1
|
Blackwell DJ, Schmeckpeper J, Knollmann BC. Animal Models to Study Cardiac Arrhythmias. Circ Res 2022; 130:1926-1964. [PMID: 35679367 DOI: 10.1161/circresaha.122.320258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac arrhythmias are a significant cause of morbidity and mortality worldwide, accounting for 10% to 15% of all deaths. Although most arrhythmias are due to acquired heart disease, inherited channelopathies and cardiomyopathies disproportionately affect children and young adults. Arrhythmogenesis is complex, involving anatomic structure, ion channels and regulatory proteins, and the interplay between cells in the conduction system, cardiomyocytes, fibroblasts, and the immune system. Animal models of arrhythmia are powerful tools for studying not only molecular and cellular mechanism of arrhythmogenesis but also more complex mechanisms at the whole heart level, and for testing therapeutic interventions. This review summarizes basic and clinical arrhythmia mechanisms followed by an in-depth review of published animal models of genetic and acquired arrhythmia disorders.
Collapse
Affiliation(s)
- Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey Schmeckpeper
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
2
|
Hamilton S, Terentyeva R, Perger F, Hernández Orengo B, Martin B, Gorr MW, Belevych AE, Clements RT, Györke S, Terentyev D. MCU overexpression evokes disparate dose-dependent effects on mito-ROS and spontaneous Ca 2+ release in hypertrophic rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2021; 321:H615-H632. [PMID: 34415186 PMCID: PMC8794228 DOI: 10.1152/ajpheart.00126.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
Cardiac dysfunction in heart failure (HF) and diabetic cardiomyopathy (DCM) is associated with aberrant intracellular Ca2+ handling and impaired mitochondrial function accompanied with reduced mitochondrial calcium concentration (mito-[Ca2+]). Pharmacological or genetic facilitation of mito-Ca2+ uptake was shown to restore Ca2+ transient amplitude in DCM and HF, improving contractility. However, recent reports suggest that pharmacological enhancement of mito-Ca2+ uptake can exacerbate ryanodine receptor-mediated spontaneous sarcoplasmic reticulum (SR) Ca2+ release in ventricular myocytes (VMs) from diseased animals, increasing propensity to stress-induced ventricular tachyarrhythmia. To test whether chronic recovery of mito-[Ca2+] restores systolic Ca2+ release without adverse effects in diastole, we overexpressed mitochondrial Ca2+ uniporter (MCU) in VMs from male rat hearts with hypertrophy induced by thoracic aortic banding (TAB). Measurement of mito-[Ca2+] using genetic probe mtRCamp1h revealed that mito-[Ca2+] in TAB VMs paced at 2 Hz under β-adrenergic stimulation is lower compared with shams. Adenoviral 2.5-fold MCU overexpression in TAB VMs fully restored mito-[Ca2+]. However, it failed to improve cytosolic Ca2+ handling and reduce proarrhythmic spontaneous Ca2+ waves. Furthermore, mitochondrial-targeted genetic probes MLS-HyPer7 and OMM-HyPer revealed a significant increase in emission of reactive oxygen species (ROS) in TAB VMs with 2.5-fold MCU overexpression. Conversely, 1.5-fold MCU overexpression in TABs, that led to partial restoration of mito-[Ca2+], reduced mitochondria-derived reactive oxygen species (mito-ROS) and spontaneous Ca2+ waves. Our findings emphasize the key role of elevated mito-ROS in disease-related proarrhythmic Ca2+ mishandling. These data establish nonlinear mito-[Ca2+]/mito-ROS relationship, whereby partial restoration of mito-[Ca2+] in diseased VMs is protective, whereas further enhancement of MCU-mediated Ca2+ uptake exacerbates damaging mito-ROS emission.NEW & NOTEWORTHY Defective intracellular Ca2+ homeostasis and aberrant mitochondrial function are common features in cardiac disease. Here, we directly compared potential benefits of mito-ROS scavenging and restoration of mito-Ca2+ uptake by overexpressing MCU in ventricular myocytes from hypertrophic rat hearts. Experiments using novel mito-ROS and Ca2+ biosensors demonstrated that mito-ROS scavenging rescued both cytosolic and mito-Ca2+ homeostasis, whereas moderate and high MCU overexpression demonstrated disparate effects on mito-ROS emission, with only a moderate increase in MCU being beneficial.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/pathology
- Arrhythmias, Cardiac/physiopathology
- Biosensing Techniques
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Disease Models, Animal
- Heart Rate
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Microscopy, Confocal
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/genetics
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocardial Contraction
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Up-Regulation
- Ventricular Function, Left
- Ventricular Remodeling
- Rats
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Fruzsina Perger
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Benjamín Hernández Orengo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Benjamin Martin
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Matthew W Gorr
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- College of Nursing, The Ohio State University, Columbus, Ohio
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Richard T Clements
- Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island
| | - Sandor Györke
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| |
Collapse
|
3
|
Nyns ECA, Jin T, Fontes MS, van den Heuvel T, Portero V, Ramsey C, Bart CI, Zeppenfeld K, Schalij MJ, van Brakel TJ, Ramkisoensing AA, Qi Zhang G, Poelma RH, Ördög B, de Vries AAF, Pijnappels DA. Optical ventricular cardioversion by local optogenetic targeting and LED implantation in a cardiomyopathic rat model. Cardiovasc Res 2021; 118:2293-2303. [PMID: 34528100 PMCID: PMC9328286 DOI: 10.1093/cvr/cvab294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/09/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS Ventricular tachyarrhythmias (VTs) are common in the pathologically remodelled heart. These arrhythmias can be lethal, necessitating acute treatment like electrical cardioversion to restore normal rhythm. Recently, it has been proposed that cardioversion may also be realized via optically controlled generation of bioelectricity by the arrhythmic heart itself through optogenetics and therefore without the need of traumatizing high-voltage shocks. However, crucial mechanistic and translational aspects of this strategy have remained largely unaddressed. Therefore, we investigated optogenetic termination of VTs 1) in the pathologically remodelled heart using a 2) implantable multi-LED device for 3) in vivo closed-chest, local illumination. METHODS AND RESULTS In order to mimic a clinically relevant sequence of events, transverse aortic constriction (TAC) was applied to adult male Wistar rats before optogenetic modification. This modification took place three weeks later by intravenous delivery of adeno-associated virus vectors encoding red-activatable channelrhodopsin (ReaChR) or Citrine for control experiments. At 8 to 10 weeks after TAC, VTs were induced ex vivo and in vivo, followed by programmed local illumination of the ventricular apex by a custom-made implanted multi-LED device. This resulted in effective and repetitive VT termination in the remodelled adult rat heart after optogenetic modification, leading to sustained restoration of sinus rhythm in the intact animal. Mechanistically, studies on the single cell and tissue level revealed collectively that, despite the cardiac remodelling, there were no significant differences in bioelectricity generation and subsequent transmembrane voltage responses between diseased and control animals, thereby providing insight into the observed robustness of optogenetic VT termination. CONCLUSION Our results show that implant-based optical cardioversion of VTs is feasible in the pathologically remodelled heart in vivo after local optogenetic targeting because of preserved optical control over bioelectricity generation. These findings add novel mechanistic and translational insight into optical ventricular cardioversion.
Collapse
Affiliation(s)
- Emile C A Nyns
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Tianyi Jin
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - Magda S Fontes
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Titus van den Heuvel
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Vincent Portero
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Catilin Ramsey
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - Cindy I Bart
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Katja Zeppenfeld
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Martin J Schalij
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | - Arti A Ramkisoensing
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Guo Qi Zhang
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - René H Poelma
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - Balazs Ördög
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| |
Collapse
|
4
|
Cardioprotective effects of early intervention with sacubitril/valsartan on pressure overloaded rat hearts. Sci Rep 2021; 11:16542. [PMID: 34400686 PMCID: PMC8368201 DOI: 10.1038/s41598-021-95988-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
Left ventricular remodeling due to pressure overload is associated with poor prognosis. Sacubitril/valsartan is the first-in-class Angiotensin Receptor Neprilysin Inhibitor and has been demonstrated to have superior beneficial effects in the settings of heart failure. The aim of this study was to determine whether sacubitril/valsartan has cardioprotective effect in the early intervention of pressure overloaded hearts and whether it is superior to valsartan alone. We induced persistent left ventricular pressure overload in rats by ascending aortic constriction surgery and orally administrated sacubitril/valsartan, valsartan, or vehicle one week post operation for 10 weeks. We also determined the effects of sacubitril/valsartan over valsartan on adult ventricular myocytes and fibroblasts that were isolated from healthy rats and treated in culture. We found that early intervention with sacubitril/valsartan is superior to valsartan in reducing pressure overload-induced ventricular fibrosis and in reducing angiotensin II-induced adult ventricular fibroblast activation. While neither sacubitril/valsartan nor valsartan changes cardiac hypertrophy development, early intervention with sacubitril/valsartan protects ventricular myocytes from mitochondrial dysfunction and is superior to valsartan in reducing mitochondrial oxidative stress in response to persistent left ventricular pressure overload. In conclusion, our findings demonstrate that sacubitril/valsartan has a superior cardioprotective effect over valsartan in the early intervention of pressure overloaded hearts, which is independent of the reduction of left ventricular afterload. Our study provides evidence in support of potential benefits of the use of sacubitril/valsartan in patients with resistant hypertension or in patients with severe aortic stenosis.
Collapse
|
5
|
Katz MG, Fargnoli AS, Gubara SM, Chepurko E, Bridges CR, Hajjar RJ. Surgical and physiological challenges in the development of left and right heart failure in rat models. Heart Fail Rev 2019; 24:759-777. [PMID: 30903356 PMCID: PMC6698228 DOI: 10.1007/s10741-019-09783-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rodent surgical animal models of heart failure (HF) are critically important for understanding the proof of principle of the cellular alterations underlying the development of the disease as well as evaluating therapeutics. Robust, reproducible rodent models are a prerequisite to the development of pharmacological and molecular strategies for the treatment of HF in patients. Due to the absence of standardized guidelines regarding surgical technique and clear criteria for HF progression in rats, objectivity is compromised. Scientific publications in rats rarely fully disclose the actual surgical details, and technical and physiological challenges. This lack of reporting is one of the main reasons that the outcomes specified in similar studies are highly variable and associated with unnecessary loss of animals, compromising scientific assessment. This review details rat circulatory and coronary arteries anatomy, the surgical details of rat models that recreate the HF phenotype of myocardial infarction, ischemia/reperfusion, left and right ventricular pressure, and volume overload states, and summarizes the technical and physiological challenges of creating HF. The purpose of this article is to help investigators understand the underlying issues of current HF models in order to reduce variable results and ensure successful, reproducible models of HF.
