1
|
Kakehashi T, Nakajima M. Effects of a Muscle Relaxation Technique on Catatonia Symptoms Associated With Schizophrenia: A Case Report. Cureus 2024; 16:e66972. [PMID: 39280417 PMCID: PMC11401976 DOI: 10.7759/cureus.66972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Catatonia is characterized by the loss of voluntary control over the workings of the mind and body. It disrupts daily life by manifesting as idle posture, heightened muscle tone, and repetitive purposeless movements. However, specific physiotherapy methods addressing these symptoms are yet to be established. This case report describes a 63-year-old man hospitalized for schizophrenia who was then diagnosed with stuporous catatonia based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) criteria, characterized by catalepsy, mutism, and difficulty performing daily activities. This case report aimed to evaluate the effectiveness of a specific muscle relaxation technique, squeeze-hold (SH), in treating catatonia associated with schizophrenia and its impact on daily activities. The patient exhibited catalepsy, mutism, and difficulty in performing daily activities. The SH technique employed temporarily obstructs muscle blood flow to induce ischemia, resulting in the relaxation of vascular smooth muscle due to CO2 retention. Furthermore, shear stress upon reperfusion stimulates nitric oxide production in the vascular endothelium, enhancing blood flow. Following weekly SH on the bilateral thighs, the muscle tone in the lower extremities was alleviated within two weeks, and the patient no longer required a wheelchair by the eighth week. In addition, responsiveness to verbal commands improved. As muscle tone in the lower limbs improved, the patient regained ambulation, and his improved responsiveness facilitated independent eating during activities of daily living (ADLs), potentially enhancing motivation and spontaneity. These findings suggest that muscle tone relaxation due to enhanced blood flow and increased CO2 concentration from blood flow restriction may have promoted β-endorphin secretion, thereby improving symptoms via brain-derived neurotrophic factor expression through PGC-1α activation. In conclusion, the SH muscle relaxation technique effectively alleviated catatonic symptoms, and improved muscle tone and daily functioning in patients with schizophrenia-associated catatonia. These findings suggest that this physiotherapy approach may be a valuable addition to catatonia treatment, potentially contributing to physical and psychiatric rehabilitation. This case report illustrates the efficacy of a muscle-tone-focused treatment approach in physical therapy for catatonia and posits its contribution to the reacquisition of psychiatric function and ADLs.
Collapse
Affiliation(s)
| | - Masaaki Nakajima
- Physical Therapy, School of Health Science and Social Welfare, Kibi International University, Takahashi, JPN
| |
Collapse
|
2
|
Barge S, Wu A, Zhang L, Robson SC, Olumi A, Alper SL, Zeidel ML, Yu W. Role of ecto-5'-nucleotidase in bladder function. FASEB J 2024; 38:e23416. [PMID: 38198186 PMCID: PMC10783849 DOI: 10.1096/fj.202301393r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Purinergic signaling plays an important role in regulating bladder contractility and voiding. Abnormal purinergic signaling is associated with lower urinary tract symptoms (LUTS). Ecto-5'-nucleotidase (NT5E) catalyzes dephosphorylation of extracellular AMP to adenosine, which in turn promotes adenosine-A2b receptor signaling to relax bladder smooth muscle (BSM). The functional importance of this mechanism was investigated using Nt5e knockout (Nt5eKO) mice. Increased voiding frequency of small voids revealed by voiding spot assay was corroborated by urodynamic studies showing shortened voiding intervals and decreased bladder compliance. Myography indicated reduced contractility of Nt5eKO BSM. These data support a role for NT5E in regulating bladder function through modulation of BSM contraction and relaxation. However, the abnormal bladder phenotype of Nt5eKO mice is much milder than we previously reported in A2b receptor knockout (A2bKO) mice, suggesting compensatory response(s) in Nt5eKO mouse bladder. To better understand this compensatory mechanism, we analyzed changes in purinergic and other receptors controlling BSM contraction and relaxation in the Nt5eKO bladder. We found that the relative abundance of muscarinic CHRM3 (cholinergic receptor muscarinic 3), purinergic P2X1, and A2b receptors was unchanged, whereas P2Y12 receptor was significantly downregulated, suggesting a negative feedback response to elevated ADP signaling. Further studies of additional ecto-nucleotidases indicated significant upregulation of the nonspecific urothelial alkaline phosphatase ALPL, which might mitigate the degree of voiding dysfunction by compensating for Nt5e deletion. These data suggest a mechanistic complexity of the purinergic signaling network in bladder and imply a paracrine mechanism in which urothelium-released ATP and its rapidly produced metabolites coordinately regulate BSM contraction and relaxation.
Collapse
Affiliation(s)
- Sagar Barge
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Ali Wu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Lanlan Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Simon C. Robson
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Department of Anesthesia, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Aria Olumi
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Seth L. Alper
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Mark L. Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Vascular nitric oxide resistance in type 2 diabetes. Cell Death Dis 2023; 14:410. [PMID: 37433795 PMCID: PMC10336063 DOI: 10.1038/s41419-023-05935-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Vascular nitric oxide (NO•) resistance, manifested by an impaired vasodilator function of NO• in both the macro- and microvessels, is a common state in type 2 diabetes (T2D) associated with developing cardiovascular events and death. Here, we summarize experimental and human evidence of vascular NO• resistance in T2D and discuss its underlying mechanisms. Human studies indicate a ~ 13-94% decrease in the endothelium (ET)-dependent vascular smooth muscle (VSM) relaxation and a 6-42% reduced response to NO• donors, i.e., sodium nitroprusside (SNP) and glyceryl trinitrate (GTN), in patients with T2D. A decreased vascular NO• production, NO• inactivation, and impaired responsiveness of VSM to NO• [occurred due to quenching NO• activity, desensitization of its receptor soluble guanylate cyclase (sGC), and/or impairment of its downstream pathway, cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG)] are the known mechanisms underlying the vascular NO• resistance in T2D. Hyperglycemia-induced overproduction of reactive oxygen species (ROS) and vascular insulin resistance are key players in this state. Therefore, upregulating vascular NO• availability, re-sensitizing or bypassing the non-responsive pathways to NO•, and targeting key vascular sources of ROS production may be clinically relevant pharmacological approaches to circumvent T2D-induced vascular NO• resistance.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Hermes TDA, Mâncio RD, Mizobutti DS, Macedo AB, Kido LA, Cagnon Quitete VHA, Minatel E. Cilostazol attenuates oxidative stress and apoptosis in the quadriceps muscle of the dystrophic mouse experimental model. Int J Exp Pathol 2023; 104:13-22. [PMID: 36565167 PMCID: PMC9845609 DOI: 10.1111/iep.12461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most severe and frequent form of muscular dystrophy. The mdx mouse is one of the most widely used experimental models to understand aspects of the biology of dystrophic skeletal muscles and the mechanisms of DMD. Oxidative stress and apoptosis are present in early stages of the disease in mdx mice. The high production of reactive oxygen species (ROS) causes activation of apoptotic death regulatory proteins due to DNA damage and breakdown of nuclear and mitochondrial membranes. The quadriceps (QUA) muscle of the mdx mouse is a good tool to study oxidative events. Previous studies have demonstrated that cilostazol exerts an anti-oxidant effect by decreasing the production of reactive oxygen species (ROS). The present study aimed to evaluate the ability of cilostazol to modulate oxidative stress and apoptosis in the QUA muscle of mdx mice. Fourteen-day-old mdx mice received cilostazol or saline for 14 days. C57BL/10 mice were used as a control. In the QUA muscle of mdx mice, cilostazol treatment decreased ROS production (-74%), the number of lipofuscin granules (-47%), lipid peroxidation (-11%), and the number of apoptotic cells (-66%). Thus cilostazol showed anti-oxidant and anti-apoptotic action in the QUA muscle of mdx mice.
