1
|
Adamoski D, M Dos Reis L, Mafra ACP, Corrêa-da-Silva F, Moraes-Vieira PMMD, Berindan-Neagoe I, Calin GA, Dias SMG. HuR controls glutaminase RNA metabolism. Nat Commun 2024; 15:5620. [PMID: 38965208 PMCID: PMC11224379 DOI: 10.1038/s41467-024-49874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Glutaminase (GLS) is directly related to cell growth and tumor progression, making it a target for cancer treatment. The RNA-binding protein HuR (encoded by the ELAVL1 gene) influences mRNA stability and alternative splicing. Overexpression of ELAVL1 is common in several cancers, including breast cancer. Here we show that HuR regulates GLS mRNA alternative splicing and isoform translation/stability in breast cancer. Elevated ELAVL1 expression correlates with high levels of the glutaminase isoforms C (GAC) and kidney-type (KGA), which are associated with poor patient prognosis. Knocking down ELAVL1 reduces KGA and increases GAC levels, enhances glutamine anaplerosis into the TCA cycle, and drives cells towards glutamine dependence. Furthermore, we show that combining chemical inhibition of GLS with ELAVL1 silencing synergistically decreases breast cancer cell growth and invasion. These findings suggest that dual inhibition of GLS and HuR offers a therapeutic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Douglas Adamoski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Larissa M Dos Reis
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Immunometabolism, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Ana Carolina Paschoalini Mafra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
- Department of Radiation Oncology, Washington University School of Medicine, S. Louis, MO, USA
| | - Felipe Corrêa-da-Silva
- Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Immunometabolism, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Pedro Manoel Mendes de Moraes-Vieira
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Immunometabolism, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", Cluj-Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Inference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sandra Martha Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Jablonowski CM, Quarni W, Singh S, Tan H, Bostanthirige DH, Jin H, Fang J, Chang TC, Finkelstein D, Cho JH, Hu D, Pagala V, Sakurada SM, Pruett-Miller SM, Wang R, Murphy A, Freeman K, Peng J, Davidoff AM, Wu G, Yang J. Metabolic reprogramming of cancer cells by JMJD6-mediated pre-mRNA splicing associated with therapeutic response to splicing inhibitor. eLife 2024; 12:RP90993. [PMID: 38488852 PMCID: PMC10942784 DOI: 10.7554/elife.90993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that jumonji domain containing 6, arginine demethylase, and lysine hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven human neuroblastoma. JMJD6 cooperates with MYC in cellular transformation of murine neural crest cells by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a 'molecular glue' that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.
Collapse
Affiliation(s)
| | - Waise Quarni
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Shivendra Singh
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St Jude Children's Research HospitalMemphisUnited States
| | | | - Hongjian Jin
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - Jie Fang
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - David Finkelstein
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St Jude Children's Research HospitalMemphisUnited States
| | - Dongli Hu
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St Jude Children's Research HospitalMemphisUnited States
| | - Sadie Miki Sakurada
- Department of Cell and Molecular Biology, St Jude Children's Research HospitalMemphisUnited States
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St Jude Children's Research HospitalMemphisUnited States
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s HospitalColumbusUnited States
| | - Andrew Murphy
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Kevin Freeman
- Genetics, Genomics & Informatics, The University of Tennessee Health Science Center (UTHSC)MemphisUnited States
| | - Junmin Peng
- Department of Structural Biology, St Jude Children’s Research HospitalMemphisUnited States
| | - Andrew M Davidoff
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
- St Jude Graduate School of Biomedical Sciences, St Jude Children’s Research HospitalMemphisUnited States
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science CenterMemphisUnited States
| | - Gang Wu
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - Jun Yang
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
- St Jude Graduate School of Biomedical Sciences, St Jude Children’s Research HospitalMemphisUnited States
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science CenterMemphisUnited States
- College of Graduate Health Sciences, University of Tennessee Health Science CenterMemphisUnited States
| |
Collapse
|
3
|
Oyama K, Iwagami Y, Kobayashi S, Sasaki K, Yamada D, Tomimaru Y, Noda T, Asaoka T, Takahashi H, Tanemura M, Doki Y, Eguchi H. Removal of gemcitabine-induced senescent cancer cells by targeting glutaminase1 improves the therapeutic effect in pancreatic ductal adenocarcinoma. Int J Cancer 2024; 154:912-925. [PMID: 37699232 DOI: 10.1002/ijc.34725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
Insufficient cancer treatment can induce senescent cancer cell formation and treatment resistance. The characteristics of induced senescent cancer (iSnCa) cells remain unclear. Pancreatic ductal adenocarcinoma (PDAC) has a low and nondurable response rate to current treatments. Our study aimed to analyze the properties of iSnCa cells and the relationship between cellular senescence and prognosis in PDAC. We evaluated the characteristics of gemcitabine-induced senescent cancer cells and the effect of senescence-associated secretory phenotype (SASP) factors released by iSnCa cells on surrounding PDAC cells. The relationship between cellular senescence and the prognosis was investigated in 50 patients with PDAC treated with gemcitabine-based neoadjuvant chemotherapy. Exposure to 5 ng/mL gemcitabine-induced senescence, decreased proliferation and increased senescence-associated β-galactosidase-cell staining without cell death in PDAC cells; the expression of glutaminase1 (GLS1) and SASP factors also increased and caused epithelial-mesenchymal transition in surrounding PDAC cells. iSnCa cells were selectively removed by the GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) through apoptosis induction. Cellular senescence was induced in PDAC cells via insufficient gemcitabine in subcutaneous tumor model mice. GLS1 expression was an independent prognostic factor in patients with PDAC who received gemcitabine-based neoadjuvant chemotherapy. This is the first study to identify the relationship between senescence and GLS1 in PDAC. Low-dose gemcitabine-induced senescence and increased GLS1 expression were observed in PDAC cells. Cellular senescence may contribute to treatment resistance of PDAC, hence targeting GLS1 in iSnCa cells may improve the therapeutic effect.
Collapse
Affiliation(s)
- Keisuke Oyama
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Surgery, Osaka Police Hospital, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Surgery, Rinku General Medical Center, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Jablonowski C, Quarni W, Singh S, Tan H, Bostanthirige DH, Jin H, Fang J, Chang TC, Finkelstein D, Cho JH, Hu D, Pagala V, Sakurada SM, Pruett-Miller SM, Wang R, Murphy A, Freeman K, Peng J, Davidoff AM, Wu G, Yang J. Metabolic reprogramming of cancer cells by JMJD6-mediated pre-mRNA splicing is associated with therapeutic response to splicing inhibitor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546606. [PMID: 37425900 PMCID: PMC10327027 DOI: 10.1101/2023.06.26.546606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that Jumonji Domain Containing 6, Arginine Demethylase and Lysine Hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven neuroblastoma. JMJD6 cooperates with MYC in cellular transformation by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a "molecular glue" that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.
Collapse
|
5
|
Ding L, Xu X, Li C, Wang Y, Xia X, Zheng JC. Glutaminase in microglia: A novel regulator of neuroinflammation. Brain Behav Immun 2021; 92:139-156. [PMID: 33278560 DOI: 10.1016/j.bbi.2020.11.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/11/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is the inflammatory responses that are involved in the pathogenesis of most neurological disorders. Glutaminase (GLS) is the enzyme that catalyzes the hydrolysis of glutamine to produce glutamate. Besides its well-known role in cellular metabolism and excitatory neurotransmission, GLS has recently been increasingly noticed to be up-regulated in activated microglia under pathological conditions. Furthermore, GLS overexpression induces microglial activation, extracellular vesicle secretion, and neuroinflammatory microenvironment formation, which, are compromised by GLS inhibitors in vitro and in vivo. These results indicate that GLS has more complicated implications in brain disease etiology than what are previously known. In this review, we introduce GLS isoforms, expression patterns in the body and the brain, and expression/activities regulation. Next, we discuss the metabolic and neurotransmission functions of GLS. Afterwards, we summarize recent findings of GLS-mediated microglial activation and pro-inflammatory extracellular vesicle secretion, which, in turns, induces neuroinflammation. Lastly, we provide a comprehensive discussion for the involvement of microglial GLS in the pathogenesis of various neurological disorders, indicating microglial GLS as a promising target to treat these diseases.
Collapse
Affiliation(s)
- Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaonan Xu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Congcong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200434, China.
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200434, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200434, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930, USA.
| |
Collapse
|
6
|
Weiner ID, Verlander JW. Emerging Features of Ammonia Metabolism and Transport in Acid-Base Balance. Semin Nephrol 2020; 39:394-405. [PMID: 31300094 DOI: 10.1016/j.semnephrol.2019.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ammonia metabolism has a critical role in acid-base homeostasis and in other cellular functions. Kidneys have a central role in bicarbonate generation, which occurs through the process of net acid excretion; ammonia metabolism is the quantitatively greatest component of net acid excretion, both under basal conditions and in response to acid-base disturbances. Several recent studies have advanced our understanding substantially of the molecular mechanisms and regulation of ammonia metabolism. First, the previous paradigm that ammonia transport could be explained by passive NH3 diffusion and NH4+ trapping has been advanced by the recognition that specific transport of NH3 and of NH4+ by specific membrane proteins is critical to ammonia transport. Second, significant advances have been made in the understanding of the regulation of ammonia metabolism. Novel studies have shown that hyperkalemia directly inhibits ammonia metabolism, thereby leading to the metabolic acidosis present in type IV renal tubular acidosis. Other studies have shown that the proximal tubule protein NBCe1, specifically the A variant NBCe1-A, has a major role in regulating renal ammonia metabolism. Third, there are important sex differences in ammonia metabolism that involve structural and functional differences in the kidney. This review addresses these important aspects of ammonia metabolism and transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL; Nephrology and Hypertension Section, Gainesville Veterans Affairs Medical Center, Gainesville, FL.