Collapse
Affiliation(s)
- Michael G Katz
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA.
| | - Anthony S Fargnoli
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Sarah M Gubara
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Elena Chepurko
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Charles R Bridges
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| |
Collapse
|
6
|
Hamilton S, Polina I, Terentyeva R, Bronk P, Kim TY, Roder K, Clements RT, Koren G, Choi BR, Terentyev D. PKA phosphorylation underlies functional recruitment of sarcolemmal SK2 channels in ventricular myocytes from hypertrophic hearts. J Physiol 2019; 598:2847-2873. [PMID: 30771223 PMCID: PMC7496687 DOI: 10.1113/jp277618] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Small-conductance Ca2+ -activated K+ (SK) channels expressed in ventricular myocytes are dormant in health, yet become functional in cardiac disease. SK channels are voltage independent and their gating is controlled by intracellular [Ca2+ ] in a biphasic manner. Submicromolar [Ca2+ ] activates the channel via constitutively-bound calmodulin, whereas higher [Ca2+ ] exerts inhibitory effect during depolarization. Using a rat model of cardiac hypertrophy induced by thoracic aortic banding, we found that functional upregulation of SK2 channels in hypertrophic rat ventricular cardiomyocytes is driven by protein kinase A (PKA) phosphorylation. Using site-directed mutagenesis, we identified serine-465 as the site conferring PKA-dependent effects on SK2 channel function. PKA phosphorylation attenuates ISK rectification by reducing the Ca2+ /voltage-dependent inhibition of SK channels without changing their sensitivity to activating submicromolar [Ca2+ ]i . This mechanism underlies the functional recruitment of SK channels not only in cardiac disease, but also in normal physiology, contributing to repolarization under conditions of enhanced adrenergic drive. ABSTRACT Small-conductance Ca2+ -activated K+ (SK) channels expressed in ventricular myocytes (VMs) are dormant in health, yet become functional in cardiac disease. We aimed to test the hypothesis that post-translational modification of SK channels under conditions accompanied by enhanced adrenergic drive plays a central role in disease-related activation of the channels. We investigated this phenomenon using a rat model of hypertrophy induced by thoracic aortic banding (TAB). Western blot analysis using anti-pan-serine/threonine antibodies demonstrated enhanced phosphorylation of immunoprecipitated SK2 channels in VMs from TAB rats vs. Shams, which was reversible by incubation of the VMs with PKA inhibitor H89 (1 μmol L-1 ). Patch clamped VMs under basal conditions from TABs but not Shams exhibited outward current sensitive to the specific SK inhibitor apamin (100 nmol L-1 ), which was eliminated by inhibition of PKA (1 μmol L-1 ). Beta-adrenergic stimulation (isoproterenol, 100 nmol L-1 ) evoked ISK in VMs from Shams, resulting in shortening of action potentials in VMs and ex vivo optically mapped Sham hearts. Using adenoviral gene transfer, wild-type and mutant SK2 channels were overexpressed in adult rat VMs, revealing serine-465 as the site that elicits PKA-dependent phosphorylation effects on SK2 channel function. Concurrent confocal Ca2+ imaging experiments established that PKA phosphorylation lessens rectification of ISK via reduction Ca2+ /voltage-dependent inhibition of the channels at high [Ca2+ ] without affecting their sensitivity to activation by Ca2+ in the submicromolar range. In conclusion, upregulation of SK channels in diseased VMs is mediated by hyperadrenergic drive in cardiac hypertrophy, with functional effects on the channel conferred by PKA-dependent phosphorylation at serine-465.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Iuliia Polina
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA.,Medical University of South Carolina, Department of Medicine, Division of Nephrology, Charleston, SC, USA
| | - Radmila Terentyeva
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Peter Bronk
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA
| | - Tae Yun Kim
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA
| | - Karim Roder
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA
| | - Richard T Clements
- Department of Surgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA.,Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | - Gideon Koren
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA
| | - Bum-Rak Choi
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, USA.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Kim TY, Terentyeva R, Roder KHF, Li W, Liu M, Greener I, Hamilton S, Polina I, Murphy KR, Clements RT, Dudley SC, Koren G, Choi BR, Terentyev D. SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR. Cardiovasc Res 2017; 113:343-353. [PMID: 28096168 DOI: 10.1093/cvr/cvx005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/12/2017] [Indexed: 01/17/2023] Open
Abstract
Aims Plasmamembrane small conductance Ca2+-activated K+ (SK) channels were implicated in ventricular arrhythmias in infarcted and failing hearts. Recently, SK channels were detected in the inner mitochondria membrane (IMM) (mSK), and their activation protected from acute ischaemia-reperfusion injury by reducing intracellular levels of reactive oxygen species (ROS). We hypothesized that mSK play an important role in regulating mitochondrial function in chronic cardiac diseases. We investigated the role of mSK channels in Ca2+-dependent ventricular arrhythmia using rat model of cardiac hypertrophy induced by banding of the ascending aorta thoracic aortic banding (TAB). Methods and results Dual Ca2+ and membrane potential optical mapping of whole hearts derived from TAB rats revealed that membrane-permeable SK enhancer NS309 (2 μM) improved aberrant Ca2+ homeostasis and abolished VT/VF induced by β-adrenergic stimulation. Using whole cell patch-clamp and confocal Ca2+ imaging of cardiomyocytes derived from TAB hearts (TCMs) we found that membrane-permeable SK enhancers NS309 and CyPPA (10 μM) attenuated frequency of spontaneous Ca2+ waves and delayed afterdepolarizations. Furthermore, mSK inhibition enhanced (UCL-1684, 1 μM); while activation reduced mitochondrial ROS production in TCMs measured with MitoSOX. Protein oxidation assays demonstrated that increased oxidation of ryanodine receptors (RyRs) in TCMs was reversed by SK enhancers. Experiments in permeabilized TCMs showed that SK enhancers restored SR Ca2+ content, suggestive of substantial improvement in RyR function. Conclusion These data suggest that enhancement of mSK channels in hypertrophic rat hearts protects from Ca2+-dependent arrhythmia and suggest that the protection is mediated via decreased mitochondrial ROS and subsequent decreased oxidation of reactive cysteines in RyR, which ultimately leads to stabilization of RyR-mediated Ca2+ release.
Collapse
Affiliation(s)
- Tae Yun Kim
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Radmila Terentyeva
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Karim H F Roder
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Weiyan Li
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Man Liu
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Ian Greener
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Shanna Hamilton
- Division of Cancer and Genetics, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Iuliia Polina
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Kevin R Murphy
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Richard T Clements
- Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren, Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI 02903-4141, USA
| | - Samuel C Dudley
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Gideon Koren
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Bum-Rak Choi
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| | - Dmitry Terentyev
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA
| |
Collapse
|
8
|
Chaanine AH, Sreekumaran Nair K, Bergen RH, Klaus K, Guenzel AJ, Hajjar RJ, Redfield MM. Mitochondrial Integrity and Function in the Progression of Early Pressure Overload-Induced Left Ventricular Remodeling. J Am Heart Assoc 2017; 6:e005869. [PMID: 28619984 PMCID: PMC5669187 DOI: 10.1161/jaha.117.005869] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/05/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Following pressure overload, compensatory concentric left ventricular remodeling (CR) variably transitions to eccentric remodeling (ER) and systolic dysfunction. Mechanisms responsible for this transition are incompletely understood. Here we leverage phenotypic variability in pressure overload-induced cardiac remodeling to test the hypothesis that altered mitochondrial homeostasis and calcium handling occur early in the transition from CR to ER, before overt systolic dysfunction. METHODS AND RESULTS Sprague Dawley rats were subjected to ascending aortic banding, (n=68) or sham procedure (n=5). At 3 weeks post-ascending aortic banding, all rats showed CR (left ventricular volumes < sham). At 8 weeks post-ascending aortic banding, ejection fraction was increased or preserved but 3 geometric phenotypes were evident despite similar pressure overload severity: persistent CR, mild ER, and moderate ER with left ventricular volumes lower than, similar to, and higher than sham, respectively. Relative to sham, CR and mild ER phenotypes displayed increased phospholamban, S16 phosphorylation, reduced sodium-calcium exchanger expression, and increased mitochondrial biogenesis/content and normal oxidative capacity, whereas moderate ER phenotype displayed decreased p-phospholamban, S16, increased sodium-calcium exchanger expression, similar degree of mitochondrial biogenesis/content, and impaired oxidative capacity with unique activation of mitochondrial autophagy and apoptosis markers (BNIP3 and Bax/Bcl-2). CONCLUSIONS After pressure overload, mitochondrial biogenesis and function and calcium handling are enhanced in compensatory CR. The transition to mild ER is associated with decrease in mitochondrial biogenesis and content; however, the progression to moderate ER is associated with enhanced mitochondrial autophagy/apoptosis and impaired mitochondrial function and calcium handling, which precede the onset of overt systolic dysfunction.
Collapse
MESH Headings
- Animals
- Aorta/physiopathology
- Aorta/surgery
- Apoptosis
- Apoptosis Regulatory Proteins/metabolism
- Arterial Pressure
- Autophagy
- Calcium/metabolism
- Calcium-Binding Proteins/metabolism
- Disease Models, Animal
- Disease Progression
- Heart Failure/etiology
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Ligation
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Organelle Biogenesis
- Phosphorylation
- Rats, Sprague-Dawley
- Ribosomal Proteins/metabolism
- Sodium-Calcium Exchanger/metabolism
- Time Factors
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
| | | | - Robert H Bergen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | | | - Adam J Guenzel
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Roger J Hajjar
- Division of Cardiovascular Diseases, Mount Sinai Icahn School of Medicine, New York, NY
| | | |
Collapse
|
9
|
Chaanine AH, Kohlbrenner E, Gamb SI, Guenzel AJ, Klaus K, Fayyaz AU, Nair KS, Hajjar RJ, Redfield MM. FOXO3a regulates BNIP3 and modulates mitochondrial calcium, dynamics, and function in cardiac stress. Am J Physiol Heart Circ Physiol 2016; 311:H1540-H1559. [PMID: 27694219 PMCID: PMC5206339 DOI: 10.1152/ajpheart.00549.2016] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/13/2016] [Indexed: 01/08/2023]
Abstract
The forkhead box O3a (FOXO3a) transcription factor has been shown to regulate glucose metabolism, muscle atrophy, and cell death in postmitotic cells. Its role in regulation of mitochondrial and myocardial function is not well studied. Based on previous work, we hypothesized that FOXO3a, through BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3), modulates mitochondrial morphology and function in heart failure (HF). We modulated the FOXO3a-BNIP3 pathway in normal and phenylephrine (PE)-stressed adult cardiomyocytes (ACM) in vitro and developed a cardiotropic adeno-associated virus serotype 9 encoding dominant-negative FOXO3a (AAV9.dn-FX3a) for gene delivery in a rat model of HF with preserved ejection fraction (HFpEF). We found that FOXO3a upregulates BNIP3 expression in normal and PE-stressed ACM, with subsequent increases in mitochondrial Ca2+, leading to decreased mitochondrial membrane potential, mitochondrial fragmentation, and apoptosis. Whereas dn-FX3a attenuated the increase in BNIP3 expression and its consequences in PE-stressed ACM, AAV9.dn-FX3a delivery in an experimental model of HFpEF decreased BNIP3 expression, reversed adverse left ventricular remodeling, and improved left ventricular systolic and, particularly, diastolic function, with improvements in mitochondrial structure and function. Moreover, AAV9.dn-FX3a restored phospholamban phosphorylation at S16 and enhanced dynamin-related protein 1 phosphorylation at S637. Furthermore, FOXO3a upregulates maladaptive genes involved in mitochondrial apoptosis, autophagy, and cardiac atrophy. We conclude that FOXO3a activation in cardiac stress is maladaptive, in that it modulates Ca2+ cycling, Ca2+ homeostasis, and mitochondrial dynamics and function. Our results suggest an important role of FOXO3a in HF, making it an attractive potential therapeutic target.
