:109156. [PMID: 36898231 DOI: 10.1016/j.meatsci.2023.109156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Muscle fiber type, fiber cross-sectional area (CSA), enzyme activities (citrate synthase (CS), 3-hydroxyacetyl Co A dehydrogenase (3HAD), lactate dehydrogenase (LDH) and phosphofructokinase (PFK)) and glycogen content were analyzed in the M. iliotibialis cranialis (ITC), M. iliotibialis lateralis, M. gastrocnemius (G) and M. fibularis longus (FL) muscles from 24 ostriches. Type I and II fiber proportions were similar across the 4 muscles, but the ITC had overall the smallest fibers. CS activity was the highest in the ITC, but similar between the remainder of the muscles. 3HAD activities were very low in all muscles, ranging between 1.9 and 2.7 μmol/min/g protein, indicating poor β-oxidation. The ITC also had the lowest PFK activity. Glycogen content averaged ∼85 mmol/kg dry weight across the muscles with large intramuscular variations. The 4 ostrich muscles present with low fat oxidation capacity and low glycogen content, which could have significant implications on meat quality attributes.
Collapse
Affiliation(s)
- Tertius A Kohn
- Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa; Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535. South Africa.
| | - Megan J Anley
- Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - S'thandiwe N Magwaza
- Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535. South Africa
| | - Luqmaan Adamson
- Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535. South Africa
| | - Louw C Hoffman
- Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Australia
| | - Tertius S Brand
- Animal Sciences, Department of Agriculture, Western Cape Government, Private Bag X1, Elsenburg 7607, South Africa; Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
8
|
Cao Y, Zhang M, Li Y, Lu J, Zhou W, Li X, Shi H, Xu B, Li S. O-GlcNAcylation of SIRT1 Protects against Cold Stress-Induced Skeletal Muscle Damage via Amelioration of Mitochondrial Homeostasis. Int J Mol Sci 2022; 23:ijms232314520. [PMID: 36498847 PMCID: PMC9737900 DOI: 10.3390/ijms232314520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cold stress disturbs cellular metabolic and energy homeostasis, which is one of the causes of stress-induced illnesses. O-GlcNAcylation is a nutrient-sensing pathway involved in a myriad of cellular processes. It plays a key role in metabolic homeostasis. Nevertheless, a specific sensing mechanism linking skeletal muscle to O-GlcNAcylation in cold stress is unknown. In this study, O-GlcNAcylation of SIRT1 was targeted to explore the mechanism of skeletal muscle adaptation to cold stress. Ogt mKO aggravated skeletal muscle fibrosis induced by cold stress. At the same time, Ogt gene deletion accelerated the homeostasis imbalance and oxidative stress of skeletal muscle mitochondria induced by cold stress. In vitro results showed that inhibition of SIRT1's O-GlcNAcylation accelerated mild hypothermia induced mitochondrial homeostasis in mouse myogenic cells (C2C12 cells). However, overexpression of SIRT1's O-GlcNAcylation improved the above phenomena. Thus, these results reveal a protective role of OGT-SIRT1 in skeletal muscle's adaptation to cold stress, and our findings will provide new avenues to combat stress-induced diseases.
Collapse
Affiliation(s)
- Yu Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Meng Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ye Li
- Sheep Disease Laboratory, Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China
| | - Jingjing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wanhui Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoshuang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (B.X.); (S.L.)
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (B.X.); (S.L.)
| |
Collapse
|
9
|
Mo J, Wang Z, Liu Q, Li Z, Nie Q. Construction and Analysis of Disuse Atrophy Model of the Gastrocnemius Muscle in Chicken. Int J Mol Sci 2022; 23:ijms23136892. [PMID: 35805900 PMCID: PMC9266690 DOI: 10.3390/ijms23136892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Disuse muscle atrophy is identified as the physiological, biochemical, morphological, and functional changes during restricted movement, immobilization, or weightlessness. Although its internal mechanism has been extensively studied in mammals and was thought to be mainly related to oxidative stress, it was unclear whether it behaved consistently in non-mammals such as chickens. In this study, we tried to construct a disuse atrophy model of the gastrocnemius muscle in chickens by limb immobilization, and collected the gastrocnemius muscles of the fixed group and the control group for RNA sequencing. Through analysis of muscle loss, HE staining, immunohistochemistry, and oxidative stress level, we found that limb immobilization could lead to loss of muscle mass, decrease in muscle fiber diameter, decrease in the proportion of slow muscle fibers, and increase in the proportion of fast muscle fibers, and also cause elevated levels of oxidative stress. In addition, a total of 565 different expression genes (DEGs) were obtained by RNA sequencing, which was significantly enriched in the biological processes such as cell proliferation and apoptosis, reactive oxygen species metabolism, and fast and slow muscle fiber transformation, and it showed that the FOXO signaling pathway, closely related to muscle atrophy, was activated. In brief, we initially confirmed that limb immobilization could induce disuse atrophy of skeletal muscle, and oxidative stress was involved in the process of disuse muscle atrophy.
Collapse
Affiliation(s)
- Jiawei Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.M.); (Z.W.); (Q.L.); (Z.L.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, China
| | - Zhijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.M.); (Z.W.); (Q.L.); (Z.L.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, China
| | - Qingchun Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.M.); (Z.W.); (Q.L.); (Z.L.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, China
| | - Zhenhui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.M.); (Z.W.); (Q.L.); (Z.L.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.M.); (Z.W.); (Q.L.); (Z.L.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-5759
| |
Collapse
|
10
|
Belova SP, Kalashnikova EP, Tyganov SA, Kostrominova TY, Shenkman BS, Nemirovskaya TL. Effect of enhanced muscle tone on the expression of atrogenes and cytoskeletal proteins during postural muscle unloading. Arch Biochem Biophys 2022; 725:109291. [PMID: 35597296 DOI: 10.1016/j.abb.2022.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Skeletal muscle unloading leads to the decreased electrical activity and decline of muscle tone. AIMS Current study evaluated the effect of muscle tone preservation achieved by tetanus toxin (TeNT) treatment on signaling pathways regulating atrophic processes during unloading. MAIN METHODS Four groups of rats were used: non-treated control (C), control rats with TeNT administration (CT), 7 days of unloading/hindlimb suspension with placebo (HS), and 7 days of unloading with TeNT administration (HST). KEY FINDINGS Absolute and relative force of tetanic contractions was decreased by 65% in soleus muscle of HS rats when compared with C. Treatment with TeNT significantly lessened force decline in soleus muscle of HST rats when compared with HS. TeNT administration increased myosin heavy chain I beta (MyHC Iβ) expression in CT rats and prevented MyHC Iβ loss in HST group when compared with C rats. Desmin content was lower by 31.4% (p < 0.05) in HS group when compared with HST. Calpain-1 expression was increased in HS group when compared with C, CT and HST. There was a decrease in p-p70S6K content (41%, p < 0,05) and an increase in p-eEF2 content (77%, p < 0,05) in HS group when compared with C, while there were no significant differences in the content of these proteins between HST, CT and C groups. SIGNIFICANCE Treatment with TeNT significantly diminished unloading-induced decline of soleus muscle mass and mechanical properties and affected the regulation of MyHC Iβ expression. These effects are mediated by signaling pathways regulating protein synthesis and degradation.
Collapse
Affiliation(s)
- Svetlana P Belova
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | | | - Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | - Tatiana Y Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN, USA
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | | |
Collapse
|
11
|
Cai B, Ma M, Zhang J, Wang Z, Kong S, Zhou Z, Lian L, Zhang J, Li J, Wang Y, Li H, Zhang X, Nie Q. LncEDCH1 improves mitochondrial function to reduce muscle atrophy by interacting with SERCA2. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:319-334. [PMID: 35024244 PMCID: PMC8717430 DOI: 10.1016/j.omtn.2021.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
Skeletal muscle is a regulator of the body's energy expenditure and metabolism. Abnormal regulation of skeletal muscle-specific genes leads to various muscle diseases. Long non-coding RNAs (lncRNAs) have been demonstrated to play important roles in muscle growth and muscle atrophy. To explore the potential function of muscle-associated lncRNA, we analyzed our previous RNA-sequencing data and selected the lncRNA (LncEDCH1) as the research object. In this study, we report that LncEDCH1 is specifically enriched in skeletal muscle, and its transcriptional activity is positively regulated by transcription factor SP1. LncEDCH1 regulates myoblast proliferation and differentiation in vitro. In vivo, LncEDCH1 reduces intramuscular fat deposition, activates slow-twitch muscle phenotype, and inhibits muscle atrophy. Mechanistically, LncEDCH1 binds to sarcoplasmic/ER calcium ATPase 2 (SERCA2) protein to enhance SERCA2 protein stability and increase SERCA2 activity. Meanwhile, LncEDCH1 improves mitochondrial efficiency possibly through a SERCA2-mediated activation of the AMPK pathway. Our findings provide a strategy for using LncEDCH1 as an effective regulator for the treatment of muscle atrophy and energy metabolism.
Collapse
Affiliation(s)
- Bolin Cai
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Manting Ma
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Jing Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Zhijun Wang
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Shaofen Kong
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Zhen Zhou
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Ling Lian
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiannan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Juan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yajun Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hongmei Li
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Xiquan Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Qinghua Nie
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| |
Collapse
|
12
|
Nikonova E, Mukherjee A, Kamble K, Barz C, Nongthomba U, Spletter ML. Rbfox1 is required for myofibril development and maintaining fiber type-specific isoform expression in Drosophila muscles. Life Sci Alliance 2022; 5:5/4/e202101342. [PMID: 34996845 PMCID: PMC8742874 DOI: 10.26508/lsa.202101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
Protein isoform transitions confer muscle fibers with distinct properties and are regulated by differential transcription and alternative splicing. RNA-binding Fox protein 1 (Rbfox1) can affect both transcript levels and splicing, and is known to contribute to normal muscle development and physiology in vertebrates, although the detailed mechanisms remain obscure. In this study, we report that Rbfox1 contributes to the generation of adult muscle diversity in Drosophila Rbfox1 is differentially expressed among muscle fiber types, and RNAi knockdown causes a hypercontraction phenotype that leads to behavioral and eclosion defects. Misregulation of fiber type-specific gene and splice isoform expression, notably loss of an indirect flight muscle-specific isoform of Troponin-I that is critical for regulating myosin activity, leads to structural defects. We further show that Rbfox1 directly binds the 3'-UTR of target transcripts, regulates the expression level of myogenic transcription factors myocyte enhancer factor 2 and Salm, and both modulates expression of and genetically interacts with the CELF family RNA-binding protein Bruno1 (Bru1). Rbfox1 and Bru1 co-regulate fiber type-specific alternative splicing of structural genes, indicating that regulatory interactions between FOX and CELF family RNA-binding proteins are conserved in fly muscle. Rbfox1 thus affects muscle development by regulating fiber type-specific splicing and expression dynamics of identity genes and structural proteins.