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
7
|
Nuclear Translocation of Glutaminase GLS2 in Human Cancer Cells Associates with Proliferation Arrest and Differentiation. Sci Rep 2020; 10:2259. [PMID: 32042057 PMCID: PMC7010782 DOI: 10.1038/s41598-020-58264-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/08/2020] [Indexed: 11/08/2022] Open
Abstract
Glutaminase (GA) catalyzes the first step in mitochondrial glutaminolysis playing a key role in cancer metabolic reprogramming. Humans express two types of GA isoforms: GLS and GLS2. GLS isozymes have been consistently related to cell proliferation, but the role of GLS2 in cancer remains poorly understood. GLS2 is repressed in many tumor cells and a better understanding of its function in tumorigenesis may further the development of new therapeutic approaches. We analyzed GLS2 expression in HCC, GBM and neuroblastoma cells, as well as in monkey COS-7 cells. We studied GLS2 expression after induction of differentiation with phorbol ester (PMA) and transduction with the full-length cDNA of GLS2. In parallel, we investigated cell cycle progression and levels of p53, p21 and c-Myc proteins. Using the baculovirus system, human GLS2 protein was overexpressed, purified and analyzed for posttranslational modifications employing a proteomics LC-MS/MS platform. We have demonstrated a dual targeting of GLS2 in human cancer cells. Immunocytochemistry and subcellular fractionation gave consistent results demonstrating nuclear and mitochondrial locations, with the latter being predominant. Nuclear targeting was confirmed in cancer cells overexpressing c-Myc- and GFP-tagged GLS2 proteins. We assessed the subnuclear location finding a widespread distribution of GLS2 in the nucleoplasm without clear overlapping with specific nuclear substructures. GLS2 expression and nuclear accrual notably increased by treatment of SH-SY5Y cells with PMA and it correlated with cell cycle arrest at G2/M, upregulation of tumor suppressor p53 and p21 protein. A similar response was obtained by overexpression of GLS2 in T98G glioma cells, including downregulation of oncogene c-Myc. Furthermore, human GLS2 was identified as being hypusinated by MS analysis, a posttranslational modification which may be relevant for its nuclear targeting and/or function. Our studies provide evidence for a tumor suppressor role of GLS2 in certain types of cancer. The data imply that GLS2 can be regarded as a highly mobile and multilocalizing protein translocated to both mitochondria and nuclei. Upregulation of GLS2 in cancer cells induced an antiproliferative response with cell cycle arrest at the G2/M phase.
Collapse
|
8
|
Gao G, Zhao S, Xia X, Li C, Li C, Ji C, Sheng S, Tang Y, Zhu J, Wang Y, Huang Y, Zheng JC. Glutaminase C Regulates Microglial Activation and Pro-inflammatory Exosome Release: Relevance to the Pathogenesis of Alzheimer's Disease. Front Cell Neurosci 2019; 13:264. [PMID: 31316350 PMCID: PMC6611423 DOI: 10.3389/fncel.2019.00264] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023] Open
Abstract
Microglial activation is a key pathogenic process at the onset of Alzheimer’s disease (AD). Identifying regulators of microglial activation bears great potential in elucidating causes and mechanisms of AD and determining candidates for early intervention. Previous studies demonstrate abnormal elevation of glutaminase C (GAC) in HIV-infected or immune-activated microglia. However, whether GAC elevation causes microglial activation remains unknown. In this study, we found heightened expression levels of GAC in early AD mouse brain tissues compared with those in control littermates. Investigations on an in vitro neuroinflammation model revealed that GAC is increased in primary mouse microglia following pro-inflammatory stimulation. To model GAC elevation we overexpressed GAC by plasmid transfection and observed that GAC-overexpression shift the microglial phenotype to a pro-inflammatory state. Treatment with BPTES, a glutaminase inhibitor, reversed LPS-induced microglial activation and inflammation. Furthermore, we discovered that GAC overexpression in mouse microglia increased exosome release and changed exosome content, which includes specific packaging of pro-inflammatory miRNAs that activate microglia. Together, our results demonstrate a causal effect of GAC elevation on microglial activation and exosome release, both of which promote the establishment of a pro-inflammatory microenvironment. Therefore, GAC may have important relevance to the pathogenesis of AD.
Collapse
Affiliation(s)
- Ge Gao
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Shu Zhao
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Chunhong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Congcong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Chenhui Ji
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shiyang Sheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yalin Tang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jie Zhu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Saha SK, Islam SMR, Abdullah-Al-Wadud M, Islam S, Ali F, Park KS. Multiomics Analysis Reveals that GLS and GLS2 Differentially Modulate the Clinical Outcomes of Cancer. J Clin Med 2019; 8:jcm8030355. [PMID: 30871151 PMCID: PMC6463114 DOI: 10.3390/jcm8030355] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 01/22/2023] Open
Abstract
Kidney-type glutaminase (GLS) and liver-type glutaminase (GLS2) are dysregulated in many cancers, making them appealing targets for cancer therapy. However, their use as prognostic biomarkers is controversial and remains an active area of cancer research. Here, we performed a systematic multiomic analysis to determine whether glutaminases function as prognostic biomarkers in human cancers. Glutaminase expression and methylation status were assessed and their prominent functional protein partners and correlated genes were identified using various web-based bioinformatics tools. The cross-cancer relationship of glutaminases with mutations and copy number alterations was also investigated. Gene ontology (GO) and pathway analysis were performed to assess the integrated effect of glutaminases and their correlated genes on various cancers. Subsequently, the prognostic roles of GLS and GLS2 in human cancers were mined using univariate and multivariate survival analyses. GLS was frequently over-expressed in breast, esophagus, head-and-neck, and blood cancers, and was associated with a poor prognosis, whereas GLS2 overexpression implied poor overall survival in colon, blood, ovarian, and thymoma cancers. BothGLS and GLS2 play oncogenic and anti-oncogenic roles depending on the type of cancer. The varying prognostic characteristics of glutaminases suggest that GLS and GLS2 expression differentially modulate the clinical outcomes of cancers.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-Ro, Seoul 05029, Korea.
| | - S M Riazul Islam
- Department of Computer Science and Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea.
| | - M Abdullah-Al-Wadud
- Department of Software Engineering, King Saud University, Riyadh 11543, Saudi Arabia.
| | - Saiful Islam
- Department of Computer Science, King Saud University, Riyadh 11543, Saudi Arabia.
| | - Farman Ali
- Department of Information and Communication Engineering, Inha University, Incheon 22212, Korea.
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University Medical Centre, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
10
|
de Guzzi Cassago CA, Dias MM, Pinheiro MP, Pasquali CC, Bastos ACS, Islam Z, Consonni SR, de Oliveira JF, Gomes EM, Ascenção CFR, Honorato R, Pauletti BA, Indolfo NDC, Filho HVR, de Oliveira PSL, Figueira ACM, Paes Leme AF, Ambrosio ALB, Dias SMG. Glutaminase Affects the Transcriptional Activity of Peroxisome Proliferator-Activated Receptor γ (PPARγ) via Direct Interaction. Biochemistry 2018; 57:6293-6307. [PMID: 30295466 DOI: 10.1021/acs.biochem.8b00773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phosphate-activated glutaminases catalyze the deamidation of glutamine to glutamate and play key roles in several physiological and pathological processes. In humans, GLS encodes two multidomain splicing isoforms: KGA and GAC. In both isoforms, the canonical glutaminase domain is flanked by an N-terminal region that is folded into an EF-hand-like four-helix bundle. However, the splicing event replaces a well-structured three-repeat ankyrin domain in KGA with a shorter, unordered C-terminal stretch in GAC. The multidomain architecture, which contains putative protein-protein binding motifs, has led to speculation that glutaminases are involved in cellular processes other than glutamine metabolism; in fact, some proteins have been identified as binding partners of KGA and the isoforms of its paralogue gene, GLS2. Here, a yeast two-hybrid assay identified nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) as a new binding partner of the glutaminase. We show that KGA and GAC directly bind PPARγ with a low-micromolar dissociation constant; the interaction involves the N-terminal and catalytic domains of glutaminases as well as the ligand-binding domain of the nuclear receptor. The interaction occurs within the nucleus, and by sequestering PPARγ from its responsive element DR1, the glutaminases decreased nuclear receptor activity as assessed by a luciferase reporter assay. Altogether, our findings reveal an unexpected glutaminase-binding partner and, for the first time, directly link mitochondrial glutaminases to an unanticipated role in gene regulation.
Collapse
Affiliation(s)
- Carolina Aparecida de Guzzi Cassago
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Marília Meira Dias
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Matheus Pinto Pinheiro
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Camila Cristina Pasquali
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Alliny Cristiny Silva Bastos
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology , University of Campinas (UNICAMP) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Zeyaul Islam
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Sílvio Roberto Consonni
- Department of Biochemistry and Tissue Biology , University of Campinas , Campinas , Sao Paulo 13083-872 , Brazil
| | - Juliana Ferreira de Oliveira
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Emerson Machi Gomes
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Carolline Fernanda Rodrigues Ascenção
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology , University of Campinas (UNICAMP) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Rodrigo Honorato
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Bianca Alves Pauletti
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Nathalia de Carvalho Indolfo
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Helder Veras Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Paulo Sergio Lopes de Oliveira
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Ana Carolina Migliorini Figueira
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Adriana Franco Paes Leme
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Andre Luis Berteli Ambrosio
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| | - Sandra Martha Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio) , Brazilian Center for Research in Energy and Materials (CNPEM) , Campinas , Sao Paulo 13083-970 , Brazil
| |
Collapse
|
11
|
Xu X, Meng Y, Li L, Xu P, Wang J, Li Z, Bian J. Overview of the Development of Glutaminase Inhibitors: Achievements and Future Directions. J Med Chem 2018; 62:1096-1115. [PMID: 30148361 DOI: 10.1021/acs.jmedchem.8b00961] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has been demonstrated that glutamine metabolism has become the main energy and building blocks supply for the growth and viability of a potentially large subset of malignant tumors. The glutamine metabolism often depends upon mitochondrial glutaminase (GLS) activity, which converts glutamine to glutamate and serves as a significant role for bioenergetic processes. Thus, recently, the GLS has become a key target for small molecule therapeutic intervention. Numerous medicinal chemistry studies are currently aimed at the design of novel and potent inhibitors for GLS, however, to date, only one compound (named CB-839) have entered clinical trials for the treatment of advanced solid tumors and hematological malignancies. The perspective summarizes the progress in the discovery and development of GLS inhibitors, including the potential binding site, biochemical techniques for inhibitor identification, and approaches for identifying small-molecule inhibitors, as well as future therapeutic perspectives in glutamine metabolism are also put forward in order to provide reference and rational for the drug discovery of novel and potent glutamine metabolism modulators.
