1
|
Alinaghi S, Alehabib E, Johari AH, Vafaei F, Salehi S, Darvish H, Ghaedi H. Expression analysis and genotyping of DGKZ: a GWAS-derived risk gene for schizophrenia. Mol Biol Rep 2019; 46:4105-4111. [PMID: 31087244 DOI: 10.1007/s11033-019-04860-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/06/2019] [Indexed: 11/30/2022]
Abstract
Schizophrenia (SCZ) is a disabling and severe mental illness characterized by abnormal social behavior and disrupted emotions. Similar to other neuropsychological disorders, both genetics and environmental factors interplay so as to develop SCZ. It is acknowledged that genes such as DGKZ are involved in lipid signaling pathways that are the basis of neural activities, memory, and learning and are considered as candidate loci for SCZ. The aim of the present study was to evaluate the expression level and genotypes of DGKZ in patients with SCZ and controls. We used q-PCR to measure the relative expression of DGKZ in blood. To determine DGKZ-rs7951870 genotypes, tetra-ARMS PCR was used. Our results showed a significant difference in DGKZ mRNA ratio between SCZ patients and healthy controls (P = 2 × 10-4). Also, we showed that rs7951870-TT genotype was strongly associated with increased DGKZ expression level (P = 0.038). In conclusion, our findings revealed dysregulation of DGKZ in SCZ patients and a significant correction between the gene expression and DGKZ variant rs7951870.
Collapse
Affiliation(s)
- Somayeh Alinaghi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Alehabib
- Student Research Committee, Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Johari
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Vafaei
- The Cohort Lab for the Iran University of Medical Sciences Staffs, University of Medical Sciences, Tehran, Iran
| | - Shima Salehi
- The Cohort Lab for the Iran University of Medical Sciences Staffs, University of Medical Sciences, Tehran, Iran
| | - Hossein Darvish
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran. .,Department of Medical Genetics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Katsounas A, Wilting KR, Lempicki RA, Schlaak JF, Gerken G. Microarrays-Enabled Hypothesis Generation: The Suspect Role of FNBP-1 in Neuropsychiatric Pathogenesis Associated with HIV and/or HCV Infection. JOURNAL OF AIDS & CLINICAL RESEARCH 2016; 7:641. [PMID: 28255515 PMCID: PMC5330367 DOI: 10.4172/2155-6113.1000641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The spectrum of neuropsychiatric illness (NI) associated with the Human Immunodeficiency Virus (HIV) and/or the Hepatitis C Virus (HCV) is far reaching and significantly impacts the clinical presentation and outcome of infected persons; however, the etiological and pathophysiological background remains partially understood. The present work was aimed to investigate the potential significance of formin binding protein 1 (FNBP-1)-dependent pathways in NI-pathogenesis by elaborating on previous microarray-based research in HIV and/or HCV-infected patients receiving interferon-α (IFN-α) immunotherapy via a rigorous data mining procedure. METHODS Using microarray data of peripheral whole blood (PB) samples obtained from HCV mono-infected persons (n=25, Affymetrix® HG-U133A_2) 12 h before and after the 1st dose of pegylated IFN-α (PegIFN-α), we re-applied the same analytical algorithm that we had developed and published in an earlier study with HIV/HCV co-infected subjects (N=28, Affymetrix® HG-U133A), in order to evaluate reproducibility of potential NI-related molecular findings in an independent cohort. RESULTS Among 28 gene expression profiles (HIV/HCV: N=9 vs. HCV: N=19) selected by applying different thresholds (a Mean Fold Difference value (MFD) in gene expression of ≥ 0.38 (log2) and/or P value from <0.05 to ≤ 0.1) FNBP-1 was identified as the only overlapping marker, which also exhibited a consistent upregulation in association with the development of NI in both cohorts. Previous functional annotation analysis had classified FNBP-1 as molecule with significant enrichment in various brain tissues (P<0.01). CONCLUSION Our current findings are strongly arguing for intensifying research into the FNBP-1-related mechanisms that may be conferring risk for or resistance to HIV- and/or HCV-related NI.
