1
|
The acidified drinking water-induced changes in the behavior and gut microbiota of wild-type mice depend on the acidification mode. Sci Rep 2021; 11:2877. [PMID: 33536529 PMCID: PMC7858586 DOI: 10.1038/s41598-021-82570-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Acidification of drinking water to a pH between 2.5 and 3.0 is widely used to prevent the spread of bacterial diseases in animal colonies. Besides hydrochloric acid (HCl), sulfuric acid (H2SO4) is also used to acidify drinking water. Here we examined the effects of H2SO4-acidified drinking water (pH = 2.8) received from weaning (postnatal day 21) on the behavior and gut microflora of 129S6/SvEv mice, a mouse strain commonly used in transgenic studies. In contrast to HCl-acidified water, H2SO4-acidified water only temporarily impaired the pole-descending ability of mice (at 3 months of age), and did not change the performance in an accelerating rotarod test. As compared to 129S6/SvEv mice receiving non-acidified or HCl-acidified drinking water, the gut microbiota of 129S6/SvEv mice on H2SO4-acidified water displayed significant alterations at every taxonomic level especially at 6 months of age. Our results demonstrate that the effects of acidified drinking water on the behavior and gut microbiota of 129S6/SvEv mice depends on the acid used for acidification. To shed some light on how acidified drinking water affects the physiology of 129S6/SvEv mice, we analyzed the serum and fecal metabolomes and found remarkable, acidified water-induced alterations.
Collapse
|
2
|
Shmukler BE, Rivera A, Bhargava P, Nishimura K, Kim EH, Hsu A, Wohlgemuth JG, Morton J, Snyder LM, De Franceschi L, Rust MB, Hubner CA, Brugnara C, Alper SL. Genetic disruption of KCC cotransporters in a mouse model of thalassemia intermedia. Blood Cells Mol Dis 2020; 81:102389. [PMID: 31835175 PMCID: PMC7002294 DOI: 10.1016/j.bcmd.2019.102389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
β-thalassemia (β-Thal) is caused by defective β-globin production leading to globin chain imbalance, aggregation of free alpha chain in developing erythroblasts, reticulocytes, and mature circulating red blood cells. The hypochromic thalassemic red cells exhibit increased cell dehydration in association with elevated K+ leak and increased K-Cl cotransport activity, each of which has been linked to globin chain imbalance and related oxidative stress. We therefore tested the effect of genetic inactivation of K-Cl cotransporters KCC1 and KCC3 in a mouse model of β-thalassemia intermedia. In the absence of these transporters, the anemia of β-Thal mice was ameliorated, in association with increased MCV and reductions in CHCM and hyperdense cells, as well as in spleen size. The resting K+ content of β-Thal red cells was greatly increased, and Thal-associated splenomegaly slightly decreased. Lack of KCC1 and KCC3 activity in Thal red cells reduced red cell density and improved β-Thal-associated osmotic fragility. We conclude that genetic inactivation of K-Cl cotransport can reverse red cell dehydration and partially attenuate the hematologic phenotype in a mouse model of β-thalassemia.