Collapse
Affiliation(s)
- Xi Xu
- Department of Medicinal Chemistry , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , P. R. China
| | - Ying Meng
- Department of Medicinal Chemistry , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , P. R. China
| | - Lei Li
- Department of Medicinal Chemistry , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , P. R. China
| | - Pengfei Xu
- Department of Medicinal Chemistry , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , P. R. China
| | - Jubo Wang
- Department of Medicinal Chemistry , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , P. R. China
| | - Zhiyu Li
- Department of Medicinal Chemistry , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , P. R. China.,Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 21009 , P. R. China
| | - Jinlei Bian
- Department of Medicinal Chemistry , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , P. R. China.,Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 21009 , P. R. China
| |
Collapse
|
12
|
Zimmermann SC, Duvall B, Tsukamoto T. Recent Progress in the Discovery of Allosteric Inhibitors of Kidney-Type Glutaminase. J Med Chem 2018; 62:46-59. [PMID: 29969024 DOI: 10.1021/acs.jmedchem.8b00327] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Kidney-type glutaminase (GLS), the first enzyme in the glutaminolysis pathway, catalyzes the hydrolysis of glutamine to glutamate. GLS was found to be upregulated in many glutamine-dependent cancer cells. Therefore, selective inhibition of GLS has gained substantial interest as a therapeutic approach targeting cancer metabolism. Bis-2-[5-(phenylacetamido)-1,3,4-thiadiazol-2-yl]ethyl sulfide (BPTES), despite its poor physicochemical properties, has served as a key molecular template in subsequent efforts to identify more potent and drug-like allosteric GLS inhibitors. This review article provides an overview of the progress made to date in the development of GLS inhibitors and highlights the remarkable transformation of the unfavorable lead into "druglike" compounds guided by systematic SAR studies.
Collapse
|
13
|
Glutaminase C overexpression in the brain induces learning deficits, synaptic dysfunctions, and neuroinflammation in mice. Brain Behav Immun 2017. [PMID: 28624534 PMCID: PMC5650935 DOI: 10.1016/j.bbi.2017.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glutaminolysis, a metabolic process that converts glutamine to glutamate, is particularly important for the central nervous system since glutamate is the major transmitter of excitatory synapses. Glutaminase is the mitochondrial enzyme that catalyzes the first step of glutaminolysis. Two genes encode at least four isoforms of glutaminase in humans. Gls1 gene encodes isoforms kidney-type glutaminase (KGA) and glutaminase C (GAC) through alternative splicing, whereas Gls2 gene encodes liver-type glutaminase isoforms. KGA and GAC have been associated with several neurological diseases. However, it remains unclear whether changes in their expressions can directly cause brain abnormalities. Using a transgenic approach, we generated mice that overexpressed GAC in the brain. The resulting transgenic mice had severe impairments in spatial and fear learning compared with littermate controls. The learning deficits were consistent with diminished hippocampal long-term potentiation in the hippocampal slices of the GAC transgenic mice. Furthermore, we found increases in astrocyte and microglia markers, inflammatory factors, and a decrease in synapse marker synaptophysin, suggesting neuroinflammation and synaptic changes in the GAC transgenic mouse brains. In conclusion, these findings provide the first evidence that GAC overexpression in the brain has deleterious effects on learning and synaptic integrity in vivo.
Collapse
|
14
|
Abstract
Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4+, are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
15
|
Katt WP, Lukey MJ, Cerione RA. A tale of two glutaminases: homologous enzymes with distinct roles in tumorigenesis. Future Med Chem 2017; 9:223-243. [PMID: 28111979 PMCID: PMC5558546 DOI: 10.4155/fmc-2016-0190] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/01/2016] [Indexed: 01/17/2023] Open
Abstract
Many cancer cells exhibit an altered metabolic phenotype, in which glutamine consumption is upregulated relative to healthy cells. This metabolic reprogramming often depends upon mitochondrial glutaminase activity, which converts glutamine to glutamate, a key precursor for biosynthetic and bioenergetic processes. Two isozymes of glutaminase exist, a kidney-type (GLS) and a liver-type enzyme (GLS2 or LGA). While a majority of studies have focused on GLS, here we summarize key findings on both glutaminases, describing their structure and function, their roles in cancer and pharmacological approaches to inhibiting their activities.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Lukey
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Márquez J, Campos-Sandoval JA, Peñalver A, Matés JM, Segura JA, Blanco E, Alonso FJ, de Fonseca FR. Glutamate and Brain Glutaminases in Drug Addiction. Neurochem Res 2016; 42:846-857. [DOI: 10.1007/s11064-016-2137-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/12/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
17
|
Xiao D, Ren P, Su H, Yue M, Xiu R, Hu Y, Liu H, Qing G. Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2. Oncotarget 2016; 6:40655-66. [PMID: 26528759 PMCID: PMC4747359 DOI: 10.18632/oncotarget.5821] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 09/23/2015] [Indexed: 01/02/2023] Open
Abstract
Deamidation of glutamine to glutamate by glutaminase 1 (GLS1, also called GLS) and GLS2 is an essential step in both glutaminolysis and glutathione (GSH) biosynthesis. However, mechanisms whereby cancer cells regulate glutamine catabolism remains largely unknown. We report here that N-Myc, an essential Myc family member, promotes conversion of glutamine to glutamate in MYCN-amplified neuroblastoma cells by directly activating GLS2, but not GLS1, transcription. Abrogation of GLS2 function profoundly inhibited glutaminolysis, which resulted in feedback inhibition of aerobic glycolysis likely due to thioredoxin-interacting protein (TXNIP) activation, dramatically decreasing cell proliferation and survival in vitro and in vivo. Moreover, elevated GLS2 expression is significantly elevated in MYCN-amplified neuroblastomas in comparison with non-amplified ones, correlating with unfavorable patient survival. In aggregate, these results reveal a novel mechanism deciphering context-dependent regulation of metabolic heterogeneities, uncovering a previously unsuspected link between Myc, GLS2 and tumor metabolism.
Collapse
Affiliation(s)
- Daibiao Xiao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ping Ren
- Department of Pharmacology, School of Pharmacy, Hubei University of Science & Technology, Xianning 437100, China
| | - Hexiu Su
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ming Yue
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ruijuan Xiu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yufeng Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Hudan Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China.,Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Guoliang Qing
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China.,Medical Research Institute, Wuhan University, Wuhan 430071, China
| |
Collapse
|
18
|
Masamha CP, Xia Z, Peart N, Collum S, Li W, Wagner EJ, Shyu AB. CFIm25 regulates glutaminase alternative terminal exon definition to modulate miR-23 function. RNA (NEW YORK, N.Y.) 2016; 22:830-838. [PMID: 27095025 PMCID: PMC4878610 DOI: 10.1261/rna.055939.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Alternative polyadenylation (APA) and alternative splicing (AS) provide mRNAs with the means to avoid microRNA repression through selective shortening or differential usage of 3'UTRs. The two glutaminase (GLS) mRNA isoforms, termed KGA and GAC, contain distinct 3'UTRs with the KGA isoform subject to repression by miR-23. We show that depletion of the APA regulator CFIm25 causes a strong shift to the usage of a proximal poly(A) site within the KGA 3'UTR and also alters splicing to favor exclusion of the GAC 3'UTR. Surprisingly, we observe that while miR-23 is capable of down-regulating the shortened KGA 3'UTR, it has only minor impact on the full-length KGA 3'UTR, demonstrating that additional potent negative regulation of GLS expression exists beyond this single microRNA targeting site. Finally, we show that the apoptosis induced upon down-regulation of the GAC isoform can be alleviated through concurrent reduction in CFIm25 expression, revealing the sensitivity of glutaminase expression to the levels of RNA processing factors. These results exemplify the complex interplay between RNA processing and microRNA repression in controlling glutamine metabolism in cancer cells.
Collapse
Affiliation(s)
- Chioniso P Masamha
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030, USA
| | - Zheng Xia
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Natoya Peart
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030, USA The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | - Scott Collum
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030, USA The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030, USA The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | - Ann-Bin Shyu
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030, USA The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| |
Collapse
|
19
|
The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids 2016; 48:2067-80. [DOI: 10.1007/s00726-016-2254-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/04/2016] [Indexed: 01/08/2023]
|
20
|
Abstract
Mammalian glutaminases catalyze the stoichiometric conversion of L-glutamine to L-glutamate and ammonium ions. In brain, glutaminase is considered the prevailing pathway for synthesis of the neurotransmitter pool of glutamate. Besides neurotransmission, the products of glutaminase reaction also fulfill crucial roles in energy and metabolic homeostasis in mammalian brain. In the last years, new functional roles for brain glutaminases are being uncovered by using functional genomic and proteomic approaches. Glutaminases may act as multifunctional proteins able to perform different tasks: the discovery of multiple transcript variants in neurons and glial cells, novel extramitochondrial localizations, and isoform-specific proteininteracting partners strongly support possible moonlighting functions for these proteins. In this chapter, we present a critical account of essential works on brain glutaminase 80 years after its discovery. We will highlight the impact of recent findings and thoughts in the context of the glutamate/glutamine brain homeostasis.