Collapse
Affiliation(s)
- Túlio de Almeida Hermes
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
- Departament of Anatomy, Institute of Biomedical SciencesFederal University of Alfenas (UNIFAL‐MG)AlfenasBrazil
| | - Rafael Dias Mâncio
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | - Daniela Sayuri Mizobutti
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | - Aline Barbosa Macedo
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | - Larissa Akemi Kido
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | | | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| |
Collapse
|
5
|
Majhi RK, Pourteymour S. Piezo1 activation by stretching of uterine myometrium supports pregnancy and prevents preterm labour. J Physiol 2023; 601:719-721. [PMID: 36266732 DOI: 10.1113/jp283810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rakesh Kumar Majhi
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital and University of Oslo, Norway
| | - Shirin Pourteymour
- Division of Perioperative Inflammation and Infection, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Gerber L, Clow KA, Driedzic WR, Gamperl AK. The Relationship between Myoglobin, Aerobic Capacity, Nitric Oxide Synthase Activity and Mitochondrial Function in Fish Hearts. Antioxidants (Basel) 2021; 10:antiox10071072. [PMID: 34356305 PMCID: PMC8301165 DOI: 10.3390/antiox10071072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
The dynamic interactions between nitric oxide (NO) and myoglobin (Mb) in the cardiovascular system have received considerable attention. The loss of Mb, the principal O2 carrier and a NO scavenger/producer, in the heart of some red-blooded fishes provides a unique opportunity for assessing this globin’s role in NO homeostasis and mitochondrial function. We measured Mb content, activities of enzymes of NO and aerobic metabolism [NO Synthase (NOS) and citrate synthase, respectively] and mitochondrial parameters [Complex-I and -I+II respiration, coupling efficiency, reactive oxygen species production/release rates and mitochondrial sensitivity to inhibition by NO (i.e., NO IC50)] in the heart of three species of red-blooded fish. The expression of Mb correlated positively with NOS activity and NO IC50, with low NOS activity and a reduced NO IC50 in the Mb-lacking lumpfish (Cyclopterus lumpus) as compared to the Mb-expressing Atlantic salmon (Salmo salar) and short-horned sculpin (Myoxocephalus scorpius). Collectively, our data show that NO levels are fine-tuned so that NO homeostasis and mitochondrial function are preserved; indicate that compensatory mechanisms are in place to tightly regulate [NO] and mitochondrial function in a species without Mb; and strongly suggest that the NO IC50 for oxidative phosphorylation is closely related to a fish’s hypoxia tolerance.
Collapse
|
7
|
Kumar P, Ghosh A, Sundaresan L, Kathirvel P, Sankaranarayanan K, Chatterjee S. Ectopic release of nitric oxide modulates the onset of cardiac development in avian model. In Vitro Cell Dev Biol Anim 2020; 56:593-603. [PMID: 32959218 DOI: 10.1007/s11626-020-00495-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023]
Abstract
Heart development is one of the earliest developmental events, and its pumping action is directly linked to the intensity of development of other organs. Heart contractions mediate the circulation of the nutrients and signalling molecules to the focal points of developing embryos. In the present study, we used in vivo, ex vivo, in vitro, and in silico methods for chick embryo model to characterize and identify molecular targets under the influence of ectopic nitric oxide in reference to cardiogenesis. Spermine NONOate (SpNO) treatment of 10 μM increased the percentage of chick embryos having beating heart at 40th h of incubation by 2.2-fold (p < 0.001). In an ex vivo chick embryo culture, SpNO increased the percentage of embryos having beats by 1.56-fold (p < 0.05) compared with control after 2 h of treatment. Total body weight of SpNO-treated chick embryos at the Hamburger and Hamilton (HH) stage 29 was increased by 1.22-fold (p < 0.005). Cardiac field potential (FP) recordings of chick embryo at HH29 showed 2.5-fold (p < 0.001) increased in the amplitude, 3.2-fold (p < 0.001) increased in frequency of SpNO-treated embryos over that of the control group, whereas FP duration was unaffected. In cultured cardiac progenitors cells (CPCs), SpNO treatment decreased apoptosis and cell death by twofold (p < 0.001) and 1.7-fold (p < 0.001), respectively. Transcriptome analysis of chick embryonic heart isolated from HH15 stage pre-treated with SpNO at HH8 stage showed upregulation of genes involved in heart morphogenesis, heart contraction, cardiac cell development, calcium signalling, structure, and development whereas downregulated genes were enriched under the terms extracellular matrix, wnt pathway, and BMP pathway. The key upstream molecules predicted to be activated were p38 MAPK, MEF2C, TBX5, and GATA4 while KDM5α, DNMT3A, and HNF1α were predicted to be inhibited. This study suggests that the ectopic nitric oxide modulates the onset of cardiac development.
Collapse
Affiliation(s)
- Pavitra Kumar
- Vascular Biology Laboratory, AU-KBC Research Centre, M.I.T Campus of Anna University, Chromepet, Chennai, Tamil Nadu, 600044, India
| | - Anuran Ghosh
- Department of Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - Lakshmikirupa Sundaresan
- Vascular Biology Laboratory, AU-KBC Research Centre, M.I.T Campus of Anna University, Chromepet, Chennai, Tamil Nadu, 600044, India.,Department of Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | | | | | - Suvro Chatterjee
- Vascular Biology Laboratory, AU-KBC Research Centre, M.I.T Campus of Anna University, Chromepet, Chennai, Tamil Nadu, 600044, India. .,Department of Biotechnology, Anna University, Chennai, Tamil Nadu, India.
| |
Collapse
|
8
|
Spotlight on ROS and β3-Adrenoreceptors Fighting in Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6346529. [PMID: 31934266 PMCID: PMC6942895 DOI: 10.1155/2019/6346529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
The role of ROS and RNS is a long-standing debate in cancer. Increasing the concentration of ROS reaching the toxic threshold can be an effective strategy for the reduction of tumor cell viability. On the other hand, cancer cells, by maintaining intracellular ROS concentration at an intermediate level called “mild oxidative stress,” promote the activation of signaling that favors tumor progression by increasing cell viability and dangerous tumor phenotype. Many chemotherapeutic treatments induce cell death by rising intracellular ROS concentration. The persistent drug stimulation leads tumor cells to simulate a process called hormesis by which cancer cells exhibit a biphasic response to exposure to drugs used. After a first strong response to a low dose of chemotherapeutic agent, cancer cells start to decrease the response even if high doses of drugs were used. In this framework, β3-adrenoreceptors (β3-ARs) fit with an emerging antioxidant role in cancer. β3-ARs are involved in tumor proliferation, angiogenesis, metastasis, and immune tolerance. Its inhibition, by the selective β3-ARs antagonist (SR59230A), leads cancer cells to increase ROS concentration thus inducing cell death and to decrease NO levels thus inhibiting angiogenesis. In this review, we report an overview on reactive oxygen biology in cancer cells focusing on β3-ARs as new players in the antioxidant pathway.
Collapse
|
9
|
Bhati P, Alam R, Moiz JA, Hussain ME. Subclinical inflammation and endothelial dysfunction are linked to cardiac autonomic neuropathy in type 2 diabetes. J Diabetes Metab Disord 2019; 18:419-428. [PMID: 31890667 DOI: 10.1007/s40200-019-00435-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Purpose The present study aimed to examine association between inflammatory and endothelial function biomarkers and indices of cardiac autonomic control in T2DM patients. Methods 50 T2DM patients were recruited for this study. For cardiac autonomic function, cardiovascular autonomic reflex tests (CARTs) and heart rate variability (HRV) analysis was performed. Blood samples were collected for evaluating inflammatory and endothelial function biomarkers. Multivariable linear regression analysis adjusted for diabetes duration, glycemic control, waist circumference, hypertension, dyslipidemia, metformin, and statins was performed to examine the association between the biomarkers and cardiac autonomic function parameters. Results Interleukin-6 was inversely related to total power (p = .009) and low frequency power (p = .04). Interleukin-18 and high sensitivity C-reactive protein inversely correlated with measures of cardiac vagal control (p < .05). Both nitric oxide and endothelial nitric oxide synthase were positively linked with cardiac vagal control indices (p < .05) whereas endothelin-1 did not show any independent association with cardiac autonomic function parameters. Conclusions Biomarkers of inflammation and endothelial function are associated with measures of cardiac vagal control and global HRV which suggest that there is some pathophysiological link between subclinical inflammation, endothelial dysfunction and cardiac autonomic dysfunction in T2DM.
