1
|
Yun QS, Bao YX, Jiang JB, Guo Q. Mechanisms of norcantharidin against renal tubulointerstitial fibrosis. Pharmacol Rep 2024; 76:263-272. [PMID: 38472637 DOI: 10.1007/s43440-024-00578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Renal tubulointerstitial fibrosis (RTIF) is a common feature and inevitable consequence of all progressive chronic kidney diseases, leading to end-stage renal failure regardless of the initial cause. Although research over the past few decades has greatly improved our understanding of the pathophysiology of RTIF, until now there has been no specific treatment available that can halt the progression of RTIF. Norcantharidin (NCTD) is a demethylated analogue of cantharidin, a natural compound isolated from 1500 species of medicinal insect, the blister beetle (Mylabris phalerata Pallas), traditionally used for medicinal purposes. Many studies have found that NCTD can attenuate RTIF and has the potential to be an anti-RTIF drug. This article reviews the recent progress of NCTD in the treatment of RTIF, with emphasis on the pharmacological mechanism of NCTD against RTIF.
Collapse
Affiliation(s)
- Qin-Su Yun
- Department of Pharmacy, The First People's Hospital of Changzhou and the 3rd Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, Guizhou, China.
| | - Jie-Bing Jiang
- Department of Pharmacology, Naval Medical University, Shanghai, 200433, China
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, 226001 , Jiangsu, China.
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
2
|
He K, Zhou X, Zhao J, Du H, Guo J, Deng R, Wang J. Identification and Functional Mechanism Verification of Novel MicroRNAs Associated with the Fibrosis Progression in Chronic Kidney Disease. Biochem Genet 2024:10.1007/s10528-024-10688-7. [PMID: 38316653 DOI: 10.1007/s10528-024-10688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Chronic kidney disease (CKD) is a serious threat to human health worldwide, and its incidence is increasing annually. A growing amount of information is emerging about the role of micoRNAs (miRNAs) in the regulation of renal fibrosis, which has aroused interest in the development of drugs that block pathogenic miRNAs or restore protective miRNAs levels. To clarify the role of miRNAs in CKD, we selected patients with significant renal fibrotic disease (diabetic nephropathy (DN) and focal segmental glomerulosclerosis (FSGS)) as the disease group, and patients with little or no renal fibrotic disease (minimal change disease (MCD) and renal carcinoma adjacent to normal kidney) as controls. Significantly differentially expressed miRNAs were obtained by human kidney tissue sequencing, subsequently verified in mice models of DN and FSGS, and subsequently inhibited or overexpressed in human renal tubular epithelial cells (HK-2) stimulated by high glucose (HG) and TGF-β1 in vitro. Therefore, the mechanism of its action in renal fibrosis was further elaborated. Finally, the downstream target genes of the corresponding miRNAs were verified by bioinformatics analysis, qRT-PCR, western blot and double luciferase report analysis. Two novel miRNAs, hsa-miR-1470-3p (miR-1470) and hsa-miR-4483-3p (miR-4483), were detected by renal tissue sequencing in the disease group with significant renal fibrosis (DN and FSGS) and the control group with little or no renal fibrosis (MCD and normal renal tissue adjacent to renal carcinoma). Subsequent human renal tissue qRT-PCR verified that the expression of miR-1470 was significantly increased, while the expression of miR-4483 was markedly decreased in the disease group (p < 0.05). Moreover, in vivo DN and FSGS mice models, the expression levels of miR-1470 and miR-4483 were consistent with the results of human kidney tissue. In vitro, miR-4483 was suppressed, whereas miR-1470 was induced by treatment with TGF-β1 or HG. Inhibition of miR-1470 or overexpression of miR-4483 promoted HG or TGF-β1-induced fibrosis in HK-2 cells. Further study revealed that MMP-13 and TIMP1 were the target genes ofmiR-1470 and miR-4483, respectively. Our study identifies newly dysregulated miRNA profiles related to fibrosis kidneys. miR-1470 and miR-4483 are demonstrated to participate in kidney fibrosis by regulation of MMP-13, TIMP1 respectively. Our results may represent a promising research direction for renal disorders and help identify new biomarkers and therapeutic targets for CKD.
Collapse
Affiliation(s)
- Kaiying He
- Lanzhou University, Lanzhou, Gansu, China
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, Gansu, China
| | - Xiaochun Zhou
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, Gansu, China
| | - Jing Zhao
- Lanzhou University, Lanzhou, Gansu, China
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, Gansu, China
| | - Hongxuan Du
- Lanzhou University, Lanzhou, Gansu, China
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, Gansu, China
| | - Juan Guo
- Xi'an Huyi District Hospital Of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Rongrong Deng
- Lanzhou University, Lanzhou, Gansu, China
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, Gansu, China
| | - Jianqin Wang
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, Gansu, China.
| |
Collapse
|
3
|
Seyhan AA. Trials and Tribulations of MicroRNA Therapeutics. Int J Mol Sci 2024; 25:1469. [PMID: 38338746 PMCID: PMC10855871 DOI: 10.3390/ijms25031469] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The discovery of the link between microRNAs (miRNAs) and a myriad of human diseases, particularly various cancer types, has generated significant interest in exploring their potential as a novel class of drugs. This has led to substantial investments in interdisciplinary research fields such as biology, chemistry, and medical science for the development of miRNA-based therapies. Furthermore, the recent global success of SARS-CoV-2 mRNA vaccines against the COVID-19 pandemic has further revitalized interest in RNA-based immunotherapies, including miRNA-based approaches to cancer treatment. Consequently, RNA therapeutics have emerged as highly adaptable and modular options for cancer therapy. Moreover, advancements in RNA chemistry and delivery methods have been pivotal in shaping the landscape of RNA-based immunotherapy, including miRNA-based approaches. Consequently, the biotechnology and pharmaceutical industry has witnessed a resurgence of interest in incorporating RNA-based immunotherapies and miRNA therapeutics into their development programs. Despite substantial progress in preclinical research, the field of miRNA-based therapeutics remains in its early stages, with only a few progressing to clinical development, none reaching phase III clinical trials or being approved by the US Food and Drug Administration (FDA), and several facing termination due to toxicity issues. These setbacks highlight existing challenges that must be addressed for the broad clinical application of miRNA-based therapeutics. Key challenges include establishing miRNA sensitivity, specificity, and selectivity towards their intended targets, mitigating immunogenic reactions and off-target effects, developing enhanced methods for targeted delivery, and determining optimal dosing for therapeutic efficacy while minimizing side effects. Additionally, the limited understanding of the precise functions of miRNAs limits their clinical utilization. Moreover, for miRNAs to be viable for cancer treatment, they must be technically and economically feasible for the widespread adoption of RNA therapies. As a result, a thorough risk evaluation of miRNA therapeutics is crucial to minimize off-target effects, prevent overdosing, and address various other issues. Nevertheless, the therapeutic potential of miRNAs for various diseases is evident, and future investigations are essential to determine their applicability in clinical settings.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
4
|
Lin Y, Ma L, Dan H, Chen G, Dai J, Xu L, Liu Y. MiR-107-3p Knockdown Alleviates Endothelial Injury in Sepsis via Kallikrein-Related Peptidase 5. J Surg Res 2023; 292:264-274. [PMID: 37666089 DOI: 10.1016/j.jss.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Endothelial injury is a major characteristic of sepsis and contributes to sepsis-induced multiple-organ dysfunction. In this study, we investigated the role of miR-107-3p in sepsis-induced endothelial injury. METHODS Human umbilical vein endothelial cells (HUVECs) were exposed to 20 μg/mL of lipopolysaccharide (LPS) for 6-48 h. The levels of miR-107-3p and kallikrein-related peptidase 5 (KLK5) were examined. HUVECs were treated with LPS for 12 h and subsequently transfected with miR-107-3p inhibitor, KLK5 siRNA, or cotransfected with KLK5 siRNA and miR-107-3p inhibitor/negative control inhibitor. Cell survival, apoptosis, invasion, cell permeability, inflammatory response, and the Toll-like receptor 4/nuclear factor κB signaling were evaluated. In addition, the relationship between miR-107-3p and KLK5 expression was predicted and verified. RESULTS LPS significantly elevated miR-107-3p levels, which peaked at 12 h. Conversely, the KLK5 level was lower in the LPS group than in the control group and was lowest at 12 h. MiR-107-3p knockdown significantly attenuated reductions in cell survival and invasion, apoptosis promotion, hyperpermeability and inflammation induction, and activation of the NF-κB signaling caused by LPS. KLK5 knockdown had the opposite effect. Additionally, KLK5 was demonstrated as a target of miR-107-3p. MiR-107-3p knockdown partially reversed the effects of KLK5 depletion in LPS-activated HUVECs. CONCLUSIONS Our findings indicate that miR-107-3p knockdown may protect against sepsis-induced endothelial cell injury by targeting KLK5. This study identified a novel therapeutic target for sepsis-induced endothelial injury.
Collapse
Affiliation(s)
- Yongbo Lin
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Li Ma
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hanliang Dan
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Gang Chen
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China
| | - Jian Dai
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China
| | - Liang Xu
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China.
| | - Yuqi Liu
- Department of Respiratory and Critical Care Medicine, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
5
|
Fattahi M, Shahrabi S, Saadatpour F, Rezaee D, Beyglu Z, Delavari S, Amrolahi A, Ahmadi S, Bagheri-Mohammadi S, Noori E, Majidpoor J, Nouri S, Aghaei-Zarch SM, Falahi S, Najafi S, Le BN. microRNA-382 as a tumor suppressor? Roles in tumorigenesis and clinical significance. Int J Biol Macromol 2023; 250:125863. [PMID: 37467828 DOI: 10.1016/j.ijbiomac.2023.125863] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs belonging to a class of non-coding RNAs with an average length of 18-22 nucleotides. Although not able to encode any protein, miRNAs are vastly studied and found to play role in various human physiologic as well as pathological conditions. A huge number of miRNAs have been identified in human cells whose expression is straightly regulated with crucial biological functions, while this number is constantly increasing. miRNAs are particularly studied in cancers, where they either can act with oncogenic function (oncomiRs) or tumor-suppressors role (referred as tumor-suppressor/oncorepressor miRNAs). miR-382 is a well-studied miRNA, which is revealed to play regulatory roles in physiological processes like osteogenic differentiation, hematopoietic stem cell differentiation and normal hematopoiesis, and liver progenitor cell differentiation. Notably, miR-382 deregulation is reported in pathologic conditions, such as renal fibrosis, muscular dystrophies, Rett syndrome, epidural fibrosis, atrial fibrillation, amelogenesis imperfecta, oxidative stress, human immunodeficiency virus (HIV) replication, and various types of cancers. The majority of oncogenesis studies have claimed miR-382 downregulation in cancers and suppressor impact on malignant phenotype of cancer cells in vitro and in vivo, while a few studies suggest opposite findings. Given the putative role of this miRNA in regulation of oncogenesis, assessment of miR-382 expression is suggested in a several clinical investigations as a prognostic/diagnostic biomarker for cancer patients. In this review, we have an overview to recent studies evaluated the role of miR-382 in oncogenesis as well as its clinical potential.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Zahra Beyglu
- Department of Genetics, Qom Branch, Islamic Azad University, Qom, Iran
| | - Sana Delavari
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Anita Amrolahi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Effat Noori
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Shadi Nouri
- Department of Radiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Binh Nguyen Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
6
|
Nasci VL, Liu P, Marks AM, Williams AC, Kriegel AJ. Transcriptomic analysis identifies novel candidates in cardiorenal pathology mediated by chronic peritoneal dialysis. Sci Rep 2023; 13:10051. [PMID: 37344499 DOI: 10.1038/s41598-023-36647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
Peritoneal dialysis (PD) is associated with increased cardiovascular (CV) risk. Studies of PD-related CV pathology in animal models are lacking despite the clinical importance. Here we introduce the phenotypic evaluation of a rat model of cardiorenal syndrome in response to chronic PD, complemented by a rich transcriptomic dataset detailing chronic PD-induced changes in left ventricle (LV) and kidney tissues. This study aims to determine how PD alters CV parameters and risk factors while identifying pathways for potential therapeutic targets. Sprague Dawley rats underwent Sham or 5/6 nephrectomy (5/6Nx) at 10 weeks of age. Six weeks later an abdominal dialysis catheter was placed in all rats before random assignment to Control or PD (3 daily 1-h exchanges) groups for 8 days. Renal and LV pathology and transcriptomic analysis was performed. The PD regimen reduced circulating levels of BUN in 5/6Nx, indicating dialysis efficacy. PD did not alter blood pressure or cardiovascular function in Sham or 5/6Nx rats, though it attenuated cardiac hypertrophy. Importantly PD increased serum triglycerides in 5/6Nx rats. Furthermore, transcriptomic analysis revealed that PD induced numerous changed transcripts involved with inflammatory pathways, including neutrophil activation and atherosclerosis signaling. We have adapted a uremic rat model of chronic PD. Chronic PD induced transcriptomic changes related to inflammatory signaling that occur independent of 5/6Nx and augmented circulating triglycerides and predicted atherosclerosis signaling in 5/6Nx LV tissues. The changes are indicative of increased CV risk due to PD and highlight several pathways for potential therapeutic targets.