Collapse
Affiliation(s)
- Elena Nikonova
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried-Planegg, Germany
| | - Amartya Mukherjee
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Ketaki Kamble
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried-Planegg, Germany
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Maria L Spletter
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried-Planegg, Germany
| |
Collapse
|
13
|
Interactions between insulin and exercise. Biochem J 2021; 478:3827-3846. [PMID: 34751700 DOI: 10.1042/bcj20210185] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
The interaction between insulin and exercise is an example of balancing and modifying the effects of two opposing metabolic regulatory forces under varying conditions. While insulin is secreted after food intake and is the primary hormone increasing glucose storage as glycogen and fatty acid storage as triglycerides, exercise is a condition where fuel stores need to be mobilized and oxidized. Thus, during physical activity the fuel storage effects of insulin need to be suppressed. This is done primarily by inhibiting insulin secretion during exercise as well as activating local and systemic fuel mobilizing processes. In contrast, following exercise there is a need for refilling the fuel depots mobilized during exercise, particularly the glycogen stores in muscle. This process is facilitated by an increase in insulin sensitivity of the muscles previously engaged in physical activity which directs glucose to glycogen resynthesis. In physically trained individuals, insulin sensitivity is also higher than in untrained individuals due to adaptations in the vasculature, skeletal muscle and adipose tissue. In this paper, we review the interactions between insulin and exercise during and after exercise, as well as the effects of regular exercise training on insulin action.
Collapse
|
14
|
Duc P, Vignes M, Hugon G, Sebban A, Carnac G, Malyshev E, Charlot B, Rage F. Human neuromuscular junction on micro-structured microfluidic devices implemented with a custom micro electrode array (MEA). LAB ON A CHIP 2021; 21:4223-4236. [PMID: 34559171 DOI: 10.1039/d1lc00497b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the neuromuscular system, signal transmission from motor neurons (MNs) to innervated muscle fibers is crucial for their synaptic function, viability, and maintenance. In order to better understand human neuromuscular junction (hNMJ) functionality, it is important to develop on-a-chip devices with human cells. To investigate this cell network, microfluidic platforms are useful to grow different cell types in isolated compartments. Such devices have already been developed to study in vitro neuronal circuitry. Here, we combined microfluidics with two techniques: soft lithography and custom microelectrodes array (MEA). Our goal was to create hNMJs on a specific pattern of electrodes to stimulate pre-synaptic axons and record post-synaptic muscle activity. Micromachining was used to create structurations to guide muscle growth above electrodes, without impairing axon propagation, therefore optimizing the effectiveness of activity recording. Electrodes were also arranged to be aligned with the microfluidic chambers in order to specifically stimulate axons that were growing between the two compartments. Isolation of the two cell types allows for the selective treatment of neurons or muscle fibers to assess NMJ functionality hallmarks. Altogether, this microfluidic/microstructured/MEA platform allowed mature and functional in vitro hNMJ modelling. We demonstrate that electrical activation of MNs can trigger recordable extracellular muscle action potentials. This study provides evidence for a physiologically relevant model to mimic a hNMJ that will in the future be a powerful tool, more sensitive than calcium imaging, to better understand and characterize NMJs and their disruption in neurodegenerative diseases.
Collapse
Affiliation(s)
- Pauline Duc
- IGMM, University of Montpellier, CNRS, Montpellier, France.
| | - Michel Vignes
- IBMM UMR5247, University of Montpellier, CNRS, Montpellier, France
| | - Gérald Hugon
- PhyMedExp, INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Audrey Sebban
- IES, CNRS University of Montpellier, Montpellier 34095, France
| | - Gilles Carnac
- PhyMedExp, INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| | - Eugene Malyshev
- IES, CNRS University of Montpellier, Montpellier 34095, France
| | - Benoît Charlot
- IES, CNRS University of Montpellier, Montpellier 34095, France
| | - Florence Rage
- IGMM, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
15
|
Ju X, Liu Y, Shan Y, Ji G, Zhang M, Tu Y, Zou J, Chen X, Geng Z, Shu J. Analysis of potential regulatory LncRNAs and CircRNAs in the oxidative myofiber and glycolytic myofiber of chickens. Sci Rep 2021; 11:20861. [PMID: 34675224 PMCID: PMC8531282 DOI: 10.1038/s41598-021-00176-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
SART and PMM are mainly composed of oxidative myofibers and glycolytic myofibers, respectively, and myofiber types profoundly influence postnatal muscle growth and meat quality. SART and PMM are composed of lncRNAs and circRNAs that participate in myofiber type regulation. To elucidate the regulatory mechanism of myofiber type, lncRNA and circRNA sequencing was used to systematically compare the transcriptomes of the SART and PMM of Chinese female Qingyuan partridge chickens at their marketing age. The luminance value (L*), redness value (a*), average diameter, cross-sectional area, and density difference between the PMM and SART were significant (p < 0.05). ATPase staining results showed that PMMs were all darkly stained and belonged to the glycolytic type, and the proportion of oxidative myofibers in SART was 81.7%. A total of 5 420 lncRNAs were identified, of which 365 were differentially expressed in the SART compared with the PMM (p < 0.05). The cis-regulatory analysis identified target genes that were enriched for specific GO terms and KEGG pathways (p < 0.05), including striated muscle cell differentiation, regulation of cell proliferation, regulation of muscle cell differentiation, myoblast differentiation, regulation of myoblast differentiation, and MAPK signaling pathway. Pathways and coexpression network analyses suggested that XR_003077811.1, XR_003072304.1, XR_001465942.2, XR_001465741.2, XR_001470487.1, XR_003077673.1 and XR_003074785.1 played important roles in regulating oxidative myofibers by TBX3, QKI, MYBPC1, CALM2, and PPARGC1A expression. A total of 10 487 circRNAs were identified, of which 305 circRNAs were differentially expressed in the SART compared with the PMM (p < 0.05). Functional enrichment analysis showed that differentially expressed circRNAs were involved in host gene expression and were enriched in the AMPK, calcium signaling pathway, FoxO signaling pathway, p53 signaling pathway, and cellular senescence. Novel_circ_004282 and novel_circ_002121 played important roles in regulating oxidative myofibers by PPP3CA and NFATC1 expression. Using lncRNA-miRNA/circRNA-miRNA integrated analysis, we identified many candidate interaction networks that might affect muscle fiber performance. Important lncRNA-miRNA-mRNA networks, such as lncRNA-XR_003074785.1/miR-193-3p/PPARGC1A, regulate oxidative myofibers. This study reveals that lncXR_003077811.1, lncXR_003072304.1, lncXR_001465942.2, lncXR_001465741.2, lncXR_001470487.1, lncXR_003077673.1, XR_003074785.1, novel_circ_004282 and novel_circ_002121 might regulate oxidative myofibers. The lncRNA-XR_003074785.1/miR-193-3p/PPARGC1A pathway might regulate oxidative myofibers. All these findings provide rich resources for further in-depth research on the regulatory mechanism of lncRNAs and circRNAs in myofibers.
Collapse
Affiliation(s)
- Xiaojun Ju
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu, China
| | - Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu, China
| | - Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu, China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu, China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu, China
| | - Jianmin Zou
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu, China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu, China.
| |
Collapse
|
16
|
Okada R, Fujita SI, Suzuki R, Hayashi T, Tsubouchi H, Kato C, Sadaki S, Kanai M, Fuseya S, Inoue Y, Jeon H, Hamada M, Kuno A, Ishii A, Tamaoka A, Tanihata J, Ito N, Shiba D, Shirakawa M, Muratani M, Kudo T, Takahashi S. Transcriptome analysis of gravitational effects on mouse skeletal muscles under microgravity and artificial 1 g onboard environment. Sci Rep 2021; 11:9168. [PMID: 33911096 PMCID: PMC8080648 DOI: 10.1038/s41598-021-88392-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Spaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (μg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy-related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profiles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms.
Collapse
Affiliation(s)
- Risa Okada
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, 305-8505, Japan
| | - Shin-Ichiro Fujita
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Riku Suzuki
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Takuto Hayashi
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Hirona Tsubouchi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Chihiro Kato
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Shunya Sadaki
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Maho Kanai
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Sayaka Fuseya
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuri Inoue
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Hyojung Jeon
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akihiro Kuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akiko Ishii
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Tamaoka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Jun Tanihata
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Naoki Ito
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, 650-0047, Japan
| | - Dai Shiba
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, 305-8505, Japan
| | - Masaki Shirakawa
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, 305-8505, Japan
| | - Masafumi Muratani
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Takashi Kudo
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
| | - Satoru Takahashi
- Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
17
|
Gene Expression Profile in Similar Tissues Using Transcriptome Sequencing Data of Whole-Body Horse Skeletal Muscle. Genes (Basel) 2020; 11:genes11111359. [PMID: 33213000 PMCID: PMC7698552 DOI: 10.3390/genes11111359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 01/12/2023] Open
Abstract
Horses have been studied for exercise function rather than food production, unlike most livestock. Therefore, the role and characteristics of tissue landscapes are critically understudied, except for certain muscles used in exercise-related studies. In the present study, we compared RNA-Seq data from 18 Jeju horse skeletal muscles to identify differentially expressed genes (DEGs) between tissues that have similar functions and to characterize these differences. We identified DEGs between different muscles using pairwise differential expression (DE) analyses of tissue transcriptome expression data and classified the samples using the expression values of those genes. Each tissue was largely classified into two groups and their subgroups by k-means clustering, and the DEGs identified in comparison between each group were analyzed by functional/pathway level using gene set enrichment analysis and gene level, confirming the expression of significant genes. As a result of the analysis, the differences in metabolic properties like glycolysis, oxidative phosphorylation, and exercise adaptation of the groups were detected. The results demonstrated that the biochemical and anatomical features of a wide range of muscle tissues in horses could be determined through transcriptome expression analysis, and provided proof-of-concept data demonstrating that RNA-Seq analysis can be used to classify and study in-depth differences between tissues with similar properties.