Collapse
Affiliation(s)
- Pooja Bhati
- 1Diabetes Research Group, Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Rizwan Alam
- 2Deen Dayal Upadhyay Kaushal Kendra, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Jamal Ali Moiz
- 1Diabetes Research Group, Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - M Ejaz Hussain
- 1Diabetes Research Group, Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| |
Collapse
|
10
|
Kodippili K, Hakim CH, Yang HT, Pan X, Yang NN, Laughlin MH, Terjung RL, Duan D. Nitric oxide-dependent attenuation of noradrenaline-induced vasoconstriction is impaired in the canine model of Duchenne muscular dystrophy. J Physiol 2018; 596:5199-5216. [PMID: 30152022 DOI: 10.1113/jp275672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS We developed a novel method to study sympatholysis in dogs. We showed abolishment of sarcolemmal nNOS, and reduction of total nNOS and total eNOS in the canine Duchenne muscular dystrophy (DMD) model. We showed sympatholysis in dogs involving both nNOS-derived NO-dependent and NO-independent mechanisms. We showed that the loss of sarcolemmal nNOS compromised sympatholysis in the canine DMD model. We showed that NO-independent sympatholysis was not affected in the canine DMD model. ABSTRACT The absence of dystrophin in Duchenne muscular dystrophy (DMD) leads to the delocalization of neuronal nitric oxide synthase (nNOS) from the sarcolemma. Sarcolemmal nNOS plays an important role in sympatholysis, a process of attenuating reflex sympathetic vasoconstriction during exercise to ensure blood perfusion in working muscle. Delocalization of nNOS compromises sympatholysis resulting in functional ischaemia and muscle damage in DMD patients and mouse models. Little is known about the contribution of membrane-associated nNOS to blood flow regulation in dystrophin-deficient DMD dogs. We tested the hypothesis that the loss of sarcolemmal nNOS abolishes protective sympatholysis in contracting muscle of affected dogs. Haemodynamic responses to noradrenaline in the brachial artery were evaluated at rest and during contraction in the absence and presence of NOS inhibitors. We found sympatholysis was significantly compromised in DMD dogs, as well as in normal dogs treated with a selective nNOS inhibitor, suggesting that the absence of sarcolemmal nNOS underlies defective sympatholysis in the canine DMD model. Surprisingly, inhibition of all NOS isoforms did not completely abolish sympatholysis in normal dogs, suggesting sympatholysis in canine muscle also involves NO-independent mechanism(s). Our study established a foundation for using the dog model to test therapies aimed at restoring nNOS homeostasis in DMD.
Collapse
Affiliation(s)
- Kasun Kodippili
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Hsiao T Yang
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Maurice H Laughlin
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ronald L Terjung
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
11
|
Zhu Y, Jiang H, Chen Z, Lu B, Li J, Peng Y, Shen X. The genetic association between iNOS and eNOS polymorphisms and gastric cancer risk: a meta-analysis. Onco Targets Ther 2018; 11:2497-2507. [PMID: 29765229 PMCID: PMC5939909 DOI: 10.2147/ott.s161925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objective There are a number of susceptible factors for an increased risk of gastric cancer. Nitric oxide (NO) is considered to be associated with the development of a range of cancers. In particular, inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) are known to play a central role in the production of NO. Published studies relating to the association between eNOS rs1799983, rs2070744, and iNOS rs2297518 polymorphisms and the risk of gastric cancer risk are conflicting and inconclusive and require further analysis. Materials and methods This study involved a meta-analysis of case–control studies relating to eNOS rs1799983, rs2070744, and iNOS rs2297518 polymorphisms published prior to January 2018. Literature searches were carried out in PubMed, Embase, Web of Science, the Cochrane Library databases, and the Chinese National Knowledge Infrastructure. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the strength of association based on genotype data. Results A total of 1,356 cases and 1,791 controls were included from nine case–control studies involving eNOS rs1799983 (G894T), rs2070744 (T-786C), and iNOS rs2297518 (C150T) polymorphisms. Data analysis indicated that iNOS rs2297518 was a risk factor for Helicobacter pylorus-positive gastric cancer when compared with H. pylorus-negative gastric cancer (p=0.003, OR [95% CI] =2.19 [1.31–3.66]). In addition, the allelic, dominant, and recessive models of eNOS rs2070744 were significantly associated with a risk of gastric cancer (allelic model: p<0.00001, OR [95% CI] =0.23 [0.16–0.34]; dominant model: p<0.00001, OR [95% CI] =0.25 [0.15–0.42]; recessive model: p<0.00001, OR [95% CI] =0.16 [0.08–0.30]). No association was identified between eNOS rs1799983 and the risk of gastric cancer (p>0.05). Conclusion iNOS rs2297518 and eNOS rs2070744 polymorphisms may represent susceptible factors for gastric cancer.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Honggang Jiang
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Zhiheng Chen
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Bohao Lu
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Jin Li
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Yuping Peng
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Xuning Shen
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| |
Collapse
|
12
|
Endothelial Dysfunction in Steatotic Human Donor Livers: A Pilot Study of the Underlying Mechanism During Subnormothermic Machine Perfusion. Transplant Direct 2018; 4:e345. [PMID: 29796416 PMCID: PMC5959347 DOI: 10.1097/txd.0000000000000779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/20/2018] [Indexed: 02/06/2023] Open
Abstract
Supplemental digital content is available in the text. Background Steatosis is a major risk factor for primary nonfunction in liver transplantations. Steatotic livers recover poorly from ischemia reperfusion injury, in part due to alterations in the microcirculation, although the exact mechanism is unclear. In this study, we tested if there were any alterations in the shear stress sensing Kruppel-like factor 2 (KLF2) and its likely downstream consequences in the ex vivo perfused human liver endothelium, which would imply perturbations in microcirculatory flow in macrosteatotic livers disrupts laminar flow to evaluate if this is a potential therapeutic target for steatotic livers. Methods Using a subnormothermic machine perfusion system, 5 macrosteatotic and 4 nonsteatotic human livers were perfused for 3 hours. Flow, resistance, and biochemical profile were monitored. Gene expression levels of nitric oxide synthase 3 (eNOS), KLF2, and thrombomodulin were determined. Nitric oxide (NO) was measured in the perfusion fluid and activation of eNOS was measured with Western blotting. Results Flow dynamics, injury markers, and bile production were similar in both groups. Kruppel-like factor 2 expression was significantly higher in nonsteatotic livers. Western blotting analyses showed significantly higher levels of activated eNOS in nonsteatotic livers, consistent with an increase in NO production over time. Macrosteatotic livers showed decreased KLF2 upregulation, eNOS activity, and NO production during machine perfusion. Conclusions These results indicate a perturbed KLF2 sensing in steatotic livers, which aligns with perturbed microcirculatory state. This may indicate endothelial dysfunction and contribute to poor posttransplantation outcomes in fatty livers, and further studies to confirm by evaluation of flow and testing treatments are warranted.
Collapse
|
13
|
Neuronal nitric oxide synthase regulation of skeletal muscle functional hyperemia: exercise training and moderate compensated heart failure. Nitric Oxide 2017; 74:1-9. [PMID: 29288804 DOI: 10.1016/j.niox.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/15/2017] [Accepted: 12/24/2017] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) modulates oxygen delivery-utilization matching in resting and contracting skeletal muscle. Recent reports indicate that neuronal NO synthase (nNOS)-mediated vasoregulation during contractions is enhanced with exercise training and impaired with chronic heart failure (HF). Consequently, we tested the hypothesis that selective nNOS inhibition (S-methyl-l-thiocitrulline; SMTC, 2.1 μmol/kg) would produce attenuated reductions in muscle blood flow during moderate/heavy submaximal exercise in sedentary HF rats compared to their healthy counterparts. In addition, SMTC was expected to evoke greater reductions in exercising muscle blood flow in trained compared to sedentary healthy and HF rats. Blood flow during submaximal treadmill running (20 min/m, 5% grade) was determined via radiolabeled microspheres pre- and post-SMTC administration in healthy sedentary (Healthy + Sed, n = 8), healthy exercise trained (Healthy + ExT, n = 8), HF sedentary (HF + Sed, left ventricular end-diastolic pressure (LVEDP) = 12 ± 1 mmHg, n = 8), and HF exercise trained (HF + ExT, LVEDP = 16 ± 2 mmHg, n = 7) rats. nNOS contribution to exercising total hindlimb blood flow (ml/min/100 g) was not increased by training in either healthy or HF groups (Healthy + Sed: 105 ± 11 vs. 108 ± 16; Healthy + ExT: 96 ± 9 vs. 91 ± 7; HF + Sed: 124 ± 6 vs. 110 ± 12; HF + ExT: 107 ± 13 vs. 101 ± 8; control vs. SMTC, respectively; p > .05 for all). Similarly, SMTC did not reduce exercising blood flow in the majority of individual hindlimb muscles in any group (p > .05 for all, except for the semitendinosus and adductor longus in HF + Sed and the adductor longus in HF + ExT; p < .05). Contrary to our hypothesis, we find no support for either upregulation of nNOS function contributing to exercise hyperemia after training or its dysregulation with chronic HF.