Collapse
Affiliation(s)
- Victoria L Nasci
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Amanda M Marks
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Adaysha C Williams
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
7
|
Williams AC, Singh V, Liu P, Kriegel AJ. Liquid Biopsies Poorly miRror Renal Ischemia-Reperfusion Injury. Noncoding RNA 2023; 9:ncrna9020024. [PMID: 37104006 PMCID: PMC10141369 DOI: 10.3390/ncrna9020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Acute kidney injury (AKI) is the rapid reduction in renal function. It is often difficult to detect at an early stage. Biofluid microRNAs (miRs) have been proposed as novel biomarkers due to their regulatory role in renal pathophysiology. The goal of this study was to determine the overlap in AKI miRNA profiles in the renal cortex, urine, and plasma samples collected from a rat model of ischemia-reperfusion (IR)-induced AKI. Bilateral renal ischemia was induced by clamping the renal pedicles for 30 min, followed by reperfusion. Urine was then collected over 24 h, followed by terminal blood and tissue collection for small RNA profiling. Differentially expressed (IR vs. sham) miRs within the urine and renal cortex sample types demonstrated a strong correlation in normalized abundance regardless of injury (IR and sham: R2 = 0.8710 and 0.9716, respectively). Relatively few miRs were differentially expressed in multiple samples. Further, there were no differentially expressed miRs with clinically relevant sequence conservation common between renal cortex and urine samples. This project highlights the need for a comprehensive analysis of potential miR biomarkers, including analysis of pathological tissues and biofluids, with the goal of identifying the cellular origin of altered miRs. Analysis at earlier timepoints is needed to further evaluate clinical potential.
Collapse
Affiliation(s)
- Adaysha C. Williams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vaishali Singh
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Alison J. Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Wang X, Jia P, Ren T, Zou Z, Xu S, Zhang Y, Shi Y, Bao S, Li Y, Fang Y, Ding X. MicroRNA-382 Promotes M2-Like Macrophage via the SIRP-α/STAT3 Signaling Pathway in Aristolochic Acid-Induced Renal Fibrosis. Front Immunol 2022; 13:864984. [PMID: 35585990 PMCID: PMC9108237 DOI: 10.3389/fimmu.2022.864984] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/31/2022] [Indexed: 12/17/2022] Open
Abstract
Aristolochic acid nephropathy (AAN) is a type of drug-induced nephropathy and is correlated with a potentially progression of kidney fibrosis. However, whether miR-382 is implicated in macrophage activation in AA-induced kidney fibrosis remains elusive. Here, cell-sorting experiments defined a significant miR-382 enrichment in renal macrophage after AAN 14 days. Then, we found that treatment of AA induced a significant switch in the phenotype of macrophage both in vivo and in vitro. Furthermore, miR-382 knockout (KO) mice and miR-382-/- bone marrow-derived macrophage (BMDM) were subjected to AA induction. We found that both systemic KO and macrophage-specific miR-382 depletion notably suppressed M2-like macrophage activation as well as kidney interstitial fibrosis. Additionally, adoptive transfer of miR-382 overexpression BMDMs into mice promoted AA-induced kidney injury. Moreover, in cultured macrophage, upregulation of miR-382 promoted M2-related gene expression, accompanied by downregulation of signal regulatory protein α (SIRP-α) and activation of signal transducer and activator of transcription 3 (STAT3). The interaction between miR-382 and SIRP-α was evaluated via dual-luciferase assay. Knockdown of SIRP-α upregulated phosphorylated STAT3 at S727 and Y705. Pharmacological inhibition of STAT3 was performed both in vivo and in vitro. Inhibition of STAT3 attenuated AA-induced kidney fibrosis, in parallel to lesser macrophage M2 polarization. Coculture experiments further confirmed that overexpressed miR-382 in macrophage promoted injuries of tubular cells. Luminex bio-chip detection suggested that IL-4 and CCL-5 were critical in the cross talk between macrophages and tubular cells. Taken together, our data suggest that miR-382 is a critical mediator in M2-like macrophage polarization and can be a promising therapeutic target for kidney fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Ping Jia
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Ting Ren
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Zhouping Zou
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Sujuan Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Yunlu Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Yiqin Shi
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Siyu Bao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Yingxiang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- *Correspondence: Xiaoqiang Ding, ; Yi Fang,
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- *Correspondence: Xiaoqiang Ding, ; Yi Fang,
| |
Collapse
|
10
|
Grimes JA, Lourenço BN, Coleman AE, Rissi DR, Schmiedt CW. MicroRNAs are differentially expressed in the serum and renal tissues of cats with experimentally induced chronic kidney disease: a preliminary study. Am J Vet Res 2022; 83:426-433. [PMID: 35239506 DOI: 10.2460/ajvr.21.08.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify differentially expressed microRNA in the serum and renal tissues of cats with experimentally induced chronic kidney disease (CKD). SAMPLE Banked renal tissues and serum from 4 cats. PROCEDURES Cats previously underwent 90-minute unilateral ischemia with delayed contralateral nephrectomy 3 months after ischemia. Tissues were collected from the contralateral kidney at the time of nephrectomy and from the ischemic kidney 6 months after nephrectomy (study end). Serum was collected prior to ischemia (baseline serum) and at study end (end point serum). Total RNA was isolated from tissues and serum, and microRNA sequencing was performed with differential expression analysis between the contralateral and ischemic kidney and baseline and end point serum. RESULTS 20 microRNAs were differentially expressed between ischemic and contralateral kidneys, and 52 microRNAs were differentially expressed between end point and baseline serum. Five microRNAs were mutually differentially expressed between ischemic and contralateral kidneys and baseline and end point serum, with 4 (mir-21, mir-146, mir-199, and mir-235) having increased expression in both the ischemic kidney and end point serum and 1 (mir-382) having increased expression in the ischemic kidney and decreased expression in end point serum. Predicted target search for these microRNA revealed multiple genes previously shown to be involved in the pathogenesis of feline CKD, including hypoxia-inducible factor-1α, transforming growth factor-β, hepatocyte growth factor, fibronectin, and vascular endothelial growth factor A. CLINICAL RELEVANCE MicroRNAs were differentially expressed after CKD induction in this preliminary study. Regulation of renal fibrosis in feline CKD may occur through microRNA regulation of mRNAs of pro- and anti-fibrotic genes.
Collapse
Affiliation(s)
- Janet A Grimes
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Bianca N Lourenço
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Amanda E Coleman
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Daniel R Rissi
- Athens Veterinary Diagnostic Laboratory, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Chad W Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| |
Collapse
|
11
|
Chen J, Yang S, Li P, Wu A, Nepovimova E, Long M, Wu W, Kuca K. MicroRNA regulates the toxicological mechanism of four mycotoxins in vivo and in vitro. J Anim Sci Biotechnol 2022; 13:37. [PMID: 35197116 PMCID: PMC8867758 DOI: 10.1186/s40104-021-00653-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/21/2021] [Indexed: 11/30/2022] Open
Abstract
Mycotoxins can cause body poisoning and induce carcinogenesis, often with a high mortality rate. Therefore, it is of great significance to seek new targets that indicate mycotoxin activity and to diagnose and intervene in mycotoxin-induced diseases in their early stages. MicroRNAs (miRNAs) are physiological regulators whose dysregulation is closely related to the development of diseases. They are thus important markers for the occurrence and development of diseases. In this review, consideration is given to the toxicological mechanisms associated with four major mycotoxins (ochratoxin A, aflatoxin B1, deoxynivalenol, and zearalenone). The roles that miRNAs play in these mechanisms and the interactions between them and their target genes are explained, and summarize the important role of histone modifications in their toxicity. As a result, the ways that miRNAs are regulated in the pathogenicity signaling pathways are revealed which highlights the roles played by miRNAs in preventing and controlling the harmful effects of the mycotoxins. It is hoped that this review will provide a theoretical basis for the prevention and control of the damage caused by these mycotoxins.