Collapse
|
21
|
Glutaminases in slowly proliferating gastroenteropancreatic neuroendocrine neoplasms/tumors (GEP-NETs): Selective overexpression of mRNA coding for the KGA isoform. Exp Mol Pathol 2015; 100:74-8. [PMID: 26581715 DOI: 10.1016/j.yexmp.2015.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/11/2015] [Indexed: 11/22/2022]
Abstract
Glutamine (Gln) is a crucial metabolite in cancer cells of different origin, and the expression and activity of different isoforms of the Gln-degrading enzyme, glutaminase (GA), have variable implications for tumor growth and metabolism. Human glutaminases are encoded by two genes: the GLS gene encodes the kidney-type glutaminases, KGA and GAC, while the GLS2 gene encodes the liver-type glutaminases, GAB and LGA. Recent studies suggest that the GAC isoform and thus high GAC/KGA ratio, are characteristic of highly proliferating tumors, while GLS2 proteins have an inhibitory effect on tumor growth. Here we analyzed the expression levels of distinct GA transcripts in 7 gastroenteropancreatic neuroendocrine tumors (GEP-NETs) with low proliferation index and 7 non-neoplastic tissues. GEP-NETs overexpressed KGA, while GAC, which was the most abundant isoform, was not different from control. The expression of the GLS2 gene showed tendency towards elevation in GEP-NETs compared to control. Collectively, the expression pattern of GA isoforms conforms to the low proliferative capacity of GEP-NETs encompassed in this study.
Collapse
|
22
|
Campos-Sandoval JA, Martín-Rufián M, Cardona C, Lobo C, Peñalver A, Márquez J. Glutaminases in brain: Multiple isoforms for many purposes. Neurochem Int 2015; 88:1-5. [PMID: 25837287 DOI: 10.1016/j.neuint.2015.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Glutaminase is expressed in most mammalian tissues and cancer cells, but recent studies are now revealing a considerably degree of complexity in its pattern of expression and functional regulation. Novel transcript variants of the mammalian glutaminase Gls2 gene have been recently found and characterized in brain. Co-expression of different isoforms in the same cell type would allow cells to fine-tune their Gln/Glu levels under a wide range of metabolic states. Moreover, the discovery of protein interacting partners and novel subcellular localizations, for example nucleocytoplasmic in neurons and astrocytes, strongly suggest non-neurotransmission roles for Gls2 isoforms associated with transcriptional regulation and cellular differentiation. Of note, Gls isoforms have been considered as an important trophic factor for neuronal differentiation and postnatal development of brain regions. On the other hand, glutaminases are taking center stage in tumor biology as new therapeutic targets to inhibit metabolic reprogramming of cancer cells. Interestingly, glutaminase isoenzymes play seemingly opposing roles in cancer cell growth and proliferation; this issue will be also succinctly discussed with special emphasis on brain tumors.
Collapse
Affiliation(s)
- José A Campos-Sandoval
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | | | - Carolina Cardona
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Carolina Lobo
- Proteomics Lab, Central Facility Core, Universidad de Málaga, 29071 Málaga, Spain
| | - Ana Peñalver
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Javier Márquez
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab. Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| |
Collapse
|
23
|
Effect of lysine to alanine mutations on the phosphate activation and BPTES inhibition of glutaminase. Neurochem Int 2014; 88:10-4. [PMID: 25510640 DOI: 10.1016/j.neuint.2014.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 11/22/2022]
Abstract
The GLS1 gene encodes a mitochondrial glutaminase that is highly expressed in brain, kidney, small intestine and many transformed cells. Recent studies have identified multiple lysine residues in glutaminase that are sites of N-acetylation. Interestingly, these sites are located within either a loop segment that regulates access of glutamine to the active site or the dimer:dimer interface that participates in the phosphate-dependent oligomerization and activation of the enzyme. These two segments also contain the binding sites for bis-2[5-phenylacetamido-1,2,4-thiadiazol-2-yl]ethylsulfide (BPTES), a highly specific and potent uncompetitive inhibitor of this glutaminase. BPTES is also the lead compound for development of novel cancer chemotherapeutic agents. To provide a preliminary assessment of the potential effects of N-acetylation, the corresponding lysine to alanine mutations were constructed in the hGACΔ1 plasmid. The wild type and mutated proteins were purified by Ni(+)-affinity chromatography and their phosphate activation and BPTES inhibition profiles were analyzed. Two of the alanine substitutions in the loop segment (K311A and K328A) and the one in the dimer:dimer interface (K396A) form enzymes that require greater concentrations of phosphate to produce half-maximal activation and exhibit greater sensitivity to BPTES inhibition. By contrast, the K320A mutation results in a glutaminase that exhibits near maximal activity in the absence of phosphate and is not inhibited by BPTES. Thus, lysine N-acetylation may contribute to the acute regulation of glutaminase activity in various tissues and alter the efficacy of BPTES-type inhibitors.
Collapse
|
24
|
Cooper AJL, Kuhara T. α-Ketoglutaramate: an overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle. Metab Brain Dis 2014; 29:991-1006. [PMID: 24234505 PMCID: PMC4020999 DOI: 10.1007/s11011-013-9444-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/21/2013] [Indexed: 01/16/2023]
Abstract
Glutamine metabolism is generally regarded as proceeding via glutaminase-catalyzed hydrolysis to glutamate and ammonia, followed by conversion of glutamate to α-ketoglutarate catalyzed by glutamate dehydrogenase or by a glutamate-linked aminotransferase (transaminase). However, another pathway exists for the conversion of glutamine to α-ketoglutarate that is often overlooked, but is widely distributed in nature. This pathway, referred to as the glutaminase II pathway, consists of a glutamine transaminase coupled to ω-amidase. Transamination of glutamine results in formation of the corresponding α-keto acid, namely, α-ketoglutaramate (KGM). KGM is hydrolyzed by ω-amidase to α-ketoglutarate and ammonia. The net glutaminase II reaction is: L - Glutamine + α - keto acid + H2O → α - ketoglutarate + L - amino acid + ammonia. In this mini-review the biochemical importance of the glutaminase II pathway is summarized, with emphasis on the key component KGM. Forty years ago it was noted that the concentration of KGM is increased in the cerebrospinal fluid (CSF) of patients with hepatic encephalopathy (HE) and that the level of KGM in the CSF correlates well with the degree of encephalopathy. In more recent work, we have shown that KGM is markedly elevated in the urine of patients with inborn errors of the urea cycle. It is suggested that KGM may be a useful biomarker for many hyperammonemic diseases including hepatic encephalopathy, inborn errors of the urea cycle, citrin deficiency and lysinuric protein intolerance.
Collapse
Affiliation(s)
- Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA,
| | | |
Collapse
|
25
|
Abstract
Human adults produce around 1000 mmol of ammonia daily. Some is reutilized in biosynthesis. The remainder is waste and neurotoxic. Eventually most is excreted in urine as urea, together with ammonia used as a buffer. In extrahepatic tissues, ammonia is incorporated into nontoxic glutamine and released into blood. Large amounts are metabolized by the kidneys and small intestine. In the intestine, this yields ammonia, which is sequestered in portal blood and transported to the liver for ureagenesis, and citrulline, which is converted to arginine by the kidneys. The amazing developments in NMR imaging and spectroscopy and molecular biology have confirmed concepts derived from early studies in animals and cell cultures. The processes involved are exquisitely tuned. When they are faulty, ammonia accumulates. Severe acute hyperammonemia causes a rapidly progressive, often fatal, encephalopathy with brain edema. Chronic milder hyperammonemia causes a neuropsychiatric illness. Survivors of severe neonatal hyperammonemia have structural brain damage. Proposed explanations for brain edema are an increase in astrocyte osmolality, generally attributed to glutamine accumulation, and cytotoxic oxidative/nitrosative damage. However, ammonia neurotoxicity is multifactorial, with disturbances also in neurotransmitters, energy production, anaplerosis, cerebral blood flow, potassium, and sodium. Around 90% of hyperammonemic patients have liver disease. Inherited defects are rare. They are being recognized increasingly in adults. Deficiencies of urea cycle enzymes, citrin, and pyruvate carboxylase demonstrate the roles of isolated pathways in ammonia metabolism. Phenylbutyrate is used routinely to treat inherited urea cycle disorders, and its use for hepatic encephalopathy is under investigation.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.
| |
Collapse
|
26
|
Cardona C, Sánchez-Mejías E, Dávila JC, Martín-Rufián M, Campos-Sandoval JA, Vitorica J, Alonso FJ, Matés JM, Segura JA, Norenberg MD, Rama Rao KV, Jayakumar AR, Gutiérrez A, Márquez J. Expression of Gls and Gls2 glutaminase isoforms in astrocytes. Glia 2014; 63:365-82. [PMID: 25297978 DOI: 10.1002/glia.22758] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/24/2014] [Indexed: 01/10/2023]
Abstract
The expression of glutaminase in glial cells has been a controversial issue and matter of debate for many years. Actually, glutaminase is essentially considered as a neuronal marker in brain. Astrocytes are endowed with efficient and high capacity transport systems to recapture synaptic glutamate which seems to be consistent with the absence of glutaminase in these glial cells. In this work, a comprehensive study was devised to elucidate expression of glutaminase in neuroglia and, more concretely, in astrocytes. Immunocytochemistry in rat and human brain tissues employing isoform-specific antibodies revealed expression of both Gls and Gls2 glutaminase isozymes in glutamatergic and GABAergic neuronal populations as well as in astrocytes. Nevertheless, there was a different subcellular distribution: Gls isoform was always present in mitochondria while Gls2 appeared in two different locations, mitochondria and nucleus. Confocal microscopy and double immunofluorescence labeling in cultured astrocytes confirmed the same pattern previously seen in brain tissue samples. Astrocytic glutaminase expression was also assessed at the mRNA level, real-time quantitative RT-PCR detected transcripts of four glutaminase isozymes but with marked differences on their absolute copy number: the predominance of Gls isoforms over Gls2 transcripts was remarkable (ratio of 144:1). Finally, we proved that astrocytic glutaminase proteins possess enzymatic activity by in situ activity staining: concrete populations of astrocytes were labeled in the cortex, cerebellum and hippocampus of rat brain demonstrating functional catalytic activity. These results are relevant for the stoichiometry of the Glu/Gln cycle at the tripartite synapse and suggest novel functions for these classical metabolic enzymes.