Collapse
|
14
|
Saternos HC, Almarghalani DA, Gibson HM, Meqdad MA, Antypas RB, Lingireddy A, AbouAlaiwi WA. Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol Genomics 2017; 50:1-9. [PMID: 29093194 DOI: 10.1152/physiolgenomics.00062.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Muscarinic acetylcholine receptors belong to the G protein-coupled receptor superfamily and are widely known to mediate numerous functions within the central and peripheral nervous system. Thus, they have become attractive therapeutic targets for various disorders. It has long been known that the parasympathetic system, governed by acetylcholine, plays an essential role in regulating cardiovascular function. Unfortunately, due to the lack of pharmacologic selectivity for any one muscarinic receptor, there was a minimal understanding of their distribution and function within this region. However, in recent years, advancements in research have led to the generation of knockout animal models, better antibodies, and more selective ligands enabling a more thorough understanding of the unique role muscarinic receptors play in the cardiovascular system. These advances have shown muscarinic receptor 2 is no longer the only functional subtype found within the heart and muscarinic receptors 1 and 3 mediate both dilation and constriction in the vasculature. Although muscarinic receptors 4 and 5 are still not well characterized in the cardiovascular system, the recent generation of knockout animal models will hopefully generate a better understanding of their function. This mini review aims to summarize recent findings and advances of muscarinic involvement in the cardiovascular system.
Collapse
Affiliation(s)
- Hannah C Saternos
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Daniyah A Almarghalani
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Hayley M Gibson
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Mahmood A Meqdad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Raymond B Antypas
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Ajay Lingireddy
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| | - Wissam A AbouAlaiwi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo , Toledo, Ohio
| |
Collapse
|
15
|
Bulbul E, Sener EF, Gunay NE, Taslidere B, Taslidere E, Koyuncu S, Gunay N. A role of the endothelial nitric oxide system in acute renal colic caused by ureteral stone. Am J Emerg Med 2017; 36:266-270. [PMID: 28802544 DOI: 10.1016/j.ajem.2017.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS Endothelial nitric oxide synthase gene polymorphisms play a role in some pathophysiological processes. In this study, the possible effects of endothelial nitric oxide synthase gene polymorphisms on ureteral stone disease in patients who were admitted to the emergency department with severe pain due to renal colic are examined. MATERIALS AND METHODS The study groups were designed as controls and patients. The control group was formed from the healthy volunteers who applied to the blood center next to the emergency service. The patient group comprised patients who were diagnosed with ureteral stone disease with severe pain. All of the genetic studies were based on extracted peripheral blood samples using the necessary procedures from the Genome and Stem Cell Center at Erciyes University (GENKOK). The data were analyzed with SPSS (IBM, ver 20, United Sate). RESULTS The study group comprised 62 females and 138 males, and the control group comprised 64 females and 136 males. All of the stones that caused renal colic were found to be localized in the ureters and the ureterovesical junction. The genotypes of the intron 4 polymorphism were found to be as follows: 4a/4a in 10 people, 4b/4a in 115, and 4b/4b in 275 people. The GG genotype of the eNOS-G894T polymorphism was found in 108 patients in the study group and in117 of the healthy individuals. There was no statistically significant difference between the two groups regarding these data. CONCLUSION Although this study is the first in the literature to examine the relationship between renal colic and endothelial nitric oxide synthase gene polymorphisms, our study demonstrated that no relation was found.
Collapse
Affiliation(s)
- Emre Bulbul
- Kayseri Training and Research Hospital, Department of Emergency Medicine, Kayseri, Turkey
| | - Elif Funda Sener
- Erciyes University, Faculty of Medicine, Department of Medical Biology, Kayseri, Turkey
| | - Nahide Ekici Gunay
- Kayseri Training and Research Hospital, Department of Clinical Biochemistry, Kayseri, Turkey
| | - Bahadir Taslidere
- Bezmialem Vakif University, Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey
| | - Elif Taslidere
- Malatya State Hospital, Department of Emergency Medicine, Malatya, Turkey
| | - Serhat Koyuncu
- Gaziosmanpasa University, Faculty of Medicine, Department of Emergency Medicine, Tokat, Turkey.
| | - Nurullah Gunay
- Erciyes University, Faculty of Medicine, Department of Emergency Medicine, Kayseri, Turkey
| |
Collapse
|
16
|
Teng L, Bennett E, Cai C. Preconditioning c-Kit-positive Human Cardiac Stem Cells with a Nitric Oxide Donor Enhances Cell Survival through Activation of Survival Signaling Pathways. J Biol Chem 2016; 291:9733-47. [PMID: 26940876 DOI: 10.1074/jbc.m115.687806] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiac stem cell therapy has shown very promising potential to repair the infarcted heart but is severely limited by the poor survival of donor cells. Nitric oxide (NO) has demonstrated cytoprotective properties in various cells, but its benefits are unknown specifically for human cardiac stem cells (hCSCs). Therefore, we investigated whether pretreatment of hCSCs with a widely used NO donor, diethylenetriamine nitric oxide adduct (DETA-NO), promotes cell survival. Results from lactate dehydrogenase release assays showed a dose- and time-dependent attenuation of cell death induced by oxidative stress after DETA-NO preconditioning; this cytoprotective effect was abolished by the NO scavenger. Concomitant up-regulation of several cell signaling molecules after DETA-NO preconditioning was observed by Western blotting, including elevated phosphorylation of NRF2, NFκB, STAT3, ERK, and AKT, as well as increased protein expression of HO-1 and COX2. Furthermore, pharmaceutical inhibition of ERK, STAT3, and NFκB activities significantly diminished NO-induced cytoprotection against oxidative stress, whereas inhibition of AKT or knockdown of NRF2 only produced a minor effect. Blocking PI3K activity or knocking down COX2 expression did not alter the protective effect of DETA-NO on cell survival. The crucial roles of STAT3 and NFκB in NO-mediated signaling pathways were further confirmed by stable expression of gene-specific shRNAs in hCSCs. Thus, preconditioning hCSCs with DETA-NO promotes cell survival and resistance to oxidative stress by activating multiple cell survival signaling pathways. These results will potentially provide a simple and effective strategy to enhance survival of hCSCs after transplantation and increase their efficacy in repairing infarcted myocardium.