Collapse
|
18
|
Krusnauskas R, Eimantas N, Baranauskiene N, Venckunas T, Snieckus A, Brazaitis M, Westerblad H, Kamandulis S. Response to Three Weeks of Sprint Interval Training Cannot Be Explained by the Exertional Level. ACTA ACUST UNITED AC 2020; 56:medicina56080395. [PMID: 32784754 PMCID: PMC7466197 DOI: 10.3390/medicina56080395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 01/13/2023]
Abstract
Background and Objectives: The all-out mode of sprint interval training (SIT) has been shown to be an efficient method for improving sports performance, exercise capacity, and aerobic fitness. Although the benefits of SIT are well described, the mechanisms underlying the different degrees of response remain largely unexplored. We aimed to assess the effects of exertion on the responsiveness to SIT. Materials and Methods: The participants were 28 young untrained men (mean ± SD age 25.7 ± 6.03 years) who exhibited either a large or small increase in Wingate test average power in response to nine SIT sessions performed over three weeks. Each training session comprised four-six bouts of 30 s all-out cycling interspaced with 4 min of rest. Individual responses were assessed using heart rate (HR) during exercise for all nine sessions, as well as blood lactate concentration up to 1 h, and the decrement in maximal voluntary knee extension torque (MVC) up to 24 h after the first and last training sessions. Peak oxygen uptake (VO2peak) and maximum HR were measured before and after training during an incremental cycling test to exhaustion. Results: Although all participants showed benefits of SIT such as increased VO2peak, the increase in anaerobic cycling power varied between participants. We identified 17 high responders and nine low responders, whose average power outputs were 0.80 ± 0.22 and 0.22 ± 0.19 W/kg, respectively. The HR achieved during any of the training sessions did not differ between high and low responders. The lactate kinetics did not differ between groups before and after the intervention. Training resulted in a more rapid recovery of MVC without any discernible differences between the high and low responders. Conclusion: The differences in the responses to SIT are not dependent on the exertion level during training.
Collapse
Affiliation(s)
- Raulas Krusnauskas
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (N.E.); (N.B.); (T.V.); (A.S.); (M.B.); (H.W.); (S.K.)
- Correspondence:
| | - Nerijus Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (N.E.); (N.B.); (T.V.); (A.S.); (M.B.); (H.W.); (S.K.)
| | - Neringa Baranauskiene
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (N.E.); (N.B.); (T.V.); (A.S.); (M.B.); (H.W.); (S.K.)
| | - Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (N.E.); (N.B.); (T.V.); (A.S.); (M.B.); (H.W.); (S.K.)
| | - Audrius Snieckus
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (N.E.); (N.B.); (T.V.); (A.S.); (M.B.); (H.W.); (S.K.)
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (N.E.); (N.B.); (T.V.); (A.S.); (M.B.); (H.W.); (S.K.)
| | - Hakan Westerblad
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (N.E.); (N.B.); (T.V.); (A.S.); (M.B.); (H.W.); (S.K.)
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (N.E.); (N.B.); (T.V.); (A.S.); (M.B.); (H.W.); (S.K.)
| |
Collapse
|
19
|
Regulation of the Mammalian SWI/SNF Family of Chromatin Remodeling Enzymes by Phosphorylation during Myogenesis. BIOLOGY 2020; 9:biology9070152. [PMID: 32635263 PMCID: PMC7407365 DOI: 10.3390/biology9070152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
Myogenesis is the biological process by which skeletal muscle tissue forms. Regulation of myogenesis involves a variety of conventional, epigenetic, and epigenomic mechanisms that control chromatin remodeling, DNA methylation, histone modification, and activation of transcription factors. Chromatin remodeling enzymes utilize ATP hydrolysis to alter nucleosome structure and/or positioning. The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) family of chromatin remodeling enzymes is essential for myogenesis. Here we review diverse and novel mechanisms of regulation of mSWI/SNF enzymes by kinases and phosphatases. The integration of classic signaling pathways with chromatin remodeling enzyme function impacts myoblast viability and proliferation as well as differentiation. Regulated processes include the assembly of the mSWI/SNF enzyme complex, choice of subunits to be incorporated into the complex, and sub-nuclear localization of enzyme subunits. Together these processes influence the chromatin remodeling and gene expression events that control myoblast function and the induction of tissue-specific genes during differentiation.
Collapse
|
20
|
Wu Y, Wang Y, Yin D, Mahmood T, Yuan J. Transcriptome analysis reveals a molecular understanding of nicotinamide and butyrate sodium on meat quality of broilers under high stocking density. BMC Genomics 2020; 21:412. [PMID: 32552672 PMCID: PMC7302154 DOI: 10.1186/s12864-020-06827-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background In recent years, increased attention has been focused on breast muscle yield and meat quality in poultry production. Supplementation with nicotinamide and butyrate sodium can improve the meat quality of broilers. However, the potential molecular mechanism is not clear yet. This study was designed to investigate the effects of supplementation with a combination of nicotinamide and butyrate sodium on breast muscle transcriptome of broilers under high stocking density. A total of 300 21-d-old Cobb broilers were randomly allocated into 3 groups based on stocking density: low stocking density control group (L; 14 birds/m2), high stocking density control group (H; 18 birds/m2), and high stocking density group provided with a combination of 50 mg/kg nicotinamide and 500 mg/kg butyrate sodium (COMB; 18 birds/m2), raised to 42 days of age. Results The H group significantly increased cooking losses, pH decline and activity of lactate dehydrogenase in breast muscle when compared with the L group. COMB showed a significant decrease in these indices by comparison with the H group (P < 0.05). The transcriptome results showed that key genes involved in glycolysis, proteolysis and immune stress were up-regulated whereas those relating to muscle development, cell adhesion, cell matrix and collagen were down-regulated in the H group as compared to the L group. In contrast, genes related to muscle development, hyaluronic acid, mitochondrial function, and redox pathways were up-regulated while those associated with inflammatory response, acid metabolism, lipid metabolism, and glycolysis pathway were down-regulated in the COMB group when compared with the H group. Conclusions The combination of nicotinamide and butyrate sodium may improve muscle quality by enhancing mitochondrial function and antioxidant capacity, inhibiting inflammatory response and glycolysis, and promoting muscle development and hyaluronic acid synthesis.
Collapse
Affiliation(s)
- Yuqin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Youli Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dafei Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tahir Mahmood
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Picard B, Gagaoua M. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6021-6039. [PMID: 32374594 DOI: 10.1021/acs.jafc.0c02086] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The control of meat quality traits constitutes an important target for any farm animal production, including cattle. Therefore, better understanding of the biochemical properties that drive muscle development and final outcomes constitutes one of the main challenging topics of animal production and meat science. Accordingly, this review has focused on skeletal muscle fibers in cattle and their relationships with beef qualities. It aimed to describe the chemical and structural properties of muscle fibers as well as a comprehensive review of their contractile and metabolic characteristics during the life of the animal. The existing methods for the classification of muscle fibers were reviewed, compared, and discussed. Then, the different stages of myogenesis in cattle were defined. The main factors regulating fetal and postnatal growth and the plasticity of muscle fibers were evidenced, especially the role of myostatin growth factor and the impact of nutritional factors. This review highlights that the knowledge about muscle fibers is paramount for a better understanding of how to control the muscle properties throughout the life of the animal for better management of the final eating qualities of beef. Accordingly, the associations between bovine muscle fibers and different meat eating qualities such as tenderness, pH decline, and color traits were further presented.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - Mohammed Gagaoua
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
22
|
Li B, Yin D, Li P, Zhang Z, Zhang X, Li H, Li R, Hou L, Liu H, Wu W. Profiling and Functional Analysis of Circular RNAs in Porcine Fast and Slow Muscles. Front Cell Dev Biol 2020; 8:322. [PMID: 32528948 PMCID: PMC7264268 DOI: 10.3389/fcell.2020.00322] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
The different skeletal muscle fiber types exhibit distinctively different physiological and metabolic properties, and have been linked to both human metabolic diseases and meat quality traits in livestock. Circular RNAs (circRNAs) are a new class of endogenous RNA regulating gene expression, but regulatory mechanisms of skeletal muscle fibers involved in circRNAs remain poorly understood. Here, we constructed circRNA expression profiles of three fast-twitch biceps femoris (Bf) and three slow-twitch soleus (Sol) muscles in pigs using RNA-seq and identified 16,342 distinct circRNA candidates. Notably, 242 differentially expressed (DE) circRNAs between Bf and Sol muscles were identified, including 105 upregulated and 137 downregulated circRNAs, and are thus potential candidates for the regulation of skeletal muscle fiber conversion. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of host genes of DE circRNAs revealed that host genes were mainly involved in skeletal muscle fiber-related GO terms (e.g., muscle contraction, contractile fiber part, and Z disk) and skeletal muscle fiber-related signaling pathways (e.g., AMPK and cGMP-PKG). We also constructed co-expression networks of DE circRNA-miRNA-mRNA using previously acquired high-throughput sequencing mRNA and miRNA data, from which 112 circRNA-miRNA and 95 miRNA-mRNA interactions were identified. Multiple circRNAs essentially serve as a sponge for miR-499-5p, which is preferentially expressed in slow-twitch muscle and reduces the severity of Duchenne muscular dystrophy (DMD). Taken together, a series of novel candidate circRNAs involved in the growth and development of porcine skeletal muscle was identified. Furthermore, they provide a comprehensive circRNA resource for further in-depth research on the regulatory mechanisms of circRNA in the formation of skeletal muscle fiber, and may provide insights into human skeletal muscle diseases.