Collapse
Affiliation(s)
| | - Erik Kohlbrenner
- Division of Cardiovascular Diseases, Mount Sinai School of Medicine, New York, New York
| | - Scott I Gamb
- Microscopy and Cell Analysis Core, Department of Biochemistry and Cell Biology, Mayo Clinic, Rochester, Minnesota; and
| | - Adam J Guenzel
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Katherine Klaus
- Division of Endocrinology, Mayo Clinic, Rochester, Minnesota
| | - Ahmed U Fayyaz
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | | | - Roger J Hajjar
- Division of Cardiovascular Diseases, Mount Sinai School of Medicine, New York, New York
| | | |
Collapse
|
10
|
Chaanine AH, Gordon RE, Nonnenmacher M, Kohlbrenner E, Benard L, Hajjar RJ. High-dose chloroquine is metabolically cardiotoxic by inducing lysosomes and mitochondria dysfunction in a rat model of pressure overload hypertrophy. Physiol Rep 2015; 3:3/7/e12413. [PMID: 26152691 PMCID: PMC4552516 DOI: 10.14814/phy2.12413] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Autophagy, macroautophagy and chaperone-mediated autophagy (CMA), are upregulated in pressure overload (PO) hypertrophy. In this study, we targeted this process at its induction using 3 methyladenine and at the lysosomal level using chloroquine and evaluated the effects of these modulations on cardiac function and myocyte ultrastructure. Sprague–Dawley rats weighing 200 g were subjected to ascending aortic banding. After 1 week of PO, animals were randomized to receive 3 methyladenine versus chloroquine, intraperitoneally, for 2 weeks at a dose of 40 and 50 mg/kg/day, respectively. Saline injection was used as control. Chloroquine treatment, in PO, resulted in regression in cardiac hypertrophy but with significant impairments in cardiac relaxation and contractility. Ultrastructurally, chloroquine accentuated mitochondrial fragmentation and cristae destruction with a plethora of autophagosomes containing collapsed mitochondria and lysosomal lamellar bodies. In contrast, 3 methyladenine improved cardiac function and attenuated mitochondrial fragmentation and autophagososme formation. Markers of macroautophagy and CMA were significantly decreased in the chloroquine group; whereas 3 methyladenine treatment significantly attenuated macroautophagy with a compensatory increase in CMA. Furthermore, chloroquine accentuated PO induced oxidative stress through the further decrease in the expression of manganese superoxide dismutase; whereas, 3 MA had a completely opposite effect. Taken together, these data suggest that high-dose chloroquine, in addition to its effect on the autophagy-lysosome pathway, significantly impairs mitochondrial antioxidant buffering capacity and accentuates oxidative stress and mitochondrial dysfunction in PO hypertrophy; highlighting, the cautious administration of this drug in high oxidative stress conditions, such as pathological hypertrophy or heart failure.
Collapse
Affiliation(s)
- Antoine H Chaanine
- Cardiovascular Institute, Mount Sinai School of Medicine, New York, New York
| | - Ronald E Gordon
- Pathology Department, Mount Sinai School of Medicine, New York, New York
| | | | - Erik Kohlbrenner
- Cardiovascular Institute, Mount Sinai School of Medicine, New York, New York
| | - Ludovic Benard
- Cardiovascular Institute, Mount Sinai School of Medicine, New York, New York
| | - Roger J Hajjar
- Cardiovascular Institute, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
11
|
Zheng LR, Zhang YY, Han J, Sun ZW, Zhou SX, Zhao WT, Wang LH. Nerve growth factor rescues diabetic mice heart after ischemia/reperfusion injury via up-regulation of the TRPV1 receptor. J Diabetes Complications 2015; 29:323-8. [PMID: 25650182 DOI: 10.1016/j.jdiacomp.2015.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 11/22/2022]
Abstract
AIMS Nerve growth factor (NGF), a member of the neurotrophin family, plays an essential role in diabetic neuropathy and ischemic heart disease. In the present study, we explored the potential role of NGF and the involvement of TRPV1 receptor in isolated diabetic mouse hearts following ischemia/reperfusion (I/R) injury. METHODS Adenovirus-mediated NGF gene delivery was performed on diabetic and sham hearts 8weeks after streptozotocin treatment. The sciatic nerve conduction velocity was recorded using a biological signal acquisition system. Forty-eight hours after heart surgery, mice were subjected to I/R injury using a Langendorff system. Several cardiac parameters and the expression of associated molecules were analyzed during the experiment. RESULTS The sciatic nerve conduction velocity was reduced in diabetic mice compared with that in control mice. Decreased expression of NGF, TRPV1, and the downstream neurotransmitters CGRP and SP was observed in the diabetic hearts. Adenovirus-mediated NGF overexpression reversed the reduction in TRPV1 and downstream neuropeptides, resulting in improved cardiac recovery post-I/R injury in diabetic hearts. The protective effect of NGF was abolished by CGRP8-37 (a selective CGRP antagonist), while it was preserved by low-dose capsaicin. CONCLUSIONS The NGF-induced up-regulation of TRPV1 via the increased synthesis and release of endogenous CGRP leads to improved cardiac performance in I/R-injured diabetic heart.
Collapse
Affiliation(s)
- Liang-Rong Zheng
- Department of Cardiovascular Sciences, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuan-Yuan Zhang
- Department of Cardiovascular Sciences, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Han
- Department of Cardiovascular Sciences, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ze-Wei Sun
- Department of Cardiovascular Sciences, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shi-Xian Zhou
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wen-Ting Zhao
- Department of Cardiovascular Sciences, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Li-Hong Wang
- Department of Cardiovascular Sciences, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.
| |
Collapse
|
12
|
Gs AK, Raj B, Santhosh KS, Sanjay G, Kartha CC. Ascending aortic constriction in rats for creation of pressure overload cardiac hypertrophy model. J Vis Exp 2014:e50983. [PMID: 24998889 PMCID: PMC4208884 DOI: 10.3791/50983] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Ascending aortic constriction is the most common and successful surgical model for creating pressure overload induced cardiac hypertrophy and heart failure. Here, we describe a detailed surgical procedure for creating pressure overload and cardiac hypertrophy in rats by constriction of the ascending aorta using a small metallic clip. After anesthesia, the trachea is intubated by inserting a cannula through a half way incision made between two cartilage rings of trachea. Then a skin incision is made at the level of the second intercostal space on the left chest wall and muscle layers are cleared to locate the ascending portion of aorta. The ascending aorta is constricted to 50-60% of its original diameter by application of a small sized titanium clip. Following aortic constriction, the second and third ribs are approximated with prolene sutures. The tracheal cannula is removed once spontaneous breathing was re-established. The animal is allowed to recover on the heating pad by gradually lowering anesthesia. The intensity of pressure overload created by constriction of the ascending aorta is determined by recording the pressure gradient using trans-thoracic two dimensional Doppler-echocardiography. Overall this protocol is useful to study the remodeling events and contractile properties of the heart during the gradual onset and progression from compensated cardiac hypertrophy to heart failure stage.
Collapse
Affiliation(s)
- Ajith Kumar Gs
- Cardio Vascular Disease Biology, Rajiv Gandhi Centre for Biotechnology
| | - Binil Raj
- Cardio Vascular Disease Biology, Rajiv Gandhi Centre for Biotechnology
| | | | - G Sanjay
- Cardiology Department, Sree Chitra Tirunal Institute for Medical Sciences & Technology
| | | |
Collapse
|
13
|
Chaanine AH, Nonnenmacher M, Kohlbrenner E, Jin D, Kovacic JC, Akar FG, Hajjar RJ, Weber T. Effect of bortezomib on the efficacy of AAV9.SERCA2a treatment to preserve cardiac function in a rat pressure-overload model of heart failure. Gene Ther 2014; 21:379-386. [PMID: 24572786 PMCID: PMC3976435 DOI: 10.1038/gt.2014.7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/24/2013] [Accepted: 01/09/2014] [Indexed: 01/14/2023]
Abstract
Adeno-associated virus (AAV)-based vectors are promising vehicles for therapeutic gene delivery, including for the treatment for heart failure. It has been demonstrated for each of the AAV serotypes 1 through 8 that inhibition of the proteasome results in increased transduction efficiencies. For AAV9, however, the effect of proteasome inhibitors on in vivo transduction has until now not been evaluated. Here we demonstrate, in a well-established rodent heart failure model, that concurrent treatment with the proteasome inhibitor bortezomib does not enhance the efficacy of AAV9.SERCA2a to improve cardiac function as examined by echocardiography and pressure volume analysis. Western blot analysis of SERCA2a protein and reverse transcription-PCR of SERCA2a mRNA demonstrated that bortezomib had no effect on either endogenous rat SERCA2a levels nor on expression levels of human SERCA2a delivered by AAV9.SERCA2a. Similarly, the number of AAV9 genomes in heart samples was unaffected by bortezomib treatment. Interestingly, whereas transduction of HeLa cells and neonatal rat cardiomyocytes by AAV9 was stimulated by bortezomib, transduction of adult rat cardiomyocytes was inhibited. These results indicate an organ/cell-type-specific effect of proteasome inhibition on AAV9 transduction. A future detailed analysis of the underlying molecular mechanisms promises to facilitate the development of improved AAV vectors.
