1
|
Zhang Q, Tian Y, Fu Z, Wu S, Lan H, Zhou X, Shen W, Lou Y. The role of serum-glucocorticoid regulated kinase 1 in reproductive viability: implications from prenatal programming and senescence. Mol Biol Rep 2024; 51:376. [PMID: 38427115 PMCID: PMC10907440 DOI: 10.1007/s11033-024-09341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Organisms and cellular viability are of paramount importance to living creatures. Disruption of the balance between cell survival and apoptosis results in compromised viability and even carcinogenesis. One molecule involved in keeping this homeostasis is serum-glucocorticoid regulated kinase (SGK) 1. Emerging evidence points to a significant role of SGK1 in cell growth and survival, cell metabolism, reproduction, and life span, particularly in prenatal programming and reproductive senescence by the same token. Whether the hormone inducible SGK1 kinase is a major driver in the pathophysiological processes of prenatal programming and reproductive senescence? METHOD The PubMed/Medline, Web of Science, Embase/Ovid, and Elsevier Science Direct literature databases were searched for articles in English focusing on SGK1 published up to July 2023 RESULT: Emerging evidence is accumulating pointing to a pathophysiological role of the ubiquitously expressed SGK1 in the cellular and organismal viability. Under the regulation of specific hormones, extracellular stimuli, and various signals, SGK1 is involved in several biological processes relevant to viability, including cell proliferation and survival, cell migration and differentiation. In line, SGK1 contributes to the development of germ cells, embryos, and fetuses, whereas SGK1 inhibition leads to abnormal gametogenesis, embryo loss, and truncated reproductive lifespan. CONCLUTION SGK1 integrates a broad spectrum of effects to maintain the homeostasis of cell survival and apoptosis, conferring viability to multiple cell types as well as both simple and complex organisms, and thus ensuring appropriate prenatal development and reproductive lifespan.
Collapse
Affiliation(s)
- Qiying Zhang
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China
| | - Ye Tian
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China
| | - Zhujing Fu
- Jinhua Municipal Central Hospital, Jinhua, 321001, China
| | - Shuangyu Wu
- Medical School, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huizhen Lan
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China
| | - Xuanle Zhou
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China
| | - Wendi Shen
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China
| | - Yiyun Lou
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China.
| |
Collapse
|
2
|
Behura SK, Kelleher AM, Spencer TE. Regulation of uterine genes during the peri‐implantation period, and its relationship to the maternal brain in gestating mice. Mol Reprod Dev 2020; 87:482-492. [DOI: 10.1002/mrd.23338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Susanta K. Behura
- Division of Animal SciencesUniversity of MissouriColumbia Missouri
- Institute for Data Science and InformaticsUniversity of MissouriColumbia Missouri
| | | | - Thomas E. Spencer
- Division of Animal SciencesUniversity of MissouriColumbia Missouri
- Department of Obstetrics, Gynecology and Women's HealthUniversity of MissouriColumbia Missouri
| |
Collapse
|
3
|
van Bodegom M, Homberg JR, Henckens MJAG. Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure. Front Cell Neurosci 2017; 11:87. [PMID: 28469557 PMCID: PMC5395581 DOI: 10.3389/fncel.2017.00087] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Exposure to stress during critical periods in development can have severe long-term consequences, increasing overall risk on psychopathology. One of the key stress response systems mediating these long-term effects of stress is the hypothalamic-pituitary-adrenal (HPA) axis; a cascade of central and peripheral events resulting in the release of corticosteroids from the adrenal glands. Activation of the HPA-axis affects brain functioning to ensure a proper behavioral response to the stressor, but stress-induced (mal)adaptation of the HPA-axis' functional maturation may provide a mechanistic basis for the altered stress susceptibility later in life. Development of the HPA-axis and the brain regions involved in its regulation starts prenatally and continues after birth, and is protected by several mechanisms preventing corticosteroid over-exposure to the maturing brain. Nevertheless, early life stress (ELS) exposure has been reported to have numerous consequences on HPA-axis function in adulthood, affecting both its basal and stress-induced activity. According to the match/mismatch theory, encountering ELS prepares an organism for similar ("matching") adversities during adulthood, while a mismatching environment results in an increased susceptibility to psychopathology, indicating that ELS can exert either beneficial or disadvantageous effects depending on the environmental context. Here, we review studies investigating the mechanistic underpinnings of the ELS-induced alterations in the structural and functional development of the HPA-axis and its key external regulators (amygdala, hippocampus, and prefrontal cortex). The effects of ELS appear highly dependent on the developmental time window affected, the sex of the offspring, and the developmental stage at which effects are assessed. Albeit by distinct mechanisms, ELS induced by prenatal stressors, maternal separation, or the limited nesting model inducing fragmented maternal care, typically results in HPA-axis hyper-reactivity in adulthood, as also found in major depression. This hyper-activity is related to increased corticotrophin-releasing hormone signaling and impaired glucocorticoid receptor-mediated negative feedback. In contrast, initial evidence for HPA-axis hypo-reactivity is observed for early social deprivation, potentially reflecting the abnormal HPA-axis function as observed in post-traumatic stress disorder, and future studies should investigate its neural/neuroendocrine foundation in further detail. Interestingly, experiencing additional (chronic) stress in adulthood seems to normalize these alterations in HPA-axis function, supporting the match/mismatch theory.