Collapse
Affiliation(s)
- Lei Teng
- From the Center for Cardiovascular Sciences and Department of Medicine, Albany Medical College and
| | - Edward Bennett
- Division of Cardiothoracic Surgery, Albany Medical Center, Albany, New York 12208
| | - Chuanxi Cai
- From the Center for Cardiovascular Sciences and Department of Medicine, Albany Medical College and
| |
Collapse
|
17
|
Galvan V, Hart MJ. Vascular mTOR-dependent mechanisms linking the control of aging to Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2015; 1862:992-1007. [PMID: 26639036 DOI: 10.1016/j.bbadis.2015.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
Abstract
Aging is the strongest known risk factor for Alzheimer's disease (AD). With the discovery of the mechanistic target of rapamycin (mTOR) as a critical pathway controlling the rate of aging in mice, molecules at the interface between the regulation of aging and the mechanisms of specific age-associated diseases can be identified. We will review emerging evidence that mTOR-dependent brain vascular dysfunction, a universal feature of aging, may be one of the mechanisms linking the regulation of the rate of aging to the pathogenesis of Alzheimer's disease. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Veronica Galvan
- Department of Physiology and the Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio.
| | - Matthew J Hart
- Department of Biochemistry, University of Texas Health Science Center at San Antonio
| |
Collapse
|
18
|
Dhawan U, Lee CH, Huang CC, Chu YH, Huang GS, Lin YR, Chen WL. Topological control of nitric oxide secretion by tantalum oxide nanodot arrays. J Nanobiotechnology 2015; 13:79. [PMID: 26553043 PMCID: PMC4640104 DOI: 10.1186/s12951-015-0144-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/29/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Nitric oxide (NO) plays a very important role in the cardiovascular system as a major secondary messenger in signaling pathway. Its concentration regulates most of the important physiological indexes including the systemic blood pressure, blood flow, regional vascular tone and other cardiac functions. The effect of nanotopography on the NO secretion in cardiomyocytes has not been elucidated before. In this study, we report how the nanotopography can modulate the secretion profile of NO and attempt to elucidate the genetic pathways responsible for the same by using Tantalum Oxide nanodot arrays ranging from 10 to 200 nm. A series of nanodot arrays were fabricated with dot diameter ranging from 10 to 200 nm. Temporal NO release of cardiomyocytes was quantified when grown on different surfaces. Quantitative RT-PCR and Western blot were performed to verify the genetic pathways of NO release. RESULTS After hours 24 of cell seeding, NO release was slowly enhanced by the increase of dot diameter from 10 nm up to 50 nm, mildly enhanced to a medium level at 100 nm, and increase rapidly to a high level at 200 nm. The temporal enhancement of NO release dropped dramatically on day 3. On day 5, a topology-dependent profile was established that maximized at 50 nm and dropped to control level at 200 nm. The NO releasing profile was closely associated with the expression patterns of genes associated with Endothelial nitric oxide synthase (eNOS) pathway [GPCR, PI3K, Akt, Bad, Bcl-2, NFκB(p65), eNOS], but less associated with Inducible nitric oxide synthase (iNOS) pathway (TNF-α, ILK, Akt, IκBα, NFκB, iNOS). Western blotting of Akt, eNOS, iNOS, and NFκB further validated that eNOS pathway was modulated by nanotopology. CONCLUSIONS Based on the findings of the present study, 50, 100 nm can serve as the suitable nanotopography patterns for cardiac implant surface design. These two nanodot arrays promote NO secretion and can also promote the vascular smooth muscle relaxation. The results of this study can improve the heart stent design in the medical treatments.
Collapse
Affiliation(s)
- Udesh Dhawan
- Department Material Science and Technology, National Chiao Tung University Hsinchu, 1001 University Road, Hsinchu, 300, Taiwan, ROC.
| | - Chia Hui Lee
- Department Material Science and Technology, National Chiao Tung University Hsinchu, 1001 University Road, Hsinchu, 300, Taiwan, ROC.
| | - Chun-Chung Huang
- Department Material Science and Technology, National Chiao Tung University Hsinchu, 1001 University Road, Hsinchu, 300, Taiwan, ROC.
| | - Ying Hao Chu
- Department Material Science and Technology, National Chiao Tung University Hsinchu, 1001 University Road, Hsinchu, 300, Taiwan, ROC.
| | - Guewha S Huang
- Hokan Life Technology, F2, 793 Fu-Ke Road, Taichung, Taiwan, ROC.
| | - Yan-Ren Lin
- Department of Emergency Medicine, Changhua Christian Hospital, 135 Nanshiao Street, Changhua, 500, Taiwan.
| | - Wen-Liang Chen
- Department of Biological Science and Technology, National Chiao Tung University Hsinchu, 1001 University Road, Hsinchu, 300, Taiwan, ROC.
| |
Collapse
|
19
|
Crecelius AR, Kirby BS, Hearon CM, Luckasen GJ, Larson DG, Dinenno FA. Contracting human skeletal muscle maintains the ability to blunt α1 -adrenergic vasoconstriction during KIR channel and Na(+) /K(+) -ATPase inhibition. J Physiol 2015; 593:2735-51. [PMID: 25893955 DOI: 10.1113/jp270461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/15/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS During exercise there is a balance between vasoactive factors that facilitate increases in blood flow and oxygen delivery to the active tissue and the sympathetic nervous system, which acts to limit muscle blood flow for the purpose of blood pressure regulation. Functional sympatholysis describes the ability of contracting skeletal muscle to blunt the stimulus for vasoconstriction, yet the underlying signalling of this response in humans is not well understood. We tested the hypothesis that activation of inwardly rectifying potassium channels and the sodium-potassium ATPase pump, two potential vasodilator pathways within blood vessels, contributes to the ability to blunt α1 -adrenergic vasoconstriction. Our results show preserved blunting of α1 -adrenergic vasconstriction despite blockade of these vasoactive factors. Understanding this complex phenomenon is important as it is impaired in a variety of clinical populations. ABSTRACT Sympathetic vasoconstriction in contracting skeletal muscle is blunted relative to that which occurs in resting tissue; however, the mechanisms underlying this 'functional sympatholysis' remain unclear in humans. We tested the hypothesis that α1 -adrenergic vasoconstriction is augmented during exercise following inhibition of inwardly rectifying potassium (KIR ) channels and Na(+) /K(+) -ATPase (BaCl2 + ouabain). In young healthy humans, we measured forearm blood flow (Doppler ultrasound) and calculated forearm vascular conductance (FVC) at rest, during steady-state stimulus conditions (pre-phenylephrine), and after 2 min of phenylephrine (PE; an α1 -adrenoceptor agonist) infusion via brachial artery catheter in response to two different stimuli: moderate (15% maximal voluntary contraction) rhythmic handgrip exercise or adenosine infusion. In Protocol 1 (n = 11 subjects) a total of six trials were performed in three conditions: control (saline), combined enzymatic inhibition of nitric oxide (NO) and prostaglandin (PG) synthesis (l-NMMA + ketorolac) and combined inhibition of NO, PGs, KIR channels and Na(+) /K(+) -ATPase (l-NMMA + ketorolac + BaCl2 + ouabain). In Protocol 2 (n = 6) a total of four trials were performed in two conditions: control (saline), and combined KIR channel and Na(+) /K(+) -ATPase inhibition. All trials occurred after local β-adrenoceptor blockade (propranolol). PE-mediated vasoconstriction was calculated (%ΔFVC) in each condition. Contrary to our hypothesis, despite attenuated exercise hyperaemia of ∼30%, inhibition of KIR channels and Na(+) /K(+) -ATPase, combined with inhibition of NO and PGs (Protocol 1) or alone (Protocol 2) did not enhance α1 -mediated vasoconstriction during exercise (Protocol 1: -27 ± 3%; P = 0.2 vs. control, P = 0.4 vs. l-NMMA + ketorolac; Protocol 2: -21 ± 7%; P = 0.9 vs. control). Thus, contracting human skeletal muscle maintains the ability to blunt α1 -adrenergic vasoconstriction during combined KIR channel and Na(+) /K(+) -ATPase inhibition.