Collapse
Affiliation(s)
- Carolina Cardona
- Canceromics Lab. Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Botman D, Tigchelaar W, Van Noorden CJF. Determination of phosphate-activated glutaminase activity and its kinetics in mouse tissues using metabolic mapping (quantitative enzyme histochemistry). J Histochem Cytochem 2014; 62:813-26. [PMID: 25163927 PMCID: PMC4230542 DOI: 10.1369/0022155414551177] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phosphate-activated glutaminase (PAG) converts glutamine to glutamate as part of the glutaminolysis pathway in mitochondria. Two genes, GLS1 and GLS2, which encode for kidney-type PAG and liver-type PAG, respectively, differ in their tissue-specific activities and kinetics. Tissue-specific PAG activity and its kinetics were determined by metabolic mapping using a tetrazolium salt and glutamate dehydrogenase as an auxiliary enzyme in the presence of various glutamine concentrations. In kidney and brain, PAG showed Michaelis-Menten kinetics with a Km of 0.6 mM glutamine and a Vmax of 1.1 µmol/mL/min when using 5 mM glutamine. PAG activity was high in the kidney cortex and inner medulla but low in the outer medulla, papillary tip, glomeruli and the lis of Henle. In brain tissue sections, PAG was active in the grey matter and inactive in myelin-rich regions. Liver PAG showed allosteric regulation with a Km of 11.6 mM glutamine and a Vmax of 0.5 µmol/mL/min when using 20 mM glutamine. The specificity of the method was shown after incubation of brain tissue sections with the PAG inhibitor 6-diazo-5-oxo-L-norleucine. PAG activity was decreased to 22% in the presence of 2 mM 6-diazo-5-oxo-L-norleucine. At low glutamine concentrations, PAG activity was higher in periportal regions, indicating a lower Km for periportal PAG. When compared with liver, kidney and brain, other tissues showed 3-fold to 6-fold less PAG activity. In conclusion, PAG is mainly active in mouse kidney, brain and liver, and shows different kinetics depending on which type of PAG is expressed.
Collapse
Affiliation(s)
- Dennis Botman
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (DB, WT, CJFVN)
| | - Wikky Tigchelaar
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (DB, WT, CJFVN)
| | - Cornelis J F Van Noorden
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (DB, WT, CJFVN)
| |
Collapse
|
28
|
Wang Y, Huang Y, Zhao L, Li Y, Zheng J. Glutaminase 1 is essential for the differentiation, proliferation, and survival of human neural progenitor cells. Stem Cells Dev 2014; 23:2782-90. [PMID: 24923593 DOI: 10.1089/scd.2014.0022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glutaminase is the enzyme that converts glutamine into glutamate, which serves as a key excitatory neurotransmitter and one of the energy providers for cellular metabolism. Previous studies have revealed that mice lacking glutaminase 1 (GLS1), the dominant isoform in the brain and kidney, died shortly after birth due to disrupted glutamatergic transmission, suggesting the critical role of GLS1 in the physiological functions of synaptic network. However, whether GLS1 regulates neurogenesis, a process by which neurons are generated from neural progenitor cells (NPCs), is unknown. Using a human NPC model, we found that both GLS1 isotypes, kidney-type glutaminase and glutaminase C, were upregulated during neuronal differentiation, which were correlated with the expression of neuronal marker microtubule-associated protein 2 (MAP-2). To study the functional impact of GLS1 on neurogenesis, we used small interference RNA targeting GLS1 and determined the expressions of neuronal genes by western blot, real-time polymerase chain reaction, and immunocytochemistry. siRNA silencing of GLS1 significantly reduced the expression of MAP-2, indicating that GLS1 is essential for neurogenesis. To unravel the specific process(es) of neurogenesis being affected, we further studied the proliferation and survival of NPCs in vitro. siRNA silencing of GLS1 significantly reduced the Ki67(+) and increased the TUNEL(+) cells, suggesting critical roles of GLS1 for the proliferation and survival of NPCs. Together, these data suggest that GLS1 is critical for proper functions of NPCs, including neuronal differentiation, proliferation, and survival.
Collapse
Affiliation(s)
- Yi Wang
- 1 Laboratory of Neuroimmunology and Regenerative Therapy, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , Omaha, Nebraska
| | | | | | | | | |
Collapse
|
29
|
Curthoys NP, Gstraunthaler G. pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+cells: a versatile in vitro model to study renal proximal tubule metabolism and function. Am J Physiol Renal Physiol 2014; 307:F1-F11. [PMID: 24808535 DOI: 10.1152/ajprenal.00067.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ammoniagenesis and gluconeogenesis are prominent metabolic features of the renal proximal convoluted tubule that contribute to maintenance of systemic acid-base homeostasis. Molecular analysis of the mechanisms that mediate the coordinate regulation of the two pathways required development of a cell line that recapitulates these features in vitro. By adapting porcine renal epithelial LLC-PK1 cells to essentially glucose-free medium, a gluconeogenic subline, termed LLC-PK1-FBPase(+) cells, was isolated. LLC-PK1-FBPase(+) cells grow in the absence of hexoses and pentoses and exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase. The cells also express significant levels of the key gluconeogenic enzymes, fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus the altered phenotype of LLC-PK1-FBPase(+) cells is pleiotropic. Most importantly, when transferred to medium that mimics a pronounced metabolic acidosis (9 mM HCO3 (-), pH 6.9), the LLC-PK1-FBPase(+) cells exhibit a gradual increase in NH4 (+) ion production, accompanied by increases in glutaminase and cytosolic PEPCK mRNA levels and proteins. Therefore, the LLC-PK1-FBPase(+) cells retained in culture many of the metabolic pathways and pH-responsive adaptations characteristic of renal proximal tubules. The molecular mechanisms that mediate enhanced expression of the glutaminase and PEPCK in LLC-PK1-FBPase(+) cells have been extensively reviewed. The present review describes novel properties of this unique cell line and summarizes the molecular mechanisms that have been defined more recently using LLC-PK1-FBPase(+) cells to model the renal proximal tubule. It also identifies future studies that could be performed using these cells.
Collapse
Affiliation(s)
- Norman P Curthoys
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado; and
| | | |
Collapse
|
30
|
Abstract
The metabolic adaptations that support oncogenic growth can also render cancer cells dependent on certain nutrients. Along with the Warburg effect, increased utilization of glutamine is one of the metabolic hallmarks of the transformed state. Glutamine catabolism is positively regulated by multiple oncogenic signals, including those transmitted by the Rho family of GTPases and by c-Myc. The recent identification of mechanistically distinct inhibitors of glutaminase, which can selectively block cellular transformation, has revived interest in the possibility of targeting glutamine metabolism in cancer therapy. Here, we outline the regulation and roles of glutamine metabolism within cancer cells and discuss possible strategies for, and the consequences of, impacting these processes therapeutically.
Collapse
|
31
|
Stine ZE, Dang CV. Stress eating and tuning out: cancer cells re-wire metabolism to counter stress. Crit Rev Biochem Mol Biol 2013; 48:609-19. [PMID: 24099138 DOI: 10.3109/10409238.2013.844093] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cancer cells reprogram metabolism to maintain rapid proliferation under often stressful conditions. Glycolysis and glutaminolysis are two central pathways that fuel cancer metabolism. Allosteric regulation and metabolite driven post-translational modifications of key metabolic enzymes allow cancer cells glycolysis and glutaminolysis to respond to changes in nutrient availability and the tumor microenvironment. While increased aerobic glycolysis (the Warburg effect) has been a noted part of cancer metabolism for over 80 years, recent work has shown that the elevated levels of glycolytic intermediates are critical to cancer growth and metabolism due to their ability to feed into the anabolic pathways branching off glycolysis such as the pentose phosphate pathway and serine biosynthesis pathway. The key glycolytic enzymes phosphofructokinase-1 (PFK1), pyruvate kinase (PKM2) and phosphoglycerate mutase 1 (PGAM1) are regulated by upstream and downstream metabolites to balance glycolytic flux with flux through anabolic pathways. Glutamine regulation is tightly controlled by metabolic intermediates that allosterically inhibit and activate glutamate dehydrogenase, which fuels the tricarboxylic acid cycle by converting glutamine derived glutamate to α-ketoglutarate. The elucidation of these key allosteric regulatory hubs in cancer metabolism will be essential for understanding and predicting how cancer cells will respond to drugs that target metabolism. Additionally, identification of the structures involved in allosteric regulation will inform the design of anti-metabolism drugs which bypass the off-target effects of substrate mimics. Hence, this review aims to provide an overview of allosteric control of glycolysis and glutaminolysis.