Collapse
Affiliation(s)
- Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Di Yin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Pinghua Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zengkai Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiying Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongqiang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Rongyang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liming Hou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Al-Attar R, Storey KB. Suspended in time: Molecular responses to hibernation also promote longevity. Exp Gerontol 2020; 134:110889. [PMID: 32114078 DOI: 10.1016/j.exger.2020.110889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Aging in most animals is an inevitable process that causes or is a result of physiological, biochemical, and molecular changes in the body, and has a strong influence on an organism's lifespan. Although advancement in medicine has allowed humans to live longer, the prevalence of age-associated medical complications is continuously burdening older adults worldwide. Current animal models used in research to study aging have provided novel information that has helped investigators understand the aging process; however, these models are limiting. Aging is a complex process that is regulated at multiple biological levels, and while a single manipulation in these models can provide information on a process, it is not enough to understand the global regulation of aging. Some mammalian hibernators live up to 9.8-times higher than their expected average lifespan, and new research attributes this increase to their ability to hibernate. A common theme amongst these mammalian hibernators is their ability to greatly reduce their metabolic rate to a fraction of their normal rate and initiate cytoprotective responses that enable their survival. Metabolic rate depression is strictly regulated at different biological levels in order to enable the animal to not only survive, but to also do so by relying mainly on their limited internal fuels. As such, understanding both the global and specific regulatory mechanisms used to promote survival during hibernation could, in theory, allow investigators to have a better understanding of the aging process. This can also allow pharmaceutical industries to find therapeutics that could delay or reverse age-associated medical complications and promote healthy aging and longevity in humans.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
24
|
Functions of Circular RNAs Involved in Animal Skeletal Muscle Development – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2019-0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Circular RNAs (circRNAs) have been identified in the skeletal muscle of numerous species of animals. Their abundance, diversity, and their dynamic expression patterns have been revealed in various developmental stages and physiological conditions in skeletal muscles. Recently, studies have made known that circRNAs widely participate in muscle cell proliferation and differentiation. They are also involved in other life processes such as functioning as microRNA (miRNA) sponges, regulators of splicing and transcription, and modifiers of parental gene expression with emerging pieces of evidence indicating a high chance of playing a vital role in several cells and tissues, especially the muscles. Other research has emphatically stated that the growth and development of skeletal muscle are regulated by proteins as well as non-coding RNAs, which involve circRNAs. Therefore, circRNAs have been considered significant biological regulators for understanding the molecular mechanisms of myoblasts. Here, we discuss how circRNAs are abundantly expressed in muscle (myoblast) and their critical roles in growth and development.
Collapse
|
25
|
Medler S. Mixing it up: the biological significance of hybrid skeletal muscle fibers. ACTA ACUST UNITED AC 2019; 222:222/23/jeb200832. [PMID: 31784473 DOI: 10.1242/jeb.200832] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibers are classified according to the myosin heavy chain (MHC) isoforms and other myofibrillar proteins expressed within these cells. In addition to 'pure' fibers expressing single MHC isoforms, many fibers are 'hybrids' that co-express two or more different isoforms of MHC or other myofibrillar proteins. Although hybrid fibers have been recognized by muscle biologists for more than three decades, uncertainty persists about their prevalence in normal muscles, their role in fiber-type transitions, and what they might tell us about fiber-type regulation at the cellular and molecular levels. This Review summarizes current knowledge on the relative abundance of hybrid fibers in a variety of muscles from different species. Data from more than 150 muscles from 39 species demonstrate that hybrid fibers are common, frequently representing 25% or more of the fibers in normal muscles. Hybrid fibers appear to have two main roles: (1) they function as intermediates during the fiber-type transitions associated with skeletal muscle development, adaptation to exercise and aging; and (2) they provide a functional continuum of fiber phenotypes, as they possess physiological properties that are intermediate to those of pure fiber types. One aspect of hybrid fibers that is not widely recognized is that fiber-type asymmetries - such as dramatic differences in the MHC composition along the length of single fibers - appear to be a common aspect of many fibers. The final section of this Review examines the possible role of differential activities of nuclei in different myonuclear domains in establishing fiber-type asymmetries.
Collapse
Affiliation(s)
- Scott Medler
- Biology Department, State University of New York at Fredonia, Fredonia, NY 14063, USA
| |
Collapse
|
26
|
Calcineurin Broadly Regulates the Initiation of Skeletal Muscle-Specific Gene Expression by Binding Target Promoters and Facilitating the Interaction of the SWI/SNF Chromatin Remodeling Enzyme. Mol Cell Biol 2019; 39:MCB.00063-19. [PMID: 31308130 PMCID: PMC6751634 DOI: 10.1128/mcb.00063-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Calcineurin (Cn) is a calcium-activated serine/threonine protein phosphatase that is broadly implicated in diverse cellular processes, including the regulation of gene expression. During skeletal muscle differentiation, Cn activates the nuclear factor of activated T-cell (NFAT) transcription factor but also promotes differentiation by counteracting the negative influences of protein kinase C beta (PKCβ) via dephosphorylation and activation of Brg1, an enzymatic subunit of the mammalian SWI/SNF ATP-dependent chromatin remodeling enzyme. Here we identified four major temporal patterns of Cn-dependent gene expression in differentiating myoblasts and determined that Cn is broadly required for the activation of the myogenic gene expression program. Mechanistically, Cn promotes gene expression through direct binding to myogenic promoter sequences and facilitating the binding of Brg1, other SWI/SNF subunit proteins, and MyoD, a critical lineage determinant for skeletal muscle differentiation. We conclude that the Cn phosphatase directly impacts the expression of myogenic genes by promoting ATP-dependent chromatin remodeling and formation of transcription-competent promoters.
Collapse
|
27
|
Phosphorylated ERK1/2 protein levels are closely associated with the fast fiber phenotypes in rat hindlimb skeletal muscles. Pflugers Arch 2019; 471:971-982. [PMID: 31093758 DOI: 10.1007/s00424-019-02278-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/02/2019] [Accepted: 04/24/2019] [Indexed: 01/27/2023]
Abstract
The relationship between the extracellular signal-regulated kinase 1 and 2 (ERK1/2), one of the mitogen-activated protein kinases (MAPKs), and mammalian skeletal muscle fiber phenotype is unclear. We looked at this relationship in three in vivo conditions in male Wistar rats. First, the levels of phosphorylated (active) ERK1/2 protein were closely associated with the fiber type composition of sedentary rat hindlimb muscles: highest in the superficial portion of the gastrocnemius (100% fast fibers), lower in the plantaris (~ 80% fast fibers), and lowest in the soleus (~ 15% fast fibers). Second, during growth, there was a gradual decrease in the percentage of fast fibers from 40% at 3 weeks to 1.5% at 65 weeks and a concomitant gradual decrease in the levels of phosphorylated ERK1/2 in the soleus muscle. Third, sciatic nerve denervation induced a significant decrease in the weight of both the soleus and plantaris, but a slow-to-fast fiber type shift and increase in phosphorylated ERK1/2 protein were observed only in the soleus. Although only a few fast and fast + slow hybrid fibers of the denervated soleus muscle reacted positively to the anti-phosphorylated ERK1/2 antibody by immuno-histochemical analysis, our results suggest that the phosphorylated form of ERK1/2 seems to be closely related to the fast fiber phenotype program. Further evidence for this relationship was provided by the observation that several slow fiber phenotype-specific proteins, i.e., Hsp72, Hsp60, and PGC-1, changed in the opposite direction of the levels of phosphorylated ERK1/2 protein.
Collapse
|
28
|
Olsen LA, Nicoll JX, Fry AC. The skeletal muscle fiber: a mechanically sensitive cell. Eur J Appl Physiol 2019; 119:333-349. [PMID: 30612167 DOI: 10.1007/s00421-018-04061-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
The plasticity of skeletal muscle, whether an increase in size, change in metabolism, or alteration in structural properties, is in a continuous state of flux largely dependent upon physical activity. Much of the past research has expounded upon these ever-changing aspects of the muscle fiber following exercise. Specifically, endocrine and paracrine signaling have been heavily investigated lending to much of the past literature comprised of such endocrinological dynamics following muscle activity. Mechanotransduction, the ability of a cell to convert a mechanical stimulus into an intracellular biochemical response, has garnered much less attention. Recent work, however, has demonstrated the physical continuity of the muscle fiber, specifically demonstrating a continuous physical link between the extracellular matrix (ECM), cytoskeleton, and nuclear matrix as a means to rapidly regulate gene expression following a mechanical stimulus. Similarly, research has shown mechanical stimuli to directly influence cytoplasmic signaling whether through oxidative adaptations, increased muscle size, or enhanced muscle integrity. Regrettably, minimal research has investigated the role that exercise may play within the mechanotransducing signaling cascades. This proposed line of study may prove paramount as muscle-related diseases greatly impact one's ability to lead an independent lifestyle along with contributing a substantial burden upon the economy. Thus, this review explores both biophysical and biochemical mechanotransduction, and how these signaling pathways may be influenced following exercise.
Collapse
Affiliation(s)
- Luke A Olsen
- Biomedical Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Justin X Nicoll
- Department of Kinesiology, California State University, Northridge, CA, 91330-8287, USA
| | - Andrew C Fry
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
29
|
Zhang Z, Du H, Yang C, Li Q, Qiu M, Song X, Yu C, Jiang X, Liu L, Hu C, Xia B, Xiong X, Yang L, Peng H, Jiang X. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds. Anim Biotechnol 2019; 30:233-241. [PMID: 30601081 DOI: 10.1080/10495398.2018.1476377] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: The goal of this study was to investigate the mechanisms of muscle growth and development of three chicken breeds. Participants: Eighteen chickens, including three different breeds with different growth speeds (White Broiler, Daheng, and Commercial Layers of Roman), were used. Methods: Total RNA from breast muscle of these chickens was subjected to a gene expression microarray. Differentially expressed genes (DEGs) were screened and functional enrichment analysis was performed using DAVID. Seven DEGs were confirmed by quantitative reverse transcription PCR. Results: Overall, 8,398 DEGs were found among the different lines. The DEGs between each two lines that were unique for a developmental stage were greater than those that were common during all stages. Functional analysis revealed that DEGs across the entire developmental process were primarily involved in positive cell proliferation, growth, cell differentiation, and developmental processes. Genes involved in muscle regulation, muscle construction, and muscle cell differentiation were upregulated in the faster-growing breed compared to the slower-growing breed. DEGs including myosin heavy chain 15 (MYH15), myozenin 2 (MYOZ2), myosin-binding protein C (MYBPC3), insulin-like growth factor 2 (IGF2), apoptosis regulator (BCL-2), AP-1 transcription factor subunit (JUN), and AP-1 transcription factor subunit (FOS) directly regulated muscle growth or were in the center of the protein-protein interaction network. Pathways, including the extracellular matrix (ECM)-receptor interaction, mitogen-activated protein kinase (MAPK) signaling pathway, and focal adhesion, were the most enriched DEGs between lines or within lines under different developmental stages. Conclusions: Genes involved in muscle construction and cell differentiation were differentially expressed among the three breeds.