Collapse
Affiliation(s)
- Antoine H Chaanine
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mathieu Nonnenmacher
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Erik Kohlbrenner
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Dongzhu Jin
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jason C Kovacic
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Fadi G Akar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Thomas Weber
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
14
|
Ibrahim M, Kukadia P, Siedlecka U, Cartledge JE, Navaratnarajah M, Tokar S, Van Doorn C, Tsang VT, Gorelik J, Yacoub MH, Terracciano CM. Cardiomyocyte Ca2+ handling and structure is regulated by degree and duration of mechanical load variation. J Cell Mol Med 2014; 16:2910-8. [PMID: 22862818 PMCID: PMC4393719 DOI: 10.1111/j.1582-4934.2012.01611.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 07/16/2012] [Indexed: 11/26/2022] Open
Abstract
Cardiac transverse (t)-tubules are altered during disease and may be regulated by stretch-sensitive molecules. The relationship between variations in the degree and duration of load and t-tubule structure remains unknown, as well as its implications for local Ca2+-induced Ca2+ release (CICR). Rat hearts were studied after 4 or 8 weeks of moderate mechanical unloading [using heterotopic abdominal heart–lung transplantation (HAHLT)] and 6 or 10 weeks of pressure overloading using thoracic aortic constriction. CICR, cell and t-tubule structure were assessed using confocal-microscopy, patch-clamping and scanning ion conductance microscopy. Moderate unloading was compared with severe unloading [using heart-only transplantation (HAHT)]. Mechanical unloading reduced cardiomyocyte volume in a time-dependent manner. Ca2+ release synchronicity was reduced at 8 weeks moderate unloading only. Ca2+ sparks increased in frequency and duration at 8 weeks of moderate unloading, which also induced t-tubule disorganization. Overloading increased cardiomyocyte volume and disrupted t-tubule morphology at 10 weeks but not 6 weeks. Moderate mechanical unloading for 4 weeks had milder effects compared with severe mechanical unloading (37% reduction in cell volume at 4 weeks compared to 56% reduction after severe mechanical unloading) and did not cause depression and delay of the Ca2+ transient, increased Ca2+ spark frequency or impaired t-tubule and cell surface structure. These data suggest that variations in chronic mechanical load influence local CICR and t-tubule structure in a time- and degree-dependent manner, and that physiological states of increased and reduced cell size, without pathological changes are possible.
Collapse
Affiliation(s)
- Michael Ibrahim
- Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Karakikes I, Chaanine AH, Kang S, Mukete BN, Jeong D, Zhang S, Hajjar RJ, Lebeche D. Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc 2013; 2:e000078. [PMID: 23612897 PMCID: PMC3647279 DOI: 10.1161/jaha.113.000078] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background MicroRNAs (miRNAs) play a key role in the development of heart failure, and recent studies have shown that the muscle‐specific miR‐1 is a key regulator of cardiac hypertrophy. We tested the hypothesis that chronic restoration of miR‐1 gene expression in vivo will regress hypertrophy and protect against adverse cardiac remodeling induced by pressure overload. Methods and Results Cardiac hypertrophy was induced by left ventricular pressure overload in male Sprague‐Dawley rats subjected to ascending aortic stenosis. When the hypertrophy was established at 2 weeks after surgery, the animals were randomized to receive either an adeno‐associated virus expressing miR‐1 (AAV9.miR‐1) or green fluorescent protein (GFP) as control (AAV9.GFP) via a single‐bolus tail‐vein injection. Administration of miR‐1 regressed cardiac hypertrophy (left ventricular posterior wall thickness,; 2.32±0.08 versus 2.75±0.07 mm, P<0.001) and (left ventricular septum wall thickness, 2.23±0.06 versus 2.54±0.10 mm, P<0.05) and halted the disease progression compared with control‐treated animals, as assessed by echocardiography (fractional shortening, 37.60±5.01% versus 70.68±2.93%, P<0.05) and hemodynamic analyses (end‐systolic pressure volume relationship/effective arterial elastance, 1.87±0.46 versus 0.96±0.38, P<0.05) after 7 weeks of treatment. Additionally, miR‐1 replacement therapy lead to a marked reduction of myocardial fibrosis, an improvement in calcium handling, inhibition of apoptosis, and inactivation of the mitogen‐activated protein kinase signaling pathways, suggesting a favorable effect on preventing the maladaptive ventricular remodeling. We also identified and validated a novel bona fide target of miR‐1, Fibullin‐2 (Fbln2), a secreted protein implicated in extracellular matrix remodeling. Conclusions Taken together, our findings suggest that restoration of miR‐1 gene expression is a potential novel therapeutic strategy to reverse pressure‐induced cardiac hypertrophy and prevent maladaptive cardiac remodeling.
Collapse
Affiliation(s)
- Ioannis Karakikes
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chaanine AH, Gordon RE, Kohlbrenner E, Benard L, Jeong D, Hajjar RJ. Potential role of BNIP3 in cardiac remodeling, myocardial stiffness, and endoplasmic reticulum: mitochondrial calcium homeostasis in diastolic and systolic heart failure. Circ Heart Fail 2013; 6:572-83. [PMID: 23508759 DOI: 10.1161/circheartfailure.112.000200] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We have shown that BNIP3 expression is significantly increased in heart failure (HF). In this study, we tested the effects of BNIP3 manipulation in HF. METHODS AND RESULTS In a rat model of pressure overload HF, BNIP3 knockdown significantly decreased left ventricular (LV) volumes with significant improvement in LV diastolic and systolic function. There were significant decreases in myocardial apoptosis and LV interstitial fibrosis. Ultrastructurally, BNIP3 knockdown attenuated mitochondrial fragmentation and restored mitochondrial morphology and integrity. On the molecular level, there were significant decreases in endoplasmic reticulum (ER) stress and mitochondrial apoptotic markers. One of the mechanisms by which BNIP3 mediates mitochondrial dysfunction is via the oligomerization of the voltage-dependent anion channels causing a shift of calcium from the ER to mitochondrial compartments, leading to the decrease in ER calcium content, mitochondrial damage, apoptosis, and LV interstitial fibrosis, and hence contributes to both systolic and diastolic myocardial dysfunction, respectively. In systolic HF, the downregulation of SERCA2a (sarcoplasmic-endoplasmic reticulum calcium ATPase), along with an increased BNIP3 expression, further worsen myocardial diastolic and systolic function and contribute to the major remodeling seen in systolic HF as compared with diastolic HF with normal SERCA2a expression. CONCLUSIONS The increase in BNIP3 expression contributes mainly to myocardial diastolic dysfunction through mitochondrial apoptosis, LV interstitial fibrosis, and to some extent to myocardial systolic dysfunction attributable to the shift of calcium from the ER to the mitochondria and to the decrease in ER calcium content. However, SERCA2a downregulation remains a prerequisite for the major LV remodeling seen in systolic HF.
Collapse
Affiliation(s)
- Antoine H Chaanine
- Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ibrahim M, Terracciano CM. Reversibility of T-tubule remodelling in heart failure: mechanical load as a dynamic regulator of the T-tubules. Cardiovasc Res 2013; 98:225-32. [PMID: 23345265 DOI: 10.1093/cvr/cvt016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The T-tubule system in ventricular cardiomyocytes is essential for synchronous Ca(2+) handling, and, therefore, efficient contraction. T-tubular remodelling is a common feature of heart disease. In this review, we discuss whether t-tubular remodelling can be reversed and which factors may be implicated in this process. In particular, we focus on the interaction between mechanical load variation and T-tubule structure and function. What is the evidence of this relationship? What is the role of different degrees and durations of mechanical load variation? In what settings might mechanical load variation have detrimental or beneficial effects on T-tubule structure and function? What are the molecular determinants of this interaction? Ultimately this discussion is used to address the question of whether mechanical load variation can provide an understanding to underpin attempts to induce recovery of the T-tubule system. In reviewing these questions, we define what remains to be discovered in understanding T-tubule recovery.
Collapse
Affiliation(s)
- Michael Ibrahim
- Laboratory of Cell Electrophysiology, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|
18
|
Katz MG, Fargnoli AS, Tomasulo CE, Pritchette LA, Bridges CR. Model-specific selection of molecular targets for heart failure gene therapy. J Gene Med 2012; 13:573-86. [PMID: 21954055 DOI: 10.1002/jgm.1610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Heart failure (HF) is a complex multifaceted problem of abnormal ventricular function and structure. In recent years, new information has been accumulated allowing for a more detailed understanding of the cellular and molecular alterations that are the underpinnings of diverse causes of HF, including myocardial ischemia, pressure-overload, volume-overload or intrinsic cardiomyopathy. Modern pharmacological approaches to treat HF have had a significant impact on the course of the disease, although they do not reverse the underlying pathological state of the heart. Therefore gene-based therapy holds a great potential as a targeted treatment for cardiovascular diseases. Here, we survey the relative therapeutic efficacy of genetic modulation of β-adrenergic receptor signaling, Ca(2+) handling proteins and angiogenesis in the most common extrinsic models of HF.
Collapse
Affiliation(s)
- Michael G Katz
- Department of Surgery, Division of Cardiovascular Surgery, The University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
19
|
Chaanine AH, Jeong D, Liang L, Chemaly ER, Fish K, Gordon RE, Hajjar RJ. JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. Cell Death Dis 2012; 3:265. [PMID: 22297293 PMCID: PMC3288347 DOI: 10.1038/cddis.2012.5] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bcl-2 E1B 19-KDa interacting protein 3 (BNIP3) is a mitochondrial death and mitophagy marker, which is involved in inducing cardiac remodeling post myocardial infarction. In this study, we show that BNIP3 expression increases in stressed cardiomyocytes in vitro and in response to pressure overload in vivo, and that its transcription is directly related to JNK activity. BNIP3 expression gradually increased in the first weeks after pressure overload and peaked at the heart failure stage. Ultrastructurally, the mitochondrial area was inversely proportional to BNIP3 expression. Both JNK and AKT activities increased with pressure overload; however, JNK signaling dominated over AKT signaling for the activation of the transcription factor FOXO3a and for the transcription of its effector, BNIP3. 3-methyladenine attenuated JNK signaling and significantly decreased BNIP3 expression and reversed cardiac remodeling in heart failure. Ultrastructurally, the mitochondrial area was significantly increased in the 3-methyladenine group compared with placebo. Moreover, adenoviral gene delivery of dominant negative JNK in a rat model of pressure overload hypertrophy abolished the increase in BNIP3 expression in response to pressure overload. These results suggest that JNK signaling is a critical modulator of the transcription factor FOXO3a driving the expression of its effector, BNIP3, in heart failure and that JNK, through BNIP3, induces mitochondrial apoptosis and mitophagy.
Collapse
Affiliation(s)
- A H Chaanine
- Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Chen J, Chemaly ER, Liang LF, LaRocca TJ, Yaniz-Galende E, Hajjar RJ. A new model of congestive heart failure in rats. Am J Physiol Heart Circ Physiol 2011; 301:H994-1003. [PMID: 21685270 DOI: 10.1152/ajpheart.00245.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Current rodent models of ischemia/infarct or pressure-volume overload are not fully representative of human heart failure. We developed a new model of congestive heart failure (CHF) with both ischemic and stress injuries combined with fibrosis in the remote myocardium. Sprague-Dawley male rats were used. Ascending aortic banding (Ab) was performed to induce hypertrophy. Two months post-Ab, ischemia-reperfusion (I/R) injury was induced by ligating the left anterior descending (LAD) artery for 30 min. Permanent LAD ligation served as positive controls. A debanding (DeAb) procedure was performed after Ab or Ab + I/R to restore left ventricular (LV) loading properties. Cardiac function was assessed by echocardiography and in vivo hemodynamic analysis. Myocardial infarction (MI) size and myocardial fibrosis were assessed. LV hypertrophy was observed 4 mo post-Ab; however, systolic function was preserved. LV hypertrophy regressed within 1 mo after DeAb. I/R for 2 mo induced a small to moderate MI with mild impairment of LV function. Permanent LAD ligation for 2 mo induced large MI and significant cardiac dysfunction. Ab for 2 mo followed by I/R for 2 mo (Ab + I/R) resulted in moderate MI with significantly reduced ejection fraction (EF). DeAb post Ab + I/R to reduce afterload could not restore cardiac function. Perivascular fibrosis in remote myocardium after Ab + I/R + DeAb was associated with decreased cardiac function. We conclude that Ab plus I/R injury with aortic DeAb represents a novel model of CHF with increased fibrosis in remote myocardium. This model will allow the investigation of vascular and fibrotic mechanisms in CHF characterized by low EF, dilated LV, moderate infarction, near-normal aortic diameter, and reperfused coronary arteries.