Collapse
Affiliation(s)
- Zachary E Stine
- Abramson Cancer Center, Abramson Family Cancer Research Institute, University of Pennsylvania , Philadelphia, PA , USA
| | | |
Collapse
|
32
|
Ye L, Huang Y, Zhao L, Li Y, Sun L, Zhou Y, Qian G, Zheng JC. IL-1β and TNF-α induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem 2013; 125:897-908. [PMID: 23578284 DOI: 10.1111/jnc.12263] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/06/2013] [Accepted: 04/09/2013] [Indexed: 01/09/2023]
Abstract
Glutaminase 1 is the main enzyme responsible for glutamate production in mammalian cells. The roles of macrophage and microglia glutaminases in brain injury, infection, and inflammation are well documented. However, little is known about the regulation of neuronal glutaminase, despite neurons being a predominant cell type of glutaminase expression. Using primary rat and human neuronal cultures, we confirmed that interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), two pro-inflammatory cytokines that are typically elevated in neurodegenerative disease states, induced neuronal death and apoptosis in vitro. Furthermore, both intracellular and extracellular glutamate levels were significantly elevated following IL-1β and/or TNF-α treatment. Pre-treatment with N-Methyl-D-aspartate (NMDA) receptor antagonist MK-801 blocked cytokine-induced glutamate production and alleviated the neurotoxicity, indicating that IL-1β and/or TNF-α induce neurotoxicity through glutamate. To determine the potential source of excess glutamate production in the culture during inflammation, we investigated the neuronal glutaminase and found that treatment with IL-1β or TNF-α significantly upregulated the kidney-type glutaminase (KGA), a glutaminase 1 isoform, in primary human neurons. The up-regulation of neuronal glutaminase was also demonstrated in situ in a murine model of HIV-1 encephalitis. In addition, IL-1β or TNF-α treatment increased the levels of KGA in cytosol and TNF-α specifically increased KGA levels in the extracellular fluid, away from its main residence in mitochondria. Together, these findings support neuronal glutaminase as a potential component of neurotoxicity during inflammation and that modulation of glutaminase may provide therapeutic avenues for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling Ye
- Department of Biochemistry and Molecular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The activity of key metabolic enzymes is regulated by the ubiquitin ligases that control the function of the cyclins; therefore the activity of these ubiquitin ligases explains the coordination of cell-cycle progression with the supply of substrates necessary for cell duplication. APC/C (anaphase-promoting complex/cyclosome)-Cdh1, the ubiquitin ligase that controls G(1)- to S-phase transition by targeting specific degradation motifs in cell-cycle proteins, also regulates the glycolysis-promoting enzyme PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3) and GLS1 (glutaminase 1), a critical enzyme in glutaminolysis. A decrease in the activity of APC/C-Cdh1 in mid-to-late G(1) releases both proteins, thus explaining the simultaneous increase in the utilization of glucose and glutamine during cell proliferation. This occurs at a time consistent with the point in G(1) that has been described as the nutrient-sensitive restriction point and is responsible for the transition from G(1) to S. PFKFB3 is also a substrate at the onset of S-phase for the ubiquitin ligase SCF (Skp1/cullin/F-box)-β-TrCP (β-transducin repeat-containing protein), so that the activity of PFKFB3 is short-lasting, coinciding with a peak in glycolysis in mid-to-late G(1), whereas the activity of GLS1 remains high throughout S-phase. The differential regulation of the activity of these proteins indicates that a finely-tuned set of mechanisms is activated to fulfil specific metabolic demands at different stages of the cell cycle. These findings have implications for the understanding of cell proliferation in general and, in particular, of cancer, its prevention and treatment.
Collapse
|
34
|
van den Heuvel APJ, Jing J, Wooster RF, Bachman KE. Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth. Cancer Biol Ther 2012; 13:1185-94. [PMID: 22892846 DOI: 10.4161/cbt.21348] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
One of the hallmarks of cancer is metabolic deregulation. Many tumors display increased glucose uptake and breakdown through the process of aerobic glycolysis, also known as the Warburg effect. Less studied in cancer development and progression is the importance of the glutamine (Gln) pathway, which provides cells with a variety of essential products to sustain cell proliferation, such as ATP and macromolecules for biosynthesis. To this end Gln dependency was assessed in a panel of non-small cell lung cancer lines (NSCLC). Gln was found to be essential for the growth of cells with high rates of glutaminolysis, and after exploring multiple genes in the Gln pathway, GLS1 was found to be the key enzyme associated with this dependence. This dependence was confirmed by observing the rescue of decreased growth by exogenous addition of downstream metabolites of glutaminolysis. Expression of the GLS1 splice variant KGA was found to be decreased in tumors compared with normal lung tissue. Transient knock down of GLS1 splice variants indicated that loss of GAC had the most detrimental effect on cancer cell growth. In conclusion, NSCLC cell lines depend on Gln for glutaminolysis to a varying degree, in which the GLS1 splice variant GAC plays an essential role and is a potential target for cancer metabolism-directed therapy.
Collapse
|
35
|
Martín-Rufián M, Tosina M, Campos-Sandoval JA, Manzanares E, Lobo C, Segura JA, Alonso FJ, Matés JM, Márquez J. Mammalian glutaminase Gls2 gene encodes two functional alternative transcripts by a surrogate promoter usage mechanism. PLoS One 2012; 7:e38380. [PMID: 22679499 PMCID: PMC3367983 DOI: 10.1371/journal.pone.0038380] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/04/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Glutaminase is expressed in most mammalian tissues and cancer cells, but the regulation of its expression is poorly understood. An essential step to accomplish this goal is the characterization of its species- and cell-specific isoenzyme pattern of expression. Our aim was to identify and characterize transcript variants of the mammalian glutaminase Gls2 gene. METHODOLOGY/PRINCIPAL FINDINGS We demonstrate for the first time simultaneous expression of two transcript variants from the Gls2 gene in human, rat and mouse. A combination of RT-PCR, primer-extension analysis, bioinformatics, real-time PCR, in vitro transcription and translation and immunoblot analysis was applied to investigate GLS2 transcripts in mammalian tissues. Short (LGA) and long (GAB) transcript forms were isolated in brain and liver tissue of human, rat and mouse. The short LGA transcript arises by a combination of two mechanisms of transcriptional modulation: alternative transcription initiation and alternative promoter. The LGA variant contains both the transcription start site (TSS) and the alternative promoter in the first intron of the Gls2 gene. The full human LGA transcript has two in-frame ATGs in the first exon, which are missing in orthologous rat and mouse transcripts. In vitro transcription and translation of human LGA yielded two polypeptides of the predicted size, but only the canonical full-length protein displayed catalytic activity. Relative abundance of GAB and LGA transcripts showed marked variations depending on species and tissues analyzed. CONCLUSIONS/SIGNIFICANCE This is the first report demonstrating expression of alternative transcripts of the mammalian Gls2 gene. Transcriptional mechanisms giving rise to GLS2 variants and isolation of novel GLS2 transcripts in human, rat and mouse are presented. Results were also confirmed at the protein level, where catalytic activity was demonstrated for the human LGA protein. Relative abundance of GAB and LGA transcripts was species- and tissue-specific providing evidence of a differential regulation of GLS2 transcripts in mammals.
Collapse
Affiliation(s)
- Mercedes Martín-Rufián
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Marta Tosina
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - José A. Campos-Sandoval
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Elisa Manzanares
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Carolina Lobo
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - J. A. Segura
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francisco J. Alonso
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - José M. Matés
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Javier Márquez
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- * E-mail:
| |
Collapse
|
36
|
Kita K, Suzuki T, Ochi T. Diphenylarsinic acid promotes degradation of glutaminase C by mitochondrial Lon protease. J Biol Chem 2012; 287:18163-72. [PMID: 22493432 DOI: 10.1074/jbc.m112.362699] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Glutaminase C (GAC), a splicing variant of the kidney-type glutaminase (KGA) gene, is a vital mitochondrial enzyme protein that catalyzes glutamine to glutamate. Earlier studies have shown that GAC proteins in the human hepatocarcinoma cell line, HepG2, were down-regulated by diphenylarsinic acid (DPAA), but the mechanism by which DPAA induced GAC protein down-regulation remained poorly understood. Here, we showed that DPAA promoted GAC protein degradation without affecting GAC transcription and translation. Moreover, DPAA-induced GAC proteolysis was mediated by mitochondrial Lon protease. DPAA insolubilized 0.5% Triton X-100-soluble GAC protein and promoted the accumulation of insoluble GAC in Lon protease knockdown cells. DPAA destroyed the native tetrameric GAC conformation and promoted an increase in the unassembled form of GAC when DPAA was incubated with cell extracts. Decreases in the tetrameric form of GAC were observed in cells exposed to DPAA, and decreases occurred prior to a decrease in total GAC protein levels. In addition, decreases in the tetrameric form of GAC were observed independently with Lon protease. Mitochondrial heat shock protein 70 is known to be an indispensable protein that can bind to misfolded proteins, thereby supporting degradation of proteins sensitive to Lon protease. When cells were incubated with DPAA, GAC proteins that can bind with mtHsp70 increased. Interestingly, the association of mtHsp70 with GAC protein increased when the tetrameric form of GAC was reduced. These results suggest that degradation of native tetrameric GAC by DPAA may be a trigger in GAC protein degradation by Lon protease.
Collapse
Affiliation(s)
- Kayoko Kita
- Laboratory of Toxicology, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan.
| | | | | |
Collapse
|
37
|
Zhao L, Huang Y, Tian C, Taylor L, Curthoys N, Wang Y, Vernon H, Zheng J. Interferon-α regulates glutaminase 1 promoter through STAT1 phosphorylation: relevance to HIV-1 associated neurocognitive disorders. PLoS One 2012; 7:e32995. [PMID: 22479354 PMCID: PMC3316554 DOI: 10.1371/journal.pone.0032995] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 02/03/2012] [Indexed: 01/14/2023] Open
Abstract
HIV-1 associated neurocognitive disorders (HAND) develop during progressive HIV-1 infection and affect up to 50% of infected individuals. Activated microglia and macrophages are critical cell populations that are involved in the pathogenesis of HAND, which is specifically related to the production and release of various soluble neurotoxic factors including glutamate. In the central nervous system (CNS), glutamate is typically derived from glutamine by mitochondrial enzyme glutaminase. Our previous study has shown that glutaminase is upregulated in HIV-1 infected monocyte-derived-macrophages (MDM) and microglia. However, how HIV-1 leads to glutaminase upregulation, or how glutaminase expression is regulated in general, remains unclear. In this study, using a dual-luciferase reporter assay system, we demonstrated that interferon (IFN) α specifically activated the glutaminase 1 (GLS1) promoter. Furthermore, IFN-α treatment increased signal transducer and activator of transcription 1 (STAT1) phosphorylation and glutaminase mRNA and protein levels. IFN-α stimulation of GLS1 promoter activity correlated to STAT1 phosphorylation and was reduced by fludarabine, a chemical that inhibits STAT1 phosphorylation. Interestingly, STAT1 was found to directly bind to the GLS1 promoter in MDM, an effect that was dependent on STAT1 phosphorylation and significantly enhanced by IFN-α treatment. More importantly, HIV-1 infection increased STAT1 phosphorylation and STAT1 binding to the GLS1 promoter, which was associated with increased glutamate levels. The clinical relevance of these findings was further corroborated with investigation of post-mortem brain tissues. The glutaminase C (GAC, one isoform of GLS1) mRNA levels in HIV associated-dementia (HAD) individuals correlate with STAT1 (p<0.01), IFN-α (p<0.05) and IFN-β (p<0.01). Together, these data indicate that both HIV-1 infection and IFN-α treatment increase glutaminase expression through STAT1 phosphorylation and by binding to the GLS1 promoter. Since glutaminase is a potential component of elevated glutamate production during the pathogenesis of HAND, our data will help to identify additional therapeutic targets for the treatment of HAND.