Collapse
Affiliation(s)
- Zengrong Zhang
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China.,b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| | - Huarui Du
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Chaowu Yang
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Qingyun Li
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Mohan Qiu
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Xiaoyan Song
- b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| | - Chunlin Yu
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Xiaoyu Jiang
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Lan Liu
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Chenming Hu
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Bo Xia
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Xia Xiong
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China
| | - Li Yang
- c Animal Breeding and Genetics Key Laboratory of Sichuan Province , Chengdu , Sichuan , China
| | - Han Peng
- b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| | - Xiaosong Jiang
- a Sichuan Animal Science Academy , Chengdu , Sichuan , China.,b Sichuan Daheng Poultry Breeding Company , Chengdu , Sichuan , China
| |
Collapse
|
30
|
Guo L, Huang W, Chen B, Jebessa Bekele E, Chen X, Cai B, Nie Q. gga-mir-133a-3p Regulates Myoblasts Proliferation and Differentiation by Targeting PRRX1. Front Genet 2018; 9:577. [PMID: 30564268 PMCID: PMC6288258 DOI: 10.3389/fgene.2018.00577] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/08/2018] [Indexed: 11/14/2022] Open
Abstract
Non-coding RNAs play a regulatory role in the growth and development of skeletal muscle. Our previous study suggested that gga-mir-133a-3p was a potential candidate for regulating myoblast proliferation and differentiation in skeletal muscle. The purpose of our study was to reveal the regulatory mechanism of gga-mir-133a-3p in the proliferation and differentiation of chicken myoblasts. Through the detection of cell proliferation activity, cell cycle progression and EdU, we found that gga-mir-133a-3p can significantly inhibit the proliferation of myoblasts. In the process of myogenic differentiation, gga-mir-133a-3p is up-regulated, while gga-mir-133a-3p can significantly promote the up-regulation of differentiation-related muscle-derived factors, indicating that gga-mir-133a-3p can promote the differentiation of myoblasts. Validation at the transcriptional level and protein level proved that gga-mir-133a-3p can inhibit the expression of PRRX1, and the dual-luciferase assay also showed their direct targeting relationship. Correspondingly, PRRX1 can significantly promote myoblast proliferation and inhibit myoblast differentiation. In our study, we confirmed that gga-mir-133a-3p participates in the regulation of proliferation and differentiation of myoblasts by targeting PRRX1.
Collapse
Affiliation(s)
- Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Weiling Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Biao Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Endashaw Jebessa Bekele
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiaolan Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Bolin Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
31
|
Rezvyakov PN, Shaimardanova GF, Lisukov AN, Kuznetsov MS, Islamov RR, Nikolskiy EE. Morphological Study of Myelinated Fibers of the Sciatic Nerve in Mice after Space Flight and Readaptation to the Conditions of Earth Gravity. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2018; 482:174-177. [PMID: 30402752 DOI: 10.1134/s0012496618050101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 11/23/2022]
Abstract
We revealed a decrease in the thickness of the myelin sheath and myelin delamination in the tibial nerve of C57BL/6N mice after a 30-day flight aboard the biosatellite Bion-M1. The processes of myelin degeneration continued for seven days after return of the animals to Earth and adaptation to the conditions of natural gravity. Our data add to hypothesis on the role of neurogenic component in pathogenesis of hypogravity motor syndrome.
Collapse
Affiliation(s)
- P N Rezvyakov
- Kazan State Medical University, Kazan, Tatarstan, Russia.
| | - G F Shaimardanova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan, Russia
| | - A N Lisukov
- Kazan State Medical University, Kazan, Tatarstan, Russia
| | - M S Kuznetsov
- Kazan State Medical University, Kazan, Tatarstan, Russia
| | - R R Islamov
- Kazan State Medical University, Kazan, Tatarstan, Russia.,Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan, Russia
| | - E E Nikolskiy
- Kazan State Medical University, Kazan, Tatarstan, Russia.,Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan, Russia.,Kazan (Privolzhskii) Federal University, Kazan, Tatarstan, Russia
| |
Collapse
|
32
|
Dehghani M, Kargarfard M, Rabiee F, Nasr-Esfahani MH, Ghaedi K. A comparative study on the effects of acute and chronic downhill running vs uphill running exercise on the RNA levels of the skeletal muscles PGC1-α, FNDC5 and the adipose UCP1 in BALB/c mice. Gene 2018; 679:369-376. [PMID: 30218749 DOI: 10.1016/j.gene.2018.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/09/2018] [Accepted: 09/11/2018] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to investigate the effect of a single bout and 8 weeks of downhill running versus uphill running exercise on expression of PGC1-α, FNDC5 and UCP1 in mice. Forty-eight BALB/c male mice weighing 25-30 g were randomly assigned into 8 groups: 1) acute downhill running (ADR) on a -15° slope; 2) acute uphill running (AUR) on a +15° slope; 3) acute running without inclination (AWI), 4) acute without exercise as control (ACtrl), 5) chronic downhill running (CDR) on a -15° slope; 6) chronic uphill running (CUR) on a +15°slope; 7) chronic running without inclination (CWI), 8) chronic without exercise as control (CCtrl). Twenty four hours after the last training session, the mice were sacrificed and Calf muscles (including soleus and gastrocnemius) and quadriceps muscles (including Rectus femoris and vastus intermedius) were obtained and expression levels of PGC1-α and FNDC5 in crus and quadriceps muscles and UCP1 in visceral and subcutaneous adipose tissues were measured and compared between the groups. PGC-1α and FNDC5 mRNA levels increased after treadmill exercise training in all acute and chronic exercise groups in both skeletal muscle groups. Furthermore mRNA level of UCP1 in subcutaneous adipose tissue but not in visceral adipose tissue increased both after acute and chronic exercise. Collectively, data showed that downhill running exercise to be more effective than other exercises, as downhill running has led to a greater improvement in metabolism may be considered more effective for browning of fat tissue.
Collapse
Affiliation(s)
- Mehdi Dehghani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran.
| | - Farzaneh Rabiee
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
33
|
Cho Y, Ross RS. A mini review: Proteomics approaches to understand disused vs. exercised human skeletal muscle. Physiol Genomics 2018; 50:746-757. [PMID: 29958080 DOI: 10.1152/physiolgenomics.00043.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Immobilization, bed rest, or denervation leads to muscle disuse and subsequent skeletal muscle atrophy. Muscle atrophy can also occur as a component of various chronic diseases such as cancer, AIDS, sepsis, diabetes, and chronic heart failure or as a direct result of genetic muscle disorders. In addition to this atrophic loss of muscle mass, metabolic deregulation of muscle also occurs. In contrast, physical exercise plays a beneficial role in counteracting disuse-induced atrophy by increasing muscle mass and strength. Along with this, exercise can also reduce mitochondrial dysfunction and metabolic deregulation. Still, while exercise causes valuable metabolic and functional adaptations in skeletal muscle, the mechanisms and effectors that lead to these changes such as increased mitochondria content or enhanced protein synthesis are not fully understood. Therefore, mechanistic insights may ultimately provide novel ways to treat disuse induced atrophy and metabolic deregulation. Mass spectrometry (MS)-based proteomics offers enormous promise for investigating the molecular mechanisms underlying disuse and exercise-induced changes in skeletal muscle. This review will focus on initial findings uncovered by using proteomics approaches with human skeletal muscle specimens and discuss their potential for the future study.
Collapse
Affiliation(s)
- Yoshitake Cho
- Division of Cardiology, Department of Medicine, University of California San Diego , La Jolla, California
| | - Robert S Ross
- Division of Cardiology, Department of Medicine, University of California San Diego , La Jolla, California.,Cardiology Section, Department of Medicine, Veterans Administration Healthcare , San Diego, California
| |
Collapse
|
34
|
Otzel DM, Lee J, Ye F, Borst SE, Yarrow JF. Activity-Based Physical Rehabilitation with Adjuvant Testosterone to Promote Neuromuscular Recovery after Spinal Cord Injury. Int J Mol Sci 2018; 19:E1701. [PMID: 29880749 PMCID: PMC6032131 DOI: 10.3390/ijms19061701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022] Open
Abstract
Neuromuscular impairment and reduced musculoskeletal integrity are hallmarks of spinal cord injury (SCI) that hinder locomotor recovery. These impairments are precipitated by the neurological insult and resulting disuse, which has stimulated interest in activity-based physical rehabilitation therapies (ABTs) that promote neuromuscular plasticity after SCI. However, ABT efficacy declines as SCI severity increases. Additionally, many men with SCI exhibit low testosterone, which may exacerbate neuromusculoskeletal impairment. Incorporating testosterone adjuvant to ABTs may improve musculoskeletal recovery and neuroplasticity because androgens attenuate muscle loss and the slow-to-fast muscle fiber-type transition after SCI, in a manner independent from mechanical strain, and promote motoneuron survival. These neuromusculoskeletal benefits are promising, although testosterone alone produces only limited functional improvement in rodent SCI models. In this review, we discuss the (1) molecular deficits underlying muscle loss after SCI; (2) independent influences of testosterone and locomotor training on neuromuscular function and musculoskeletal integrity post-SCI; (3) hormonal and molecular mechanisms underlying the therapeutic efficacy of these strategies; and (4) evidence supporting a multimodal strategy involving ABT with adjuvant testosterone, as a potential means to promote more comprehensive neuromusculoskeletal recovery than either strategy alone.
Collapse
Affiliation(s)
- Dana M Otzel
- Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Jimmy Lee
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Fan Ye
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Stephen E Borst
- Department of Applied Physiology, Kinesiology and University of Florida College of Health and Human Performance, Gainesville, FL 32603, USA.
| | - Joshua F Yarrow
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
- Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
35
|
Yamashita Y, Nakada S, Yoshihara T, Nara T, Furuya N, Miida T, Hattori N, Arikawa-Hirasawa E. Perlecan, a heparan sulfate proteoglycan, regulates systemic metabolism with dynamic changes in adipose tissue and skeletal muscle. Sci Rep 2018; 8:7766. [PMID: 29773865 PMCID: PMC5958100 DOI: 10.1038/s41598-018-25635-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/25/2018] [Indexed: 12/20/2022] Open
Abstract
Perlecan (HSPG2), a heparan sulfate proteoglycan, is a component of basement membranes and participates in a variety of biological activities. Here, we show physiological roles of perlecan in both obesity and the onset of metabolic syndrome. The perinatal lethality-rescued perlecan knockout (Hspg2−/−-Tg) mice showed a smaller mass and cell size of white adipose tissues than control (WT-Tg) mice. Abnormal lipid deposition, such as fatty liver, was not detected in the Hspg2−/−-Tg mice, and those mice also consumed more fat as an energy source, likely due to their activated fatty acid oxidation. In addition, the Hspg2−/−-Tg mice demonstrated increased insulin sensitivity. Molecular analysis revealed the significantly relatively increased amount of the muscle fiber type IIA (X) isoform and a larger quantity of mitochondria in the skeletal muscle of Hspg2−/−-Tg mice. Furthermore, the perlecan-deficient skeletal muscle also had elevated levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) protein. PGC1α expression is activated by exercise, and induces mitochondrial biosynthesis. Thus, perlecan may act as a mechano-regulator of catabolism of both lipids and glucose by shifting the muscle fiber composition to oxidative fibers. Our data suggest that downregulation of perlecan is a promising strategy to control metabolic syndrome.