Collapse
Affiliation(s)
- Jia Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuhua Yang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Peng Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic. .,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| |
Collapse
|
12
|
Chavda V, Chaurasia B, Deora H, Umana GE. Chronic Kidney disease and stroke: A Bi-directional risk cascade and therapeutic update. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
13
|
Zhang Y, Zhang GX, Che LS, Shi SH, Li YT. miR‑212 promotes renal interstitial fibrosis by inhibiting hypoxia‑inducible factor 1‑α inhibitor. Mol Med Rep 2021; 23:189. [PMID: 33495813 PMCID: PMC7809912 DOI: 10.3892/mmr.2021.11828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Renal interstitial fibrosis is one of the common causes, and a major pathological basis for the development of various types of chronic progressive renal to end-stage renal diseases. Therefore, it is important to clarify the underlying mechanisms of disease progression in order to develop effective strategies for the treatment and prevention of these pathologies. The aim of the present study was to investigate the association between microRNA (miR)-212 expression and the development of renal interstitial fibrosis, as well as analyzing the role of miR-212 in the disease. The expression of miR-212 was significantly increased in the peripheral blood of patients with renal interstitial fibrosis and in the kidney tissues of unilateral ureteral obstruction (UUO) mice. Angiotensin (Ang) II, TGF-β1 and hypoxia were found to increase the expression of miR-212 and α smooth muscle actin (α-SMA) in NRK49F cells. Ang II stimulation induced the expression of miR-212 and α-SMA in NRK49F cells, while transfection of miR-212 mimics further upregulated the expression of α-SMA. miR-212 was also revealed to target hypoxia-inducible factor 1α inhibitor (HIF1AN) and to upregulate the expression of hypoxia-inducible factor 1α, α-SMA, connective tissue growth factor, collagen α-1(I) chain and collagen α-1(III) chain, whereas HIF1AN overexpression reversed the regulatory effects of miR-212. In UUO mice, miR-212 overexpression promoted the progression of renal interstitial fibrosis, whereas inhibiting miR-212 resulted in the opposite effect. These results indicated that high expression of miR-212 was closely associated with the occurrence of renal interstitial fibrosis, and that miR-212 may promote its development by targeting HIF1AN.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Guo-Xin Zhang
- Department of Geriatrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Li-Shuang Che
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Shu-Han Shi
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yue-Ting Li
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
14
|
Peters LJF, Floege J, Biessen EAL, Jankowski J, van der Vorst EPC. MicroRNAs in Chronic Kidney Disease: Four Candidates for Clinical Application. Int J Mol Sci 2020; 21:E6547. [PMID: 32906849 PMCID: PMC7555601 DOI: 10.3390/ijms21186547] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
There are still major challenges regarding the early diagnosis and treatment of chronic kidney disease (CKD), which is in part due to the fact that its pathophysiology is very complex and not clarified in detail. The diagnosis of CKD commonly is made after kidney damage has occurred. This highlights the need for better mechanistic insight into CKD as well as improved clinical tools for both diagnosis and treatment. In the last decade, many studies have focused on microRNAs (miRs) as novel diagnostic tools or clinical targets. MiRs are small non-coding RNA molecules that are involved in post-transcriptional gene regulation and many have been studied in CKD. A wide array of pre-clinical and clinical studies have highlighted the potential role for miRs in the pathogenesis of hypertensive nephropathy, diabetic nephropathy, glomerulonephritis, kidney tubulointerstitial fibrosis, and some of the associated cardiovascular complications. In this review, we will provide an overview of the miRs studied in CKD, especially highlighting miR-103a-3p, miR-192-5p, the miR-29 family and miR-21-5p as these have the greatest potential to result in novel therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074 Aachen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Erik A. L. Biessen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074 Aachen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
15
|
Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway. Cell Death Dis 2020; 11:620. [PMID: 32796834 PMCID: PMC7429500 DOI: 10.1038/s41419-020-02876-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) has a critical role in the development of chronic kidney disease (CKD). Building on our previous findings, we explored the role of miR-382 in facilitating the transition of AKI to CKD using the Aristolochic acid (AA) nephropathy model, which was induced by intraperitoneal injection of aristolochic acid I salt (10 or 20 mg/kg). The effects of genetic depletion, pharmacologic inhibition, or overexpression of miR-382 on the PTEN/AKT signaling pathway were examined in vivo and in vitro. Changes in renal pathology and renal epithelial polarity were evaluated. A luciferase reporter assay was performed to investigate the reciprocal suppression relationship between miR-382 and PTEN. Renal fibrosis developed 14 d after AA exposure in a dose- and time-dependent manner. Renal abundance of miR-382 was upregulated following AA treatment, while genetic depletion or pharmacological inhibition of miR-382 partially reversed renal tubulointerstitial fibrosis. Expression of PTEN, a target of miR-382, was downregulated and subsequently its downstream AKT signaling pathway was activated during AKI to CKD transition induced by AA. Inhibition of PTEN in vitro resulted in the acquisition of the EMT phenotypes. Furthermore, upregulation of miR-382 in renal epithelial cells was partially mediated by the activation of NF-kB signaling, with a substantial elevation of proinflammatory cytokines. An in vivo study revealed that either miR-382 knockdown or miR-382 knockout was pivotal for inflammatory suppression, while an in vitro experiment confirmed that upregulation of miR-382 in cultured MTEC cells under AA exposure was remarkably reversed by NF-kB siRNA. These data indicated a novel role for the NF-κB/miR-382/PTEN/AKT axis in the pathogenesis of tubulointerstitial fibrosis following AA-induced acute renal tubular epithelial injury. Targeting miR-382 may lead to a potential novel therapeutic approach for retarding the AKT to CKD transition.
Collapse
|
16
|
Cheng Y, Wang D, Wang F, Liu J, Huang B, Baker MA, Yin J, Wu R, Liu X, Regner KR, Usa K, Liu Y, Zhang C, Dong L, Geurts AM, Wang N, Miller SS, He Y, Liang M. Endogenous miR-204 Protects the Kidney against Chronic Injury in Hypertension and Diabetes. J Am Soc Nephrol 2020; 31:1539-1554. [PMID: 32487559 DOI: 10.1681/asn.2019101100] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/09/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Aberrant microRNA (miRNA) expression affects biologic processes and downstream genes that are crucial to CKD initiation or progression. The miRNA miR-204-5p is highly expressed in the kidney but whether miR-204-5p plays any role in the development of chronic renal injury is unknown. METHODS We used real-time PCR to determine levels of miR-204 in human kidney biopsies and animal models. We generated Mir204 knockout mice and used locked nucleic acid-modified anti-miR to knock down miR-204-5p in mice and rats. We used a number of physiologic, histologic, and molecular techniques to analyze the potential role of miR-204-5p in three models of renal injury. RESULTS Kidneys of patients with hypertension, hypertensive nephrosclerosis, or diabetic nephropathy exhibited a significant decrease in miR-204-5p compared with controls. Dahl salt-sensitive rats displayed lower levels of renal miR-204-5p compared with partially protected congenic SS.13BN26 rats. Administering anti-miR-204-5p to SS.13BN26 rats exacerbated interlobular artery thickening and renal interstitial fibrosis. In a mouse model of hypertensive renal injury induced by uninephrectomy, angiotensin II, and a high-salt diet, Mir204 gene knockout significantly exacerbated albuminuria, renal interstitial fibrosis, and interlobular artery thickening, despite attenuation of hypertension. In diabetic db/db mice, administering anti-miR-204-5p exacerbated albuminuria and cortical fibrosis without influencing blood glucose levels. In all three models, inhibiting miR-204-5p or deleting Mir204 led to upregulation of protein tyrosine phosphatase SHP2, a target gene of miR-204-5p, and increased phosphorylation of signal transducer and activator of transcription 3, or STAT3, which is an injury-promoting effector of SHP2. CONCLUSIONS These findings indicate that the highly expressed miR-204-5p plays a prominent role in safeguarding the kidneys against common causes of chronic renal injury.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Nephrology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Clinical Institute of Anhui Medical University, Shenzhen, People's Republic of China.,The Center for Nephrology and Urology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, People's Republic of China.,Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Dandan Wang
- The Center for Nephrology and Urology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, People's Republic of China.,Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Feng Wang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Jing Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Baorui Huang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Maria Angeles Baker
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jianyong Yin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Xuanchen Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kristie Usa
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Congxiao Zhang
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Lijin Dong
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Sheldon S Miller
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Yongcheng He
- Department of Nephrology, Shenzhen Hengsheng Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
17
|
Rayego-Mateos S, Valdivielso JM. New therapeutic targets in chronic kidney disease progression and renal fibrosis. Expert Opin Ther Targets 2020; 24:655-670. [PMID: 32338087 DOI: 10.1080/14728222.2020.1762173] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The current therapeutic armamentarium to prevent chronic kidney disease (CKD) progression is limited to the control of blood pressure and in diabetic patients, the strict control of glucose levels. Current research is primarily focused on the reduction of inflammation and fibrosis at different levels. AREAS COVERED This article examines the latest progress in this field and places an emphasis on inflammation, oxidative stress, and fibrosis. New therapeutic targets are described and evidence from experimental and clinical studies is summarized. We performed a search in Medline for articles published over the last 10 years. EXPERT OPINION The search for therapeutic targets of renal inflammation is hindered by an incomplete understanding of the pathophysiology. The determination of the specific inducers of inflammation in the kidney is an area of heightened potential. Prevention of the progression of renal fibrosis by blocking TGF-β signaling has been unsuccessful, but the investigation of signaling pathways involved in late stages of fibrosis progression could yield improved results. Preventive strategies such as the modification of microbiota-inducers of uremic toxins involved in CKD progression is a promising field because of the interaction between the gut microbiota and the renal system.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Red De Investigación Renal (Redinren) , Spain.,Vascular and Renal Translational Research Group, Institut De Recerca Biomèdica De Lleida IRBLleida , Lleida, Spain
| | - Jose M Valdivielso
- Red De Investigación Renal (Redinren) , Spain.,Vascular and Renal Translational Research Group, Institut De Recerca Biomèdica De Lleida IRBLleida , Lleida, Spain
| |
Collapse
|
18
|
Abstract
As one type of the most common endogenous short noncoding RNAs (ncRNAs), microRNAs (miRNAs) act as posttranscriptional regulators of gene expression and have great potential biological functions in the physiological and pathological processes of various diseases. The role of miRNAs in renal fibrosis has also attracted great attention in the previous 20 years, and new therapeutic strategies targeting miRNAs appear to be promising. Some researchers have previously reviewed the roles of miRNA in renal fibrosis disease, but numerous studies have emerged over the recent 5 years. It is necessary to update and summarize research progress in miRNAs in renal fibrosis. Thus, in this review, we summarize progress in miRNA-mediated renal fibrosis over the last 5 years and evaluate the biological functions of some miRNAs in different stages of renal fibrosis. Furthermore, we also expound the recent clinical applications of these miRNAs to provide new insights into the treatment of renal fibrosis disease.
Collapse
Affiliation(s)
- Youling Fan
- Department of Anesthesiology, The First People's Hospital of Kashgar, Xinjiang Province, China.,Department of Anesthesiology, Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhenxing Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Hong Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Jun Zhou
- Department of Anesthesiology, The third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
miR-146b-5p has a sex-specific role in renal and cardiac pathology in a rat model of chronic kidney disease. Kidney Int 2019; 96:1332-1345. [PMID: 31668631 DOI: 10.1016/j.kint.2019.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/25/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022]
Abstract
Chronic kidney disease presents a complex and distinct pathological landscape in men and women, yet this difference is poorly understood. microRNAs are powerful molecular regulators of pathophysiology in the kidney and other organs. We previously reported a significant upregulation of miR-146b-5p in the 5/6 nephrectomy rat model of chronic kidney disease. Here we investigated the sex-specific contribution of miR-146b-5p to renocardiac pathology by generating a novel miR-146b-/- rat and characterized the expression of miR-146b-5p in both wild-type and knockout animals. The 5/6 nephrectomy or sham surgery was performed on rats of each genotype and sex. Renal pathology was examined through gross histology, plasma and urinary analysis of electrolytes and metabolites, and by chronic blood pressure monitoring. Cardiac pathology was monitored via echocardiography and pressure-volume analysis. The miR-146b-/- rats show functional knockout of miR-146b-5p in both the kidney and heart. While 5/6 nephrectomy induced tissue hypertrophy, miR-146b-/- female rats displayed exacerbated renal hypertrophy. Additionally, miR-146b-/- female rats exhibited a marked elevation of renal fibrosis and significant renal dysfunction yet lower blood pressure and less pronounced cardiac remodeling. These phenotypic differences were not exhibited in miR-146b-/- male rats. Ovariectomy ameliorated renal pathology and abolished genotypic differences. In vitro examination of transforming growth factor-β signaling in combination with miR-146b-5p manipulation supports a role for miR-146b-5p in mediating the protective benefit of estrogen from renal pathologies. Thus, our data highlight an important role of miR-146b-5p in modulating kidney disease progression and provide new avenues for the study of sex-specific pathology.