Collapse
Affiliation(s)
- A Katsounas
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - KR Wilting
- Department for Medical Microbiology and Infection Prevention, University Medical Center Groningen, Hanzeplein 1 (9713 GZ) Groningen, the Netherlands
| | - RA Lempicki
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - JF Schlaak
- Evangelisches Klinikum Niederrhein gGmbH, Duisburg, Germany
| | - G Gerken
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| |
Collapse
|
3
|
Katsounas A, Rasimas JJ, Schlaak JF, Lempicki RA, Rosenstein DL, Kottilil S. Interferon stimulated exonuclease gene 20 kDa links psychiatric events to distinct hepatitis C virus responses in human immunodeficiency virus positive patients. J Med Virol 2014; 86:1323-31. [PMID: 24782267 PMCID: PMC4114765 DOI: 10.1002/jmv.23956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 01/02/2023]
Abstract
Hepatitis C Virus (HCV) infection occurs frequently in patients with preexisting mental illness. Treatment for chronic hepatitis C using interferon formulations often increases risk for neuro-psychiatric symptoms. Pegylated-Interferon-α (PegIFN-α) remains crucial for attaining sustained virologic response (SVR); however, PegIFN-α based treatment is associated with psychiatric adverse effects, which require dose reduction and/or interruption. This study's main objective was to identify genes induced by PegIFN-α and expressed in the central nervous system and immune system, which could mediate the development of psychiatric toxicity in association with antiviral outcome. Using peripheral blood mononuclear cells from Human Immunodeficiency Virus (HIV)/HCV co-infected donors (N = 28), DNA microarray analysis was performed and 21 differentially regulated genes were identified in patients with psychiatric toxicity versus those without. Using these 21 expression profiles a two-way-ANOVA was performed to select genes based on antiviral outcome and occurrence of neuro-psychiatric adverse events. Microarray analysis demonstrated that Interferon-stimulated-exonuclease-gene 20 kDa (ISG20) and Interferon-alpha-inducible-protein 27 (IFI27) were the most regulated genes (P < 0.05) between three groups that were built by combining antiviral outcome and neuro-psychiatric toxicity. Validation by bDNA assay confirmed that ISG20 expression levels were significantly associated with these outcomes (P < 0.035). Baseline levels and induction of ISG20 correlated independently with no occurrence of psychiatric adverse events and non-response to therapy (P < 0.001). Among the 21 genes that were associated with psychiatric adverse events and 20 Interferon-inducible genes (IFIGs) used as controls, only ISG20 expression was able to link PegIFN-α related neuro-psychiatric toxicity to distinct HCV-responses in patients co-infected with HIV and HCV in vivo.