Collapse
Affiliation(s)
| | | | - Marloes J. A. G. Henckens
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboudumc, Nijmegen, Netherlands
| |
Collapse
|
4
|
Chouridou E, Lambropoulou M, Koureta M, Zarouchlioti C, Balgouranidou I, Nena E, Papadopoulos N, Chatzaki E. Corticotropin-releasing factor (CRF) system localization in human fetal heart. Hormones (Athens) 2016; 15:54-64. [PMID: 30091054 DOI: 10.1007/bf03401403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The corticotropin-releasing factor (CRF) family consists of the neuropeptides CRF, Ucn I, II and III and the binding sites CRFR1, CRFR2 and CRF-BP. It regulates stress response and the homeostasis of an organism. In this study, we examined the presence of the CRF system in the human hearts of normal and pathological fetuses. DESIGN Heart tissues from 40 archival human fetuses were divided into Group A (without pathology, 'normal'), Group B (with chromosomal abnormalities) and Group C (with congenital disorders). Immunohistochemistry was used to localize the CRF system. Results correlated to gestational trimester and pathology. RESULTS Immunoreactivity for all antigens was found in cardiac myocytes of all groups, in almost all samples, except Ucn III which was present in almost half of the fetuses of Groups B and C and was not detected at all in Group A. Ucn III was more often present during the earlier stage of development (<21 weeks) and in fetuses with congenital disorders. In a fetus diagnosed with heart pathology, all but Ucn III antigens were also present. CONCLUSIONS We localized a complete CRF system in the human fetal heart and correlated the presence of Ucn III to development and pathology. More studies are needed to verify and clarify the exact role of the CRF system in the human fetal heart.
Collapse
Affiliation(s)
- Efterpi Chouridou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, P.C. 68100, Greece
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, Greece
| | - Maria Koureta
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, P.C. 68100, Greece
| | - Christina Zarouchlioti
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, P.C. 68100, Greece
| | - Ioanna Balgouranidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, P.C. 68100, Greece
| | - Evangelia Nena
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, Greece
| | - Nikolaos Papadopoulos
- Laboratory of Histology-Embryology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, P.C. 68100, Greece.
| |
Collapse
|
5
|
Abstract
Stress is an integral part of life. Activation of the hypothalamus-pituitary-adrenal (HPA) axis in the adult can be viewed as mostly adaptive to restore homeostasis in the short term. When stress occurs during development, and specifically during periods of vulnerability in maturing systems, it can significantly reprogram function, leading to pathologies in the adult. Thus, it is critical to understand how the HPA axis is regulated during developmental periods and what are the factors contributing to shape its activity and reactivity to environmental stressors. The HPA axis is not a passive system. It can actively participate in critical physiological regulation, inducing parturition in the sheep for instance or being a center stage actor in the preparation of the fetus to aerobic life (lung maturation). It is also a major player in orchestrating mental function, metabolic, and cardiovascular function often reprogrammed by stressors even prior to conception through epigenetic modifications of gametes. In this review, we review the ontogeny of the HPA axis with an emphasis on two species that have been widely studied-sheep and rodents-because they each share many similar regulatory mechanism applicable to our understanding of the human HPA axis. The studies discussed in this review should ultimately inform us about windows of susceptibility in the developing brain and the crucial importance of early preconception, prenatal, and postnatal interventions designed to improve parental competence and offspring outcome. Only through informed studies will our public health system be able to curb the expansion of many stress-related or stress-induced pathologies and forge a better future for upcoming generations.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Rakers F, Bischoff S, Schiffner R, Haase M, Rupprecht S, Kiehntopf M, Kühn-Velten WN, Schubert H, Witte OW, Nijland MJ, Nathanielsz PW, Schwab M. Role of catecholamines in maternal-fetal stress transfer in sheep. Am J Obstet Gynecol 2015. [PMID: 26212181 DOI: 10.1016/j.ajog.2015.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE We sought to evaluate whether in addition to cortisol, catecholamines also transfer psychosocial stress indirectly to the fetus by decreasing uterine blood flow (UBF) and increasing fetal anaerobic metabolism and stress hormones. STUDY DESIGN Seven pregnant sheep chronically instrumented with uterine ultrasound flow probes and catheters at 0.77 gestation underwent 2 hours of psychosocial stress by isolation. We used adrenergic blockade with labetalol to examine whether decreased UBF is catecholamine mediated and to determine to what extent stress transfer from mother to fetus is catecholamine dependent. RESULTS Stress induced transient increases in maternal cortisol and norepinephrine (NE). Maximum fetal plasma cortisol concentrations were 8.1 ± 2.1% of those in the mother suggesting its maternal origin. In parallel to the maternal NE increase, UBF decreased by maximum 22% for 30 minutes (P < .05). Fetal NE remained elevated for >2 hours accompanied by a prolonged blood pressure increase (P < .05). Fetuses developed a delayed and prolonged shift toward anaerobic metabolism in the presence of an unaltered oxygen supply. Adrenergic blockade prevented the stress-induced UBF decrease and, consequently, the fetal NE and blood pressure increase and the shift toward anaerobic metabolism. CONCLUSION We conclude that catecholamine-induced decrease of UBF is a mechanism of maternal-fetal stress transfer. It may explain the influence of maternal stress on fetal development and on programming of adverse health outcomes in later life especially during early pregnancy when fetal glucocorticoid receptor expression is limited.