Collapse
|
20
|
Xue H, Geurts AM, Usa K, Wang F, Lin Y, Phillips J, Henderson L, Baker MA, Tian Z, Liang M. Fumarase Overexpression Abolishes Hypertension Attributable to endothelial NO synthase Haploinsufficiency in Dahl Salt-Sensitive Rats. Hypertension 2019; 74:313-322. [PMID: 31230549 DOI: 10.1161/hypertensionaha.119.12723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human blood pressure salt sensitivity is associated with changes in urinary metabolites related to fumarase (Fh) and nitric oxide (NO) metabolism, and fumarase promotes NO production through an arginine regeneration pathway. We examined the role of the fumarase-NO pathway in the development of hypertension using genetically engineered rat models. Dahl salt-sensitive (SS) rats with heterozygous mutation of eNOS (endothelial NO synthase or Nos3; SS-Nos3+/-) were bred with SS rats with a hemizygous Fh transgene. SS-Nos3+/- rats without the Fh transgene (SS-Nos3+/-/Fh0/0) developed substantial hypertension with a mean arterial pressure of 134.2±3.7 mm Hg on a 0.4% NaCl diet and 178.0±3.5 mm Hg after 14 days on a 4% NaCl diet. Mean arterial pressure decreased remarkably to 123.1±1.4 mm Hg on 0.4% NaCl, and 143.3±1.5 mm Hg on 4% NaCl in SS-Nos3+/- rats with a Fh transgene (SS-Nos3+/-/Fh0/1), and proteinuria, renal fibrosis, and tubular casts were attenuated in SS-Nos3+/-/Fh0/1 rats compared with SS-Nos3+/-/Fh0/0 rats. eNOS protein abundance decreased in rats with the Nos3 heterozygous mutation, which was not influenced by Fh overexpression in rats on the 0.4% NaCl diet. However, the decrease in NO metabolite in the renal outer medulla of SS-Nos3+/-/Fh0/0 rats on the 0.4% NaCl diet was reversed in SS-Nos3+/-/Fh0/1 rats, and levels of L-arginine, but not the other 12 amino acids analyzed, were significantly higher in SS-Nos3+/-/Fh0/1 rats than in SS-Nos3+/+/Fh0/0 rats. In conclusion, fumarase has potent effects in restoring NO production and blunting the development of hypertension attributable to eNOS haploinsufficiency.
Collapse
Affiliation(s)
- Hong Xue
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China (H.X.).,Center of Systems Molecular Medicine, Department of Physiology (H.X., A.M.G., K.U., F.W., Y.L., J.P., L.H., M.A.B., M.L.)
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology (H.X., A.M.G., K.U., F.W., Y.L., J.P., L.H., M.A.B., M.L.).,Genomic Sciences and Precision Medicine Center Medical College of Wisconsin, Milwaukee (A.M.G.)
| | - Kristie Usa
- Center of Systems Molecular Medicine, Department of Physiology (H.X., A.M.G., K.U., F.W., Y.L., J.P., L.H., M.A.B., M.L.)
| | - Feng Wang
- Center of Systems Molecular Medicine, Department of Physiology (H.X., A.M.G., K.U., F.W., Y.L., J.P., L.H., M.A.B., M.L.).,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China (F.W., Y.L.)
| | - Yingying Lin
- Center of Systems Molecular Medicine, Department of Physiology (H.X., A.M.G., K.U., F.W., Y.L., J.P., L.H., M.A.B., M.L.).,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China (F.W., Y.L.)
| | - Jenifer Phillips
- Center of Systems Molecular Medicine, Department of Physiology (H.X., A.M.G., K.U., F.W., Y.L., J.P., L.H., M.A.B., M.L.)
| | - Lisa Henderson
- Center of Systems Molecular Medicine, Department of Physiology (H.X., A.M.G., K.U., F.W., Y.L., J.P., L.H., M.A.B., M.L.)
| | - Maria Angeles Baker
- Center of Systems Molecular Medicine, Department of Physiology (H.X., A.M.G., K.U., F.W., Y.L., J.P., L.H., M.A.B., M.L.)
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, China (Z.T.)
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology (H.X., A.M.G., K.U., F.W., Y.L., J.P., L.H., M.A.B., M.L.)
| |
Collapse
|
21
|
Ilatovskaya DV, Levchenko V, Pavlov TS, Isaeva E, Klemens CA, Johnson J, Liu P, Kriegel AJ, Staruschenko A. Salt-deficient diet exacerbates cystogenesis in ARPKD via epithelial sodium channel (ENaC). EBioMedicine 2019; 40:663-674. [PMID: 30745171 PMCID: PMC6413684 DOI: 10.1016/j.ebiom.2019.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 12/14/2022] Open
Abstract
Background Autosomal Recessive Polycystic Kidney Disease (ARPKD) is marked by cyst formation in the renal tubules, primarily in the collecting duct (CD) system, ultimately leading to end-stage renal disease. Patients with PKD are generally advised to restrict their dietary sodium intake. This study was aimed at testing the outcomes of dietary salt manipulation in ARPKD. Methods PCK/CrljCrlPkhd1pck/CRL (PCK) rats, a model of ARPKD, were fed a normal (0.4% NaCl; NS), high salt (4% NaCl; HS), and sodium-deficient (0.01% NaCl; SD) diets for 8 weeks. Immunohistochemistry, GFR measurements, balance studies, and molecular biology approaches were applied to evaluate the outcomes of the protocol. Renin-angiotensin-aldosterone system (RAAS) levels were assessed using LC-MS/MS, and renal miRNA profiles were studied. Findings Both HS and SD diets resulted in an increase in cystogenesis. However, SD diet caused extensive growth of cysts in the renal cortical area, and hypertrophy of the tissue; RAAS components were enhanced in the SD group. We observed a reduction in epithelial Na+ channel (ENaC) expression in the SD group, accompanied with mRNA level increase. miRNA assay revealed that renal miR-9a-5p level was augmented in the SD group; we showed that this miRNA decreases ENaC channel number in CD cells. Interpretation Our data demonstrate a mechanism of ARPKD progression during salt restriction that involves activity of ENaC. We further show that miR-9a-5p potentially implicated in this mechanism and that miR-9a-5p downregulates ENaC in cultured CD cells. Our findings open new therapeutic possibilities and highlight the importance of understanding salt reabsorption in ARPKD.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Christine A Klemens
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Jessica Johnson
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Clement J. Zablocki VA Medical Center, 5000 West National Avenue, Milwaukee, WI, 53295, USA.
| |
Collapse
|
22
|
Liu P, Liu Y, Liu H, Pan X, Li Y, Usa K, Mishra MK, Nie J, Liang M. Role of DNA De Novo (De)Methylation in the Kidney in Salt-Induced Hypertension. Hypertension 2018; 72:1160-1171. [PMID: 30354815 PMCID: PMC6314686 DOI: 10.1161/hypertensionaha.118.11650] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
Numerous adult diseases involving tissues consisting primarily of nondividing cells are associated with changes in DNA methylation. It suggests a pathophysiological role for de novo methylation or demethylation of DNA, which is catalyzed by DNA methyltransferase 3 and ten-eleven translocases. However, the contribution of DNA de novo (de)methylation to these diseases remains almost completely unproven. Broad changes in DNA methylation occurred within days in the renal outer medulla of Dahl SS rats fed a high-salt diet, a classic model of hypertension. Intrarenal administration of anti-DNA methyltransferase 3a/ten-eleven translocase 3 GapmeRs attenuated high salt-induced hypertension in SS rats. The high-salt diet induced differential expression of 1712 genes in the renal outer medulla. Remarkably, the differential expression of 76% of these genes was prevented by anti-DNA methyltransferase 3a/ten-eleven translocase 3 GapmeRs. The genes differentially expressed in response to the GapmeRs were involved in the regulation of metabolism and inflammation and were significantly enriched for genes showing differential methylation in response to the GapmeRs. These data indicate a significant role of DNA de novo (de)methylation in the kidney in the development of hypertension in SS rats. The findings should help to shift the paradigm of DNA methylation research in diseases involving nondividing cells from correlative analysis to functional and mechanistic studies.
Collapse
Affiliation(s)
- Pengyuan Liu
- Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University, Zhejiang, China
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Han Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Xiaoqing Pan
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yingchuan Li
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Critical Care Medicine, Shanghai JiaoTong University affiliated The Sixth People‧s Hospital, Shanghai, China
| | - Kristie Usa
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Manoj K. Mishra
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jing Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| |
Collapse
|
23
|
Gholaminejad A, Abdul Tehrani H, Gholami Fesharaki M. Identification of candidate microRNA biomarkers in renal fibrosis: a meta-analysis of profiling studies. Biomarkers 2018; 23:713-724. [PMID: 29909697 DOI: 10.1080/1354750x.2018.1488275] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Alieh Gholaminejad
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
24
|
Liu Y, Usa K, Wang F, Liu P, Geurts AM, Li J, Williams AM, Regner KR, Kong Y, Liu H, Nie J, Liang M. MicroRNA-214-3p in the Kidney Contributes to the Development of Hypertension. J Am Soc Nephrol 2018; 29:2518-2528. [PMID: 30049682 PMCID: PMC6171279 DOI: 10.1681/asn.2018020117] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In spite of extensive study, the mechanisms for salt sensitivity of BP in humans and rodent models remain poorly understood. Several microRNAs (miRNAs) have been associated with hypertension, but few have been shown to contribute to its development. METHODS We examined miRNA expression profiles in human kidney biopsy samples and rat models using small RNA deep sequencing. To inhibit an miRNA specifically in the kidney in conscious, freely moving rats, we placed indwelling catheters to allow both renal interstitial administration of a specific anti-miR and measurement of BP. A rat with heterozygous disruption of the gene encoding endothelial nitric oxide synthase (eNOS) was developed. We used bioinformatic analysis to evaluate the relationship between 283 BP-associated human single-nucleotide polymorphisms (SNPs) and 1870 human miRNA precursors, as well as other molecular and cellular methods. RESULTS Compared with salt-insensitive SS.13BN26 rats, Dahl salt-sensitive (SS) rats showed an upregulation of miR-214-3p, encoded by a gene in the SS.13BN26 congenic region. Kidney-specific inhibition of miR-214-3p significantly attenuated salt-induced hypertension and albuminuria in SS rats. miR-214-3p directly targeted eNOS. The effect of miR-214-3p inhibition on hypertension and albuminuria was abrogated in SS rats with heterozygous loss of eNOS. Human kidney biopsy specimens from patients with hypertension or hypertensive nephrosclerosis showed upregulation of miR-214-3p; the gene encoding miR-214-3p was one of several differentially expressed miRNA genes located in proximity to human BP-associated SNPs. CONCLUSIONS Renal miR-214-3p plays a functional and potentially genetic role in the development of hypertension, which might be mediated in part by targeting eNOS.