Collapse
Affiliation(s)
- Antonios Katsounas
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Joseph J. Rasimas
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joerg F. Schlaak
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Richard A. Lempicki
- Laboratory of Immunopathogenesis and Bioinformatics, SAIC-Frederick, Inc, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Donald L. Rosenstein
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC 27599-7305, USA
| | - Shyam Kottilil
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Bridenbaugh EA, Wang W, Srimushnam M, Cromer WE, Zawieja SD, Schmidt SE, Jupiter DC, Huang HC, Van Buren V, Zawieja DC. An immunological fingerprint differentiates muscular lymphatics from arteries and veins. Lymphat Res Biol 2014; 11:155-71. [PMID: 24044756 DOI: 10.1089/lrb.2013.0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The principal function of the lymphatic system is to transport lymph from the interstitium to the nodes and then from the nodes to the blood. In doing so lymphatics play important roles in fluid homeostasis, macromolecular/antigen transport and immune cell trafficking. To better understand the genes that contribute to their unique physiology, we compared the transcriptional profile of muscular lymphatics (prenodal mesenteric microlymphatics and large, postnodal thoracic duct) to axillary and mesenteric arteries and veins isolated from rats. Clustering of the differentially expressed genes demonstrated that the lymph versus blood vessel differences were more profound than between blood vessels, particularly the microvessels. Gene ontology functional category analysis indicated that microlymphatics were enriched in antigen processing/presentation, IgE receptor signaling, catabolic processes, translation and ribosome; while they were diminished in oxygen transport, regulation of cell proliferation, glycolysis and inhibition of adenylate cyclase activity by G-proteins. We evaluated the differentially expressed microarray genes/products by qPCR and/or immunofluorescence. Immunofluorescence documented that multiple MHC class II antigen presentation proteins were highly expressed by an antigen-presenting cell (APC) type found resident within the lymphatic wall. These APCs also expressed CD86, a co-stimulatory protein necessary for T-cell activation. We evaluated the distribution and phenotype of APCs within the pre and postnodal lymphatic network. This study documents a novel population of APCs resident within the walls of muscular, prenodal lymphatics that indicates novel roles in antigen sampling and immune responses. In conclusion, these prenodal lymphatics exhibit a unique profile that distinguishes them from blood vessels and highlights the role of the lymphatic system as an immunovascular system linking the parenchymal interstitium, lymph nodes and the blood.
Collapse
Affiliation(s)
- Eric A Bridenbaugh
- Department of Medical Physiology, Division of Lymphatic Biology, Texas A&M Health Science Center College of Medicine , Temple, Texas
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Vulto-van Silfhout AT, Rajamanickam S, Jensik PJ, Vergult S, de Rocker N, Newhall KJ, Raghavan R, Reardon SN, Jarrett K, McIntyre T, Bulinski J, Ownby SL, Huggenvik JI, McKnight GS, Rose GM, Cai X, Willaert A, Zweier C, Endele S, de Ligt J, van Bon BWM, Lugtenberg D, de Vries PF, Veltman JA, van Bokhoven H, Brunner HG, Rauch A, de Brouwer APM, Carvill GL, Hoischen A, Mefford HC, Eichler EE, Vissers LELM, Menten B, Collard MW, de Vries BBA. Mutations affecting the SAND domain of DEAF1 cause intellectual disability with severe speech impairment and behavioral problems. Am J Hum Genet 2014; 94:649-61. [PMID: 24726472 DOI: 10.1016/j.ajhg.2014.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/18/2014] [Indexed: 11/29/2022] Open
Abstract
Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1.
Collapse
Affiliation(s)
| | - Shivakumar Rajamanickam
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Philip J Jensik
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sarah Vergult
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Nina de Rocker
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Kathryn J Newhall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Ramya Raghavan
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sara N Reardon
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Kelsey Jarrett
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Tara McIntyre
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Joseph Bulinski
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Stacy L Ownby
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Jodi I Huggenvik
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - G Stanley McKnight
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Gregory M Rose
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Xiang Cai
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Andy Willaert
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sabine Endele
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Joep de Ligt
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Bregje W M van Bon
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Dorien Lugtenberg