Collapse
Affiliation(s)
- Boris E Shmukler
- Renal Division and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America
| | - Alicia Rivera
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA 02115, United States of America; Department of Pathology, Harvard Medical School, Boston, MA 02115, United States of America
| | - Parul Bhargava
- Department of Laboratory Medicine, UCSF, San Francisco, CA, United States of America
| | - Katherine Nishimura
- Renal Division and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Edward H Kim
- Renal Division and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Ann Hsu
- Renal Division and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Jay G Wohlgemuth
- Quest Diagnostics, San Juan Capistrano, CA, United States of America
| | - James Morton
- Quest Diagnostics, San Juan Capistrano, CA, United States of America
| | | | - Lucia De Franceschi
- Dept. of Medicine, Universita Verona and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| | - Marco B Rust
- Institute of Physiological Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | | | - Carlo Brugnara
- Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA 02115, United States of America
| | - Seth L Alper
- Renal Division and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America; Department of Pathology, Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
3
|
Shmukler BE, Rivera A, Bhargava P, Nishimura K, Hsu A, Kim EH, Trudel M, Rust MB, Hubner CA, Brugnara C, Alper SL. Combined genetic disruption of K-Cl cotransporters and Gardos channel KCNN4 rescues erythrocyte dehydration in the SAD mouse model of sickle cell disease. Blood Cells Mol Dis 2019; 79:102346. [PMID: 31352162 PMCID: PMC6744291 DOI: 10.1016/j.bcmd.2019.102346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Excessive red cell dehydration contributes to the pathophysiology of sickle cell disease (SCD). The densest fraction of sickle red cells (with the highest corpuscular hemoglobin concentration) undergoes the most rapid polymerization of deoxy-hemoglobin S, leading to accelerated cell sickling and increased susceptibility to endothelial activation, red cell adhesion, and vaso-occlusion. Increasing red cell volume in order to decrease red cell density can thus serve as an adjunct therapeutic goal in SCD. Regulation of circulating mouse red cell volume and density is mediated largely by the Gardos channel, KCNN4, and the K-Cl cotransporters, KCC3 and KCC1. Whereas inhibition of the Gardos channel in subjects with sickle cell disease increased red cell volume, decreased red cell density, and improved other hematological indices in subjects with SCD, specific KCC inhibitors have not been available for testing. We therefore investigated the effect of genetic inactivation of KCC3 and KCC1 in the SAD mouse model of sickle red cell dehydration, finding decreased red cell density and improved hematological indices. We describe here generation of mice genetically deficient in the three major red cell volume regulatory gene products, KCNN4, KCC3, and KCC1 in C57BL6 non-sickle and SAD sickle backgrounds. We show that combined loss-of-function of all three gene products in SAD mice leads to incrementally increased MCV, decreased CHCM and % hyperchromic cells, decreased red cell density (phthalate method), increased resistance to hypo-osmotic lysis, and increased cell K content. The data show that combined genetic deletion of the Gardos channel and K-Cl cotransporters in a mouse SCD model decreases red cell density and improves several hematological parameters, supporting the strategy of combined pharmacological inhibition of these ion transport pathways in the adjunct treatment of human SCD.
Collapse
Affiliation(s)
- Boris E Shmukler
- Renal Division and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA 02115, United States of America
| | - Alicia Rivera
- Renal Division and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02115, United States of America; Department of Pathology, Harvard Medical School, Boston, MA 02115, United States of America
| | - Parul Bhargava
- Department of Laboratory Medicine, UCSF, San Francisco, CA, United States of America
| | - Katherine Nishimura
- Renal Division and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Ann Hsu
- Renal Division and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Edward H Kim
- Renal Division and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Marie Trudel
- Institut de Recherches Cliniques de Montreal, Molecular Genetics and Development, Faculte de Medecine, Universite of Montreal, Montreal, Quebec, Canada
| | - Marco B Rust
- Institute of Physiological Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | | | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA 02115, United States of America; Department of Pathology, Harvard Medical School, Boston, MA 02115, United States of America
| | - Seth L Alper
- Renal Division and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
4
|
Changes in motor behavior, neuropathology, and gut microbiota of a Batten disease mouse model following administration of acidified drinking water. Sci Rep 2019; 9:14962. [PMID: 31628420 PMCID: PMC6802212 DOI: 10.1038/s41598-019-51488-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
CLN3 mutations cause the fatal neurodegenerative disorder, CLN3 Batten disease. The Cln3−/− mouse model displays characteristic features of the human disease including motor deficits. When mice received acidified drinking water (pH 2.5–2.9) instead of normal tap water (pH 8.4) for several generations, the motor skills of Cln3−/− mice normalized to control levels, indicating a disease-modifying effect of acidified water. Here we investigated if acidified water administered from postnatal day 21 has therapeutic benefits in Cln3−/− mice. Indeed, acidified water temporarily attenuated the motor deficits, had beneficial effects on behavioral parameters and prevented microglial activation in the brain of Cln3−/− mice. Interestingly, in control mice, acidified drinking water caused brain region-specific glial activation and significant changes in motor performance. Since the gut microbiota can influence neurological functions, we examined it in our disease model and found that the gut microbiota of Cln3−/− mice was markedly different from control mice, and acidified water differentially changed the gut microbiota composition in these mice. These results indicate that acidified water may provide therapeutic benefit to CLN3 Batten disease patients, and that the pH of drinking water is a major environmental factor that strongly influences the results of murine behavioral and pathological studies.