Collapse
Affiliation(s)
- Anne R Crecelius
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brett S Kirby
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Christopher M Hearon
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Gary J Luckasen
- Medical Centre of the Rockies Foundation, University of Colorado Health, Loveland, CO, 80538, USA
| | - Dennis G Larson
- Medical Centre of the Rockies Foundation, University of Colorado Health, Loveland, CO, 80538, USA
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA.,Centre for Cardiovascular Research, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
20
|
Jendzjowsky NG, Just TP, Jones KE, DeLorey DS. Acute tetrahydrobiopterin supplementation attenuates sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle of healthy rats. Physiol Rep 2014; 2:2/10/e12164. [PMID: 25318748 PMCID: PMC4254091 DOI: 10.14814/phy2.12164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for the production of nitric oxide (NO) and supplementation with BH4 improves NO‐dependent vasodilation. NO also reduces sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle. Thus, we hypothesized that supplementation with BH4 would blunt sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle. Sprague‐Dawley rats (n = 15, 399 ± 57 g) were anesthetized and instrumented with an indwelling brachial artery catheter, femoral artery flow probe, and a stimulating electrode on the lumbar sympathetic chain. Triceps surae muscles were stimulated to contract rhythmically at 30% and 60% of maximal contractile force (MCF). The percentage change of femoral vascular conductance (%FVC) in response to sympathetic stimulations delivered at 2 and 5 Hz was determined at rest and during muscle contraction in control and acute BH4 supplementation (20 mg·kg−1 + 10 mg·kg−1·h−1, IA) conditions. BH4 reduced (P < 0.05) the vasoconstrictor response to sympathetic stimulation (i.e., decrease in FVC) at rest (Control: 2 Hz: −28 ± 5%FVC; 5 Hz: −45 ± 5%; BH4: 2 Hz: −17 ± 4%FVC; 5 Hz: −34 ± 7%FVC) and during muscular contraction at 30% MCF (Control: 2 Hz: −14 ± 6%FVC; 5 Hz: −28 ± 11%; BH4: 2 Hz: −6 ± 6%FVC; 5 Hz: −16 ± 10%) and 60% MCF (Control: 2 Hz: −7 ± 3%FVC; 5 Hz: −16 ± 6%FVC; BH4: 2 Hz: −2 ± 3%FVC; 5 Hz: −11 ± 6%FVC). These data are consistent with our hypothesis that acute BH4 supplementation decreases sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle. Tetrahydrobiopterin (BH4) is an essential cofactor for the production of nitric oxide (NO) and NO reduces sympathetic vasoconstrictor responsiveness in the skeletal muscle vascular bed. Thus, we hypothesized that supplementation with BH4 would blunt sympathetic vasoconstrictor responsiveness. The data demonstrate that acute BH4 supplementation decreases sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Timothy P Just
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Kelvin E Jones
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Darren S DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Jendzjowsky NG, Just TP, DeLorey DS. Exercise training augments neuronal nitric oxide synthase-mediated inhibition of sympathetic vasoconstriction in contracting skeletal muscle of rats. J Physiol 2014; 592:4789-802. [PMID: 25194041 DOI: 10.1113/jphysiol.2014.278846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We tested the hypothesis that exercise training would increase neuronal nitric oxide synthase (nNOS)-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle. Sprague-Dawley rats (n = 18) were randomized to sedentary or exercise-trained (40 m min(-1), 5° grade; 5 days week(-1) for 4 weeks) groups. Following completion of sedentary behaviour or exercise training, rats were anaesthetized and instrumented with a brachial artery catheter, femoral artery flow probe and stimulating electrodes on the lumbar sympathetic chain. The percentage change of femoral vascular conductance (%FVC) in response to sympathetic chain stimulations delivered at 2 and 5 Hz was determined at rest and during triceps surae muscle contraction before (control) and after selective nNOS blockade with S-methyl-l-thiocitrulline (SMTC, 0.6 mg kg(-1), i.v.) and subsequent non-selective NOS blockade with l-NAME (5 mg kg(-1), i.v.; SMTC + l-NAME). At rest, sympathetic vasoconstrictor responsiveness was greater (P < 0.05) in exercise-trained compared to sedentary rats in control, SMTC and SMTC + l-NAME conditions. During contraction, the constrictor response was not different (P > 0.05) between exercise trained (2 Hz: -11 ± 4%FVC; 5 Hz: -21 ± 5%FVC) and sedentary rats (2 Hz: -7 ± 6%FVC; 5 Hz: -18 ± 10%FVC) in control conditions. SMTC augmented (P < 0.05) sympathetic vasoconstriction in sedentary and exercise-trained rats; however, sympathetic vasoconstrictor responsiveness was greater (P < 0.05) in exercise-trained (2 Hz: -27 ± 5%FVC; 5 Hz: -39 ± 5%FVC) compared to sedentary (2 Hz: -17 ± 6%FVC; 5 Hz: -27 ± 8%FVC) rats during selective nNOS inhibition. SMTC + l-NAME further augmented (P < 0.05) sympathetic vasoconstrictor responsiveness by a similar magnitude (P > 0.05) in exercise-trained and sedentary rats. These data demonstrate that exercise training augmented nNOS-mediated inhibition of sympathetic vasoconstriction in contracting muscle.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, T6G 2H9, Canada
| | - Timothy P Just
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, T6G 2H9, Canada
| | - Darren S DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, T6G 2H9, Canada
| |
Collapse
|
22
|
Effects of ginsenoside Re on rat jejunal contractility. J Nat Med 2014; 68:530-8. [DOI: 10.1007/s11418-014-0831-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
|
23
|
Oberbach A, Neuhaus J, Inge T, Kirsch K, Schlichting N, Blüher S, Kullnick Y, Kugler J, Baumann S, Till H. Bariatric surgery in severely obese adolescents improves major comorbidities including hyperuricemia. Metabolism 2014; 63:242-9. [PMID: 24332707 DOI: 10.1016/j.metabol.2013.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Serum uric acid (sUA) is believed to contribute to the pathogenesis of metabolic comorbidities like hypertension, insulin-resistance (IR) and endothelial dysfunction (EDF) in obese children. The present pilot study investigated the association between sUA concentrations and loss of body weight following laparoscopic sleeve gastrectomy (LSG) or laparoscopic Roux-en-Y-gastric bypass (RYGB) in severely obese adolescents. MATERIALS/METHODS 10 severely obese adolescents underwent either LSG (n=5) or RYGB (n=5). 17 normal weight, healthy, age- and gender-matched adolescents served as a normal weight peer group (NWPG). Pre- and 12 months postoperatively, sUA and relevant metabolic parameters (glucose homeostasis, transaminases, lipids) were compared. RESULTS Preoperatively, sUA was significantly elevated in patients with severe obesity compared to NWPG. Twelve months after LSG and RYGB, a significant decrease in sUA, BMI, CVD risk factors, hepatic transaminases, and HOMA-IR was observed. Reduction in SDS-BMI significantly correlated with changes in sUA. CONCLUSIONS sUA levels and metabolic comorbidities improved following bariatric surgery in severely obese adolescents. The impact of changes in sUA on long-term clinical complications of childhood obesity deserves further study.
Collapse
Affiliation(s)
- Andreas Oberbach
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Leipzig, Germany; University of Dresden, Department of Health Sciences/Public Health, Dresden, Germany
| | - Jochen Neuhaus
- Department of Urology, University of Leipzig, Leipzig, Germany
| | - Thomas Inge
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Katharina Kirsch
- Department of Cardiology, Heart Center, University of Leipzig, Leipzig, Germany
| | - Nadine Schlichting
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University Leipzig, Leipzig, Germany
| | - Susann Blüher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University Leipzig, Leipzig, Germany; Department of Women and Child Health, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Yvonne Kullnick
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University Leipzig, Leipzig, Germany
| | - Joachim Kugler
- University of Dresden, Department of Health Sciences/Public Health, Dresden, Germany
| | - Sven Baumann
- Helmholtz Centre for Environmental Research, Department of Metabolomics, Leipzig, Germany
| | - Holger Till
- Department of Pediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria.
| |
Collapse
|
24
|
Veeranki S, Tyagi SC. Defective homocysteine metabolism: potential implications for skeletal muscle malfunction. Int J Mol Sci 2013; 14:15074-91. [PMID: 23873298 PMCID: PMC3742288 DOI: 10.3390/ijms140715074] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/24/2013] [Accepted: 07/11/2013] [Indexed: 12/13/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is a systemic medical condition and has been attributed to multi-organ pathologies. Genetic, nutritional, hormonal, age and gender differences are involved in abnormal homocysteine (Hcy) metabolism that produces HHcy. Homocysteine is an intermediate for many key processes such as cellular methylation and cellular antioxidant potential and imbalances in Hcy production and/or catabolism impacts gene expression and cell signaling including GPCR signaling. Furthermore, HHcy might damage the vagus nerve and superior cervical ganglion and affects various GPCR functions; therefore it can impair both the parasympathetic and sympathetic regulation in the blood vessels of skeletal muscle and affect long-term muscle function. Understanding cellular targets of Hcy during HHcy in different contexts and its role either as a primary risk factor or as an aggravator of certain disease conditions would provide better interventions. In this review we have provided recent Hcy mediated mechanistic insights into different diseases and presented potential implications in the context of reduced muscle function and integrity. Overall, the impact of HHcy in various skeletal muscle malfunctions is underappreciated; future studies in this area will provide deeper insights and improve our understanding of the association between HHcy and diminished physical function.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Authors to whom correspondence should be addressed; E-Mails: (S.V.); (S.C.T.); Tel.: +1-973-610-1160 (S.V.); +1-502-852-3381 (S.C.T.); Fax: +1-502-852-6239 (S.C.T.)