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Petra F de Vries
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, 8603 Schwerzenbach-Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, 8603 Schwerzenbach-Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| | - Arjan P M de Brouwer
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Gemma L Carvill
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Björn Menten
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Michael W Collard
- Department of Physiology and Center for Integrated Research in Cognitive & Neural Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Panaccione I, Napoletano F, Forte AM, Kotzalidis GD, Del Casale A, Rapinesi C, Brugnoli C, Serata D, Caccia F, Cuomo I, Ambrosi E, Simonetti A, Savoja V, De Chiara L, Danese E, Manfredi G, Janiri D, Motolese M, Nicoletti F, Girardi P, Sani G. Neurodevelopment in schizophrenia: the role of the wnt pathways. Curr Neuropharmacol 2013; 11:535-58. [PMID: 24403877 PMCID: PMC3763761 DOI: 10.2174/1570159x113119990037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/28/2013] [Accepted: 05/12/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To review the role of Wnt pathways in the neurodevelopment of schizophrenia. METHODS SYSTEMATIC PUBMED SEARCH, USING AS KEYWORDS ALL THE TERMS RELATED TO THE WNT PATHWAYS AND CROSSING THEM WITH EACH OF THE FOLLOWING AREAS: normal neurodevelopment and physiology, neurodevelopmental theory of schizophrenia, schizophrenia, and antipsychotic drug action. RESULTS Neurodevelopmental, behavioural, genetic, and psychopharmacological data point to the possible involvement of Wnt systems, especially the canonical pathway, in the pathophysiology of schizophrenia and in the mechanism of antipsychotic drug action. The molecules most consistently found to be associated with abnormalities or in antipsychotic drug action are Akt1, glycogen synthase kinase3beta, and beta-catenin. However, the extent to which they contribute to the pathophysiology of schizophrenia or to antipsychotic action remains to be established. CONCLUSIONS The study of the involvement of Wnt pathway abnormalities in schizophrenia may help in understanding this multifaceted clinical entity; the development of Wnt-related pharmacological targets must await the collection of more data.
Collapse
Affiliation(s)
- Isabella Panaccione
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Flavia Napoletano
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alberto Maria Forte
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Giorgio D. Kotzalidis
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Antonio Del Casale
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Chiara Rapinesi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Chiara Brugnoli
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Daniele Serata
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Federica Caccia
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Ilaria Cuomo
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Elisa Ambrosi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alessio Simonetti
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Valeria Savoja
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Lavinia De Chiara
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Emanuela Danese
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Giovanni Manfredi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Delfina Janiri
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | | | - Ferdinando Nicoletti
- NEUROMED, Pozzilli, Isernia, Italy
- Department of Neuropharmacology, Sapienza University, School of Medicine and Pharmacy, Rome, Italy
| | - Paolo Girardi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Gabriele Sani
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, Neuropsychiatry Laboratory, Rome, Italy
| |
Collapse
|
7
|
Bridenbaugh EA. Isolation and preparation of RNA from rat blood and lymphatic microvessels for use in microarray analysis. Methods Mol Biol 2012; 843:265-89. [PMID: 22222539 DOI: 10.1007/978-1-61779-523-7_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
DNA microarray methodologies have proven to be an indispensable tool for genome-wide transcriptional profiling of organs, tissues, and cells. Here, we present a protocol for the optimized isolation and preparation of RNA from rat microvessels (including arteries, veins, and lymphatics) for subsequent use in two-color microarray analysis. The investigation of wide-ranging vessel sizes from all three vessel lineages necessitates an RNA isolation strategy that can effectively isolate high-quality RNA from varying and often very small quantities (<1 mg) of fibrous vessel tissue. Additionally, the lack of sample biomass necessitates the use of amplification strategies to generate enough RNA for use in microarray analysis. While the methods presented here were developed for use with two-color microarray analysis, the procedures and general concepts are applicable to most fluorescence-based microarray platforms.
Collapse
Affiliation(s)
- Eric A Bridenbaugh
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, Temple, TX, USA.