Collapse
Affiliation(s)
- Lixia Zhao
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Yunlong Huang
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (JZ); (YH)
| | - Changhai Tian
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lynn Taylor
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Norman Curthoys
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Yi Wang
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Hamilton Vernon
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jialin Zheng
- Laboratory of Neuroimmunology and Regenerative Therapy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (JZ); (YH)
| |
Collapse
|
38
|
Glutaminase dysregulation in HIV-1-infected human microglia mediates neurotoxicity: relevant to HIV-1-associated neurocognitive disorders. J Neurosci 2011; 31:15195-204. [PMID: 22016553 DOI: 10.1523/jneurosci.2051-11.2011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microglia represent the main cellular targets of HIV-1 in the brain. Infected and/or activated microglia play a pathogenic role in HIV-associated neurocognitive disorders (HAND) by instigating primary dysfunction and subsequent death of neurons. Although microglia are known to secrete neurotoxins when infected with HIV-1, the detailed mechanism of neurotoxicity remains unclear. Using a human microglia primary culture system and macrophage-tropic HIV-1 strains, we have now demonstrated that HIV-1 infection of microglia resulted in a significant increase in extracellular glutamate concentrations and elevated levels of neurotoxicity. RNA and protein analysis revealed upregulation of the glutamate-generating enzyme glutaminase isoform glutaminase C in HIV-1-infected microglia. The clinical relevance of these findings was further corroborated with investigation of postmortem brain tissues. The glutaminase C levels in the brain tissues of HIV dementia individuals were significantly higher than HIV serum-negative control and correlated with elevated concentrations of glutamate. When glutaminase was subsequently inhibited by siRNA or by a small molecular inhibitor, the HIV-induced glutamate production and the neuronal loss was diminished. In conclusion, these findings support glutaminase as a potential component of the HAND pathogenic process as well as a novel therapeutic target in their treatment.
Collapse
|
39
|
Hartwick EW, Curthoys NP. BPTES inhibition of hGA(124-551), a truncated form of human kidney-type glutaminase. J Enzyme Inhib Med Chem 2011; 27:861-7. [PMID: 21999665 DOI: 10.3109/14756366.2011.622272] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The initial transcript of the GLS1 gene undergoes alternative splicing to produce two glutaminase variants (KGA and GAC) that contain unique C-terminal sequences. A truncated form of human glutaminase (hGA(124-551)) that lacks either C-terminal sequence was expressed in E.Coli and purified. This construct exhibits a hyperbolic glutamine saturation profile (K(m) of 1.6 mM). BPTES, bis-2[5-phenylacetamido-1,2,4-thiadiazol-2-yl]ethylsulfide, functions as a potent uncompetitive inhibitor of this construct (K(i) of 0.2 µM). The hGA(124-551) is inactive in the absence of phosphate, but exhibits a hyperbolic phosphate-dependent activation profile that is also inhibited by BPTES. Gel filtration studies indicate that hGA(124-551) forms a dimer in the absence or presence of 100 mM phosphate, whereas addition of BPTES causes the formation of an inactive tetramer. The combined data indicate that BPTES inhibits human glutaminase by a novel mechanism and that BPTES is a potential lead compound for development of an effective cancer chemotherapeutic agent.
Collapse
Affiliation(s)
- Erik W Hartwick
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
40
|
Abstract
AbstractGlutaminase is considered as the main glutamate producer enzyme in brain. Consequently, the enzyme is essential for both glutamatergic and gabaergic transmissions. Glutamine-derived glutamate and ammonia, the products of glutaminase reaction, fulfill crucial roles in energy metabolism and in the biosynthesis of basic metabolites, such as GABA, proteins and glutathione. However, glutamate and ammonia are also hazardous compounds and danger lurks in their generation beyond normal physiological thresholds; hence, glutaminase activity must be carefully regulated in the mammalian brain. The differential distribution and regulation of glutaminase are key factors to modulate the metabolism of glutamate and glutamine in brain. The discovery of novel isoenzymes, protein interacting partners and subcellular localizations indicate new functions for brain glutaminase. In this short review, we summarize recent findings that point consistently towards glutaminase as a multifaceted protein able to perform different tasks. Finally, we will highlight the involvement of glutaminase in pathological states and its consideration as a potential therapeutic target.
Collapse
|
41
|
Eveno C, Lamblin A, Mariette C, Pocard M. Sexual and urinary dysfunction after proctectomy for rectal cancer. J Visc Surg 2010; 147:e21-30. [PMID: 20587375 DOI: 10.1016/j.jviscsurg.2010.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sexual and urinary dysfunction occur frequently after rectal surgery. Total mesorectal excision (TME) is currently the optimal technique for resection of rectal cancer, providing superior carcinological and functional outcomes. Age, pre-operative radiation therapy, abdominoperineal resection, and surgery which fails to respect the "sacred planes" of TME are the four major risk factors for post-operative sexual and urinary sequelae. In the era of TME, postoperative sexual dysfunction ranges from 10-35%, depending on the scores used to assess it, while urinary sequelae have decreased to less than 5%. The place of laparoscopic surgery remains to be defined, particularly with respect to these complications. It is essential to inform the patient pre-operatively about the possibility of such disorders not only for patient informed consent but also to help with correct post-operative management of the problem. Management is multifaceted, and includes psychological, pharmacological, and sometimes surgical therapy.
Collapse
Affiliation(s)
- C Eveno
- Département médicochirurgical de pathologie digestive, hôpital Lariboisière, 2, rue Ambroise-Paré, 75475 Paris cedex 10, France
| | | | | | | |
Collapse
|
42
|
Roberg BA, Torgner IA, Kvamme E. Kinetics of a novel isoform of phosphate activated glutaminase (PAG) in SH-SY5Y neuroblastoma cells. Neurochem Res 2009; 35:875-80. [PMID: 19894115 DOI: 10.1007/s11064-009-0077-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2009] [Indexed: 11/25/2022]
Abstract
We have recently found that the neuroblastoma cell line SH-SY5Y expresses a novel form of phosphate activated glutaminase (PAG) which deamidates glutamine to glutamate and ammonia at high rates. Glutamate production is enhanced during the exponential phase of growth, and decreases when cell proliferation stops. Neuroblastoma PAG exists in a soluble and membrane associated form, and both the phosphate and the glutamine kinetics, as well as the effects of ammonia and glutamate are different from those of the known forms of PAG. Neuroblastoma PAG is mitochondrial, and our immunoblotting analyses of isolated mitochondria shows that our C-terminal antibody reacts with a protein of 65 kDa, while our N-terminal antibody primarily labels a protein of 58 kDa and to a minor degree one of 65 kDa. This strongly suggests that neuroblastoma cells mainly contain an active isoform of PAG lacking the C-terminal end, probably the GAC form.
Collapse
Affiliation(s)
- B A Roberg
- Department of Biochemistry, Neurochemical Section, Institute of Basic Medical Sciences, University of Oslo, PO Box 1112, Blindern, 0317, Oslo, Norway.
| | | | | |
Collapse
|
43
|
de la Rosa V, Campos-Sandoval JA, Martín-Rufián M, Cardona C, Matés JM, Segura JA, Alonso FJ, Márquez J. A novel glutaminase isoform in mammalian tissues. Neurochem Int 2009; 55:76-84. [PMID: 19428810 DOI: 10.1016/j.neuint.2009.02.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/24/2009] [Accepted: 02/27/2009] [Indexed: 12/18/2022]
Abstract
The synthesis of neurotransmitter glutamate in brain is mainly carried out by glutaminase enzymes. This synthesis must be exquisitely regulated because of its harmful potential giving rise to excitotoxic damage. It is noteworthy that two glutaminase isozymes coded by different genes are expressed in the brain of mammals. The need for two genes and two isozymes to support the single process of glutamate synthesis is unexplained, and identifying the role of each glutaminase is an important factor in understanding glutamate-mediated neurotransmission. Multiple transcripts for glutaminase genes and simultaneous expression of glutaminase isoforms have been reported in mammalian tissues and cells. The recent discovery of protein interacting partners widens the possibilities of regulatory mechanisms controlling these biosynthetic enzymes. The expression of distinct isozymes and binding partners may represent the biochemical and molecular basis to achieve fine-tuning control of glutamate synthesis in different cell types or developmental states. In this review, we will briefly summarize recent works on glutaminase proteins in mammals, with particular emphasis on brain studies. We present convergent evidence supporting the existence of a novel glutaminase isozyme in mammalian tissues.
Collapse
Affiliation(s)
- Vanessa de la Rosa
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Laboratorio de Química de Proteínas, Universidad de Málaga, Málaga, Spain
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Erdmann N, Tian C, Huang Y, Zhao J, Herek S, Curthoys N, Zheng J. In vitro glutaminase regulation and mechanisms of glutamate generation in HIV-1-infected macrophage. J Neurochem 2009; 109:551-61. [PMID: 19222703 DOI: 10.1111/j.1471-4159.2009.05989.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mononuclear phagocyte (MP, macrophages and microglia) dysfunction plays a significant role in the pathogenesis of HIV-1-associated dementia (HAD) through the production and release of soluble neurotoxic factors including glutamate. Glutamate production is greatly increased following HIV-1 infection of cultured MP, a process dependent upon the glutamate-generating enzyme glutaminase. Glutaminase inhibition was previously found to significantly decrease macrophage-mediated neurotoxicity. Potential mechanisms of glutaminase-mediated excitotoxicity including enzyme up-regulation, increased enzyme activity and glutaminase localization were investigated in this report. RNA and protein analysis of HIV-infected human primary macrophage revealed up-regulation of the glutaminase isoform GAC, yet identified no changes in the kidney-type glutaminase isoform over the course of infection. Glutaminase is a mitochondrial protein, but was found to be released into the cytosol and extracellular space following infection. This released enzyme is capable of rapidly converting the abundant extracellular amino acid glutamine into excitotoxic levels of glutamate in an energetically favorable process. These findings support glutaminase as a potential component of the HAD pathogenic process and identify a possible therapeutic avenue for the treatment of neuroinflammatory states such as HAD.