Collapse
Affiliation(s)
- Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology
| | - Kristie Usa
- Center of Systems Molecular Medicine, Department of Physiology
| | - Feng Wang
- Center of Systems Molecular Medicine, Department of Physiology
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; and
| | - Pengyuan Liu
- Center of Systems Molecular Medicine, Department of Physiology
- Cancer Center
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology
- Human and Molecular Genetics Center, and
| | - Junhui Li
- Center of Systems Molecular Medicine, Department of Physiology
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; and
| | | | - Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yiwei Kong
- Center of Systems Molecular Medicine, Department of Physiology
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; and
| | - Han Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Jing Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology,
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| |
Collapse
|
25
|
Xue H, Zhang G, Geurts AM, Usa K, Jensen DM, Liu Y, Widlansky ME, Liang M. Tissue-specific effects of targeted mutation of Mir29b1 in rats. EBioMedicine 2018; 35:260-269. [PMID: 30120082 PMCID: PMC6156712 DOI: 10.1016/j.ebiom.2018.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND miR-29 is a master regulator of extracellular matrix genes, but conflicting data on its anti-fibrotic effect have been reported. miR-29 improves nitric oxide (NO) production in arterioles by targeting Lypla1. Mir29b1 targeted mutation exacerbates hypertension in a model derived from the Dahl salt-sensitive rat. We examined the effect of Mir29b1 mutation on tissue fibrosis and NO levels with a focus on kidney regions. METHODS Mir29b1 targeted mutant rats on the genetic background of SS-Chr13BN rats were studied. Masson trichrome staining, molecular and biochemical assays, metabolic cage studies, and bioinformatic analysis of human genomic data were performed. FINDINGS The abundance of miR-29b and the co-transcribed miR-29a was substantially lower in mutant rats. Tissue fibrosis was significantly increased in the renal outer medulla, but not in the renal cortex, heart or liver in mutant rats on a 0.4% NaCl diet. Lypla1 protein abundance was significantly higher and NO levels lower in the renal outer medulla, but not in the renal cortex. After 14 days of a 4% NaCl diet, 24 h urine volume and urinary sodium excretion was significantly lower in mutant rats, and tissue fibrosis became higher in the heart. NO levels were lower in the renal outer medulla and heart, but not in the renal cortex. Human miR-29 genes are located in proximity with blood pressure-associated single nucleotide polymorphisms. INTERPRETATION The renal outer medulla might be particularly susceptible to the injurious effects of a miR-29 insufficiency, which might contribute to the development of hypertension in Mir29b1 mutant rats.
Collapse
Affiliation(s)
- Hong Xue
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, PR China; Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Guangyuan Zhang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kristie Usa
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David M Jensen
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael E Widlansky
- Departments of Medicine and Pharmacology, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
26
|
Kriegel AJ, Terhune SS, Greene AS, Noon KR, Pereckas MS, Liang M. Isomer-specific effect of microRNA miR-29b on nuclear morphology. J Biol Chem 2018; 293:14080-14088. [PMID: 30006350 DOI: 10.1074/jbc.ra117.001705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/02/2018] [Indexed: 12/31/2022] Open
Abstract
Targeting mRNAs via seed region pairing is the canonical mechanism by which microRNAs (miRNAs) regulate cellular functions and disease processes. Emerging evidence suggests miRNAs might also act through other mechanisms. miRNA isomers that contain identical seed region sequences, such as miR-29a and miR-29b, provide naturally occurring, informative models for identifying those miRNA effects that are independent of seed region pairing. miR-29a and miR-29b are both expressed in HeLa cells, and miR-29b has been reported to localize to the nucleus in early mitosis because of unique nucleotide sequences on its 3' end. Here, we sought to better understand the mechanism of miR-29b nuclear localization and its function in cell division. We hypothesized that its nuclear localization may be facilitated by protein-miRNA interactions unique to miR-29b. Specific blockade of miR-29b resulted in striking nuclear irregularities not observed following miR-29a blockade. We also observed that miR-29b, but not miR-29a, is enriched in the nucleus and perinuclear clusters during mitosis. Targeted proteomic analysis of affinity-purified samples identified several proteins interacting with synthetic oligonucleotides mimicking miR-29b, but these proteins did not interact with miR-29a. One of these proteins, ADP/ATP translocase 2 (ANT2), known to be involved in mitotic spindle formation, colocalized with miR-29b in perinuclear clusters independently of Argonaute 2. Of note, ANT2 knockdown resulted in nuclear irregularities similar to those observed following miR-29b blockade and prevented nuclear uptake of endogenous miR-29b. Our findings reveal that miR-29 regulates nuclear morphology during mitosis and that this critical function is unique to the miR-29b isoform.
Collapse
Affiliation(s)
- Alison J Kriegel
- From the Department of Physiology, Center of Systems Molecular Medicine,
| | - Scott S Terhune
- the Department of Microbiology and Molecular Genetics, and.,the Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Andrew S Greene
- From the Department of Physiology, Center of Systems Molecular Medicine.,the Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Kathleen R Noon
- the Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Michael S Pereckas
- the Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mingyu Liang
- From the Department of Physiology, Center of Systems Molecular Medicine,
| |
Collapse
|
27
|
Chen L, Yang T, Lu DW, Zhao H, Feng YL, Chen H, Chen DQ, Vaziri ND, Zhao YY. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.090] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
28
|
Wang S, Wen X, Han X, Wang Y, Shen M, Fan S, Zhuang J, Zhang Z, Shan Q, Li M, Hu B, Sun C, Wu D, Lu J, Zheng Y. Repression of microRNA-382 inhibits glomerular mesangial cell proliferation and extracellular matrix accumulation via FoxO1 in mice with diabetic nephropathy. Cell Prolif 2018; 51:e12462. [PMID: 29701296 PMCID: PMC6528942 DOI: 10.1111/cpr.12462] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/08/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Diabetic nephropathy (DN) is a nerve damaging disorder, characterized by glomerular mesangial cell expansion and accumulation of extracellular matrix (ECM) proteins. In this study, we aimed to investigate mesangial cell proliferation and ECM accumulation when promoting or suppressing endogenous miR-382 in glomerular mesangial cells of DN. MATERIALS AND METHODS Model establishment consisted of DN induction by streptozotocin (STZ) in mice. The underlying regulatory mechanisms of miR-382 were analysed in concert with the treatment of miR-382 mimics, miR-382 inhibitors or siRNA against FoxO1 in cultured glomerular mesangial cells isolated from DN mice. RESULTS FoxO1 was identified as the downregulated gene in DN based on the microarray data of GSE1009. We found that miR-382 was significantly upregulated in renal tissues of DN mice and its downregulation dephosphorylated FoxO1, reduced glomerular mesangial cell proliferation and ECM accumulation in vitro. The determination of luciferase activity suggested that miR-382 negatively targeted FoxO1. Expectedly, distinct levels of phosphorylated FoxO1 were observed in the renal cortices of DN mice, while the silencing of FoxO1 was found to increase glomerular mesangial cell proliferation and ECM accumulation in vitro. Reduced glomerular mesangial cell proliferation and ECM accumulation elicited by miR-382 inhibitors were reversed by silencing FoxO1. CONCLUSIONS This study demonstrates miR-382 suppression exerts a potent anti-proliferative effect that may be applied to inhibit glomerular mesangial cell proliferation and ECM accumulation in DN.
Collapse
Affiliation(s)
- Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Xin‐Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Yong‐Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Shao‐Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,School of Environment Science and Spatial InformaticsChina University of Mining and TechnologyXuzhouChina,Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze LakeSchool of Life SciencesHuaiyin Normal UniversityHuaianChina
| | - Zi‐Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Meng‐Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Chun‐Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Dong‐Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Yuan‐Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| |
Collapse
|
29
|
Crotty Alexander LE, Drummond CA, Hepokoski M, Mathew D, Moshensky A, Willeford A, Das S, Singh P, Yong Z, Lee JH, Vega K, Du A, Shin J, Javier C, Tian J, Brown JH, Breen EC. Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multiorgan fibrosis in mice. Am J Physiol Regul Integr Comp Physiol 2018; 314:R834-R847. [PMID: 29384700 DOI: 10.1152/ajpregu.00270.2017] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electronic (e)-cigarettes theoretically may be safer than conventional tobacco. However, our prior studies demonstrated direct adverse effects of e-cigarette vapor (EV) on airway cells, including decreased viability and function. We hypothesize that repetitive, chronic inhalation of EV will diminish airway barrier function, leading to inflammatory protein release into circulation, creating a systemic inflammatory state, ultimately leading to distant organ injury and dysfunction. C57BL/6 and CD-1 mice underwent nose only EV exposure daily for 3-6 mo, followed by cardiorenal physiological testing. Primary human bronchial epithelial cells were grown at an air-liquid interface and exposed to EV for 15 min daily for 3-5 days before functional testing. Daily inhalation of EV increased circulating proinflammatory and profibrotic proteins in both C57BL/6 and CD-1 mice: the greatest increases observed were in angiopoietin-1 (31-fold) and EGF (25-fold). Proinflammatory responses were recapitulated by daily EV exposures in vitro of human airway epithelium, with EV epithelium secreting higher IL-8 in response to infection (227 vs. 37 pg/ml, respectively; P < 0.05). Chronic EV inhalation in vivo reduced renal filtration by 20% ( P = 0.017). Fibrosis, assessed by Masson's trichrome and Picrosirius red staining, was increased in EV kidneys (1.86-fold, C57BL/6; 3.2-fold, CD-1; P < 0.05), heart (2.75-fold, C57BL/6 mice; P < 0.05), and liver (1.77-fold in CD-1; P < 0.0001). Gene expression changes demonstrated profibrotic pathway activation. EV inhalation altered cardiovascular function, with decreased heart rate ( P < 0.01), and elevated blood pressure ( P = 0.016). These data demonstrate that chronic inhalation of EV may lead to increased inflammation, organ damage, and cardiorenal and hepatic disease.
Collapse
Affiliation(s)
- Laura E Crotty Alexander
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | | | - Mark Hepokoski
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Denzil Mathew
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Alex Moshensky
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Andrew Willeford
- Department of Pharmacology, University of California , San Diego, California
| | - Soumita Das
- Department of Pathology, University of California , San Diego, California
| | - Prabhleen Singh
- Division of Nephrology and Hypertension, Department of Medicine, University of California , San Diego, California.,Nephrology Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Zach Yong
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Jasmine H Lee
- Division of Physiology, Department of Medicine, University of California , San Diego, California
| | - Kevin Vega
- Department of Pathology, University of California , San Diego, California
| | - Ashley Du
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - John Shin
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Christian Javier
- Pulmonary Critical Care Section, Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California , San Diego, California
| | - Jiang Tian
- Division of Cardiovascular Medicine and Center for Hypertension and Personalized Medicine, University of Toledo , Toledo, Ohio.,Department of Medicine, College of Medicine and Life Sciences, University of Toledo , Toledo, Ohio
| | - Joan Heller Brown
- Department of Pharmacology, University of California , San Diego, California
| | - Ellen C Breen
- Division of Physiology, Department of Medicine, University of California , San Diego, California
| |
Collapse
|
30
|
Usa KS, Liu Y, Kurth T, Kriegel AJ, Mattson DL, Cowley AW, Liang M. Renal Delivery of Anti-microRNA Oligonucleotides in Rats. Methods Mol Biol 2018; 1527:409-419. [PMID: 28116733 DOI: 10.1007/978-1-4939-6625-7_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
MicroRNAs are endogenous small, non-protein-coding RNA molecules that play an important role in the regulation of a wide variety of cellular functions and disease processes. A novel role for microRNAs in the development of hypertension and hypertensive tissue injury is emerging in recent studies. Development of hypertension involves multiple organ systems and cannot be modeled in vitro. Therefore, the ability to experimentally alter genes, gene products, or biological pathways, including microRNAs, in an organ-specific manner in intact animal models is particularly valuable to hypertension research. The kidney plays a central role in the long-term regulation of arterial blood pressure. In this chapter, we describe a detailed protocol for using a renal interstitial injection method to deliver anti-miR oligonucleotides to knock down microRNA specifically in the kidney in conscious rats.