Collapse
Affiliation(s)
- Florian Rakers
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
| | - Sabine Bischoff
- Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Jena, Germany
| | - Rene Schiffner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michelle Haase
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Sven Rupprecht
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | | | - Harald Schubert
- Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Mark J Nijland
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas, San Antonio, School of Medicine, San Antonio, TX
| | - Peter W Nathanielsz
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas, San Antonio, School of Medicine, San Antonio, TX
| | - Matthias Schwab
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
7
|
Maternal treatment with glucocorticoids modulates gap junction protein expression in the ovine fetal brain. Neuroscience 2014; 275:248-58. [PMID: 24929069 DOI: 10.1016/j.neuroscience.2014.05.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/28/2014] [Accepted: 05/14/2014] [Indexed: 12/31/2022]
Abstract
Gap junctions facilitate intercellular communication and are important in brain development. Connexins (Cx) comprise a transmembrane protein family that forms gap junctions. Cx-32 is expressed in oligodendrocytes and neurons, Cx-36 in neurons, and Cx-43 in astrocytes. Although single antenatal steroid courses are recommended for fetal lung maturation, multiple courses can be given to women at recurrent risk for premature delivery. We examined the effects of single and multiple glucocorticoid courses on Cx-32, Cx-36, and Cx-43 protein expressions in the fetal cerebral cortex, cerebellum, and spinal cord, and differences in Cx expression among brain regions under basal conditions. In the single-course groups, the ewes received dexamethasone (6 mg) or placebo as four intramuscular injections every 12h over 48 h. In the multiple-course groups, the ewes received the same treatment, once a week for 5 weeks starting at 76-78 days of gestation. Cx were measured by Western immunoblot on brain samples from 105 to 108-day gestation fetuses. A single dexamethasone course was associated with increases (P<0.05) in cerebral cortical and spinal cord Cx-36 and Cx-43 and multiple courses with increases in cerebellar and spinal cord Cx-36, and cerebral cortical and cerebellar Cx-43. Cx-32 did not change. Cx-32 was higher in the cerebellum than cerebral cortex and spinal cord, Cx-36 higher in the spinal cord than cerebellum, and Cx-43 higher in the cerebellum and spinal cord than cerebral cortex during basal conditions. In conclusion, maternal glucocorticoid therapy increases specific Cx, responses to different maternal courses vary among Cx and brain regions, and Cx expression differs among brain regions under basal conditions. Maternal treatment with glucocorticoids differentially modulates Cx in the fetal brain.
Collapse
|
8
|
Chintamaneni K, Bruder ED, Raff H. Programming of the hypothalamic-pituitary-adrenal axis by neonatal intermittent hypoxia: effects on adult male ACTH and corticosterone responses are stress specific. Endocrinology 2014; 155:1763-70. [PMID: 24564395 DOI: 10.1210/en.2013-1736] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intermittent hypoxia (IH) is an animal model of apnea-induced hypoxia, a common stressor in the premature neonate. Neonatal stressors may have long-term programming effects in the adult. We hypothesized that neonatal exposure to IH leads to significant changes in basal and stress-induced hypothalamic-pituitary-adrenal (HPA) axis function in the adult male rat. Rat pups were exposed to normoxia (control) or 6 approximately 30-second cycles of IH (5% or 10% inspired O₂) daily on postnatal days 2-6. At approximately 100 days of age, we assessed the diurnal rhythm of plasma corticosterone and stress-induced plasma ACTH and corticosterone responses, as well as mRNA expression of pertinent genes within the HPA axis. Basal diurnal rhythm of plasma corticosterone concentrations in the adult rat were not affected by prior exposure to neonatal IH. Adults exposed to 10% IH as neonates exhibited an augmented peak ACTH response and a prolonged corticosterone response to restraint stress; however, HPA axis responses to insulin-induced hypoglycemia were not augmented in adults exposed to neonatal IH. Pituitary Pomc, Crhr1, Nr3c1, Nr3c2, Avpr1b, and Hif1a mRNA expression was decreased in adults exposed to neonatal 10% IH. Expression of pertinent hypothalamic and adrenal mRNAs was not affected by neonatal IH. We conclude that exposure to neonatal 10% IH programs the adult HPA axis to hyperrespond to acute stimuli in a stressor-specific manner.
Collapse
Affiliation(s)
- Kathan Chintamaneni
- Endocrine Research Laboratory (K.C., E.D.B., H.R.), Aurora St Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin 53215; and Departments of Medicine, Surgery, and Physiology (H.R.), Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | | |
Collapse
|
9
|
Chouridou E, Lambropoulou M, Koureta M, Balgouranidou I, Nena E, Simopoulou M, Papadopoulos N, Kortsaris A, Chatzaki E. A complete corticotropin releasing factor system localized in human fetal lung. Hormones (Athens) 2014; 13:229-43. [PMID: 24776623 DOI: 10.1007/bf03401337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The Corticotropin Releasing Factor (CRF) system (neuropeptides CRF, Ucn I, II, III and binding sites CRFR1, CRFR2, CRF-BP) is responsible for stress regulation and the homeostasis of an organism. Herein we study the CRF system in human normal and pathological fetal lungs. DESIGN Lung tissues from 46 archival human fetuses were divided into Group A (normal), Group B (chromosomal abnormalities) and Group C (congenital disorders). Presence of elements of the CRF system was evaluated using immunohistochemistry and was correlated to pathology, lung developmental stage and clinicopathological characteristics. RESULTS Immunoreactivity for all antigens was found in both epithelial and mesenchymal lung cells of the bronchi and alveoli. Ucn I and CRFR1 were more frequently present in Group A. Ucns were more frequently localized at the pseudoglandular stage. There was a positive correlation between the presence of the CRF neuropeptides and between CRFR1 and CRF. Two fetuses with lung malformations showed low or no detectable presence of the CRF system. CONCLUSIONS We report the presence of a complete CRF system in human fetal lungs correlating its developmental stage and several pathologies. Our results are in agreement with findings in experimental animal models, implicating the CRF system in fetal lung development, its action being more significant in the early stages.