Collapse
Affiliation(s)
- Yuri Yamashita
- Aging Biology in Health and Disease, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Satoshi Nakada
- Japanese Center for Research on Women in Sport, Juntendo University Graduate School of Health and Sports Science, Chiba, 270-1695, Japan
| | - Toshinori Yoshihara
- Department of Exercise Physiology, Juntendo University Graduate School of Health and Sports Science, Chiba, 270-1695, Japan
| | - Takeshi Nara
- Faculty of Pharmacy, Iwaki Meisei University, Fukushima, 970-8551, Japan
| | - Norihiko Furuya
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Takashi Miida
- Department of Clinical Laboratory medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.,Research Institute for Disease of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Eri Arikawa-Hirasawa
- Aging Biology in Health and Disease, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan. .,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan. .,Japanese Center for Research on Women in Sport, Juntendo University Graduate School of Health and Sports Science, Chiba, 270-1695, Japan. .,Research Institute for Disease of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| |
Collapse
|
36
|
Gerlinger-Romero F, Guimarães-Ferreira L, Yonamine CY, Salgueiro RB, Nunes MT. Effects of beta-hydroxy-beta-methylbutyrate (HMB) on the expression of ubiquitin ligases, protein synthesis pathways and contractile function in extensor digitorum longus (EDL) of fed and fasting rats. J Physiol Sci 2018; 68:165-174. [PMID: 28083734 PMCID: PMC10717962 DOI: 10.1007/s12576-016-0520-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/30/2016] [Indexed: 12/01/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB), a leucine metabolite, enhances the gain of skeletal muscle mass by increasing protein synthesis or attenuating protein degradation or both. The aims of this study were to investigate the effect of HMB on molecular factors controlling skeletal muscle protein synthesis and degradation, as well as muscle contractile function, in fed and fasted conditions. Wistar rats were supplied daily with HMB (320 mg/kg body weight diluted in NaCl-0.9%) or vehicle only (control) by gavage for 28 days. After this period, some of the animals were subjected to a 24-h fasting, while others remained in the fed condition. The EDL muscle was then removed, weighed and used to evaluate the genes and proteins involved in protein synthesis (AKT/4E-BP1/S6) and degradation (Fbxo32 and Trim63). A sub-set of rats were used to measure in vivo muscle contractile function. HMB supplementation increased AKT phosphorylation during fasting (three-fold). In the fed condition, no differences were detected in atrogenes expression between control and HMB supplemented group; however, HMB supplementation did attenuate the fasting-induced increase in their expression levels. Fasting animals receiving HMB showed improved sustained tetanic contraction times (one-fold) and an increased muscle to tibia length ratio (1.3-fold), without any cross-sectional area changes. These results suggest that HMB supplementation under fasting conditions increases AKT phosphorylation and attenuates the increased of atrogenes expression, followed by a functional improvement and gain of skeletal muscle weight, suggesting that HMB protects skeletal muscle against the deleterious effects of fasting.
Collapse
Affiliation(s)
- Frederico Gerlinger-Romero
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil.
- Prédio Biomédicas I-Cidade Universitária-Butantã, Av. Prof. Lineu Prestes 1524, São Paulo, SP, CEP 05508-900, Brazil.
| | - Lucas Guimarães-Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
- Exercise Metabolism Research Group, Department of Sports, Center of Physical Education and Sports, Federal University of Espirito Santo, Vitoria, Brazil
| | - Caio Yogi Yonamine
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| | - Rafael Barrera Salgueiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| |
Collapse
|
37
|
Machado FSM, Zhang Z, Su Y, de Goede P, Jansen R, Foppen E, Coimbra CC, Kalsbeek A. Time-of-Day Effects on Metabolic and Clock-Related Adjustments to Cold. Front Endocrinol (Lausanne) 2018; 9:199. [PMID: 29755411 PMCID: PMC5932155 DOI: 10.3389/fendo.2018.00199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/10/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Daily cyclic changes in environmental conditions are key signals for anticipatory and adaptive adjustments of most living species, including mammals. Lower ambient temperature stimulates the thermogenic activity of brown adipose tissue (BAT) and skeletal muscle. Given that the molecular components of the endogenous biological clock interact with thermal and metabolic mechanisms directly involved in the defense of body temperature, the present study evaluated the differential homeostatic responses to a cold stimulus at distinct time-windows of the light/dark-cycle. METHODS Male Wistar rats were subjected to a single episode of 3 h cold ambient temperature (4°C) at one of 6 time-points starting at Zeitgeber Times 3, 7, 11, 15, 19, and 23. Metabolic rate, core body temperature, locomotor activity (LA), feeding, and drinking behaviors were recorded during control and cold conditions at each time-point. Immediately after the stimulus, rats were euthanized and both the soleus and BAT were collected for real-time PCR. RESULTS During the light phase (i.e., inactive phase), cold exposure resulted in a slight hyperthermia (p < 0.001). Light phase cold exposure also increased metabolic rate and LA (p < 0.001). In addition, the prevalence of fat oxidative metabolism was attenuated during the inactive phase (p < 0.001). These metabolic changes were accompanied by time-of-day and tissue-specific changes in core clock gene expression, such as DBP (p < 0.0001) and REV-ERBα (p < 0.01) in the BAT and CLOCK (p < 0.05), PER2 (p < 0.05), CRY1 (p < 0.05), CRY2 (p < 0.01), and REV-ERBα (p < 0.05) in the soleus skeletal muscle. Moreover, genes involved in substrate oxidation and thermogenesis were affected in a time-of-day and tissue-specific manner by cold exposure. CONCLUSION The time-of-day modulation of substrate mobilization and oxidation during cold exposure provides a clear example of the circadian modulation of physiological and metabolic responses. Interestingly, after cold exposure, time-of-day mostly affected circadian clock gene expression in the soleus muscle, despite comparable changes in LA over the light-dark-cycle. The current findings add further evidence for tissue-specific actions of the internal clock in different peripheral organs such as skeletal muscle and BAT.
Collapse
Affiliation(s)
- Frederico Sander Mansur Machado
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Zhi Zhang
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Yan Su
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Paul de Goede
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Remi Jansen
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Ewout Foppen
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Cândido Celso Coimbra
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Andries Kalsbeek,
| |
Collapse
|
38
|
Clayton EL, Mancuso R, Nielsen TT, Mizielinska S, Holmes H, Powell N, Norona F, Larsen JO, Milioto C, Wilson KM, Lythgoe MF, Ourselin S, Nielsen JE, Johannsen P, Holm I, Collinge J, Oliver PL, Gomez-Nicola D, Isaacs AM. Early microgliosis precedes neuronal loss and behavioural impairment in mice with a frontotemporal dementia-causing CHMP2B mutation. Hum Mol Genet 2017; 26:873-887. [PMID: 28093491 PMCID: PMC5409096 DOI: 10.1093/hmg/ddx003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Frontotemporal dementia (FTD)-causing mutations in the CHMP2B gene lead to the generation of mutant C-terminally truncated CHMP2B. We report that transgenic mice expressing endogenous levels of mutant CHMP2B developed late-onset brain volume loss associated with frank neuronal loss and FTD-like changes in social behaviour. These data are the first to show neurodegeneration in mice expressing mutant CHMP2B and indicate that our mouse model is able to recapitulate neurodegenerative changes observed in FTD. Neuroinflammation has been increasingly implicated in neurodegeneration, including FTD. Therefore, we investigated neuroinflammation in our CHMP2B mutant mice. We observed very early microglial proliferation that develops into a clear pro-inflammatory phenotype at late stages. Importantly, we also observed a similar inflammatory profile in CHMP2B patient frontal cortex. Aberrant microglial function has also been implicated in FTD caused by GRN, MAPT and C9orf72 mutations. The presence of early microglial changes in our CHMP2B mutant mice indicates neuroinflammation may be a contributing factor to the neurodegeneration observed in FTD.
Collapse
Affiliation(s)
- Emma L Clayton
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Renzo Mancuso
- Biological Sciences, University of Southampton, Southampton General Hospital, South Laboratory and Pathology Block, Tremona Road, Southampton SO166YD, UK
| | - Troels Tolstrup Nielsen
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Sarah Mizielinska
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Holly Holmes
- Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Nicholas Powell
- Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, London WC1E 6DD, UK.,Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Frances Norona
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jytte Overgaard Larsen
- Translational Imaging Group, Centre for Medical Image Computing (CMIC), University College London, UK
| | - Carmelo Milioto
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Katherine M Wilson
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Sebastian Ourselin
- Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jörgen E Nielsen
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Denmark.,Section of Neurogenetics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peter Johannsen
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Ida Holm
- Laboratory for Experimental Neuropathology, Department of Pathology, Randers Hospital, DK-8930 Randers NØ, Denmark.,Institute of Clinical Medicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - John Collinge
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,MRC Prion Unit, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Diego Gomez-Nicola
- Biological Sciences, University of Southampton, Southampton General Hospital, South Laboratory and Pathology Block, Tremona Road, Southampton SO166YD, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
39
|
Ouyang H, Chen X, Wang Z, Yu J, Jia X, Li Z, Luo W, Abdalla BA, Jebessa E, Nie Q, Zhang X. Circular RNAs are abundant and dynamically expressed during embryonic muscle development in chickens. DNA Res 2017; 25:71-86. [PMID: 29036326 PMCID: PMC5824844 DOI: 10.1093/dnares/dsx039] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
The growth and development of skeletal muscle is regulated by proteins as well as non-coding RNAs. Circular RNAs (circRNAs) are universally expressed in various tissues and cell types, and regulate gene expression in eukaryotes. To identify the circRNAs during chicken embryonic skeletal muscle development, leg muscles of female Xinghua (XH) chicken at three developmental time points 11 embryo age (E11), 16 embryo age (E16) and 1 day post hatch (P1) were performed RNA sequencing. We identified 13,377 circRNAs with 3,036 abundantly expressed and most were derived from coding exons. A total of 462 differentially expressed circRNAs were identified (fold change > 2; q-value < 0.05). Parental genes of differentially expressed circRNAs were related to muscle biological processes. There were 946 exonic circRNAs have been found that harbored one or more miRNA-binding site for 150 known miRNAs. We validated that circRBFOX2s promoted cell proliferation through interacted with miR-206. These data collectively indicate that circRNAs are abundant and dynamically expressed during embryonic muscle development and could play key roles through sequestering miRNAs as well as other functions.