Collapse
Affiliation(s)
- Kristie S Usa
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, 8701 Watertown PlankRoad, Milwaukee, WI, 53226, USA
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, 8701 Watertown PlankRoad, Milwaukee, WI, 53226, USA
| | - Terry Kurth
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, 8701 Watertown PlankRoad, Milwaukee, WI, 53226, USA
| | - Alison J Kriegel
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, 8701 Watertown PlankRoad, Milwaukee, WI, 53226, USA
| | - David L Mattson
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, 8701 Watertown PlankRoad, Milwaukee, WI, 53226, USA
| | - Allen W Cowley
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, 8701 Watertown PlankRoad, Milwaukee, WI, 53226, USA
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, 8701 Watertown PlankRoad, Milwaukee, WI, 53226, USA.
| |
Collapse
|
31
|
Ichii O, Horino T. MicroRNAs associated with the development of kidney diseases in humans and animals. J Toxicol Pathol 2018; 31:23-34. [PMID: 29479137 PMCID: PMC5820100 DOI: 10.1293/tox.2017-0051] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/10/2017] [Indexed: 12/20/2022] Open
Abstract
Mature microRNAs (miRNAs) are single-stranded RNAs with approximately 18-25 bases, and their sequences are highly conserved among animals. miRNAs act as posttranscriptional regulators by binding mRNAs, and their main function involves the degradation of their target mRNAs. Recent studies revealed altered expression of miRNAs in the kidneys during the progression of acute kidney injury (AKI) and chronic kidney disease (CKD) in humans and experimental rodent models by using high-throughput screening techniques including microarray and small RNA sequencing. Particularly, miR-21 seems to be strongly associated with renal pathogenesis both in the glomerulus and tubulointerstitium. Furthermore, abundant evidence has been gathered showing the involvement of miRNAs in renal fibrosis. Because of the complex morphofunctional organization of the mammalian kidneys, it is crucial both to determine the exact localization of the kidney cells that express the miRNAs, which has been addressed mainly using in situ hybridization methods, and to identify precisely which mRNAs are bound and degraded by these miRNAs, which has been studied mostly through in vitro analysis. To discover novel biomarker candidates, miRNA levels in urine supernatant, sediment, and exosomal fraction were comprehensively investigated in different types of kidney disease, including drug-induced AKI, ischemia-induced AKI, diabetic nephropathy, lupus nephritis, and IgA nephropathy. Recent studies also demonstrated the therapeutic effect of miRNA and/or anti-miRNA administrations. The intent of this review is to illustrate the state-of-the-art research in the field of miRNAs associated with renal pathogenesis, especially focusing on AKI and CKD in humans and animal models.
Collapse
Affiliation(s)
- Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18-Nishi 9, Kita-ku,
Sapporo, Hokkaido 060-0818, Japan
| | - Taro Horino
- Laboratory of Anatomy, Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18-Nishi 9, Kita-ku,
Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
32
|
Lv W, Fan F, Wang Y, Gonzalez-Fernandez E, Wang C, Yang L, Booz GW, Roman RJ. Therapeutic potential of microRNAs for the treatment of renal fibrosis and CKD. Physiol Genomics 2017; 50:20-34. [PMID: 29127220 DOI: 10.1152/physiolgenomics.00039.2017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chronic kidney disease (CKD), defined as reduced glomerular filtration rate, is increasingly becoming a major public health issue. At the histological level, renal fibrosis is the final common pathway leading to end-stage renal disease, irrespective of the initial injury. According to this view, antifibrotic agents should slow or halt the progression of CKD. However, due to multiple overlapping pathways stimulating fibrosis, it has been difficult to develop antifibrotic drugs that delay or reverse the progression of CKD. MicroRNAs (miRNAs) are small noncoding RNA molecules, 18-22 nucleotides in length, that control many developmental and cellular processes as posttranscriptional regulators of gene expression. Emerging evidence suggests that miRNAs targeted against genes involved in renal fibrosis might be potential candidates for the development of antifibrotic therapies for CKD. This review will discuss some of the miRNAs, such as Let-7, miR-21,-29, -192, -200,-324, -132, -212, -30, -126, -433, -214, and -199a, that are implicated in renal fibrosis and the potential to exploit these molecular targets for the treatment of CKD.
Collapse
Affiliation(s)
- Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University , Qingdao , China
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, Mississippi
| | - Yangang Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University , Qingdao , China
| | - Ezekiel Gonzalez-Fernandez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, Mississippi
| | - Chen Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University , Qingdao , China
| | - Lili Yang
- West Coast Clinic of Affiliated Hospital of Qingdao University , Qingdao , China
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, Mississippi
| | | |
Collapse
|
33
|
Jiao X, Xu X, Fang Y, Zhang H, Liang M, Teng J, Ding X. miR-21 contributes to renal protection by targeting prolyl hydroxylase domain protein 2 in delayed ischaemic preconditioning. Nephrology (Carlton) 2017; 22:366-373. [PMID: 27030384 DOI: 10.1111/nep.12787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 01/07/2023]
Abstract
AIM Upregulation of miR-21 in renal ischaemic preconditioning (IPC) was associated with increased hypoxia inducible factor (HIF)-1α expression. Hypoxic induction of HIF-1α is mediated by inhibition of prolyl hydroxylase domain protein 2 (PHD2) .We hypothesized that miR-21 regulated HIF-1α by targeting PHD2 in the renal IPC. METHODS Luciferase reporter assay examined if miR-21 target the 3'-untranslated region of PHD2. In vitro, human proximal tubular cell line (HK-2) was incubated in hypoxia or hypoxia/ reoxygenation condition. Kidneys of Mice were respectively subjected to ischaemia/reperfusion injury (IRI) and IPC. Locked nucleic acid (LNA) modified anti-miR-21 was used to knockdown miR-21. Serum creatinine and histological changes estimated the renal injury. Levels of HIF-1α, PHD2, VEGF and miR-21 were examined by western blot or real-time PCR. RESULT miR-21 targeting of PHD2 was confirmed by 3'-untranslated region reporter assay. miR-21 was significantly upregulated by hypoxia/reoxygenation in HK-2 cell, while PHD2 protein level decreased significantly. LNA anti-miR-21 significantly repressed miR-21 levels and increased the abundance of PHD2. In vivo, IPC upregulated miR-21 expression 24 h after the second ischaemia, while PHD2 expression decreased significantly with upregulation of HIF-1α protein and VEGF mRNA. MiR-21 induced by delayed IPC was effectively inhibited by the LNA anti-miR-21. With downregulation of miR-21, the protection of delayed IPC was attenuated and PHD2 protein was increased. Furthermore, upregulation of HIF-1α and VEGF were abolished after the LNA anti-miR-21 treatment. CONCLUSION miR-21 could protect kidney against IRI via HIF-1α by inhibiting its target PHD2.The study suggested a new relationship between miR-21 and HIF-1α.
Collapse
Affiliation(s)
- Xiaoyan Jiao
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney Disease and Dialysis, Shanghai, China.,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Xialian Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney Disease and Dialysis, Shanghai, China.,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Zhang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney Disease and Dialysis, Shanghai, China.,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Mingyu Liang
- Department of Physiology and Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jie Teng
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney Disease and Dialysis, Shanghai, China.,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| |
Collapse
|
34
|
Loboda A, Stachurska A, Sobczak M, Podkalicka P, Mucha O, Jozkowicz A, Dulak J. Nrf2 deficiency exacerbates ochratoxin A-induced toxicity in vitro and in vivo. Toxicology 2017; 389:42-52. [DOI: 10.1016/j.tox.2017.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/21/2023]
|
35
|
Chuppa S, Liang M, Liu P, Liu Y, Casati MC, Cowley AW, Patullo L, Kriegel AJ. MicroRNA-21 regulates peroxisome proliferator-activated receptor alpha, a molecular mechanism of cardiac pathology in Cardiorenal Syndrome Type 4. Kidney Int 2017; 93:375-389. [PMID: 28760335 DOI: 10.1016/j.kint.2017.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 12/30/2022]
Abstract
Cardiovascular events are the leading cause of death in patients with chronic kidney disease (CKD), although the pathological mechanisms are poorly understood. Here we longitudinally characterized left ventricle pathology in a 5/6 nephrectomy rat model of CKD and identify novel molecular mediators. Next-generation sequencing of left ventricle mRNA and microRNA (miRNA) was performed at physiologically distinct points in disease progression, identifying alterations in genes in numerous immune, lipid metabolism, and inflammatory pathways, as well as several miRNAs. MiRNA miR-21-5p was increased in our dataset and has been reported to regulate many identified pathways. Suppression of miR-21-5p protected rats with 5/6 nephrectomy from developing left ventricle hypertrophy and improved left ventricle function. Next-generation mRNA sequencing revealed that miR-21-5p suppression altered gene expression in peroxisome proliferator-activated receptor alpha (PPARα) regulated pathways in the left ventricle. PPARα, a miR-21-5p target, is the primary PPAR isoform in the heart, importantly involved in regulating fatty acid metabolism. Therapeutic delivery of low-dose PPARα agonist (clofibrate) to rats with 5/6 nephrectomy improved cardiac function and prevented left ventricle dilation. Thus, comprehensive characterization of left ventricle molecular changes highlights the involvement of numerous signaling pathways not previously explored in CKD models and identified PPARα as a potential therapeutic target for CKD-related cardiac dysfunction.