Collapse
Affiliation(s)
- Efterpi Chouridou
- Laboratory of Pharmacology, Faculty of Medicine; Democritus University of Thrace, Alexandroupolis; Greece
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Faculty of Medicine; Democritus University of Thrace, Alexandroupolis; Greece
| | - Maria Koureta
- Laboratory of Pharmacology, Faculty of Medicine; Democritus University of Thrace, Alexandroupolis; Greece
| | - Ioanna Balgouranidou
- Laboratory of Pharmacology, Faculty of Medicine; Democritus University of Thrace, Alexandroupolis; Greece
| | - Evangelia Nena
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine; Democritus University of Thrace, Alexandroupolis; Greece
| | - Maria Simopoulou
- Laboratory of Physiology, Faculty of Medicine, Kapodistriako University of Athens; Greece
| | - Nikolaos Papadopoulos
- Laboratory of Histology-Embryology, Faculty of Medicine; Democritus University of Thrace, Alexandroupolis; Greece
| | - Alexandros Kortsaris
- Laboratory of Biochemistry, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis; Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Faculty of Medicine; Democritus University of Thrace, Alexandroupolis; Greece
| |
Collapse
|
10
|
Lingis M, Richards E, Perrone D, Keller-Wood M. Serotonergic effects on feeding, but not hypothalamus-pituitary-adrenal secretion, are altered in ovine pregnancy. Am J Physiol Endocrinol Metab 2012; 302:E1231-8. [PMID: 22374755 PMCID: PMC3361981 DOI: 10.1152/ajpendo.00582.2011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In ovine pregnancy, as in human pregnancy, hypothalamus-pituitary-adrenal activity is chronically increased. These studies were designed to test the hypotheses that expression of serotonergic genes and responsiveness to serotonin are increased in pregnancy. We tested the stimulatory effect of an acute, intracerebroventricular injection of the serotonin reuptake inhibitor fluoxetine on plasma ACTH and cortisol in ewes during late pregnancy or postpartum. We also tested the effect of lower-dose, longer-term stimulation by intracerebroventricular infusion of fluoxetine in pregnant and nonpregnant ewes over 6 days. Overall, we found that the stimulatory effect of fluoxetine on ACTH and cortisol was not significantly different between late-gestation and nonpregnant ewes, although the effect of acute fluoxetine administration was inversely related to plasma progesterone concentrations. Also, there were no differences in hypothalamic expression of the glucocorticoid and mineralocorticoid receptors, corticotropin-releasing hormone, AVP, the serotonin reuptake transporter, or the serotonin [5-hydroxytryptamine (5-HT)] receptors 5-HT(1A) and 5-HT(2A) with pregnancy or fluoxetine treatment. However, chronic fluoxetine infusion reduced food intake in the nonpregnant, but not pregnant, ewes. Expression of proopiomelanocortin mRNA in the hypothalamus was reduced in pregnant compared with nonpregnant ewes. Our results indicate that pregnancy does not increase responsiveness of ACTH and cortisol to serotonergic stimulation but, rather, that progesterone reduces the ACTH response. In addition, we found a reduced ability of serotonin to inhibit feeding in the pregnant ewes, consistent with a reduction in anorexic mechanisms in the pregnant state.
Collapse
Affiliation(s)
- Melissa Lingis
- Box 100274, Dept. of Physiology and Functional Genomics, Univ. of Florida, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
11
|
Davidson JO, Quaedackers JSLT, George SA, Gunn AJ, Bennet L. Maternal dexamethasone and EEG hyperactivity in preterm fetal sheep. J Physiol 2011; 589:3823-35. [PMID: 21646408 DOI: 10.1113/jphysiol.2011.212043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Maternal treatment with synthetic corticosteroids such as dexamethasone (DEX)significantly reduces neonatal morbidity and mortality, but its effects on the fetal brain remain unclear. In this study we evaluated the effects of DEX on EEG activity in preterm fetal sheep. Ewes at 103 days gestation received two intramuscular injections of DEX (12 mg, n = 8) or saline vehicle (n = 7) 24 h apart. Fetal EEG activity was recorded from 6 h before until 120 h after the first injection (DEX-1). DEX-1 was associated with a marked transient rise in total EEG power, maximal at 12 h (P < 0.001), with a relative increase in delta and reduced theta, alpha and beta activity, resolving by 24 h. Continuous EEG records showed a shift to larger but less frequent transient waveforms (P < 0.001). Unexpectedly, evolving epileptiform activity, consistent with electrographic and clinical seizures, developed from 178 ± 44 min after DEX-1.Similar but smaller changes were seen after the second injection. Following the injections, total power returned to control values, but the proportion of alpha activity progressively increased vs. controls (P < 0.001), with reduced interburst interval duration and number (P < 0.001). No histological neural injury or microglial activation was seen. In summary, exposure to maternal dexamethasone was associated with dramatic, evolving low-frequency hyperactivity on fetal cortical EEG recordings, followed by sustained changes consistent with maturation of fetal sleep architecture. We postulate that these effects may contribute to improved neonatal outcomes.
Collapse
Affiliation(s)
- Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | | | | | | | | |
Collapse
|
12
|
Keller-Wood M, Wood CE, McCartney J, Jesse NM, Perrone D. A role for mineralocorticoid receptors in the physiology of the ovine fetus: effects on ACTH and lung liquid composition. Pediatr Res 2011; 69:491-6. [PMID: 21378597 PMCID: PMC3132803 DOI: 10.1203/pdr.0b013e318217f4cf] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the human and ovine fetus, the presence of 11β-hydroxysteroid dehydrogenase 1 allows cortisol and other corticosteroids to act at mineralocorticoid receptors (MRs) in lung and brain. To test the physiologic role of MRs in the late gestation fetus, fetal lambs were infused with a specific MR antagonist for 12 h. Infusion of the MR antagonist significantly increased plasma ACTH and cortisol concentrations. Infusion of the MR antagonist also significantly increased fetal Pco2 and hematocrit, and decreased fetal pH, but did not alter fetal heart rate or blood pressure. Infusion of the MR antagonist altered the ratio of Na⁺ to K⁺ in lung fluid but did not alter the rate of production of lung liquid or the expression of the epithelial sodium channel α or of the Na,K ATPaseα1 in lung. These results suggest that corticosteroids act at MR to regulate ACTH and blood volume and modulate lung fluid composition in the fetus, but basal levels of corticosteroids do not alter lung liquid production rate through effects on MR.