| |
Collapse
|
8
|
Çalışkan M, Chong JX, Uricchio L, Anderson R, Chen P, Sougnez C, Garimella K, Gabriel SB, dePristo MA, Shakir K, Matern D, Das S, Waggoner D, Nicolae DL, Ober C. Exome sequencing reveals a novel mutation for autosomal recessive non-syndromic mental retardation in the TECR gene on chromosome 19p13. Hum Mol Genet 2011; 20:1285-9. [PMID: 21212097 DOI: 10.1093/hmg/ddq569] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Exome sequencing is a powerful tool for discovery of the Mendelian disease genes. Previously, we reported a novel locus for autosomal recessive non-syndromic mental retardation (NSMR) in a consanguineous family [Nolan, D.K., Chen, P., Das, S., Ober, C. and Waggoner, D. (2008) Fine mapping of a locus for nonsyndromic mental retardation on chromosome 19p13. Am. J. Med. Genet. A, 146A, 1414-1422]. Using linkage and homozygosity mapping, we previously localized the gene to chromosome 19p13. The parents of this sibship were recently included in an exome sequencing project. Using a series of filters, we narrowed the putative causal mutation to a single variant site that segregated with NSMR: the mutation was homozygous in five affected siblings but in none of eight unaffected siblings. This mutation causes a substitution of a leucine for a highly conserved proline at amino acid 182 in TECR (trans-2,3-enoyl-CoA reductase), a synaptic glycoprotein. Our results reveal the value of massively parallel sequencing for identification of novel disease genes that could not be found using traditional approaches and identifies only the seventh causal mutation for autosomal recessive NSMR.
Collapse
Affiliation(s)
- Minal Çalışkan
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hill DP, Berardini TZ, Howe DG, Van Auken KM. Representing ontogeny through ontology: a developmental biologist's guide to the gene ontology. Mol Reprod Dev 2010; 77:314-29. [PMID: 19921742 DOI: 10.1002/mrd.21130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Developmental biology, like many other areas of biology, has undergone a dramatic shift in the perspective from which developmental processes are viewed. Instead of focusing on the actions of a handful of genes or functional RNAs, we now consider the interactions of large functional gene networks and study how these complex systems orchestrate the unfolding of an organism, from gametes to adult. Developmental biologists are beginning to realize that understanding ontogeny on this scale requires the utilization of computational methods to capture, store and represent the knowledge we have about the underlying processes. Here we review the use of the Gene Ontology (GO) to study developmental biology. We describe the organization and structure of the GO and illustrate some of the ways we use it to capture the current understanding of many common developmental processes. We also discuss ways in which gene product annotations using the GO have been used to ask and answer developmental questions in a variety of model developmental systems. We provide suggestions as to how the GO might be used in more powerful ways to address questions about development. Our goal is to provide developmental biologists with enough background about the GO that they can begin to think about how they might use the ontology efficiently and in the most powerful ways possible.
Collapse
|
10
|
PIN1 gene variants in Alzheimer's disease. BMC MEDICAL GENETICS 2009; 10:115. [PMID: 19909517 PMCID: PMC2781804 DOI: 10.1186/1471-2350-10-115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 11/12/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND Peptidyl-prolyl isomerase, NIMA-interacting 1 (PIN1) plays a significant role in the brain and is implicated in numerous cellular processes related to Alzheimer's disease (AD) and other neurodegenerative conditions. There are confounding results concerning PIN1 activity in AD brains. Also PIN1 genetic variation was inconsistently associated with AD risk. METHODS We performed analysis of coding and promoter regions of PIN1 in early- and late-onset AD and frontotemporal dementia (FTD) patients in comparison with healthy controls. RESULTS Analysis of eighteen PIN1 common polymorphisms and their haplotypes in EOAD, LOAD and FTD individuals in comparison with the control group did not reveal their contribution to disease risk.In six unrelated familial AD patients four novel PIN1 sequence variants were detected. c.58+64C>T substitution that was identified in three patients, was located in an alternative exon. In silico analysis suggested that this variant highly increases a potential affinity for a splicing factor and introduces two intronic splicing enhancers. In the peripheral leukocytes of one living patient carrying the variant, a 2.82 fold decrease in PIN1 expression was observed. CONCLUSION Our data does not support the role of PIN1 common polymorphisms as AD risk factor. However, we suggest that the identified rare sequence variants could be directly connected with AD pathology, influencing PIN1 splicing and/or expression.