Collapse
Affiliation(s)
- Jiqiu Chen
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
21
|
Carll AP, Willis MS, Lust RM, Costa DL, Farraj AK. Merits of non-invasive rat models of left ventricular heart failure. Cardiovasc Toxicol 2011; 11:91-112. [PMID: 21279739 DOI: 10.1007/s12012-011-9103-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heart failure (HF) is characterized as a limitation to cardiac output that prevents the heart from supplying tissues with adequate oxygen and predisposes individuals to pulmonary edema. Impaired cardiac function is secondary to either decreased contractility reducing ejection (systolic failure), diminished ventricular compliance preventing filling (diastolic failure), or both. To study HF etiology, many different techniques have been developed to elicit this condition in experimental animals, with varying degrees of success. Among rats, surgically induced HF models are the most prevalent, but they bear several shortcomings, including high mortality rates and limited recapitulation of the pathophysiology, etiology, and progression of human HF. Alternatively, a number of non-invasive HF induction methods avoid many of these pitfalls, and their merits in technical simplicity, reliability, survivability, and comparability to the pathophysiologic and pathogenic characteristics of HF are reviewed herein. In particular, this review focuses on the primary pathogenic mechanisms common to genetic strains (spontaneously hypertensive and spontaneously hypertensive heart failure), pharmacological models of toxic cardiomyopathy (doxorubicin and isoproterenol), and dietary salt models, all of which have been shown to induce left ventricular HF in the rat. Additional non-invasive techniques that may potentially enable the development of new HF models are also discussed.
Collapse
Affiliation(s)
- Alex P Carll
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, 27599 USA.
| | | | | | | | | |
Collapse
|
22
|
Kang S, Chemaly ER, Hajjar RJ, Lebeche D. Resistin promotes cardiac hypertrophy via the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) and c-Jun N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathways. J Biol Chem 2011; 286:18465-73. [PMID: 21478152 DOI: 10.1074/jbc.m110.200022] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Resistin has been suggested to be involved in the development of diabetes and insulin resistance. We recently reported that resistin is expressed in diabetic hearts and promotes cardiac hypertrophy; however, the mechanisms underlying this process are currently unknown. Therefore, we wanted to elucidate the mechanisms associated with resistin-induced cardiac hypertrophy and myocardial insulin resistance. Overexpression of resistin using adenoviral vector in neonatal rat ventricular myocytes was associated with inhibition of AMP-activated protein kinase (AMPK) activity, activation of tuberous sclerosis complex 2/mammalian target of rapamycin (mTOR) pathway, and increased cell size, [(3)H]leucine incorporation (i.e. protein synthesis) and mRNA expression of the hypertrophic marker genes, atrial natriuretic factor, brain natriuretic peptide, and β-myosin heavy chain. Activation of AMPK with 5-aminoimidazole-4-carbozamide-1-β-D-ribifuranoside or inhibition of mTOR with rapamycin or mTOR siRNA attenuated these resistin-induced changes. Furthermore, resistin increased serine phosphorylation of insulin receptor substrate (IRS1) through the activation of the apoptosis signal-regulating kinase 1/c-Jun N-terminal Kinase (JNK) pathway, a module known to stimulate insulin resistance. Inhibition of JNK (with JNK inhibitor SP600125 or using dominant-negative JNK) reduced serine 307 phosphorylation of IRS1. Resistin also stimulated the activation of p70(S6K), a downstream kinase target of mTOR, and increased phosphorylation of the IRS1 serine 636/639 residues, whereas treatment with rapamycin reduced the phosphorylation of these residues. Interestingly, these in vitro signaling pathways were also operative in vivo in ventricular tissues from adult rat hearts overexpressing resistin. These data demonstrate that resistin induces cardiac hypertrophy and myocardial insulin resistance, possibly via the AMPK/mTOR/p70(S6K) and apoptosis signal-regulating kinase 1/JNK/IRS1 pathways.
Collapse
Affiliation(s)
- Soojeong Kang
- Cardiovascular Research Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
23
|
Wu Y, Yin X, Wijaya C, Huang MH, McConnell BK. Acute myocardial infarction in rats. J Vis Exp 2011:2464. [PMID: 21372786 DOI: 10.3791/2464] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
With heart failure leading the cause of death in the USA (Hunt), biomedical research is fundamental to advance medical treatments for cardiovascular diseases. Animal models that mimic human cardiac disease, such as myocardial infarction (MI) and ischemia-reperfusion (IR) that induces heart failure as well as pressure-overload (transverse aortic constriction) that induces cardiac hypertrophy and heart failure (Goldman and Tarnavski), are useful models to study cardiovascular disease. In particular, myocardial ischemia (MI) is a leading cause for cardiovascular morbidity and mortality despite controlling certain risk factors such as arteriosclerosis and treatments via surgical intervention (Thygesen). Furthermore, an acute loss of the myocardium following myocardial ischemia (MI) results in increased loading conditions that induces ventricular remodeling of the infarcted border zone and the remote non-infarcted myocardium. Myocyte apoptosis, necrosis and the resultant increased hemodynamic load activate multiple biochemical intracellular signaling that initiates LV dilatation, hypertrophy, ventricular shape distortion, and collagen scar formation. This pathological remodeling and failure to normalize the increased wall stresses results in progressive dilatation, recruitment of the border zone myocardium into the scar, and eventually deterioration in myocardial contractile function (i.e. heart failure). The progression of LV dysfunction and heart failure in rats is similar to that observed in patients who sustain a large myocardial infarction, survive and subsequently develops heart failure (Goldman). The acute myocardial infarction (AMI) model in rats has been used to mimic human cardiovascular disease; specifically used to study cardiac signaling mechanisms associated with heart failure as well as to assess the contribution of therapeutic strategies for the treatment of heart failure. The method described in this report is the rat model of acute myocardial infarction (AMI). This model is also referred to as an acute ischemic cardiomyopathy or ischemia followed by reperfusion (IR); which is induced by an acute 30-minute period of ischemia by ligation of the left anterior descending artery (LAD) followed by reperfusion of the tissue by releasing the LAD ligation (Vasilyev and McConnell). This protocol will focus on assessment of the infarct size and the area-at-risk (AAR) by Evan's blue dye and triphenyl tetrazolium chloride (TTC) following 4-hours of reperfusion; additional comments toward the evaluation of cardiac function and remodeling by modifying the duration of reperfusion, is also presented. Overall, this AMI rat animal model is useful for studying the consequence of a myocardial infarction on cardiac pathophysiological and physiological function.
Collapse
Affiliation(s)
- Yewen Wu
- Department of Internal Medicine, Division of Cardiology, University of Texas Medical Branch, USA
| | | | | | | | | |
Collapse
|
24
|
Altered spatiotemporal dynamics of the mitochondrial membrane potential in the hypertrophied heart. Biophys J 2010; 98:2063-71. [PMID: 20483313 DOI: 10.1016/j.bpj.2010.01.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/14/2010] [Accepted: 01/19/2010] [Indexed: 12/23/2022] Open
Abstract
Chronically elevated levels of oxidative stress resulting from increased production and/or impaired scavenging of reactive oxygen species are a hallmark of mitochondrial dysfunction in left ventricular hypertrophy. Recently, oscillations of the mitochondrial membrane potential (DeltaPsi(m)) were mechanistically linked to changes in cellular excitability under conditions of acute oxidative stress produced by laser-induced photooxidation of cardiac myocytes in vitro. Here, we investigate the spatiotemporal dynamics of DeltaPsi(m) within the intact heart during ischemia-reperfusion injury. We hypothesize that altered metabolic properties in left ventricular hypertrophy modulate DeltaPsi(m) spatiotemporal properties and arrhythmia propensity.
Collapse
|
25
|
Wei S, Guo A, Chen B, Kutschke W, Xie YP, Zimmerman K, Weiss RM, Anderson ME, Cheng H, Song LS. T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res 2010; 107:520-31. [PMID: 20576937 DOI: 10.1161/circresaha.109.212324] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RATIONALE The transverse tubule (T-tubule) system is the ultrastructural substrate for excitation-contraction coupling in ventricular myocytes; T-tubule disorganization and loss are linked to decreased contractility in end stage heart failure (HF). OBJECTIVE We sought to examine (1) whether pathological T-tubule remodeling occurs early in compensated hypertrophy and, if so, how it evolves during the transition from hypertrophy to HF; and (2) the role of junctophilin-2 in T-tubule remodeling. METHODS AND RESULTS We investigated T-tubule remodeling in relation to ventricular function during HF progression using state-of-the-art confocal imaging of T-tubules in intact hearts, using a thoracic aortic banding rat HF model. We developed a quantitative T-tubule power (TT(power)) index to represent the integrity of T-tubule structure. We found that discrete local loss and global reorganization of the T-tubule system (leftward shift of TT(power) histogram) started early in compensated hypertrophy in left ventricular (LV) myocytes, before LV dysfunction, as detected by echocardiography. With progression from compensated hypertrophy to early and late HF, T-tubule remodeling spread from the LV to the right ventricle, and TT(power) histograms of both ventricles gradually shifted leftward. The mean LV TT(power) showed a strong correlation with ejection fraction and heart weight to body weight ratio. Over the progression to HF, we observed a gradual reduction in the expression of a junctophilin protein (JP-2) implicated in the formation of T-tubule/sarcoplasmic reticulum junctions. Furthermore, we found that JP-2 knockdown by gene silencing reduced T-tubule structure integrity in cultured adult ventricular myocytes. CONCLUSIONS T-tubule remodeling in response to thoracic aortic banding stress begins before echocardiographically detectable LV dysfunction and progresses over the development of overt structural heart disease. LV T-tubule remodeling is closely associated with the severity of cardiac hypertrophy and predicts LV function. Thus, T-tubule remodeling may constitute a key mechanism underlying the transition from compensated hypertrophy to HF.