Collapse
Affiliation(s)
- Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | | | |
Collapse
|
13
|
Lingis M, Richards EM, Keller-Wood M. Differential effects of mineralocorticoid blockade on the hypothalamo-pituitary-adrenal axis in pregnant and nonpregnant ewes. Am J Physiol Endocrinol Metab 2011; 300:E592-9. [PMID: 21205934 PMCID: PMC3064009 DOI: 10.1152/ajpendo.00560.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During pregnancy, plasma ACTH and cortisol are chronically increased; this appears to occur through a reset of hypothalamo-pituitary-adrenal (HPA) activity. We have hypothesized that differences in mineralocorticoid receptor activity in pregnancy may alter feedback inhibition of the HPA axis. We tested the effect of MR antagonism in pregnant and nonpregnant ewes infused for 4 h with saline or the MR antagonist canrenoate. Pregnancy significantly increased plasma ACTH, cortisol, angiotensin II, and aldosterone. Infusion of canrenoate increased plasma ACTH, cortisol, and aldosterone in both pregnant and nonpregnant ewes; however, the temporal pattern of these responses differed between these two reproductive states. In nonpregnant ewes, plasma ACTH and cortisol transiently increased at 1 h of infusion, whereas in pregnant ewes the levels gradually increased and were significantly elevated from 2 to 4 h of infusion. MR blockade increased plasma aldosterone from 2 to 4 h in the pregnant ewes but only at 4 h in the nonpregnant ewes. In both pregnant and nonpregnant ewes, the increase in plasma aldosterone was significantly related to the timing and magnitude of the increase in plasma potassium. The results indicate a differential effect of MR activity in pregnant and nonpregnant ewes and suggest that the slow changes in ACTH, cortisol, and aldosterone are likely to be related to blockade of MR effects in the kidney rather than to effects of MR blockade in hippocampus or hypothalamus.
Collapse
Affiliation(s)
- Melissa Lingis
- Dept. of Pharmacodynamics, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
14
|
Winikor J, Schlaerth C, Rabaglino MB, Cousins R, Sutherland M, Wood CE. Complex actions of estradiol-3-sulfate in late gestation fetal brain. Reprod Sci 2011; 18:654-65. [PMID: 21273638 DOI: 10.1177/1933719110395400] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The most abundant form of estrogen circulating in fetal plasma is sulfo-conjugated estrogen; for example, estradiol-3-sulfate (E(2)SO(4)) is more highly abundant than estradiol (E(2)). The present study investigated the ontogeny of the deconjugating (steroid sulfatase [STS]) and conjugating (estrogen sulfotransferase [STF]) enzymes in ovine fetal brain and tested the hypothesis that treatment with E(2)SO(4) would alter the expression of one or both enzymes. Steroid sulfatase was more highly expressed than STF, and both changed as a function of gestational age. Estradiol-3-sulfate infused intracerebroventricularly (icv) significantly increased plasma adrenocorticotropic hormone (ACTH) and cortisol concentrations. Plasma E(2) and E(2)SO(4) were increased, and brain expression of estrogen receptor α was decreased. The proteins STS and STF were up- and downregulated, respectively. Pituitary proopiomelanocortin (POMC) and follicle-stimulating hormone (FSH) and hypothalamic corticotrophin-releasing hormone (CRH) messenger RNA (mRNA) was decreased. We conclude that E(2)SO(4) has complex actions on the fetal brain, which might involve deconjugation by STS, but that the net result of direct E(2)SO(4) icv infusion is more complex than can be accounted for by infusion of E(2) alone.
Collapse
Affiliation(s)
- Jared Winikor
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, FL, USA
| | | | | | | | | | | |
Collapse
|
15
|
Wood CE, Keller-Wood M. Influence of estradiol and fetal stress on luteinizing hormone, follicle-stimulating hormone, and prolactin in late-gestation fetal sheep. Neonatology 2011; 100:155-61. [PMID: 21430392 PMCID: PMC3078270 DOI: 10.1159/000324431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/14/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypotension and reduced cerebral blood flow secondary to brachiocephalic occlusion (BCO) stimulate various homeostatic physiological and endocrine responses. Our previous studies have also suggested a role of estradiol in augmenting the fetal stress response to BCO. OBJECTIVES We tested the hypothesis that gonadotropins and/or prolactin (PRL) are upregulated in fetal pituitary in response to fetal stress and play a role in the response to BCO-induced stress. METHODS We performed 3 studies: one in which we measured ovine fetal pituitary PRL, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) mRNA throughout the latter half of gestation in order to better understand the ontogenetic changes upon which dynamic responses are superimposed; one in which we measured these mRNA abundances in response to BCO and/or estrogen treatment, and one in which we measured plasma LH responses to BCO in chronically catheterized late-gestation fetal sheep. RESULTS PRL gene expression is increased dramatically in the last 20% of gestation. LH and FSH mRNAs were unchanged except for a transient dip in the expression of LH in the last few days before the normal time of spontaneous parturition. Chronic treatment with estradiol decreased LH and FSH mRNA, but increased PRL mRNA abundance after BCO. In contrast, BCO alone increases the abundance of LH, but not FSH or PRL mRNA in fetal pituitary. Plasma LH concentrations were not increased in response to BCO. CONCLUSIONS We conclude that the late-gestation fetal sheep responds to hypotensive stress with increases in LH mRNA but not LH secretion. LH, FSH and PRL changes are therefore unlikely to contribute to the fetal response to cerebral hypoperfusion.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology, University of Florida College of Medicine, Gainesville, Fla. 32610-0274, USA.