Collapse
|
11
|
Horsch M, Schädler S, Gailus-Durner V, Fuchs H, Meyer H, de Angelis MH, Beckers J. Systematic gene expression profiling of mouse model series reveals coexpressed genes. Proteomics 2008; 8:1248-56. [PMID: 18338826 DOI: 10.1002/pmic.200700725] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major aim of the Human Brain Proteome Project (HBPP) is a better understanding of the molecular etiology and progression of neurodegenerative diseases. Transgenic and loss-of-function mouse mutant lines (MMLs) serve as experimental models. Transcriptome and proteome regulate each other in a complex and controlled way, and their comparative analysis is an essential aspect. As a fundamental study, we have assessed transcript profiles using a microarray containing 21 000 cDNA probes in a series of disease models within the German Mouse Clinic (GMC). Seventeen distinct organs of one adult stage were systematically collected for each submitted MML. Samples for gene expression profiling are individually selected based on conspicuous phenotypes in at least one of 14 GMC phenotype screens or on previous knowledge of the mutant phenotype. By microarray experiments expression patterns of 90 organs from 46 MMLs were analysed, identifying up to 232 differentially expressed genes in 45 organs. Here we present an overview of the results of all MMLs analysed and demonstrate the efficiency of systematic genome-wide expression profiling for the detection of molecular phenotypes in organs of a mammalian model organism. We identify the recurring regulation of particular genes and groups of coexpressed genes in apparently unrelated MMLs.
Collapse
Affiliation(s)
- Marion Horsch
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics, Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 2007. [PMID: 17785439 DOI: 10.1128/mcb.01034‐07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Wnt signaling pathway is deregulated in over 90% of human colorectal cancers. beta-Catenin, the central signal transducer of the Wnt pathway, can directly modulate gene expression by interacting with transcription factors of the TCF/LEF family. In the present study we investigate the role of Wnt signaling in the homeostasis of intestinal epithelium by using tissue-specific, inducible beta-catenin gene ablation in adult mice. Block of Wnt/beta-catenin signaling resulted in rapid loss of transient-amplifying cells and crypt structures. Importantly, intestinal stem cells were induced to terminally differentiate upon deletion of beta-catenin, resulting in a complete block of intestinal homeostasis and fatal loss of intestinal function. Transcriptional profiling of mutant crypt mRNA isolated by laser capture microdissection confirmed those observations and allowed us to identify genes potentially responsible for the functional preservation of intestinal stem cells. Our data demonstrate an essential requirement of Wnt/beta-catenin signaling for the maintenance of the intestinal epithelium in the adult organism. This challenges attempts to target aberrant Wnt signaling as a new therapeutic strategy to treat colorectal cancer.
Collapse
|
13
|
Fevr T, Robine S, Louvard D, Huelsken J. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 2007; 27:7551-9. [PMID: 17785439 PMCID: PMC2169070 DOI: 10.1128/mcb.01034-07] [Citation(s) in RCA: 472] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Wnt signaling pathway is deregulated in over 90% of human colorectal cancers. beta-Catenin, the central signal transducer of the Wnt pathway, can directly modulate gene expression by interacting with transcription factors of the TCF/LEF family. In the present study we investigate the role of Wnt signaling in the homeostasis of intestinal epithelium by using tissue-specific, inducible beta-catenin gene ablation in adult mice. Block of Wnt/beta-catenin signaling resulted in rapid loss of transient-amplifying cells and crypt structures. Importantly, intestinal stem cells were induced to terminally differentiate upon deletion of beta-catenin, resulting in a complete block of intestinal homeostasis and fatal loss of intestinal function. Transcriptional profiling of mutant crypt mRNA isolated by laser capture microdissection confirmed those observations and allowed us to identify genes potentially responsible for the functional preservation of intestinal stem cells. Our data demonstrate an essential requirement of Wnt/beta-catenin signaling for the maintenance of the intestinal epithelium in the adult organism. This challenges attempts to target aberrant Wnt signaling as a new therapeutic strategy to treat colorectal cancer.