Collapse
|
5
|
Rivera A, Vandorpe DH, Shmukler BE, Andolfo I, Iolascon A, Archer NM, Shabani E, Auerbach M, Hamerschlak N, Morton J, Wohlgemuth JG, Brugnara C, Snyder LM, Alper SL. Erythrocyte ion content and dehydration modulate maximal Gardos channel activity in KCNN4 V282M/+ hereditary xerocytosis red cells. Am J Physiol Cell Physiol 2019; 317:C287-C302. [PMID: 31091145 DOI: 10.1152/ajpcell.00074.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hereditary xerocytosis (HX) is caused by missense mutations in either the mechanosensitive cation channel PIEZO1 or the Ca2+-activated K+ channel KCNN4. All HX-associated KCNN4 mutants studied to date have revealed increased current magnitude and red cell dehydration. Baseline KCNN4 activity was increased in HX red cells heterozygous for KCNN4 mutant V282M. However, HX red cells maximally stimulated by Ca2+ ionophore A23187 or by PMCA Ca2+-ATPase inhibitor orthovanadate displayed paradoxically reduced KCNN4 activity. This reduced Ca2+-stimulated mutant KCNN4 activity in HX red cells was associated with unchanged sensitivity to KCNN4 inhibitor senicapoc and KCNN4 activator Ca2+, with slightly elevated Ca2+ uptake and reduced PMCA activity, and with decreased KCNN4 activation by calpain inhibitor PD150606. The altered intracellular monovalent cation content of HX red cells prompted experimental nystatin manipulation of red cell Na and K contents. Nystatin-mediated reduction of intracellular K+ with corresponding increase in intracellular Na+ in wild-type cells to mimic conditions of HX greatly suppressed vanadate-stimulated and A23187-stimulated KCNN4 activity in those wild-type cells. However, conferral of wild-type cation contents on HX red cells failed to restore wild-type-stimulated KCNN4 activity to those HX cells. The phenotype of reduced, maximally stimulated KCNN4 activity was shared by HX erythrocytes expressing heterozygous PIEZO1 mutants R2488Q and V598M, but not by HX erythrocytes expressing heterozygous KCNN4 mutant R352H or PIEZO1 mutant R2456H. Our data suggest that chronic KCNN4-driven red cell dehydration and intracellular cation imbalance can lead to reduced KCNN4 activity in HX and wild-type red cells.
Collapse
Affiliation(s)
- Alicia Rivera
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - David H Vandorpe
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Boris E Shmukler
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Natasha M Archer
- Division of Hematology and Oncology, Boston Children's Hospital, Dana-Farber Cancer Center, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Estela Shabani
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | - Nelson Hamerschlak
- Department of Hematology, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - James Morton
- Quest Diagnostics, San Juan Capistrano, California
| | | | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - L Michael Snyder
- Quest Diagnostics, Marlborough, Massachusetts.,Departments of Medicine and Laboratory Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts
| | - Seth L Alper
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
6
|
Flatt JF, Bruce LJ. The Molecular Basis for Altered Cation Permeability in Hereditary Stomatocytic Human Red Blood Cells. Front Physiol 2018; 9:367. [PMID: 29713289 PMCID: PMC5911802 DOI: 10.3389/fphys.2018.00367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/27/2018] [Indexed: 11/20/2022] Open
Abstract
Normal human RBCs have a very low basal permeability (leak) to cations, which is continuously corrected by the Na,K-ATPase. The leak is temperature-dependent, and this temperature dependence has been evaluated in the presence of inhibitors to exclude the activity of the Na,K-ATPase and NaK2Cl transporter. The severity of the RBC cation leak is altered in various conditions, most notably the hereditary stomatocytosis group of conditions. Pedigrees within this group have been classified into distinct phenotypes according to various factors, including the severity and temperature-dependence of the cation leak. As recent breakthroughs have provided more information regarding the molecular basis of hereditary stomatocytosis, it has become clear that these phenotypes elegantly segregate with distinct genetic backgrounds. The cryohydrocytosis phenotype, including South-east Asian Ovalocytosis, results from mutations in SLC4A1, and the very rare condition, stomatin-deficient cryohydrocytosis, is caused by mutations in SLC2A1. Mutations in RHAG cause the very leaky condition over-hydrated stomatocytosis, and mutations in ABCB6 result in familial pseudohyperkalemia. All of the above are large multi-spanning membrane proteins and the mutations may either modify the structure of these proteins, resulting in formation of a cation pore, or otherwise disrupt the membrane to allow unregulated cation movement across the membrane. More recently mutations have been found in two RBC cation channels, PIEZO1 and KCNN4, which result in dehydrated stomatocytosis. These mutations alter the activation and deactivation kinetics of these channels, leading to increased opening and allowing greater cation fluxes than in wild type.