| | | |
Collapse
|
16
|
Cousins R, Wood CE. Expression of organic anion transporters 1 and 3 in the ovine fetal brain during the latter half of gestation. Neurosci Lett 2010; 484:22-5. [PMID: 20708067 DOI: 10.1016/j.neulet.2010.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/21/2010] [Accepted: 08/03/2010] [Indexed: 11/19/2022]
Abstract
Development and maturation of the fetal brain is critical for homeostasis in utero, responsiveness to fetal stress and, in ruminants, control of the timing of birth. In the sheep, as in the human, the placenta secretes estrogen and other signaling molecules into both the fetal and maternal blood, molecules whose entry or exit across the blood-brain barrier is likely to be facilitated by transporters. The purpose of this study was to test the hypothesis that the ovine fetal brain expresses organic anion transporters, and that the expression of these transporters varies as a function of brain region and fetal gestational age. Brains and pituitaries were collected at the time of sacrifice from fetal and newborn sheep at 80, 100, 120, 130, 145 days gestation and on the first day of postnatal life (parturition in sheep is at approximately 147 days gestation). Hypothalamus, medullary brainstem, cerebellum, and pituitary were processed for mRNA extraction and synthesis of cDNA (4-5/group). Real-time PCR analysis of OAT1 and OAT3 expression revealed significant expression of both genes in all of the tissues tested. In hypothalamus and cerebellum, there were statistically significant increases in the expression of one or both genes towards the end of gestation. In medullary brainstem and pituitary, the levels of expression were relatively unchanged as there were no statistically significant changes with developmental age. We conclude that the ovine fetal brain expresses both OAT1 and OAT3, that the pattern of expression suggests an increasing role for these transporters in the physiology of the developing fetal brain as the fetus nears the time of spontaneous parturition.
Collapse
Affiliation(s)
- Roderick Cousins
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, United States
| | | |
Collapse
|
17
|
Fisher RE, Karrow NA, Quinton M, Finegan EJ, Miller SP, Atkinson JL, Boermans HJ. Endotoxin exposure during late pregnancy alters ovine offspring febrile and hypothalamic-pituitary-adrenal axis responsiveness later in life. Stress 2010; 13:334-42. [PMID: 20536335 DOI: 10.3109/10253891003663762] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A growing number of studies indicate that maternal infection during pregnancy is associated with adverse fetal development and neonatal health. In this study, late gestating sheep (day 135) were challenged systemically with saline (0.9%) or Escherichia coli lipopolysaccharide endotoxin (400 ng/kg x 3 consecutive days, or 1.2 microg/kg x 1 day) in order to assess the impact of maternal endotoxemia on the developing fetal neuroendocrine-immune system. During adulthood, cortisol secretion and febrile responses of female offspring and the cortisol response of the male offspring to endotoxin (400 ng/kg), as well as the female cortisol response to adrenocorticotropic hormone (ACTH) challenge, were measured to assess neuroendocrine-immune function. These studies revealed that maternal endotoxin treatment during late gestation altered the female febrile and male and female cortisol response to endotoxin exposure later in life; however, the response was dependent on the endotoxin treatment regime that the pregnant sheep received. The follow-up ACTH challenge suggests that programing of the adrenal gland may be altered in the female fetus during maternal endotoxemia. The long-term health implications of these changes warrant further investigation.
Collapse
Affiliation(s)
- Rebecca E Fisher
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ont., N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Compelling evidence is accumulating indicating a pathophysiological role of the serum-and-glucocorticoid-inducible-kinase-1 (SGK1) in the development and complications of diabetes. SGK1 is ubiquitously expressed with exquisitely high transcriptional volatility. Stimulators of SGK1 expression include hyperglycemia, cell shrinkage, ischemia, glucocorticoids and mineralocorticoids. SGK1 is activated by insulin and growth factors via PI3K, 3-phosphoinositide dependent kinase PDK1 and mTOR. SGK1 activates ion channels (including ENaC, TRPV5, ROMK, KCNE1/KCNQ1 and CLCKa/Barttin), carriers (including NCC, NKCC, NHE3, SGLT1 and EAAT3), and the Na(+)/K(+)-ATPase. It regulates the activity of several enzymes (e.g., glycogen-synthase-kinase-3, ubiquitin-ligase Nedd4-2, phosphomannose-mutase-2), and transcription factors (e.g., forkhead-transcription-factor FOXO3a, beta-catenin and NF-kappaB). A common SGK1 gene variant ( approximately 3 - 5% prevalence in Caucasians, approximately 10% in Africans) is associated with increased blood pressure, obesity and type 2 diabetes. In patients suffering from type 2 diabetes, SGK1 presumably contributes to fluid retention and hypertension, enhanced coagulation and increased deposition of matrix proteins leading to tissue fibrosis such as diabetic nephropathy. Accordingly, targeting SGK1 may favourably influence occurrence and course of type 2 diabetes.