Collapse
Affiliation(s)
- Sandra Chuppa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Marc C Casati
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Leah Patullo
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
36
|
Baker MA, Davis SJ, Liu P, Pan X, Williams AM, Iczkowski KA, Gallagher ST, Bishop K, Regner KR, Liu Y, Liang M. Tissue-Specific MicroRNA Expression Patterns in Four Types of Kidney Disease. J Am Soc Nephrol 2017; 28:2985-2992. [PMID: 28663230 DOI: 10.1681/asn.2016121280] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs contribute to the development of kidney disease. Previous analyses of microRNA expression in human kidneys, however, were limited by tissue heterogeneity or the inclusion of only one pathologic type. In this study, we used laser-capture microdissection to obtain glomeruli and proximal tubules from 98 human needle kidney biopsy specimens for microRNA expression analysis using deep sequencing. We analyzed specimens from patients with diabetic nephropathy (DN), FSGS, IgA nephropathy (IgAN), membranoproliferative GN (MPGN) (n=19-23 for each disease), and a control group (n=14). Compared with control glomeruli, DN, FSGS, IgAN, and MPGN glomeruli exhibited differential expression of 18, 12, two, and 17 known microRNAs, respectively. The expression of several microRNAs also differed between disease conditions. Specifically, compared with control or FSGS glomeruli, IgAN glomeruli exhibited downregulated expression of hsa-miR-3182. Furthermore, in combination, the expression levels of hsa-miR-146a-5p and hsa-miR-30a-5p distinguished DN from all other conditions except IgAN. Compared with control proximal tubules, DN, FSGS, IgAN, and MPGN proximal tubules had differential expression of 13, 14, eight, and eight microRNAs, respectively, but expression of microRNAs did not differ significantly between the disease conditions. The abundance of several microRNAs correlated with indexes of renal function. Finally, we validated the differential glomerular expression of select microRNAs in a second cohort of patients with DN (n=19) and FSGS (n=21). In conclusion, we identified tissue-specific microRNA expression patterns associated with several kidney pathologies. The identified microRNAs could be developed as biomarkers of kidney diseases and might be involved in disease mechanisms.
Collapse
Affiliation(s)
| | - Seth J Davis
- Center of Systems Molecular Medicine, Department of Physiology
| | - Pengyuan Liu
- Center of Systems Molecular Medicine, Department of Physiology
| | - Xiaoqing Pan
- Center of Systems Molecular Medicine, Department of Physiology
| | | | | | | | - Kaylee Bishop
- Center of Systems Molecular Medicine, Department of Physiology
| | - Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology,
| |
Collapse
|
37
|
miR-382 Contributes to Renal Tubulointerstitial Fibrosis by Downregulating HSPD1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4708516. [PMID: 28680529 PMCID: PMC5478870 DOI: 10.1155/2017/4708516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022]
Abstract
Redox imbalance plays an important role in the pathogenesis of CKD progression. Previously, we demonstrated that microRNA-382 (miR-382) contributed to TGF-β1-induced loss of epithelial polarity in human kidney epithelial cells, but its role in the development of renal tubulointerstitial fibrosis remains unknown. In this study, we found that with 7 days of unilateral ureteral obstruction (UUO) in mice, the abundance of miR-382 in the obstructed kidney was significantly increased. Meanwhile, the protein expression of heat shock protein 60 (HSPD1), a predicted target of miR-382, was reduced after 7 days of UUO. Expression of 3-nitrotyrosine (3-NT) was upregulated, but expression of thioredoxin (Trx) was downregulated. Anti-miR-382 treatment suppressed the upregulation of miR-382, attenuated renal interstitial fibrosis in the obstructed kidney, and reversed the downregulation of HSPD1/Trx and upregulation of 3-NT after UUO. Furthermore, in vitro study revealed that overexpression of HSPD1 significantly restored Trx expression and reversed TGF-β1-induced loss of E-cadherin, while in vivo study found that direct siRNA-mediated suppression of HSPD1 in the UUO kidney promoted oxidative stress despite miR-382 blockade. Our clinical data showed that upregulation of miR-382/3-NT and downregulation of HSPD1/Trx were also observed in IgA nephropathy patients with renal interstitial fibrosis. These data supported a novel mechanism in which miR-382 targets HSPD1 and contributes to the redox imbalance in the development of renal fibrosis.
Collapse
|
38
|
Kota SK, Kota SB. Noncoding RNA and epigenetic gene regulation in renal diseases. Drug Discov Today 2017; 22:1112-1122. [PMID: 28487070 DOI: 10.1016/j.drudis.2017.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 02/07/2023]
Abstract
Kidneys have a major role in normal physiology and metabolic homeostasis. Loss or impairment of kidney function is a common occurrence in several metabolic disorders, including hypertension and diabetes. Chronic kidney disease (CKD) affect nearly 10% of the population worldwide; ranks 18th in the list of causes of death; and contributes to a significant proportion of healthcare costs. The tissue repair and regenerative potential of kidneys are limited and they decline during aging. Recent studies have demonstrated a key role for epigenetic processes and players, such as DNA methylation, histone modifications, noncoding (nc)RNA, and so on, in both kidney development and disease. In this review, we highlight these recent findings with an emphasis on aberrant epigenetic changes that accompany renal diseases, key targets, and their therapeutic value.
Collapse
Affiliation(s)
- Satya K Kota
- Harvard School of Dental Medicine, Boston, MA, USA.
| | - Savithri B Kota
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Abstract
MicroRNAs are small, noncoding, RNAs known for their powerful modulation of molecular processes, making them a major focus for studying pathological mechanisms. The human miR-146 family of microRNAs consists of two member genes, MIR146A and MIR146B These two microRNAs are located on different chromosomes and exhibit differential regulation in many cases. However, they are nearly identical in sequence, sharing a seed region, and are thus predicted to target the same set of genes. A large proportion of the microRNA (miR)-146 literature focuses on its role in regulating the innate immune response in the context of various pathologies by modulating two widely studied target genes in the toll-like receptor signaling cascade. A growing subset of the literature reports a role of miR-146 in cardiovascular and renal disease, and data suggest there is exciting potential for miR-146 as a diagnostic and therapeutic target. Nevertheless, the published literature is confounded by unclear and imprecise language concerning the specific effects of the two miR-146 family members. The present review will compare the genomic origin and regulation of miR-146a and miR-146b, discuss some approaches to overcome analytical and experimental challenges, and summarize findings in major areas of miR-146 research. Moving forward, careful evaluation of miR-146a/b specificity in analytical and experimental approaches will aid researchers in elucidating the functional relevance of differential regulation of the miR-146 family members in health and disease.
Collapse
Affiliation(s)
- Mark R Paterson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
40
|
de Veer SJ, Swedberg JE, Brattsand M, Clements JA, Harris JM. Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors. Biol Chem 2016; 397:1237-1249. [DOI: 10.1515/hsz-2016-0112] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/16/2016] [Indexed: 12/24/2022]
Abstract
Abstract
Kallikrein-related peptidase 5 (KLK5) is a promising therapeutic target in several skin diseases, including Netherton syndrome, and is emerging as a potential target in various cancers. In this study, we used a sparse matrix library of 125 individually synthesized peptide substrates to characterize the binding specificity of KLK5. The sequences most favored by KLK5 were GRSR, YRSR and GRNR, and we identified sequence-specific interactions involving the peptide N-terminus by analyzing kinetic constants (kcat and KM) and performing molecular dynamics simulations. KLK5 inhibitors were subsequently engineered by substituting substrate sequences into the binding loop (P1, P2 and P4 residues) of sunflower trypsin inhibitor-1 (SFTI-1). These inhibitors were effective against KLK5 but showed limited selectivity, and performing a further substitution at P2′ led to the design of a new variant that displayed improved activity against KLK5 (Ki=4.2±0.2 nm), weak activity against KLK7 and 12-fold selectivity over KLK14. Collectively, these findings provide new insight into the design of highly favored binding sequences for KLK5 and reveal several opportunities for modulating inhibitor selectivity over closely related proteases that will be useful for future studies aiming to develop therapeutic molecules targeting KLK5.
Collapse
|
41
|
Huang B, Cheng Y, Usa K, Liu Y, Baker MA, Mattson DL, He Y, Wang N, Liang M. Renal Tumor Necrosis Factor α Contributes to Hypertension in Dahl Salt-Sensitive Rats. Sci Rep 2016; 6:21960. [PMID: 26916681 PMCID: PMC4768148 DOI: 10.1038/srep21960] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/03/2016] [Indexed: 02/08/2023] Open
Abstract
Tumor necrosis factor α (TNFα) is a major proinflammatory cytokine and its level is elevated in hypertensive states. Inflammation occurs in the kidneys during the development of hypertension. We hypothesized that TNFα specifically in the kidney contributes to the development of hypertension and renal injury in Dahl salt-sensitive (SS) rats, a widely used model of human salt-sensitive hypertension and renal injury. SS rats were chronically instrumented for renal interstitial infusion and blood pressure measurement in conscious, freely moving state. Gene expression was measured using real-time PCR and renal injury assessed with histological analysis. The abundance of TNFα in the renal medulla of SS rats, but not the salt-insensitive congenic SS.13BN26 rats, was significantly increased when rats had been fed a high-salt diet for 7 days (n = 6 or 9, p < 0.01). The abundance of TNFα receptors in the renal medulla was significantly higher in SS rats than SS.13BN26 rats. Renal interstitial administration of Etanercept, an inhibitor of TNFα, significantly attenuated the development of hypertension in SS rats on a high-salt diet (n = 7–8, p < 0.05). Glomerulosclerosis and interstitial fibrosis were also significantly ameliorated. These findings indicate intrarenal TNFα contributes to the development of hypertension and renal injury in SS rats.
Collapse
Affiliation(s)
- Baorui Huang
- Department of Nephrology and Rheumatology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, P.R.China.,Medical College of Soochow University, Suzhou, Jiangsu, P.R.China.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yuan Cheng
- Center of Systems Molecular Medicine, Milwaukee, WI, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Nephrology, Shenzhen Second People's Hospital and the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Kristie Usa
- Center of Systems Molecular Medicine, Milwaukee, WI, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yong Liu
- Center of Systems Molecular Medicine, Milwaukee, WI, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Maria Angeles Baker
- Center of Systems Molecular Medicine, Milwaukee, WI, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yongcheng He
- Department of Nephrology, Shenzhen Second People's Hospital and the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Niansong Wang
- Department of Nephrology and Rheumatology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, P.R.China
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Milwaukee, WI, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
42
|
Ma X, Lu C, Lv C, Wu C, Wang Q. The Expression of miR-192 and Its Significance in Diabetic Nephropathy Patients with Different Urine Albumin Creatinine Ratio. J Diabetes Res 2016; 2016:6789402. [PMID: 26881255 PMCID: PMC4736386 DOI: 10.1155/2016/6789402] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To investigate the expression of miR-192 and its significance in diabetic nephropathy (DN) patients. METHODS 464 patients with type 2 diabetes mellitus (T2DM) were divided into normal albuminuria group (NA, n = 157), microalbuminuria group (MA, n = 159), and large amount of albuminuria group (LA, n = 148). 127 healthy persons were selected as the control group (NC, n = 127). The serum miR-192 levels were detected by Real-Time PCR and transforming growth factor-β1 (TGF-β1) and fibronectin (FN) were detected by enzyme-linked immunosorbent assay. The relationships among these parameters were analyzed by Pearson correlation analysis and multiple linear regression analysis. RESULTS The miR-192 in the LA group was significantly lower than other groups, which was lower in the MA group than in the NA group (P < 0.01). The TGF-β1 and FN in the LA group were significantly higher than other groups, which were higher in the MA group than in the NA group (P < 0.01). The expression of miR-192 was negatively correlated with TGF-β1, FN, and Ln (UACR) and miR-192, TGF-β1, and FN were independent relevant factors affecting Ln (UACR) in T2DM (P < 0.01). CONCLUSIONS These findings indicate that the levels of miR-192 were lower accompanied by the decrease of urine albumin creatinine ratio (UACR) and the association between miR-192 and nephritic fibrosis in DN.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Geriatrics Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Canlu Lu
- Endocrine Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chuan Lv
- Endocrine Department, The People Hospital of Liaoning Province, Shenyang, Liaoning, China
| | - Can Wu
- Endocrine Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiuyue Wang
- Endocrine Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
- *Qiuyue Wang:
| |
Collapse
|
43
|
Bhatt K, Kato M, Natarajan R. Mini-review: emerging roles of microRNAs in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 2015; 310:F109-18. [PMID: 26538441 DOI: 10.1152/ajprenal.00387.2015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/30/2015] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNA) are endogenously produced short noncoding regulatory RNAs that can repress gene expression by posttranscriptional mechanisms. They can therefore influence both normal and pathological conditions in diverse biological systems. Several miRNAs have been detected in kidneys, where they have been found to be crucial for renal development and normal physiological functions as well as significant contributors to the pathogenesis of renal disorders such as diabetic nephropathy, acute kidney injury, lupus nephritis, polycystic kidney disease, and others, due to their effects on key genes involved in these disease processes. miRNAs have also emerged as novel biomarkers in these renal disorders. Due to increasing evidence of their actions in various kidney segments, in this mini-review we discuss the functional significance of altered miRNA expression during the development of renal pathologies and highlight emerging miRNA-based therapeutics and diagnostic strategies for early detection and treatment of kidney diseases.