Collapse
Affiliation(s)
- Hongjia Ouyang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Xiaolan Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Zhijun Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Jiao Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Xinzheng Jia
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Wei Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Bahareldin Ali Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Endashaw Jebessa
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
| |
Collapse
|
40
|
Salmons S. The adaptive response of skeletal muscle: What is the evidence? Muscle Nerve 2017; 57:531-541. [PMID: 28857207 DOI: 10.1002/mus.25949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/05/2017] [Accepted: 08/25/2017] [Indexed: 11/08/2022]
Abstract
Adult skeletal muscle is capable of adapting its properties in response to changing functional demands. This now sounds like a statement of the obvious, and many people assume it has always been this way. A mere 40 years ago, however, the picture was entirely different. In this Review and personal memoir, I outline the scientific context in which the theory was generated, the objections to it from entrenched opinion, and the way those objections were progressively met. The material should be of some historical interest, but, more importantly, it collects together the full range of evidence on which the current paradigm is based. Muscle Nerve 57: 531-541, 2018.
Collapse
Affiliation(s)
- Stanley Salmons
- Department of Musculoskeletal Biology, Institute of Ageing & Chronic Diseases, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
| |
Collapse
|
41
|
Fulford J, Juroskova V, Meakin JR, Barker AR. Muscle function and size in the lumbar spine before and after a four week exercise intervention. J Back Musculoskelet Rehabil 2017; 30:717-724. [PMID: 28453450 DOI: 10.3233/bmr-150337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Exercise of the spinal muscles is recommended for a variety of rehabilitative reasons but it is not always clear whether interventions are effective in improving the performance of the muscles or whether their benefit is elicited via other mechanisms. OBJECTIVE To explore the effects of an exercise intervention on the size and exercise performance of the lumbar spine extensor muscles. METHODS Eleven healthy participants undertook a four week programme of exercise. Magnetic resonance imaging and phosphorus spectroscopy were performed before and after the intervention to determine the time to fatigue and phosphocreatine (PCr) depletion during a muscle endurance test (modified Biering-Sørensen) together with muscle cross-sectional area (CSA). RESULTS The post intervention measures were significantly different to the pre-intervention results for the time to fatigue (post-pre: 20.5 ± 22.7 s (P= 0.014)) and PCr depletion both at the point of fatigue (post-pre: 9.5 ± 11.9% (P= 0.024)) and at a matched time-point (post-pre: 12.2 ± 11.9% (P= 0.007)). CSA was not significantly different in any muscle. CONCLUSIONS Exercise improved the performance of the trunk muscles despite no impact on CSA. This demonstrated the importance of obtaining a wide range of measures when assessing the effectiveness of exercise intervention programmes.
Collapse
Affiliation(s)
- Jonathan Fulford
- Exeter NIHR Clinical Research Facility, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Vladimira Juroskova
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Judith R Meakin
- Physics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Alan R Barker
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
42
|
Hirunsai M, Srikuea R. Differential effects of heat stress on fibre capillarisation in tenotomised soleus and plantaris muscles. Int J Hyperthermia 2017; 34:432-441. [DOI: 10.1080/02656736.2017.1350758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Muthita Hirunsai
- Department of Biopharmacy Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Ratchakrit Srikuea
- Department of Physiology Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
43
|
Amirouche A, Jahnke VE, Lunde JA, Koulmann N, Freyssenet DG, Jasmin BJ. Muscle-specific microRNA-206 targets multiple components in dystrophic skeletal muscle representing beneficial adaptations. Am J Physiol Cell Physiol 2017; 312:C209-C221. [DOI: 10.1152/ajpcell.00185.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/06/2016] [Accepted: 12/21/2016] [Indexed: 01/31/2023]
Abstract
Over the last several years, converging lines of evidence have indicated that miR-206 plays a pivotal role in promoting muscle differentiation and regeneration, thereby potentially impacting positively on the progression of neuromuscular disorders, including Duchenne muscular dystrophy (DMD). Despite several studies showing the regulatory function of miR-206 on target mRNAs in skeletal muscle cells, the effects of overexpression of miR-206 in dystrophic muscles remain to be established. Here, we found that miR-206 overexpression in mdx mouse muscles simultaneously targets multiple mRNAs and proteins implicated in satellite cell differentiation, muscle regeneration, and at the neuromuscular junction. Overexpression of miR-206 also increased the levels of several muscle-specific mRNAs/proteins, while enhancing utrophin A expression at the sarcolemma. Finally, we also observed that the increased expression of miR-206 in dystrophin-deficient mouse muscle decreased the production of proinflammatory cytokines and infiltration of macrophages. Taken together, our results show that miR-206 acts as a pleiotropic regulator that targets multiple key mRNAs and proteins expected to provide beneficial adaptations in dystrophic muscle, thus highlighting its therapeutic potential for DMD.
Collapse
Affiliation(s)
- Adel Amirouche
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Saint Etienne, Université de Lyon, Lyon, France
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Vanessa E. Jahnke
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Saint Etienne, Université de Lyon, Lyon, France
| | - John A. Lunde
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Nathalie Koulmann
- Institut de Recherche Biomédicale des Armées, Département Environnements Opérationnels, Bretigny-sur-Orge, France
| | - Damien G. Freyssenet
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Saint Etienne, Université de Lyon, Lyon, France
| | - Bernard J. Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; and
| |
Collapse
|
44
|
Dietary supplementation with bovine-derived milk fat globule membrane lipids promotes neuromuscular development in growing rats. Nutr Metab (Lond) 2017; 14:9. [PMID: 28127382 PMCID: PMC5259894 DOI: 10.1186/s12986-017-0161-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 01/15/2017] [Indexed: 12/11/2022] Open
Abstract
Background The milk fat globule membrane (MFGM) is primarily composed of polar phospho- and sphingolipids, which have established biological effects on neuroplasticity. The present study aimed to investigate the effect of dietary MFGM supplementation on the neuromuscular system during post-natal development. Methods Growing rats received dietary supplementation with bovine-derived MFGM mixtures consisting of complex milk lipids (CML), beta serum concentrate (BSC) or a complex milk lipid concentrate (CMLc) (which lacks MFGM proteins) from post-natal day 10 to day 70. Results Supplementation with MFGM mixtures enriched in polar lipids (BSC and CMLc, but not CML) increased the plasma phosphatidylcholine (PC) concentration, with no effect on plasma phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylserine (PS) or sphingomyelin (SM). In contrast, muscle PC was reduced in rats receiving supplementation with both BSC and CMLc, whereas muscle PI, PE, PS and SM remained unchanged. Rats receiving BSC and CMLc (but not CML) displayed a slow-to-fast muscle fibre type profile shift (MyHCI → MyHCIIa) that was associated with elevated expression of genes involved in myogenic differentiation (myogenic regulatory factors) and relatively fast fibre type specialisation (Myh2 and Nfatc4). Expression of neuromuscular development genes, including nerve cell markers, components of the synaptogenic agrin–LRP4 pathway and acetylcholine receptor subunits, was also increased in muscle of rats supplemented with BSC and CMLc (but not CML). Conclusions These findings demonstrate that dietary supplementation with bovine-derived MFGM mixtures enriched in polar lipids can promote neuromuscular development during post-natal growth in rats, leading to shifts in adult muscle phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12986-017-0161-y) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Hernández-Ochoa EO, Banks Q, Schneider MF. Acute Elevated Glucose Promotes Abnormal Action Potential-Induced Ca 2+ Transients in Cultured Skeletal Muscle Fibers. J Diabetes Res 2017; 2017:1509048. [PMID: 28835899 PMCID: PMC5557004 DOI: 10.1155/2017/1509048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022] Open
Abstract
A common comorbidity of diabetes is skeletal muscle dysfunction, which leads to compromised physical function. Previous studies of diabetes in skeletal muscle have shown alterations in excitation-contraction coupling (ECC)-the sequential link between action potentials (AP), intracellular Ca2+ release, and the contractile machinery. Yet, little is known about the impact of acute elevated glucose on the temporal properties of AP-induced Ca2+ transients and ionic underlying mechanisms that lead to muscle dysfunction. Here, we used high-speed confocal Ca2+ imaging to investigate the temporal properties of AP-induced Ca2+ transients, an intermediate step of ECC, using an acute in cellulo model of uncontrolled hyperglycemia (25 mM, 48 h.). Control and elevated glucose-exposed muscle fibers cultured for five days displayed four distinct patterns of AP-induced Ca2+ transients (phasic, biphasic, phasic-delayed, and phasic-slow decay); most control muscle fibers show phasic AP-induced Ca2+ transients, while most fibers exposed to elevated D-glucose displayed biphasic Ca2+ transients upon single field stimulation. We hypothesize that these changes in the temporal profile of the AP-induced Ca2+ transients are due to changes in the intrinsic excitable properties of the muscle fibers. We propose that these changes accompany early stages of diabetic myopathy.