| | - Suresh C. Tyagi
- Authors to whom correspondence should be addressed; E-Mails: (S.V.); (S.C.T.); Tel.: +1-973-610-1160 (S.V.); +1-502-852-3381 (S.C.T.); Fax: +1-502-852-6239 (S.C.T.)
| |
Collapse
|
25
|
Jendzjowsky NG, DeLorey DS. Role of neuronal nitric oxide in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats. J Appl Physiol (1985) 2013; 115:97-106. [DOI: 10.1152/japplphysiol.00250.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isoform-specific nitric oxide (NO) synthase (NOS) contributions to NO-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle are incompletely understood. The purpose of the present study was to investigate the role of neuronal NOS (nNOS) in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats. We hypothesized that acute pharmacological inhibition of nNOS would augment sympathetic vasoconstriction in resting and contracting skeletal muscle, demonstrating that nNOS is primarily responsible for NO-mediated inhibition of sympathetic vasoconstriction. Sprague-Dawley rats ( n = 13) were anesthetized and instrumented with an indwelling brachial artery catheter, femoral artery flow probe, and lumbar sympathetic chain stimulating electrodes. Triceps surae muscles were stimulated to contract rhythmically at 60% of maximal contractile force. In series 1 ( n = 9), the percent change in femoral vascular conductance (%FVC) in response to sympathetic stimulations delivered at 2 and 5 Hz was determined at rest and during muscle contraction before and after selective nNOS blockade with S-methyl-l-thiocitrulline (SMTC, 0.6 mg/kg iv) and subsequent nonselective NOS blockade with Nω-nitro-l-arginine methyl ester (l-NAME, 5 mg/kg iv). In series 2 ( n = 4), l-NAME was injected first, and then SMTC was injected to determine if the effect of l-NAME on constrictor responses was influenced by selective nNOS inhibition. Sympathetic stimulation decreased FVC at rest (−25 ± 7 and −44 ± 8%FVC at 2 and 5 Hz, respectively) and during contraction (−7 ± 3 and −19 ± 5%FVC at 2 and 5 Hz, respectively). The decrease in FVC in response to sympathetic stimulation was greater in the presence of SMTC at rest (−32 ± 6 and −49 ± 8%FVC at 2 and 5 Hz, respectively) and during contraction (−21 ± 4 and −28 ± 4%FVC at 2 and 5 Hz, respectively). l-NAME further increased ( P < 0.05) the sympathetic vasoconstrictor response at rest (−47 ± 4 and −60 ± 6%FVC at 2 and 5 Hz, respectively) and during muscle contraction (−33 ± 3 and −40 ± 6%FVC at 2 and 5 Hz, respectively). The effect of l-NAME was not altered by the order of nNOS inhibition. These data demonstrate that NO derived from nNOS and endothelial NOS contribute to the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle.
Collapse
Affiliation(s)
- Nicholas G. Jendzjowsky
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
| | - Darren S. DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Soltow QA, Zeanah EH, Lira VA, Criswell DS. Cessation of cyclic stretch induces atrophy of C2C12 myotubes. Biochem Biophys Res Commun 2013; 434:316-21. [PMID: 23541574 DOI: 10.1016/j.bbrc.2013.03.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
Abstract
Cyclic stretch of differentiated myotubes mimics the loading pattern of mature skeletal muscle. We tested a cell culture model of disuse atrophy by the cessation of repetitive bouts of cyclic stretch in differentiated C2C12 myotubes. Myotubes were subjected to cyclic strain (12%, 0.7 Hz, 1 h/d) on collagen-I-coated Bioflex plates using a computer-controlled vacuum stretch apparatus (Flexcell Int.) for 2 (2dSTR) or 5 (5dSTR) consecutive days. Control cultures were maintained in the Bioflex plates without cyclic stretch for 2d or 5d. Additionally, some cultures were stretched for 2 d followed by cessation of stretch for 3d (2dSTR3dCES). Cyclic stretching (5dSTR) increased myotube diameter and overall myotube area by ~2-fold (P<0.05) compared to non-stretched controls, while cessation of stretch (2dSTR3dCES) resulted in ~80% smaller myotubes than 5dSTR cells, and 40-50% smaller than non-stretched controls (P<0.05). Further, the calpain-dependent cleavage products of αII-spectrin (150 kDa) and talin increased (3.5-fold and 2.2-fold, respectively; P<0.05) in 2dSTR3dCES myotubes, compared to non-stretched controls. The 1h cyclic stretching protocol acutely increased the phosphorylation of Akt (+4.5-fold; P<0.05) and its downstream targets, FOXO3a (+4.2-fold; P<0.05) and GSK-3β (+1.8-fold; P<0.05), which returned to baseline by 48 h after cessation of stretch. Additionally, nitric oxide production increased during stretch and co-treatment with the NOS inhibitor, l-NAME, inhibited the effects of stretch and cessation of stretch. We conclude that cessation of cyclic stretching causes myotube atrophy by activating calpains and decreasing activation of Akt. Stretch-induced myotube growth, as well as activation of atrophy signaling with cessation of stretch, are dependent on NOS activity.
Collapse
Affiliation(s)
- Quinlyn A Soltow
- Center for Exercise Science, Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
27
|
Copp SW, Holdsworth CT, Ferguson SK, Hirai DM, Poole DC, Musch TI. Muscle fibre-type dependence of neuronal nitric oxide synthase-mediated vascular control in the rat during high speed treadmill running. J Physiol 2013; 591:2885-96. [PMID: 23507879 DOI: 10.1113/jphysiol.2013.251082] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have recently shown that nitric oxide (NO) derived from neuronal NO synthase (nNOS) does not contribute to the hyperaemic response within rat hindlimb skeletal muscle during low-speed treadmill running. This may be attributed to low exercise intensities recruiting primarily oxidative muscle and that vascular effects of nNOS-derived NO are manifest principally within glycolytic muscle. We tested the hypothesis that selective nNOS inhibition via S-methyl-l-thiocitrulline (SMTC) would reduce rat hindlimb skeletal muscle blood flow and vascular conductance (VC) during high-speed treadmill running above critical speed (asymptote of the hyperbolic speed versus time-to-exhaustion relationship for high-speed running and an important glycolytic fast-twitch fibre recruitment boundary in the rat) principally within glycolytic fast-twitch muscle. Six rats performed three high-speed treadmill runs to exhaustion to determine critical speed. Subsequently, hindlimb skeletal muscle blood flow (radiolabelled microspheres) and VC (blood flow/mean arterial pressure) were determined during supra-critical speed treadmill running (critical speed + 15%, 52.5 ± 1.3 m min(-1)) before (control) and after selective nNOS inhibition with 0.56 mg kg(-1) SMTC. SMTC reduced total hindlimb skeletal muscle blood flow (control: 241 ± 23, SMTC: 204 ± 13 ml min(-1) (100 g)(-1), P < 0.05) and VC (control: 1.88 ± 0.20, SMTC: 1.48 ± 0.13 ml min(-1) (100 g)(-1) mmHg(-1), P < 0.05) during high-speed running. The relative reductions in blood flow and VC were greater in the highly glycolytic muscles and muscle parts consisting of 100% type IIb+d/x fibres compared to the highly oxidative muscles and muscle parts consisting of 35% type IIb+d/x muscle fibres (P < 0.05). These results extend our understanding of vascular control during exercise by identifying fibre-type-selective peripheral vascular effects of nNOS-derived NO during high-speed treadmill running.