Collapse
Affiliation(s)
- Joanna F Flatt
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| |
Collapse
|
7
|
Prado GN, Romero JR, Rivera A. Endothelin-1 receptor antagonists regulate cell surface-associated protein disulfide isomerase in sickle cell disease. FASEB J 2013; 27:4619-29. [PMID: 23913858 PMCID: PMC3804753 DOI: 10.1096/fj.13-228577] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/09/2013] [Indexed: 01/29/2023]
Abstract
Increased endothelin-1 (ET-1) levels, disordered thiol protein status, and erythrocyte hydration status play important roles in sickle cell disease (SCD) through unresolved mechanisms. Protein disulfide isomerase (PDI) is an oxidoreductase that mediates thiol/disulfide interchange reactions. We provide evidence that PDI is present in human and mouse erythrocyte membranes and that selective blockade with monoclonal antibodies against PDI leads to reduced Gardos channel activity (1.6±0.03 to 0.56±0.02 mmol·10(13) cell(-1)·min(-1), P<0.001) and density of sickle erythrocytes (D50: 1.115±0.001 to 1.104±0.001 g/ml, P=0.012) with an IC50 of 4 ng/ml. We observed that erythrocyte associated-PDI activity was increased in the presence of ET-1 (3.1±0.2 to 5.6±0.4%, P<0.0001) through a mechanism that includes casein kinase II. Consistent with these results, in vivo treatment of BERK sickle transgenic mice with ET-1 receptor antagonists lowered circulating and erythrocyte associated-PDI activity (7.1±0.3 to 5.2±0.2%, P<0.0001) while improving hematological parameters and Gardos channel activity. Thus, our results suggest that PDI is a novel target in SCD that regulates erythrocyte volume and oxidative stress and may contribute to cellular adhesion and endothelial activation leading to vasoocclusion as observed in SCD.
Collapse
Affiliation(s)
- Gregory N Prado
- 1Department of Laboratory Medicine, Bader 7, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA.
| | | | | |
Collapse
|
8
|
Romero JR, Youte R, Brown EM, Pollak MR, Goltzman D, Karaplis A, Pong LC, Chien L, Chattopadhyay N, Rivera A. Parathyroid hormone ablation alters erythrocyte parameters that are rescued by calcium-sensing receptor gene deletion. Eur J Haematol 2013; 91:37-45. [PMID: 23528155 DOI: 10.1111/ejh.12110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2013] [Indexed: 11/29/2022]
Abstract
The mechanisms by which parathyroid hormone (PTH) produces anemia are unclear. Parathyroid hormone secretion is regulated by the extracellular Ca2+ -sensing receptor. We investigated the effects of ablating PTH on hematological indices and erythrocytes volume regulation in wild-type, PTH-null, and Ca2+ -sensing receptor-null/PTH-null mice. The erythrocyte parameters were measured in whole mouse blood, and volume regulatory systems were determined by plasma membrane K+ fluxes, and osmotic fragility was measured by hemoglobin determination at varying osmolarities. We observed that the absence of PTH significantly increases mean erythrocyte volume and reticulocyte counts, while decreasing erythrocyte counts, hemoglobin, hematocrit, and mean corpuscular hemoglobin concentration. These changes were accompanied by increases in erythrocyte cation content, a denser cell population, and increased K+ permeability, which were in part mediated by activation of the K+ /Cl- cotransporter and Gardos channel. In addition we observed that erythrocyte osmotic fragility in PTH-null compared with wild-type mice was enhanced. When Ca2+ -sensing receptor gene was deleted on the background of PTH-null mice, we observed that several of the alterations in erythrocyte parameters of PTH-null mice were largely rescued, particularly those related to erythrocyte volume, K+ fluxes and osmotic fragility, and became similar to those observed in wild-type mice. Our results demonstrate that Ca2+ -sensing receptor and parathyroid hormone are functionally coupled to maintain erythrocyte homeostasis.
Collapse
Affiliation(s)
- Jose R Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|