Collapse
Affiliation(s)
- Kirti Bhatt
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| | - Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| |
Collapse
|
44
|
Pezzolesi MG, Satake E, McDonnell KP, Major M, Smiles AM, Krolewski AS. Circulating TGF-β1-Regulated miRNAs and the Risk of Rapid Progression to ESRD in Type 1 Diabetes. Diabetes 2015; 64:3285-93. [PMID: 25931475 PMCID: PMC4542435 DOI: 10.2337/db15-0116] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/27/2015] [Indexed: 12/19/2022]
Abstract
We investigated whether circulating TGF-β1-regulated miRNAs detectable in plasma are associated with the risk of rapid progression to end-stage renal disease (ESRD) in a cohort of proteinuric patients with type 1 diabetes (T1D) and normal eGFR. Plasma specimens obtained at entry to the study were examined in two prospective subgroups that were followed for 7-20 years (rapid progressors and nonprogressors), as well as a reference panel of normoalbuminuric T1D patients. Of the five miRNAs examined in this study, let-7c-5p and miR-29a-3p were significantly associated with protection against rapid progression and let-7b-5p and miR-21-5p were significantly associated with the increased risk of ESRD. In logistic analysis, controlling for HbA1c and other covariates, let-7c-5p and miR-29a-3p were associated with more than a 50% reduction in the risk of rapid progression (P ≤ 0.001), while let-7b-5p and miR-21-5p were associated with a >2.5-fold increase in the risk of ESRD (P ≤ 0.005). This study is the first prospective study to demonstrate that circulating TGF-β1-regulated miRNAs are deregulated early in T1D patients who are at risk for rapid progression to ESRD.
Collapse
Affiliation(s)
- Marcus G Pezzolesi
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA Department of Medicine, Harvard Medical School, Boston, MA
| | - Eiichiro Satake
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA Department of Medicine, Harvard Medical School, Boston, MA
| | - Kevin P McDonnell
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA
| | - Melissa Major
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA
| | - Adam M Smiles
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA
| | - Andrzej S Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
45
|
Wen D, Danquah M, Chaudhary AK, Mahato RI. Small molecules targeting microRNA for cancer therapy: Promises and obstacles. J Control Release 2015; 219:237-247. [PMID: 26256260 DOI: 10.1016/j.jconrel.2015.08.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023]
Abstract
Aberrant expression of miRNAs is critically implicated in cancer initiation and progression. Therapeutic approaches focused on regulating miRNAs are therefore a promising approach for treating cancer. Antisense oligonucleotides, miRNA sponges, and CRISPR/Cas9 genome editing systems are being investigated as tools for regulating miRNAs. Despite the accruing insights in the use of these tools, delivery concerns have mitigated clinical application of such systems. In contrast, little attention has been given to the potential of small molecules to modulate miRNA expression for cancer therapy. In these years, many researches proved that small molecules targeting cancer-related miRNAs might have greater potential for cancer treatment. Small molecules targeting cancer related miRNAs showed significantly promising results in different cancer models. However, there are still several obstacles hindering the progress and clinical application in this area. This review discusses the development, mechanisms and application of small molecules for modulating oncogenic miRNAs (oncomiRs). Attention has also been given to screening technologies and perspectives aimed to facilitate clinical translation for small molecule-based miRNA therapeutics.
Collapse
Affiliation(s)
- Di Wen
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Michael Danquah
- Department of Pharmaceutical Sciences, Chicago State University, 9501 South King Drive., Chicago, IL 60628, USA
| | - Amit Kumar Chaudhary
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| |
Collapse
|
46
|
Meng XM, Tang PMK, Li J, Lan HY. TGF-β/Smad signaling in renal fibrosis. Front Physiol 2015; 6:82. [PMID: 25852569 PMCID: PMC4365692 DOI: 10.3389/fphys.2015.00082] [Citation(s) in RCA: 509] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/03/2015] [Indexed: 12/26/2022] Open
Abstract
TGF-β (transforming growth factor-β) is well identified as a central mediator in renal fibrosis. TGF-β initiates canonical and non-canonical pathways to exert multiple biological effects. Among them, Smad signaling is recognized as a major pathway of TGF-β signaling in progressive renal fibrosis. During fibrogenesis, Smad3 is highly activated, which is associated with the down-regulation of an inhibitory Smad7 via an ubiquitin E3-ligases-dependent degradation mechanism. The equilibrium shift between Smad3 and Smad7 leads to accumulation and activation of myofibroblasts, overproduction of ECM (extracellular matrix), and reduction in ECM degradation in the diseased kidney. Therefore, overexpression of Smad7 has been shown to be a therapeutic agent for renal fibrosis in various models of kidney diseases. In contrast, another downstream effecter of TGF-β/Smad signaling pathway, Smad2, exerts its renal protective role by counter-regulating the Smad3. Furthermore, recent studies demonstrated that Smad3 mediates renal fibrosis by down-regulating miR-29 and miR-200 but up-regulating miR-21 and miR-192. Thus, overexpression of miR-29 and miR-200 or down-regulation of miR-21 and miR-192 is capable of attenuating Smad3-mediated renal fibrosis in various mouse models of chronic kidney diseases (CKD). Taken together, TGF-β/Smad signaling plays an important role in renal fibrosis. Targeting TGF-β/Smad3 signaling may represent a specific and effective therapy for CKD associated with renal fibrosis.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University Hefei, China
| | - Patrick Ming-Kuen Tang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong Hong Kong, China ; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong Hong Kong, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University Hefei, China
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong Hong Kong, China ; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong Hong Kong, China ; Shenzhen Research Institute, The Chinese University of Hong Kong Shenzhen, China
| |
Collapse
|
47
|
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs that regulate most of important cellular processes by inhibiting gene expression through the post-transcriptional repression of their target mRNAs. In kidneys, miRNAs have been associated in renal development, homeostasis, and physiological functions. Results from clinical and experimental animal studies demonstrate that miRNAs play essential roles in the pathogenesis of various renal diseases. Chronic kidney diseases (CKD) is characterized by renal fibrosis. Transforming growth factor beta (TGF-β) is recognized as a major mediator of renal fibrosis because it is able to stimulate the accumulation of extracellular matrix (ECM) proteins to impair normal kidney function. Recently, emerging evidence demonstrate the relationship between TGF-β signaling and miRNAs expression during renal diseases. TGF-β regulates expression of several microRNAs, such as miR-21, miR-192, miR-200, miR-433, and miR-29. MiR-21, miR-192, and miR-433 which are positively induced by TGF-β signaling play a pathological role in kidney diseases. In contrast, members in both miR-29 and miR-200 families which are inhibited by TGF-β signaling protect kidneys from renal fibrosis by suppressing the deposition of ECM and preventing epithelial-to-mesenchymal transition, respectively. Clinically, the presence of miRNAs in blood and urine has been examined to be early biomarkers for detecting renal diseases. From experimental animal studies of CKD, targeting microRNAs also provides evidence about therapeutic potential of miRNAs during renal diseases. Now, it comes to the stage to examine the exact mechanisms of miRNAs during the initiation and progression of renal diseases. Therefore, determining the function of miRNAs in renal fibrosis may facilitate the development of both early diagnosis and treatment of renal diseases.
Collapse
Affiliation(s)
- Arthur C-K Chung
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University Hong Kong, China ; HKBU Institute for Research and Continuing Education Shenzhen, China
| | - Hui Y Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
48
|
Yao HW, Li J. Epigenetic Modifications in Fibrotic Diseases: Implications for Pathogenesis and Pharmacological Targets. J Pharmacol Exp Ther 2014; 352:2-13. [DOI: 10.1124/jpet.114.219816] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
49
|
Seok JK, Lee SH, Kim MJ, Lee YM. MicroRNA-382 induced by HIF-1α is an angiogenic miR targeting the tumor suppressor phosphatase and tensin homolog. Nucleic Acids Res 2014; 42:8062-72. [PMID: 24914051 PMCID: PMC4081109 DOI: 10.1093/nar/gku515] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies have revealed that microRNAs (miRs) play important roles in the regulation of angiogenesis. In this study, we have characterized miR-382 upregulation by hypoxia and the functional relevance of miR-382 in tumor angiogenesis. miRs induced by hypoxia in MKN1 human gastric cancer cells were investigated using miRNA microarrays. We selected miR-382 and found that the expression of miR-382 was regulated by HIF-1α. Conditioned media (CM) from MKN1 cells transfected with a miR-382 inhibitor (antagomiR-382) under hypoxic conditions significantly decreased vascular endothelial cell (EC) proliferation, migration and tube formation. Algorithmic programs (Target Scan, miRanda and cbio) predicted that phosphatase and tensin homolog (PTEN) is a target gene of miR-382. Deletion of miR382-binding sequences in the PTEN mRNA 3′-untranslated region (UTR) diminished the luciferase reporter activity. Subsequent study showed that the overexpression of miR-382 or antagomiR-382 down- or upregulated PTEN and its downstream target AKT/mTOR signaling pathway, indicating that PTEN is a functional target gene of miR-382. In addition, PTEN inhibited miR-382-induced in vitro and in vivo angiogenesis as well as VEGF secretion, and the inhibition of miR-382 expression reduced xenograft tumor growth and microvessel density in tumors. Taken together, these results suggest that miR-382 induced by hypoxia promotes angiogenesis and acts as an angiogenic oncogene by repressing PTEN.
Collapse
Affiliation(s)
- Jin-Kyung Seok
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea School of Life Sciences and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | - Sun Hee Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | - Min Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea School of Life Sciences and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | - You-Mie Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea School of Life Sciences and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| |
Collapse
|
50
|
Mavridis K, Avgeris M, Scorilas A. Targeting kallikrein-related peptidases in prostate cancer. Expert Opin Ther Targets 2014; 18:365-83. [DOI: 10.1517/14728222.2014.880693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|