Collapse
Affiliation(s)
- Erick O. Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- *Erick O. Hernández-Ochoa:
| | - Quinton Banks
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Martin F. Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
46
|
Nicoll JX, Fry AC, Galpin AJ, Sterczala AJ, Thomason DB, Moore CA, Weiss LW, Chiu LZF. Changes in resting mitogen-activated protein kinases following resistance exercise overreaching and overtraining. Eur J Appl Physiol 2016; 116:2401-2413. [DOI: 10.1007/s00421-016-3492-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/15/2016] [Indexed: 12/22/2022]
|
47
|
Kivelä R, Salmela I, Nguyen YH, Petrova TV, Koistinen HA, Wiener Z, Alitalo K. The transcription factor Prox1 is essential for satellite cell differentiation and muscle fibre-type regulation. Nat Commun 2016; 7:13124. [PMID: 27731315 PMCID: PMC5064023 DOI: 10.1038/ncomms13124] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 09/05/2016] [Indexed: 02/06/2023] Open
Abstract
The remarkable adaptive and regenerative capacity of skeletal muscle is regulated by several transcription factors and pathways. Here we show that the transcription factor Prox1 is an important regulator of myoblast differentiation and of slow muscle fibre type. In both rodent and human skeletal muscles Prox1 is specifically expressed in slow muscle fibres and in muscle stem cells called satellite cells. Prox1 activates the NFAT signalling pathway and is necessary and sufficient for the maintenance of the gene program of slow muscle fibre type. Using lineage-tracing we show that Prox1-positive satellite cells differentiate into muscle fibres. Furthermore, we provide evidence that Prox1 is a critical transcription factor for the differentiation of myoblasts via bi-directional crosstalk with Notch1. These results identify Prox1 as an essential transcription factor that regulates skeletal muscle phenotype and myoblast differentiation by interacting with the NFAT and Notch pathways. Skeletal muscle has remarkable adaptive and regenerative capacity. Here the authors show that the transcription factor Prox1 is necessary for maintenance of slow muscle fibre types via activation of NFAT signalling, and for myoblast differentiation via cross-talk with the Notch signalling pathway.
Collapse
Affiliation(s)
- Riikka Kivelä
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland.,Translational Cancer Biology Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, Helsinki 00014, Finland
| | - Ida Salmela
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland.,Translational Cancer Biology Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, Helsinki 00014, Finland
| | - Yen Hoang Nguyen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, Helsinki 00290, Finland.,Department of Medicine and Abdominal Center: Endocrinology, University of Helsinki and Helsinki University Central Hospital, Haartmaninkatu 4, P.O. Box 340, Helsinki 00029, Finland
| | - Tatiana V Petrova
- Department of Fundamental Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), and Division of Experimental Pathology, Institute of Pathology, CHUV, CH-1066 Epalinges, Switzerland
| | - Heikki A Koistinen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, Helsinki 00290, Finland.,Department of Medicine and Abdominal Center: Endocrinology, University of Helsinki and Helsinki University Central Hospital, Haartmaninkatu 4, P.O. Box 340, Helsinki 00029, Finland
| | - Zoltan Wiener
- Translational Cancer Biology Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, Helsinki 00014, Finland
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland.,Translational Cancer Biology Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, Helsinki 00014, Finland
| |
Collapse
|
48
|
Sugita S, Fleming LL, Wood C, Vaughan SK, Gomes MPSM, Camargo W, Naves LA, Prado VF, Prado MAM, Guatimosim C, Valdez G. VAChT overexpression increases acetylcholine at the synaptic cleft and accelerates aging of neuromuscular junctions. Skelet Muscle 2016; 6:31. [PMID: 27713817 PMCID: PMC5050580 DOI: 10.1186/s13395-016-0105-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholinergic dysfunction occurs during aging and in a variety of diseases, including amyotrophic lateral sclerosis (ALS). However, it remains unknown whether changes in cholinergic transmission contributes to age- and disease-related degeneration of the motor system. Here we investigated the effect of moderately increasing levels of synaptic acetylcholine (ACh) on the neuromuscular junction (NMJ), muscle fibers, and motor neurons during development and aging and in a mouse model for amyotrophic lateral sclerosis (ALS). METHODS Chat-ChR2-EYFP (VAChTHyp) mice containing multiple copies of the vesicular acetylcholine transporter (VAChT), mutant superoxide dismutase 1 (SOD1G93A), and Chat-IRES-Cre and tdTomato transgenic mice were used in this study. NMJs, muscle fibers, and α-motor neurons' somata and their axons were examined using a light microscope. Transcripts for select genes in muscles and spinal cords were assessed using real-time quantitative PCR. Motor function tests were carried out using an inverted wire mesh and a rotarod. Electrophysiological recordings were collected to examine miniature endplate potentials (MEPP) in muscles. RESULTS We show that VAChT is elevated in the spinal cord and at NMJs of VAChTHyp mice. We also show that the amplitude of MEPPs is significantly higher in VAChTHyp muscles, indicating that more ACh is loaded into synaptic vesicles and released into the synaptic cleft at NMJs of VAChTHyp mice compared to control mice. While the development of NMJs was not affected in VAChTHyp mice, NMJs prematurely acquired age-related structural alterations in adult VAChTHyp mice. These structural changes at NMJs were accompanied by motor deficits in VAChTHyp mice. However, cellular features of muscle fibers and levels of molecules with critical functions at the NMJ and in muscle fibers were largely unchanged in VAChTHyp mice. In the SOD1G93A mouse model for ALS, increasing synaptic ACh accelerated degeneration of NMJs caused motor deficits and resulted in premature death specifically in male mice. CONCLUSIONS The data presented in this manuscript demonstrate that increasing levels of ACh at the synaptic cleft promote degeneration of adult NMJs, contributing to age- and disease-related motor deficits. We thus propose that maintaining normal cholinergic signaling in muscles will slow degeneration of NMJs and attenuate loss of motor function caused by aging and neuromuscular diseases.
Collapse
Affiliation(s)
- Satoshi Sugita
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA USA
| | - Leland L. Fleming
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA USA
- Virginia Tech Postbaccalaureate Research and Education (VT PREP) Scholar, Virginia Tech, Blacksburg, VA USA
| | - Caleb Wood
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA USA
| | - Sydney K. Vaughan
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA USA
| | - Matheus P. S. M. Gomes
- Departamento de Morfologia, Instiuto Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Wallace Camargo
- Departamento de Fisiologia e Biofísica, Instiuto Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Ligia A. Naves
- Departamento de Fisiologia e Biofísica, Instiuto Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Vania F. Prado
- Robarts Research Institute, Department of Physiology and Pharmacology, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A5K8 Canada
| | - Marco A. M. Prado
- Robarts Research Institute, Department of Physiology and Pharmacology, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A5K8 Canada
| | - Cristina Guatimosim
- Departamento de Morfologia, Instiuto Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA USA
| |
Collapse
|
49
|
Zhang Y, Storey KB. Regulation of gene expression by NFAT transcription factors in hibernating ground squirrels is dependent on the cellular environment. Cell Stress Chaperones 2016; 21:883-94. [PMID: 27344571 PMCID: PMC5003805 DOI: 10.1007/s12192-016-0713-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/30/2016] [Accepted: 06/13/2016] [Indexed: 12/22/2022] Open
Abstract
Calcineurin is a calmodulin-stimulated phosphatase that regulates the nuclear translocation of nuclear factor of activated T cell (NFAT) c1-4 through dephosphorylation. We believe that this mechanism plays various roles in the remodeling and maintenance of Ictidomys tridecemlineatus skeletal muscle. During hibernation, bouts of torpor and arousal take place, and squirrels do not lose muscle mass despite being inactive. Protein expression of Ca(2+) signaling proteins were studied using immunoblotting. A DNA-protein interaction ELISA technique was created to test the binding of NFATs in the nucleus to DNA probes containing the NFAT response element under environmental conditions reflective of those during hibernation. Calcineurin protein levels increased by 3.08-fold during torpor (compared to euthermic control), whereas calpain1 levels also rose by 3.66-fold during torpor. Calmodulin levels were elevated upon entering torpor. NFATc4 binding to DNA showed a 1.4-fold increase during torpor, and we found that this binding was further enhanced when 600 nM of Ca(2+) was supplemented. We also found that decreasing the temperature of ELISAs resulted in progressive decreases in the binding of NFATs c1, c3, and c4 to DNA. In summary, calmodulin and calpain1 appear to activate calcineurin and NFATc4 during torpor. NFAT binding to target promoters is affected by intranuclear [Ca(2+)] and environmental temperatures. Therefore, Ca(2+) signaling and temperature changes play key roles in regulation of the NFAT-calcineurin pathway in skeletal muscle of hibernating 13-lined ground squirrels over the torpor-arousal cycle, and they may contribute to the avoidance of disuse-induced muscle atrophy that occurs naturally in these animals.
Collapse
Affiliation(s)
- Yichi Zhang
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
50
|
Wang L, Wang Z, Yang K, Shu G, Wang S, Gao P, Zhu X, Xi Q, Zhang Y, Jiang Q. Epigallocatechin Gallate Reduces Slow-Twitch Muscle Fiber Formation and Mitochondrial Biosynthesis in C2C12 Cells by Repressing AMPK Activity and PGC-1α Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6517-6523. [PMID: 27420899 DOI: 10.1021/acs.jafc.6b02193] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Epigallocatechin gallate (EGCG) is a major active compound in green tea polyphenols. EGCG acts as an antioxidant to prevent the cell damage caused by free radicals and their derivatives. In skeletal muscle, exercise causes the accumulation of intracellular reactive oxygen species (ROS) and promotes the formation of slow-type muscle fiber. To determine whether EGCG, as a ROS scavenger, has any effect on skeletal muscle fiber type, we applied different concentrations (0, 5, 25, and 50 μM) of EGCG in the culture medium of differentiated C2C12 cells for 2 days. The fiber-type composition, mitochondrial biogenesis-related gene expression, antioxidant and glucose metabolism enzyme activity, and ROS levels in C2C12 cells were then detected. According to our results, 5 μM EGCG significantly decreased the cellular activity of SDH, 25 μM EGCG significantly downregulated the MyHC I, PGC-1α, NRF-1, and p-AMPK levels and SDH activity while enhancing the CAT and GSH-Px activity and decreasing the intracellular ROS levels, and 50 μM EGCG significantly downregulated MyHC I, PGC-1α, and NRF-1 expression and HK and SDH activity while increasing LDH activity. Furthermore, 300 μM H2O2 and 0.5 mM AMPK agonist (AICAR) improved the expression of MyHC I, PGC-1α, and p-AMPK, which were all reversed by 25 μM EGCG. In conclusion, the effect of EGCG on C2C12 cells may occur through the reduction of the ROS level, thereby decreasing both AMPK activity and PGC-1α expression and eventually reducing slow-twitch muscle fiber formation and mitochondrial biosynthesis.
Collapse
Affiliation(s)
- Lina Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhen Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Kelin Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Gang Shu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Songbo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Ping Gao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Xiaotong Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Qianyun Xi
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Yongliang Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Qingyan Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|