Collapse
Affiliation(s)
- Florian Lang
- Eberhard-Karls-University of Tuebingen, Department of Physiology, Gmelinstrasse 5, Tuebingen 72076, Germany.
| | | | | |
Collapse
|
19
|
Lyahyai J, Serrano C, Ranera B, Badiola JJ, Zaragoza P, Martin-Burriel I. Effect of Scrapie on the Stability of Housekeeping Genes. Anim Biotechnol 2009; 21:1-13. [DOI: 10.1080/10495390903323851] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Curr Opin Nephrol Hypertens 2009; 18:439-48. [PMID: 19584721 DOI: 10.1097/mnh.0b013e32832f125e] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The role of serum and glucocorticoid-inducible kinase 1 (SGK1) in renal physiology and pathophysiology is reviewed with particular emphasis on recent advances. RECENT FINDINGS The mammalian target of rapamycin complex 2 has been shown to phosphorylate SGK1 at Ser422 (the so-called hydrophobic motif). Ser397 and Ser401 are two additional SGK1-phosphorylation sites required for maximal SGK1 activity. A 5' variant alternate transcript of human Sgk1 has been identified that is widely expressed and shows improved stability, enhanced membrane association, and greater stimulation of epithelial Na+ transport. SGK1 is essential for optimal processing of the epithelial sodium channel and also regulates the expression of the Na+-Cl- cotransporter. With regard to pathophysiology, SGK1 participates in the stimulation of renal tubular glucose transport in diabetes, the renal profibrotic effect of both angiotensin II and aldosterone, and in fetal programing of arterial hypertension. SUMMARY The outlined recent findings advanced our understanding of the molecular regulation of SGK1 as well as the role of the kinase in renal physiology and the pathophysiology of renal disease and hypertension. Future studies using pharmacological inhibitors of SGK1 will reveal the utility of the kinase as a new therapeutic target.
Collapse
|
21
|
Mao C, Shi L, Xu F, Zhang L, Xu Z. Development of fetal brain renin-angiotensin system and hypertension programmed in fetal origins. Prog Neurobiol 2009; 87:252-63. [PMID: 19428956 DOI: 10.1016/j.pneurobio.2008.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/27/2008] [Accepted: 12/16/2008] [Indexed: 11/30/2022]
Abstract
Since the concept of fetal origins of adult diseases was introduced in 1980s, the development of the renin-angiotensin system (RAS) in normal and abnormal patterns has attracted attention. Recent studies have shown the importance of the fetal RAS in both prenatal and postnatal development. This review focuses on the functional development of the fetal brain RAS, and ontogeny of local brain RAS components in utero. The central RAS plays an important role in the control of fetal cardiovascular responses, body fluid balance, and neuroendocrine regulation. Recent progress has been made in demonstrating that altered fetal RAS development as a consequence of environmental insults may impact on "programming" of hypertension later in life. Given that the central RAS is of equal importance to the peripheral RAS in cardiovascular regulation, studies on the fetal brain RAS development in normal and abnormal patterns could shed light on "programming" mechanisms of adult cardiovascular diseases in fetal origins.
Collapse
Affiliation(s)
- Caiping Mao
- Perinatal Biology Center, Soochow University School of Medicine, Suzhou 215007, China
| | | | | | | | | |
Collapse
|
22
|
Schaub CE, Wood CE. Blockade of estrogen action upregulates estrogen receptor-alpha mRNA in the fetal brain. Neonatology 2009; 96:115-9. [PMID: 19279395 PMCID: PMC2793321 DOI: 10.1159/000208793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 09/08/2008] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fetal neuroendocrine maturation in late gestation is critical for maintenance of fetal homeostasis, growth, and readiness for birth. Sheep express estrogen receptors (ERs) in various brain regions. However, little is known about the regulation of ER-alpha and ER-beta in the ovine brain prenatally. OBJECTIVE The present study was designed to test the hypothesis that the expression of ER is influenced by circulating estrogens in the late-gestation sheep fetus. METHODS Six chronically-catheterized twin fetal sheep were treated with vehicle or the ER blocker ICI 182,780 i.c.v. (0.25 microg/day). Fetuses were sacrificed 6-14 days after surgery and start of infusion. Brain regions were rapidly isolated and snap-frozen for later extraction of mRNA and protein. ER-alpha and ER-beta mRNA was measured using real-time PCR and protein was measured using Western blot. RESULTS Treatment with ICI 182,780 increased ER-alpha mRNA, especially in cerebellum and hippocampus. There were no changes in ER-alpha protein and no changes in ER-beta at either the mRNA or protein level. CONCLUSION Expression of ER-alpha is influenced by endogenous estrogens in the ovine fetal brain.
Collapse
Affiliation(s)
- Christine E Schaub
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610-0274, USA
| | | |
Collapse
|
23
|
Wood CE, Keller-Wood M. Ontogeny of androgen receptor expression in the ovine fetal central nervous system and pituitary. Neurosci Lett 2008; 439:153-6. [PMID: 18514409 DOI: 10.1016/j.neulet.2008.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/08/2008] [Accepted: 05/06/2008] [Indexed: 10/22/2022]
Abstract
In fetal sheep, circulating androgens influence fetal stress responsiveness and the timing of parturition. Nevertheless, little is known about the presence and development of androgen receptors (ARs) in the fetal brain. The present study was undertaken to test the hypothesis that expression of androgen receptor occurs in fetal brain and pituitary, and that the abundance of the AR is ontogenetically regulated. We isolated mRNA from pituitary, hypothalamus, hippocampus, and brainstem in fetal sheep that were 80, 100, 120, 130, and 145-day gestation, and 1 and 7 days postnatal (n=4-5 per group). Using real-time RT-PCR, we measured mRNA expression levels of the receptor in these brain regions and pituitary. In a separate study, we isolated protein from the same brain regions in fetal sheep that were 80 (n=3), 120 (n=4), and 145 (n=4) days. AR mRNA expression in hypothalamus increased in late gestation, starting at 145 days, and increasing progressively after birth. A trend of increasing AR protein in hypothalamus was not significant. AR mRNA expression in pituitary was elevated after 80 days gestation, but with no further increases or decreases in late gestation, while AR protein increased significantly at the end of gestation. In hippocampus and brainstem AR mRNA was constant throughout the latter half of gestation, and AR protein was below the sensitivity of our Western blot assay. We conclude that the fetal brain and pituitary are target sites for circulating androgens or androgen precursors in fetal plasma, and we speculate that the increase in hypothalamic action of androgens immediately prior to birth might be integral to the timing of parturition.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610-0274, USA.