Collapse
Affiliation(s)
- Sheng Wei
- Institute of Molecular Medicine, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hingtgen SD, Li Z, Kutschke W, Tian X, Sharma RV, Davisson RL. Superoxide scavenging and Akt inhibition in myocardium ameliorate pressure overload-induced NF-κB activation and cardiac hypertrophy. Physiol Genomics 2010; 41:127-36. [PMID: 20103697 DOI: 10.1152/physiolgenomics.00202.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies from our laboratory and others have shown that increases in cytoplasmic superoxide (O(2)(·-)) levels and Akt activation play a key role in agonist-stimulated NF-κB activation and cardiomyocyte hypertrophy in vitro. In this study, we tested the hypothesis that adenovirus (Ad)-mediated intramyocardial gene transfer of cytoplasmic superoxide dismutase (AdCu/ZnSOD) or a dominant-negative form of Akt (AdDNAkt) in mice would attenuate pressure overload-induced increases in activation of the redox-sensitive transcription factor NF-κB and cardiac hypertrophy. Adult C57BL/6 mice were subjected to thoracic aortic banding (TAB) or sham surgery, and intramyocardial injections of viral vectors (AdCu/ZnSOD, AdDNAkt, or control) were performed. There was robust transgene expression in the heart, which peaked 6-7 days after injection and then declined to undetectable levels by 12-14 days. In mice injected with AdBgL II, TAB caused a significant increase in O(2)(·-) generation and cardiac mass at 1 wk, and these responses were markedly attenuated by AdCu/ZnSOD. In addition, TAB induced time-dependent activation of NF-κB in the myocardium as measured longitudinally by in vivo bioluminescent imaging of NF-κB-dependent luciferase expression. This was also abolished by intracardiac AdCu/ZnSOD or AdDNAkt, but not the control vector. The inhibition of Akt and O(2)(·-)-mediated NF-κB activation in TAB hearts was associated with an attenuation of cardiac hypertrophy. Since a direct cause-and-effect relationship between NF-κB activation and cardiomyocyte hypertrophy has been established previously, our data support the hypothesis that increased O(2)(·-) generation and Akt activation are key signaling intermediates in pressure overload-induced activation of NF-κB and cardiac hypertrophy.
Collapse
Affiliation(s)
- Shawn D Hingtgen
- Department of Anatomy and Cell Biology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|
27
|
Jin H, Chemaly ER, Lee A, Kho C, Hadri L, Hajjar RJ, Akar FG. Mechanoelectrical remodeling and arrhythmias during progression of hypertrophy. FASEB J 2009; 24:451-63. [PMID: 19825979 DOI: 10.1096/fj.09-136622] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite a clear association between left ventricular (LV) mechanical dysfunction in end-stage heart failure and the incidence of arrhythmias, the majority of sudden cardiac deaths occur at earlier stages of disease development. The mechanisms by which structural, mechanical, and molecular alterations predispose to arrhythmias at the tissue level before the onset of LV dysfunction remain unclear. In a rat model of pressure overload hypertrophy (PoH) produced by ascending aortic banding, we correlated mechanical and structural changes measured in vivo with key electrophysiological changes measured ex vivo in the same animals. We found that action potential prolongation, a hallmark of electrical remodeling at the tissue level, is highly correlated with changes in LV wall thickness but not mechanical function. In contrast, conduction delays are not predicted by either mechanical or structural changes during disease development. Moreover, disrupted Cx43 phosphorylation at intermediate (increased) and late (decreased) stages of PoH are associated with moderate and severe conduction delays, respectively. Interestingly, the level of interaction between Cx43 and the cytoskeletal protein ZO-1 is exclusively decreased at the late stage of PoH. Closely coupled action potentials consistent with afterdepolarization-mediated triggered beats were readily observed in 6 of 15 PoH hearts but never in controls. Similarly, PoH (8/15) but not control hearts exhibited sustained episodes of ventricular tachycardia after rapid stimulation. The initiation and early maintenance of arrhythmias in PoH were formed by rapid and highly uniform activation wavefronts emanating from sites distal to the former site of stimulation. In conclusion, repolarization but not conduction delays are predicted by structural remodeling in PoH. Cx43 phosphorylation is disrupted at intermediate (increased) and late (decreased) stages, which are associated with conduction delays. Dephosphorylation of Cx43 is associated with loss of interaction with ZO-1 and severe conduction delays. Remodeling at all stages of PoH predisposes to triggers and focal arrhythmias.
Collapse
Affiliation(s)
- Hongwei Jin
- Cardiovascular Research Center, Division of Cardiology, Mount Sinai School of Medicine, One Gustave L. Levy Pl., New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Novel Experimental Model of Pressure Overload Hypertrophy in Rats. J Surg Res 2009; 153:287-94. [DOI: 10.1016/j.jss.2008.03.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 03/24/2008] [Accepted: 03/28/2008] [Indexed: 11/20/2022]
|
29
|
O'Donnell JM, Fields A, Xu X, Chowdhury SAK, Geenen DL, Bi J. Limited functional and metabolic improvements in hypertrophic and healthy rat heart overexpressing the skeletal muscle isoform of SERCA1 by adenoviral gene transfer in vivo. Am J Physiol Heart Circ Physiol 2008; 295:H2483-94. [PMID: 18952713 DOI: 10.1152/ajpheart.01023.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenoviral gene transfer of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a to the hypertrophic heart in vivo has been consistently reported to lead to enhanced myocardial contractility. It is unknown if the faster skeletal muscle isoform, SERCA1, expressed in the whole heart in early failure, leads to similar improvements and whether metabolic requirements are maintained during an adrenergic challenge. In this study, Ad.cmv.SERCA1 was delivered in vivo to aortic banded and sham-operated Sprague-Dawley rat hearts. The total SERCA content increased 34%. At 48-72 h posttransfer, echocardiograms were acquired, hearts were excised and retrograded perfused, and hemodynamics were measured parallel to NMR measures of the phosphocreatine (PCr)-to-ATP ratio (PCr/ATP) and energy substrate selection at basal and high workloads (isoproterenol). In the Langendorff mode, the rate-pressure product was enhanced 27% with SERCA1 in hypertrophic hearts and 10% in shams. The adrenergic response to isoproterenol was significantly potentiated in both groups with SERCA1. 31P NMR analysis of PCr/ATP revealed that the ratio remained low in the hypertrophic group with SERCA1 overexpression and was not further compromised with adrenergic challenge. 13C NMR analysis revealed fat and carbohydrate oxidation were unaffected at basal with SERCA1 expression; however, there was a shift from fats to carbohydrates at higher workloads with SERCA1 in both groups. Transport of NADH-reducing equivalents into the mitochondria via the alpha-ketoglutamate-malate transporter was not affected by either SERCA1 overexpression or adrenergic challenge in both groups. Echocardiograms revealed an important distinction between in vivo versus ex vivo data. In contrast to previous SERCA2a studies, the echocardiogram data revealed that SERCA1 expression compromised function (fractional shortening) in the hypertrophic group. Shams were unaffected. While our ex vivo findings support much of the earlier cardiomyocyte and transgenic data, the in vivo data challenge previous reports of improved cardiac function in heart failure models after SERCA intervention.
Collapse
Affiliation(s)
- J Michael O'Donnell
- Department of Physiology and Biophysics M/C 901 College of Medicine, University of Illinois, 835 S. Wolcott Ave., Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Molina EJ, Gupta D, Palma J, Gaughan JP, Macha M. Right ventricular beneficial effects of beta adrenergic receptor kinase inhibitor (betaARKct) gene transfer in a rat model of severe pressure overload. Biomed Pharmacother 2008; 63:331-6. [PMID: 18801641 DOI: 10.1016/j.biopha.2008.07.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022] Open
Abstract
Heart failure is associated with abnormalities in betaAR cascade regulation, calcium cycling, expression of inflammatory mediators and apoptosis. Adenoviral mediated gene transfer of betaARKct has beneficial indirect effects on these pathologic processes upon the left ventricular myocardium. The concomitant biochemical changes that occur in the right ventricle have not been well characterized. Sprague-Dawley rats underwent aortic banding and were followed by echocardiography. After a decrease in fractional shortening of 25% from baseline, intracoronary injection of adenoviral-betaARKct (n=14) or adenoviral-beta-galactosidase (control, n=13) was performed. Rats were randomly euthanized on post-operative day 7, 14 or 21. Protein analysis including RV myocardial levels of betaARKct, betaARK1, SERCA(2a), inflammatory tissue mediators (IL-1, IL-6 and TNF-alpha), apoptotic markers (bax and bak), and MAP kinases (jnk, p38 and erk) was performed. ANOVA was employed for group comparison. Adenoviral-betaARKct treated animals showed increased expression of betaARKct and decreased levels of betaARK1 compared with controls. This treatment group also demonstrated normalization of SERCA(2a) expression and decreased levels of the inflammatory markers IL-1, IL-6 and TNF-alpha. The pro-apoptotic markers bax and bak were similarly improved. Ventricular levels of the MAP kinase jnk were increased. Differences were most significant 7 days after gene transfer, but the majority of these changes persisted at 21 days. These results suggest that attenuation of the pathologic mechanisms of beta adrenergic receptor desensitization, SERCA(2a) expression, inflammation and apoptosis, not only occur in the left ventricle but also in the right ventricular myocardium after intracoronary gene transfer of betaARKct during heart failure.