Collapse
Affiliation(s)
- Tea Fevr
- Ecole Polytechnique Fédérale de Lausanne, ISREC (Swiss Institute for Experimental Cancer Research), Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | | | | | | |
Collapse
|
14
|
Tuerk RD, Thali RF, Auchli Y, Rechsteiner H, Brunisholz RA, Schlattner U, Wallimann T, Neumann D. New candidate targets of AMP-activated protein kinase in murine brain revealed by a novel multidimensional substrate-screen for protein kinases. J Proteome Res 2007; 6:3266-77. [PMID: 17608512 DOI: 10.1021/pr070160a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine kinase that is involved in the maintenance of energy homeostasis and recovery from metabolic stresses both at the cellular and whole body level. AMPK is found in all tissues examined so far, and a number of downstream targets have been identified. Recent work suggests that AMPK has specialized functions in the brain, such as involvement in appetite control. Nevertheless, brain-specific substrates of AMPK are unknown. Here, we performed a proteomic in vitro screen to identify new putative AMPK targets in brain. Prefractionation of murine brain lysates by liquid chromatography, utilizing four different, serially connected columns with different chemistries was found to be superior to a single column method. A pilot screen involving incubation of small volumes of individual fractions with radiolabeled ATP in the presence or absence of active AMPK, followed by one-dimensional SDS-PAGE and autoradiography, revealed the presence of potential AMPK substrates in a number of different fractions. On the basis of these results, several kinase assays were repeated with selected fractions on a preparative scale. Following separation of the radiolabeled proteins by two-dimensional electrophoresis and comparison of samples with or without added AMPK by differential autoradiography, 53 AMPK-specific phospho-spots were detected and excised. Thereof, 26 unique proteins were identified by mass spectrometry and were considered as new potential downstream targets of AMPK. Kinase assays with 14 highly purified candidate substrate proteins confirmed that at least 12 were direct targets of AMPK in vitro. Although the physiological consequences of these phosphorylation events remain to be established, hypotheses concerning the most intriguing potential targets of AMPK that have been identified by this search are discussed herein. Our data suggests that signaling by AMPK in brain is likely to be involved in the regulation of pathways that have not yet been linked to this kinase.
Collapse
Affiliation(s)
- Roland D Tuerk
- Institutes of Cell Biology and Molecular Biology & Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hamdane M, Dourlen P, Bretteville A, Sambo AV, Ferreira S, Ando K, Kerdraon O, Bégard S, Geay L, Lippens G, Sergeant N, Delacourte A, Maurage CA, Galas MC, Buée L. Pin1 allows for differential Tau dephosphorylation in neuronal cells. Mol Cell Neurosci 2006; 32:155-60. [PMID: 16697218 DOI: 10.1016/j.mcn.2006.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 01/17/2006] [Accepted: 03/30/2006] [Indexed: 01/14/2023] Open
Abstract
Neurofibrillary degeneration is likely to be related to abnormal Tau phosphorylation and aggregation. Among abnormal Tau phosphorylation sites, pThr231 is of particular interest since it is associated with early stages of Alzheimer's disease and is a binding site of Pin1, a peptidyl-prolyl cis/trans isomerase mainly involved in cell cycle regulation. In the present work, Pin1 level was found strongly increased during neuronal differentiation and tightly correlated with Tau dephosphorylation at Thr231. Likewise, we showed in cellular model that Pin1 allowed for specific Tau dephosphorylation at Thr231, whereas other phosphorylation sites were unchanged. Moreover, cells displaying Tau phosphorylation at Thr231 did not show any Pin1 nuclear depletion. Altogether, these data indicate that Pin1 has key function(s) in neuron and is at least involved in the regulation of Tau phosphorylation at relevant sites. Hence, Pin1 dysfunction, unlikely by nuclear depletion, may have critical consequences on Tau pathological aggregation and neuronal death.
Collapse
Affiliation(s)
- Malika Hamdane
- Inserm, U815, Institut de Médecine Prédictive et Recherche Thérapeutique, F-59045 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|