Collapse
Affiliation(s)
- Nathan Erdmann
- Laboratory of Neurotoxicology at the Center for Neurovirology and Neurodegenerative Disorders, Omaha, Nebraska 68198-5880, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Glutamine in neoplastic cells: focus on the expression and roles of glutaminases. Neurochem Int 2009; 55:71-5. [PMID: 19428809 DOI: 10.1016/j.neuint.2009.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/09/2009] [Accepted: 01/14/2009] [Indexed: 01/21/2023]
Abstract
Glutamine is an important source of energy for neoplastic tissues, and products of its metabolism include, among others, glutamate (Glu) and glutathione (GSH), the two molecules that play a key role in tumor proliferation, invasiveness and resistance to therapy. Glutamine hydrolysis in normal and transforming mammalian tissues alike, is carried out by different isoforms of glutaminases, of which the two major are liver-type glutaminase (LGA) and kidney-type glutaminase (KGA). This brief review summarizes available data on the expression profiles and activities of these isoenzymes in different neoplastic tissues as compared to the tissues of origin, and dwells on recent work demonstrating effects of manipulation of glutaminase expression on tumor growth. A comment is devoted to the emerging evidence that LGA, apart from degrading Gln for metabolic purposes, is involved in gene transcription; its enforced overexpression in glioma cells was found to reduce their proliferation and migration.
Collapse
|
46
|
Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 2008; 18:54-61. [PMID: 18387799 DOI: 10.1016/j.gde.2008.02.003] [Citation(s) in RCA: 770] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 02/08/2008] [Accepted: 02/15/2008] [Indexed: 01/11/2023]
Abstract
Tumor cells display increased metabolic autonomy in comparison to non-transformed cells, taking up nutrients and metabolizing them in pathways that support growth and proliferation. Classical work in tumor cell metabolism focused on bioenergetics, particularly enhanced glycolysis and suppressed oxidative phosphorylation (the 'Warburg effect'). But the biosynthetic activities required to create daughter cells are equally important for tumor growth, and recent studies are now bringing these pathways into focus. In this review, we discuss how tumor cells achieve high rates of nucleotide and fatty acid synthesis, how oncogenes and tumor suppressors influence these activities, and how glutamine metabolism enables macromolecular synthesis in proliferating cells.
Collapse
Affiliation(s)
- Ralph J Deberardinis
- Department of Cancer Biology, Abramson Cancer Center and Abramson Family Cancer Research Institute, University of Pennsylvania, 1600 Penn Tower, 3400 Spruce Street, Philadelphia, PA 19104, United States
| | | | | | | |
Collapse
|
47
|
Relative expression of mRNAS coding for glutaminase isoforms in CNS tissues and CNS tumors. Neurochem Res 2007; 33:808-13. [PMID: 17940881 DOI: 10.1007/s11064-007-9507-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Glutaminase (GA) in mammalian tissues occurs in three isoforms: LGA (liver-type), KGA (kidney-type) and GAC (a KGA variant). Our previous study showed that human malignant gliomas (WHO grades III and IV) lack expression of LGA mRNA but are enriched in GAC mRNA relative to KGA mRNA. Here we analyzed the expression of mRNAs coding for the three isoforms in the biopsy material derived from other central nervous system tumors of WHO grades I-III. Non-neoplastic resective epileptic surgery samples served as control, as did cultured rat astrocytes and neurons. The GAC mRNA/KGA mRNA expression ratio was as a rule higher in the neoplastic than in control tissues, irrespective of the cell type dominating in the tumor or tumor malignancy. LGA mRNA expression was relatively very low in cultured astrocytes, and very low to absent in astrocytoma pilocyticum, ependymoma and subependymal giant cell astrocytoma (SEGA), tumors of astrocytic origin. LGA mRNA expression was almost as high as that of KGA and GAC mRNA in cultured neurons and epileptic surgery samples which were enriched in neurons. LGA mRNA was also relatively high in ganglioglioma which contains a discernable proportion of neuronal cells, and in oligodendroglioma. The results show that low expression of LGA mRNA is a feature common to normal astrocytes and astroglia-derived tumor cells or ependymomas and can be considered as a cell-type, rather than a malignancy marker.
Collapse
|
48
|
Robinson M, Mcbryant S, Tsukamoto T, Rojas C, Ferraris D, Hamilton S, Hansen J, Curthoys N. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J 2007; 406:407-14. [PMID: 17581113 PMCID: PMC2049044 DOI: 10.1042/bj20070039] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The release of GA (mitochondrial glutaminase) from neurons following acute ischaemia or during chronic neurodegenerative diseases may contribute to the propagation of glutamate excitotoxicity. Thus an inhibitor that selectively inactivates the released GA may limit the accumulation of excess glutamate and minimize the loss of neurological function that accompanies brain injury. The present study examines the mechanism of inactivation of rat KGA (kidney GA isoform) by the small-molecule inhibitor BPTES [bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide]. BPTES is a potent inhibitor of KGA, but not of the liver GA isoform, glutamate dehydrogenase or gamma-glutamyl transpeptidase. Kinetic studies indicate that, with respect to glutamine, BPTES has a K(i) of approx. 3 microM. Moreover, these studies suggest that BPTES inhibits the allosteric activation caused by phosphate binding and promotes the formation of an inactive complex. Gel-filtration chromatography and sedimentation-velocity analysis were used to examine the effect of BPTES on the phosphate-dependent oligomerization of KGA. This established that BPTES prevents the formation of large phosphate-induced oligomers and instead promotes the formation of a single oligomeric species with distinct physical properties. Sedimentation-equilibrium studies determined that the oligomer produced by BPTES is a stable tetramer. Taken together, the present work indicates that BPTES is a unique and potent inhibitor of rat KGA and elucidates a novel mechanism of inactivation.
Collapse
Affiliation(s)
- Mary M. Robinson
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Steven J. Mcbryant
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | | | - Camilo Rojas
- †MGI Pharma Inc., 6611 Tributary Street, Baltimore, MD 21224, U.S.A
| | - Dana V. Ferraris
- †MGI Pharma Inc., 6611 Tributary Street, Baltimore, MD 21224, U.S.A
| | - Sean K. Hamilton
- †MGI Pharma Inc., 6611 Tributary Street, Baltimore, MD 21224, U.S.A
| | - Jeffrey C. Hansen
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Norman P. Curthoys
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
49
|
Nedredal GI, Elvevold K, Ytrebø LM, Fuskevåg OM, Pettersen I, Bertheussen K, Langbakk B, Smedsrød B, Revhaug A. Significant contribution of liver nonparenchymal cells to metabolism of ammonia and lactate and cocultivation augments the functions of a bioartificial liver. Am J Physiol Gastrointest Liver Physiol 2007; 293:G75-83. [PMID: 17363468 DOI: 10.1152/ajpgi.00245.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A bioartificial liver (BAL) will bridge patients with acute liver failure (ALF) to either spontaneous regeneration or liver transplantation. The nitrogen metabolism is important in ALF, and the metabolism of nonparenchymal liver cells (NPCs) is poorly understood. The scope of this study was to investigate whether cocultivation of hepatocytes with NPCs would augment the functions of a BAL (HN-BAL) compared with a BAL equipped with only hepatocytes (H-BAL). In addition, NPCs were similarly cultivated alone. The cells were cultivated for 8 days in simulated microgravity with serum-free growth medium. With NPCs, initial ammonia and lactate production were fivefold and over twofold higher compared with later time periods despite sufficient oxygen supply. Initial lactate production and glutamine consumption were threefold higher in HN-BAL than in H-BAL. With NPCs, initial glutamine consumption was two- to threefold higher compared with later time periods, whereas initial ornithine production and arginine consumption were over four- and eightfold higher compared with later time periods. In NPCs, the conversion of glutamine to glutamate and ammonia can be explained by the presence of glutaminase, as revealed by PCR analysis. Drug metabolism and clearance of aggregated gamma globulin, probes administered to test functions of hepatocytes and NPCs, respectively, were higher in HN-BAL than in H-BAL. In conclusion, NPCs produce ammonia by hydrolysis of amino acids and may contribute to the pathogenesis of ALF. High amounts of lactate are produced by NPCs under nonhypoxic conditions. Cocultivation augments differentiated functions such as drug metabolism and clearance of aggregated gamma-globulin.
Collapse
Affiliation(s)
- Geir I Nedredal
- Department of Digestive Surgery, University Hospital of Northern Norway, 9038 Tromsø, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Erdmann NB, Whitney NP, Zheng J. Potentiation of Excitotoxicity in HIV-1 Associated Dementia and the Significance of Glutaminase. ACTA ACUST UNITED AC 2006; 6:315-328. [PMID: 18059978 DOI: 10.1016/j.cnr.2006.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HIV-1 Associated Dementia (HAD) is a significant consequence of HIV infection. Although multiple inflammatory factors contribute to this chronic, progressive dementia, excitotoxic damage appears to be an underlying mechanism in the neurodegenerative process. Excitotoxicity is a cumulative effect of multiple processes occurring in the CNS during HAD. The overstimulation of glutamate receptors, an increased vulnerability of neurons, and disrupted astrocyte support each potentiate excitotoxic damage to neurons. Recent evidence suggests that poorly controlled generation of glutamate by phosphate-activated glutaminase may contribute to the neurotoxic state typical of HAD as well as other neurodegenerative disorders. Glutaminase converts glutamine, a widely available substrate throughout the CNS to glutamate. Inflammatory conditions may precipitate unregulated activity of glutaminase, a potentially important mechanism in HAD pathogenesis.
Collapse
Affiliation(s)
- Nathan B Erdmann
- The laboratory of Neurotoxicology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880
| | | | | |
Collapse
|