Collapse
Affiliation(s)
- Ezequiel J Molina
- Department of Surgery, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
31
|
Reduced expression of GSTM2 and increased oxidative stress in spontaneously hypertensive rat. Mol Cell Biochem 2007; 309:99-107. [DOI: 10.1007/s11010-007-9647-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 10/31/2007] [Indexed: 02/05/2023]
|
32
|
Cingolani E, Ramirez Correa GA, Kizana E, Murata M, Cho HC, Marbán E. Gene Therapy to Inhibit the Calcium Channel β Subunit. Circ Res 2007; 101:166-75. [PMID: 17556655 DOI: 10.1161/circresaha.107.155721] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calcium cycling figures prominently in excitation-contraction coupling and in various signaling cascades involved in the development of left ventricular hypertrophy. We hypothesized that genetic suppression of the L-type calcium channel accessory beta-subunit would modulate calcium current and suppress cardiac hypertrophy. A short hairpin RNA template sequence capable of mediating the knockdown of the L-type calcium channel accessory beta-subunit gene was incorporated into a lentiviral vector (PPT.CG.H1.beta(2)). Transduction of ventricular myocytes in vivo with the active short hairpin RNA partially inhibited the L-type calcium current. In neonatal rat cardiomyocytes, L-type calcium channel accessory beta-subunit gene knockdown reduced calcium transient amplitude. Similarly, [(3)H]leucine incorporation was attenuated in PPT.CG.H1.beta(2)-transduced neonatal rat cardiomyocytes compared with nonsilencing controls in a phenylephrine-induced hypertrophy model. In vivo gene transfer attenuated the hypertrophic response in an aortic-banded rat model of left ventricular hypertrophy, with reduced left ventricular wall thickness and heart weight/body weight ratios in PPT.CG.H1.beta(2)-injected rats at four weeks post transduction. Fractional shortening was preserved in rats treated with PPT.CG.H1.beta(2). These findings indicate that knockdown of L-type calcium channel accessory beta-subunit is capable of attenuating the hypertrophic response both in vitro and in vivo without compromising systolic performance. Suppression of the calcium channel beta subunit may represent a novel and useful therapeutic strategy for left ventricular hypertrophy.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcium Channels, L-Type/deficiency
- Calcium Channels, L-Type/metabolism
- Disease Models, Animal
- Gene Silencing
- Genetic Therapy
- Humans
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/therapy
- Lentivirus
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Organ Size/genetics
- Protein Subunits/deficiency
- Protein Subunits/metabolism
- Rats
- Transduction, Genetic
Collapse
Affiliation(s)
- Eugenio Cingolani
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
33
|
Zhou SG, Zhou SF, Huang HQ, Chen JW, Huang M, Liu PQ. Proteomic Analysis of Hypertrophied Myocardial Protein Patterns in Renovascularly Hypertensive and Spontaneously Hypertensive Rats. J Proteome Res 2006; 5:2901-8. [PMID: 17081041 DOI: 10.1021/pr050456l] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cardiac protein profiles of spontaneously hypertensive and renovascularly hypertensive hypertrophy showed a significant alteration compared with normal hearts. Most proteins with significant modulations in their expressions belong to the category of metabolic and stress-related proteins. Among these proteins, glutathione-S-transferase mu2 and short-chain acyl-CoA dehydrogenase may be two candidate proteins associated with left ventricular hypertrophy in spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Si-Gui Zhou
- Pharmacology and Toxicology Laboratory and Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | |
Collapse
|
34
|
Sakata S, Lebeche D, Sakata Y, Sakata N, Chemaly ER, Liang LF, Padmanabhan P, Konishi N, Takaki M, del Monte F, Hajjar RJ. Mechanical and metabolic rescue in a type II diabetes model of cardiomyopathy by targeted gene transfer. Mol Ther 2006; 13:987-96. [PMID: 16503203 DOI: 10.1016/j.ymthe.2006.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 01/18/2006] [Accepted: 01/26/2006] [Indexed: 11/29/2022] Open
Abstract
The Otsuka-Long-Evans Tokushima Fatty rat represents a model for spontaneous non-insulin-dependent type II diabetes mellitus (DM), characterized by diastolic dysfunction and associated with abnormal calcium handling and decrease in sarcoplasmic reticulum Ca2+ -ATPase (SERCA2a) expression. The aim of this study was to examine whether SERCA2a gene transfer can restore the energetic deficiency and left ventricular (LV) function in this model. DM rats were randomized to receive adenovirus carrying either the SERCA2a gene (DM + Ad.SERCA2a) or the beta-galactosidase gene (DM + Ad.betaGal) or saline (DM + saline). LV mechanoenergetic function was measured in cross-circulated heart preparations 3 days after infection. In DM, end-systolic pressure at 0.1 ml intraballoon water (ESP0.1) was low and end-diastolic pressure at 0.1 ml intraballoon water (EDP0.1) was high (22 mm Hg), compared with non-DM (EDP0.1 12 mm Hg). In DM + Ad.SERCA2a, however, ESP0.1 was increased over 200 mm Hg and EDP(0.1) was decreased to 7 mm Hg. LV relaxation rate was fast in DM + Ad.SERCA2a, but slow in the other DM groups. There was no difference in relation between cardiac oxygen consumption per beat and systolic pressure-volume area among all groups. Finally, the oxygen cost of LV contractility in DM was about three times as high as that of normal. In DM + Ad.SERCA2a, the oxygen cost decreased to control levels, but in DM + Ad.betaGal/DM + saline it remained high. In DM failing hearts, the high oxygen cost indicates energy wasting, which contributes to the contractile dysfunction observed in diabetic cardiomyopathy. SERCA2a gene transfer transforms this inefficient energy utilization into a more efficient state and restores systolic and diastolic function to normal.
Collapse
Affiliation(s)
- Susumu Sakata
- Cardiovascular Research Center, Cardiology Laboratory of Integrative Physiology & Imaging, Massachusetts General Hospital, 149 13th Street, CNY-4, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sato M, O'Gara P, Harding SE, Fuller SJ. Enhancement of adenoviral gene transfer to adult rat cardiomyocytes in vivo by immobilization and ultrasound treatment of the heart. Gene Ther 2005; 12:936-41. [PMID: 15759019 DOI: 10.1038/sj.gt.3302476] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Direct injection of adenoviral vectors into ventricular myocardium in vivo produces local transfection of cells including cardiomyocytes. The use of vectors coexpressing GFP with the gene of interest allows subsequent identification of transfected myocytes isolated from the heart some days later, and examination of their function in cell bath experiments. We have injected vectors for antisense to phospholamban, or a control virus for expression of GFP only, into adult rat heart in vivo and then removed the heart and isolated ventricular myocytes 7 days later. Brief immobilization of the ventricle during and after injection using a haemoclip increased the number of transfected rod-shaped, viable myocytes from 1.7 +/- 0.8% (n = 8) to 5.6 +/- 0.8% (n = 9). This was further increased to 13.2 +/- 1.1% (n = 8) by the application of ultrasound pulses to the site before and after injection. Phospholamban antisense increased contraction amplitude and accelerated myocyte relengthening or decline of the Ca(2+) transient in transfected myocytes, while GFP control did not. Qualitative and quantitative effects of phospholamban downregulation were comparable between in vivo and in vitro transfections. This technique will have a number of uses, including production of transfected myocytes without the problem of culture-induced changes in contractility.
Collapse
Affiliation(s)
- M Sato
- Department of Cardiac Medicine, NHLI Division, Imperial College London, UK
| | | | | | | |
Collapse
|
36
|
Yin H, Chao L, Chao J. Kallikrein/kinin protects against myocardial apoptosis after ischemia/reperfusion via Akt-glycogen synthase kinase-3 and Akt-Bad.14-3-3 signaling pathways. J Biol Chem 2004; 280:8022-30. [PMID: 15611141 DOI: 10.1074/jbc.m407179200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Our previous study has shown that human tissue kallikrein protected against ischemia/reperfusion-induced myocardial injury. In the present study, we investigated the protective role of local kallikrein gene delivery in ischemia/reperfusion-induced cardiomyocyte apoptosis and its signaling mechanisms in promoting cardiomyocyte survival. Adenovirus carrying the human tissue kallikrein gene was delivered locally into the heart using a catheter-based technique. Expression and localization of recombinant human kallikrein in rat myocardium after gene transfer were determined immunohistochemically. Kallikrein gene delivery markedly reduced reperfusion-induced cardiomyocyte apoptosis identified by both in situ nick end-labeling and DNA fragmentation. Delivery of the kallikrein gene increased phosphorylation of Src, Akt, glycogen synthase kinase (GSK)-3beta, and Bad(Ser-136) but reduced caspase-3 activation in rat myocardium after reperfusion. The protective effect of kallikrein on apoptosis and its signaling mediators was blocked by icatibant and dominant-negative Akt, indicating a kinin B2 receptor-Akt-mediated event. Similarly, kinin or transduction of kallikrein in cultured cardiomyocytes promoted cell viability and attenuated apoptosis induced by hypoxia/reoxygenation. The effect of kallikrein on cardiomyocyte survival was blocked by dominant-negative Akt and a constitutively active mutant of GSK-3beta, but it was facilitated by constitutively active Akt, catalytically inactive GSK-3beta, lithium, and caspase-3 inhibitor. Moreover, kallikrein promoted Bad.14-3-3 complex formation and inhibited Akt-GSK-3beta-dependent activation of caspase-3, whereas caspase-3 administration caused reduction of the Bad.14-3-3 complex, indicating an interaction between Akt-GSK-caspase-3 and Akt-Bad.14-3-3 signaling pathways. In conclusion, kallikrein/kinin protects against cardiomyocyte apoptosis in vivo and in vitro via Akt-Bad.14-3-3 and Akt-GSK-3beta-caspase-3 signaling pathways.
Collapse
Affiliation(s)
- Hang Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425-2211, USA
| | | | | |
Collapse
|
37
|
Lebeche D, Kaprielian R, del Monte F, Tomaselli G, Gwathmey JK, Schwartz A, Hajjar RJ. In vivo cardiac gene transfer of Kv4.3 abrogates the hypertrophic response in rats after aortic stenosis. Circulation 2004; 110:3435-43. [PMID: 15557376 DOI: 10.1161/01.cir.0000148176.33730.3f] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Prolongation of the action potential duration (APD) and decreased transient outward K+ current (I(to)) have been consistently observed in cardiac hypertrophy. The relation between electrical remodeling and cardiac hypertrophy in vivo is unknown. METHODS AND RESULTS We studied rat hearts subjected to pressure overload by surgical ascending aortic stenosis (AS) and simultaneously infected these hearts with an adenovirus carrying either the Kv4.3 gene (Ad.Kv4.3) or the beta-galactosidase gene (Ad.beta-gal). I(to) density was reduced and APD50 was prolonged (P<0.05) in AS rats compared with sham rats. Kv4.2 and Kv4.3 expressions were decreased by 58% and 51%, respectively (P<0.05). AS rats infected with Ad.beta-gal developed cardiac hypertrophy compared with sham rats, as assessed by cellular capacitance and heart weight-body weight ratio. Associated with the development of cardiac hypertrophy, the expression of calcineurin and its downstream transcription factor nuclear factor of activated T cells (NFAT) c1 was persistently increased by 47% and 36%, respectively (P<0.05) in AS myocytes infected with Ad.beta-gal compared with sham myocytes. In vivo gene transfer of Kv4.3 in AS rats was shown to increase Kv4.3 expression, increase I(to) density, and shorten APD50 by 1.6-fold, 5.3-fold, and 3.6-fold, respectively (P<0.05). Furthermore, AS rats infected with Ad.Kv4.3 showed significant reductions in calcineurin and NFAT expression. (P<0.05). CONCLUSIONS Downregulation of I(to), APD prolongation, and cardiac hypertrophy occur early after AS, and in vivo gene transfer of Kv4.3 can restore these electrical parameters and abrogate the hypertrophic response via the calcineurin pathway.