| | | |
Collapse
|
24
|
Development of ER-alpha and ER-beta expression in the developing ovine brain and pituitary. Gene Expr Patterns 2008; 8:457-463. [PMID: 18424193 DOI: 10.1016/j.gep.2008.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 03/02/2008] [Accepted: 03/06/2008] [Indexed: 11/22/2022]
Abstract
Fetal neuroendocrine development in late gestation is critical for maintenance of fetal homeostasis, growth, and readiness for birth. We designed the present study to identify the regional patterns of expression of the two main isoforms of the estrogen receptor, ER-alpha and ER-beta, in the developing ovine fetal brain. Fetal (80, 100, 120, 130, and 145 days gestation), neonatal (1 and 7 days), and adult sheep were euthanized and the following tissues were collected: pituitary, hypothalamus, hippocampus, cerebral cortex, and brainstem. Both ER's are expressed in the ovine brain as early as 80 days gestation, and the expression of both receptors appears to be developmentally regulated. We conclude that both forms of the estrogen receptor are expressed in fetal brain and pituitary throughout the latter half of gestation.
Collapse
|
25
|
Rumball CWH, Oliver MH, Thorstensen EB, Jaquiery AL, Husted SM, Harding JE, Bloomfield FH. Effects of twinning and periconceptional undernutrition on late-gestation hypothalamic-pituitary-adrenal axis function in ovine pregnancy. Endocrinology 2008; 149:1163-72. [PMID: 18048493 DOI: 10.1210/en.2007-1306] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The relationships between reduced size at birth, increased activity of the hypothalamic-pituitary-adrenal (HPA) axis, and increased risk of disease in adulthood are well described in singletons but are much less clear in twins. This may be because the physiological processes underlying reduced size at birth are different in singletons and twins. Periconceptional undernutrition can cause altered activity of the fetal and postnatal HPA axis without altering size at birth. However, the independent effects of periconceptional undernutrition and twinning on activity of the maternal and fetal HPA axes are not well described. We therefore studied maternal and fetal HPA axis function during late gestation in twin and singleton sheep pregnancies, either undernourished around conception or fed ad libitum. We found that twinning led to suppressed baseline HPA axis function and decreased adrenal sensitivity to ACTH stimulation but increased fetal pituitary ACTH response both to direct stimulation by CRH (ACTH area under the curve response: 29.7 +/- 2.2 vs. 17.1 +/- 1.6 ng/min x ml, P < 0.01) and to decreased cortisol negative feedback. In contrast, periconceptional undernutrition resulted in a decreased pituitary response (ACTH area under the curve response: 19.4 +/- 1.6 vs. 26.1 +/- 2.2 ng/min x ml, P = 0.02) but no difference in adrenal response. Thus, the HPA axis function of twin sheep fetuses in late gestation is very different from that of control and undernourished singletons. If the HPA axis is an important mediator between fetal adaptations and adult disease, these data may help explain why the relationship between fetal growth and postnatal physiology and disease risk is inconsistent in twins.
Collapse
Affiliation(s)
- C W H Rumball
- The Liggins Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
26
|
Schaub CE, Keller-Wood M, Wood CE. Blockade of estrogen receptors decreases CNS and pituitary prostaglandin synthase expression in fetal sheep. Neuroendocrinology 2008; 87:121-8. [PMID: 17934250 PMCID: PMC2793319 DOI: 10.1159/000109664] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 09/11/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Both prostaglandin E2 (PGE2) and estradiol stimulate fetal ACTH secretion and augment fetal ACTH responses to stress. We have reported that estradiol increases prostaglandin endoperoxide synthase-2 (PGHS-2), and we have proposed that there is a positive feedback relationship between estrogen and fetal hypothalamus-pituitary-adrenal (HPA) axis activity that is dependent upon PGHS activity in the fetal brain. The present study was designed to test the hypothesis that blockade of estrogen receptors in the fetal brain decrease PGHS-2 expression and reduces fetal HPA axis activity. METHODS In study 1, six time-dated pregnant ewes with chronically-catheterized twin fetuses were used. In each pregnancy, one twin was treated intracerebroventricularly (icv) with the estrogen receptor antagonist ICI 182,780 (25 microg/day; n = 6) while the other twin served as an age-matched control. In study 2, plasma samples were drawn from 10 singleton chronically-catheterized fetuses on alternating days until the time of spontaneous parturition. RESULTS ICI infusion caused significantly decreased PGHS-2 mRNA abundance in fetal central nervous system and pituitary, with the greatest decreases occurring in hippocampus and pituitary. There were no statistically significant changes in PGHS-1 mRNA. ICI infusion did not significantly change fetal plasma concentrations of pro-opiomelanocortin (POMC), ACTH, or cortisol in fetuses 130-134 days ges- tation (study 1) but did decrease the preparturient rise in plasma pro-opiomelanocortin concentrations in study 2. CONCLUSION We conclude that PGHS-2 expression in the late-gestation fetal brain is in part stimulated by circulating estrogens in fetal plasma. Blockade of CNS estrogen receptors reduces preparturient plasma concentrations of POMC, but does not reduce fetal HPA axis activity in 130-134 day fetal sheep.
Collapse
Affiliation(s)
- Christine E. Schaub
- Department of Physiology and Functional Genomics, University of Florida College of Medicine
| | | | - Charles E. Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine
| |
Collapse
|