Collapse
Affiliation(s)
- Djamel Lebeche
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass 02129, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Li Y, Ha T, Gao X, Kelley J, Williams DL, Browder IW, Kao RL, Li C. NF-κB activation is required for the development of cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 2004; 287:H1712-20. [PMID: 15142841 DOI: 10.1152/ajpheart.00124.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we examined whether NF-κB activation is required for cardiac hypertrophy in vivo. Cardiac hypertrophy in rats was induced by aortic banding for 1, 3, and 5 days and 1–6 wk, and age-matched sham-operated rats served as controls. In a separate group of rats, an IκB-α dominant negative mutant (IκB-αM), a superrepressor of NF-κB activation, or pyrrolidinedithiocarbamate (PDTC), an antioxidant that can inhibit NF-κB activation, was administered to aortic-banded rats for 3 wk. The heart weight-to-body weight ratio was significantly increased at 5 days after aortic banding, peaked at 4 wk, and remained elevated at 6 wk compared with age-matched sham controls. Atrial natriuretic peptide and brain natriuretic peptide mRNA expressions were significantly increased after 1 wk of aortic banding, reached a maximum between 2 and 3 wk, and remained increased at 6 wk compared with age-matched sham controls. NF-κB activity was significantly increased at 1 day, reached a peak at 3 wk, and remained elevated at 6 wk, and IKK-β activity was significantly increased at 1 day, peaked at 5 days, and then decreased but remained elevated at 6 wk after aortic banding compared with age-matched sham controls. Inhibiting NF-κB activation in vivo by cardiac transfection of IκB-αM or by PDTC treatment significantly attenuated the development of cardiac hypertrophy in vivo with a concomitant decrease in NF-κB activity. Our results suggest that NF-κB activation is required for the development of cardiac hypertrophy in vivo and that NF-κB could be an important target for inhibiting the development of cardiac hypertrophy in vivo.
Collapse
Affiliation(s)
- Yuehua Li
- Dept. of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Del Monte F, Dalal R, Tabchy A, Couget J, Bloch KD, Peterson R, Hajjar RJ. Transcriptional changes following restoration of SERCA2a levels in failing rat hearts. FASEB J 2004; 18:1474-6. [PMID: 15247151 DOI: 10.1096/fj.04-1714fje] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heart failure is characterized at the cellular level by impaired contractility and abnormal Ca2+ homeostasis. We have previously shown that restoration of a key enzyme that controls intracellular Ca(2+) handling, the sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), induces functional improvement in heart failure. We used high-density oligonucleotide arrays to explore the effects of gene transfer of SERCA2a on genetic reprogramming in a model of heart failure. A total of 1,300 transcripts were identified to be unmodified by the effect of virus alone. Of those, 251 transcripts were found to be up- or down-regulated upon failure. A total of 51 transcripts which were either up--(27) or down--(24) regulated in heart failure were normalized to the nonfailing levels by the restoration of SERCA2a by gene transfer. The microarray analysis identified new genes following SERCA2a restoration in heart failure, which will give us insights into their role in the normalization of multiple pathways within the failing cell.
Collapse
Affiliation(s)
- Federica Del Monte
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
BACKGROUND Because of safety, repeatability, and portability, clinical echocardiography is well established as a standard for cardiac anatomy, cardiac function, and hemodynamics. Similarly, application of echocardiography in commonly used rat experimental models would be worthwhile. The use of noninvasive ultrasound imaging in the rat is a potential replacement for more invasive terminal techniques. Although echocardiography has become commonly used in the rat, normal parameters for cardiac anatomy and function, and comparison with established human values, have not been reported. METHODS A total of 44 Sprague-Dawley male rats had baseline echocardiography replicating a protocol for clinical echocardiography. RESULTS Complete 2-dimensional echocardiography for cardiac anatomy and function was obtained in 44 rats. Hemodynamic parameters could be recorded in 85% of rats. The ejection fraction and fractional shortening values of the left ventricle were similar to those reported for healthy human beings. Pulsed Doppler velocities of atrial systole for mitral valve inflow, pulmonary vein reversal, and Doppler tissue of the lateral mitral valve annulus also had similar means as healthy human beings. The calculated left ventricular mass was at the same order of magnitude as a proportion of body weight of rat to man. All other observations in the clinical protocol were different from those reported in healthy human beings. CONCLUSION The use of echocardiography for assessment of cardiac anatomy, function, and hemodynamics can be consistently applied to the rat and replicates much of the information used routinely in human echocardiography.
Collapse
Affiliation(s)
- Linley E Watson
- Division of Cardiology, Scott and White Memorial Hospital, 2401 S. 31st Street, Temple, TX 76508, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Studies on left ventricular mechanical work and energetics in rat and mouse hearts are reviewed. First, left ventricular linear end-systolic pressure-volume relation (ESPVR) and curved end-diastolic pressure-volume relation (EDPVR) in canine hearts and left ventricular curved ESPVR and curved EDPVR in rat hearts are reviewed. Second, as an index for total mechanical energy per beat in rat hearts as in canine hearts, a systolic pressure-volume area (PVA) is proposed. By the use of our original system for measuring continuous oxygen consumption for rat left ventricular mechanical work, the linear left ventricular myocardial oxygen consumption per beat (VO2)-PVA relation is obtained as in canine hearts. The slope of VO2-PVA relation (oxygen cost of PVA) indicates a ratio of chemomechanical energy transduction. VO2 intercept (PVA-independent VO2) indicates the summation of oxygen consumption for Ca2+ handling in excitation-contraction coupling and for basal metabolism. An equivalent maximal elastance (eEmax) is proposed as a new left ventricular contractility index based on PVA at the midrange left ventricular volume. The slope of the linear relation between PVA-independent VO2 and eEmax (oxygen cost of eEmax) indicates changes in oxygen consumption for Ca2+ handling in excitation-contraction coupling per unit changes in left ventricular contractility. The key framework of VO2-PVA-eEmax can give us a better understanding for the biology and mechanisms of physiological and various failing rat heart models in terms of mechanical work and energetics.
Collapse
Affiliation(s)
- M Takaki
- Department of Physiology II, Nara Medical University, Kashihara, Nara, 634-8521 Japan.
| |
Collapse
|
42
|
Yin H, Chao L, Chao J. Adrenomedullin Protects Against Myocardial Apoptosis After Ischemia/Reperfusion Through Activation of Akt-GSK Signaling. Hypertension 2004; 43:109-16. [PMID: 14662648 DOI: 10.1161/01.hyp.0000103696.60047.55] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adrenomedullin (AM) is a potent vasoactive peptide and plays an important role in cardiovascular function. In this study, we delivered the AM gene locally into the heart, using a catheter-based technique to investigate the signaling mechanism mediated by AM in protection against cardiomyocyte apoptosis induced by acute ischemia/reperfusion. After adenovirus-mediated gene delivery, highly efficient and specific expression of luciferase, green fluorescent protein, or recombinant human AM was identified in the left ventricle. Delivery of the AM gene 5 days before ischemia/reperfusion attenuated myocardial apoptosis identified by in situ dUTP nick-end labeling and DNA laddering, and the effect was blocked by the AM antagonist human calcitonin gene–related peptide (CGRP 8 to 37). AM gene transfer increased phosphorylation of Akt and glycogen synthase kinase (GSK-3β) but reduced GSK-3β and caspase-3 activities in the heart. The effects of AM on GSK-3β and caspase-3 activities were blocked by CGRP (8-37) and by adenovirus containing dominant-negative Akt (DN-Akt). Furthermore, in cultured cardiomyocytes, AM also attenuated apoptosis induced by hypoxia/reoxygenation, which was accompanied by increased phospho-GSK-3β but reduced GSK-3 and caspase-3 activities. GSK-3 and caspase-3 activities were both blocked by Ad.DN-Akt and lithium, whereas only caspase-3 was inhibited by its inhibitor Z-VAD. The effects of AM on anti-apoptosis and promoting cell viability were blocked by DN-Akt but not by constitutively active Akt, lithium, or Z-VAD. These results indicate that AM protects against cardiomyocyte apoptosis induced by ischemia/reperfusion injury through the Akt-GSK-caspase signaling pathway.
Collapse
Affiliation(s)
- Hang Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425-2211, USA
| | | | | |
Collapse
|
43
|
Bernecker OY, del Monte F, Hajjar RJ. Gene therapy for the treatment of heart failure--calcium signaling. Semin Thorac Cardiovasc Surg 2003; 15:268-76. [PMID: 12973704 DOI: 10.1016/s1043-0679(03)70006-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The knowledge of molecular mechanisms indicated in cardiac dysfunction has increased dramatically over the last decade and yields considerable potential for new treatment options in heart failure. Alterations in intracellular calcium signaling play a crucial role in the pathophysiology of heart failure, and in recent years, somatic gene transfer has been identified as an important tool to help understand the relative contribution of specific calcium-handling proteins in heart failure. This article reviews recent advances in gene delivery techniques aimed at global myocardial transfection and discusses molecular therapeutic targets identified within intracellular calcium signaling pathways in heart failure.
Collapse
Affiliation(s)
- Oliver Y Bernecker
- Program in Cardiovascular Gene Therapy, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
44
|
Abstract
This review examines the evidence for and against the hypothesis that abnormalities in cardiac contractility initiate the heart failure syndrome and drive its progression. There is substantial evidence that the contractility of failing human hearts is depressed and that abnormalities of basal Ca2+ regulation and adrenergic regulation of Ca2+ signaling are responsible. The cellular and molecular defects that cause depressed myocyte contractility are not well established but seem to culminate in abnormal sarcoplasmic reticulum uptake, storage, and release. There are also strong links between Ca2+ regulation, Ca2+ signaling pathways, hypertrophy, and heart failure that need to be more clearly delineated. There is not substantial direct evidence for a causative role for depressed contractility in the initiation and progression of human heart failure, and some studies show that heart failure can occur without depressed myocyte contractility. Stronger support for a causal role for depressed contractility in the initiation of heart failure comes from animal studies where maintaining or improving contractility can prevent heart failure. Recent clinical studies in humans also support the idea that beneficial heart failure treatments, such as beta-adrenergic antagonists, involve improved contractility. Current or previously used heart failure treatments that increase contractility, primarily by increasing cAMP, have generally increased mortality. Novel heart failure therapies that increase or maintain contractility or adrenergic signaling by selectively modulating specific molecules have produced promising results in animal experiments. How to reliably implement these potentially beneficial inotropic therapies in humans without introducing negative side effects is the major unanswered question in this field.
Collapse
Affiliation(s)
- Steven R Houser
- Cardiovascular Research Group, Temple University School of Medicine, 3400 N Broad St, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
45
|
Abstract
Our understanding of cardiac excitation-contraction coupling has improved significantly over the last 10 years. Furthermore, defects in the various steps of excitation-contraction coupling that characterize cardiac dysfunction have been identified in human and experimental models of heart failure. The various abnormalities in ionic channels, transporters, kinases and various signalling pathways collectively contribute to the 'failing phenotype.' However, deciphering the causative changes continues to be a challenge. An important tool in dissecting the importance of the various changes in heart failure has been the use of cardiac gene transfer. To achieve effective cardiac gene transfer a number of obstacles remain, including appropriate vectors for gene delivery, appropriate delivery systems, and a better understanding of the biology of the disease. In this review, we will examine our current understanding of these various factors. Gene transfer provides not only a potential therapeutic modality but also an approach to identifying and validating molecular targets.
Collapse
Affiliation(s)
- Federica del Monte
- Program in Cardiovascular Gene Therapy, Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|