Collapse
Affiliation(s)
- Steven W Copp
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5802, USA
| | | | | | | | | | | |
Collapse
|
28
|
Shabeeh H, Melikian N, Dworakowski R, Casadei B, Chowienczyk P, Shah AM. Differential role of endothelial versus neuronal nitric oxide synthase in the regulation of coronary blood flow during pacing-induced increases in cardiac workload. Am J Physiol Heart Circ Physiol 2013; 304:H1277-82. [PMID: 23479261 DOI: 10.1152/ajpheart.00927.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endothelial nitric oxide synthase (eNOS) was assumed to be the only source of nitric oxide (NO) involved in the regulation of human coronary blood flow (CBF). However, our recent first-in-human study using the neuronal NOS (nNOS)-selective inhibitor S-methyl-L-thiocitrulline (SMTC) showed that nNOS-derived NO also plays a role. In this study, we investigated the relative contribution of nNOS and eNOS to the CBF response to a pacing-induced increase in cardiac workload. Incremental right atrial pacing was undertaken in patients with angiographically normal coronary arteries during intracoronary infusion of saline vehicle and then either SMTC or N(G)-monomethyl-l-arginine (l-NMMA; which inhibits both eNOS and nNOS). Intracoronary SMTC (0.625 μmol/min) and l-NMMA (25 μmol/min) reduced basal CBF to a similar extent (-19.2 ± 3.2% and 25.0 ± 2.7%, respectively; n = 10 per group). Pacing-induced increases in CBF were significantly blunted by l-NMMA (maximum CBF: 83.5 ± 14.2 ml/min during saline vs. 61.6 ± 9.5 ml/min during l-NMMA; P < 0.01). By contrast, intracoronary SMTC had no effect on the maximum CBF during pacing (98.5 ± 12.9 ml/min during saline vs. 102.1 ± 16.6 ml/min during SMTC; P = not significant). l-NMMA also blunted the pacing-induced increase in coronary artery diameter (P < 0.001 vs. saline), whereas SMTC had no effect. Our results confirm a role of nNOS in the regulation of basal CBF in humans but show that coronary vasodilation in response to a pacing-induced increase in cardiac workload is exclusively mediated by eNOS-derived NO.
Collapse
Affiliation(s)
- Husain Shabeeh
- King's College London British Heart Foundation Centre, Cardiovascular Division, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
29
|
Shabeeh H, Seddon M, Brett S, Melikian N, Casadei B, Shah AM, Chowienczyk P. Sympathetic activation increases NO release from eNOS but neither eNOS nor nNOS play an essential role in exercise hyperemia in the human forearm. Am J Physiol Heart Circ Physiol 2013; 304:H1225-30. [PMID: 23436331 DOI: 10.1152/ajpheart.00783.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) release from endothelial NO synthase (eNOS) and/or neuronal NO synthase (nNOS) could be modulated by sympathetic nerve activity and contribute to increased blood flow after exercise. We examined the effects of brachial-arterial infusion of the nNOS selective inhibitor S-methyl-l-thiocitrulline (SMTC) and the nonselective NOS inhibitor N(G)-monomethyl-l-arginine (l-NMMA) on forearm arm blood flow at rest, during sympathetic activation by lower body negative pressure, and during lower body negative pressure immediately after handgrip exercise. Reduction in forearm blood flow by lower body negative pressure during infusion of SMTC was not significantly different from that during vehicle (-28.5 ± 4.02 vs. -34.1 ± 2.96%, respectively; P = 0.32; n = 8). However, l-NMMA augmented the reduction in forearm blood flow by lower body negative pressure (-44.2 ± 3.53 vs. -23.4 ± 5.71%; n = 8; P < 0.01). When lower body negative pressure was continued after handgrip exercise, there was no significant effect of either l-NMMA or SMTC on forearm blood flow immediately after low-intensity exercise (P = 0.91 and P = 0.44 for l-NMMA vs. saline and SMTC vs. saline, respectively; each n = 10) or high-intensity exercise (P = 0.46 and P = 0.68 for l-NMMA vs. saline and SMTC vs. saline, respectively; each n = 10). These results suggest that sympathetic activation increases NO release from eNOS, attenuating vasoconstriction. Dysfunction of eNOS could augment vasoconstrictor and blood pressure responses to sympathetic activation. However, neither eNOS nor nNOS plays an essential role in postexercise hyperaemia, even in the presence of increased sympathetic activation.
Collapse
Affiliation(s)
- Husain Shabeeh
- King's College London British Heart Foundation Centre, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
30
|
Hirai DM, Copp SW, Holdsworth CT, Ferguson SK, Musch TI, Poole DC. Effects of neuronal nitric oxide synthase inhibition on microvascular and contractile function in skeletal muscle of aged rats. Am J Physiol Heart Circ Physiol 2012; 303:H1076-84. [PMID: 22923618 DOI: 10.1152/ajpheart.00477.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Advanced age is associated with derangements in skeletal muscle microvascular function during the transition from rest to contractions. We tested the hypothesis that, contrary to what was reported previously in young rats, selective neuronal nitric oxide (NO) synthase (nNOS) inhibition would result in attenuated or absent alterations in skeletal muscle microvascular oxygenation (Po(2)(mv)), which reflects the matching between muscle O(2) delivery and utilization, following the onset of contractions in old rats. Spinotrapezius muscle blood flow (radiolabeled microspheres), Po(2)(mv) (phosphorescence quenching), O(2) utilization (Vo(2); Fick calculation), and submaximal force production were measured at rest and following the onset of contractions in anesthetized old male Fischer 344 × Brown Norway rats (27 to 28 mo) pre- and postselective nNOS inhibition (2.1 μmol/kg S-methyl-l-thiocitrulline; SMTC). At rest, SMTC had no effects on muscle blood flow (P > 0.05) but reduced Vo(2) by ∼23% (P < 0.05), which elevated basal Po(2)(mv) by ∼18% (P < 0.05). During contractions, steady-state muscle blood flow, Vo(2), Po(2)(mv), and force production were not altered after SMTC (P > 0.05 for all). The overall Po(2)(mv) dynamics following onset of contractions was also unaffected by SMTC (mean response time: pre, 19.7 ± 1.5; and post, 20.0 ± 2.0 s; P > 0.05). These results indicate that the locus of nNOS-derived NO control in skeletal muscle depends on age and metabolic rate (i.e., rest vs. contractions). Alterations in nNOS-mediated regulation of contracting skeletal muscle microvascular function with aging may contribute to poor exercise capacity in this population.
Collapse
Affiliation(s)
- Daniel M Hirai
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5802, USA
| | | | | | | | | | | |
Collapse
|
31
|
Boucher J, Gridley T, Liaw L. Molecular pathways of notch signaling in vascular smooth muscle cells. Front Physiol 2012; 3:81. [PMID: 22509166 PMCID: PMC3321637 DOI: 10.3389/fphys.2012.00081] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 03/19/2012] [Indexed: 11/20/2022] Open
Abstract
Notch signaling in the cardiovascular system is important during embryonic development, vascular repair of injury, and vascular pathology in humans. The vascular smooth muscle cell (VSMC) expresses multiple Notch receptors throughout its life cycle, and responds to Notch ligands as a regulatory mechanism of differentiation, recruitment to growing vessels, and maturation. The goal of this review is to provide an overview of the current understanding of the molecular basis for Notch regulation of VSMC phenotype. Further, we will explore Notch interaction with other signaling pathways important in VSMC.
Collapse
Affiliation(s)
- Joshua Boucher
- Center for Molecular Medicine, Maine Medical Center Research Institute Scarborough, ME, USA
| | | | | |
Collapse
|
32
|
Zhang Y, Duan D. Novel mini-dystrophin gene dual adeno-associated virus vectors restore neuronal nitric oxide synthase expression at the sarcolemma. Hum Gene Ther 2011; 23:98-103. [PMID: 21933029 DOI: 10.1089/hum.2011.131] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Six- to 8-kb mini-dystrophin genes are promising candidates for Duchenne muscular dystrophy (DMD) gene therapy. Several dual adeno-associated virus (AAV) mini-dystrophin vectors have been tested in dystrophin-deficient mice. Despite the encouraging preclinical results, none of the existing dual AAV vectors can restore sarcolemmal neuronal nitric oxide synthase (nNOS) expression. Localization of nNOS to the sarcolemma may greatly improve the therapeutic outcome in DMD (Lai, Y., Thomas, G.D., Yue, Y., et al. [2009]. J. Clin. Invest. 119, 624-635). In this study, we developed a series of dual AAV expression vectors to express a synthetic minigene that carries the nNOS localization domain. To help validate dual vector reconstitution, we also included a FLAG tag and a GFP reporter at different ends of the minigene. These dual AAV vectors were packaged in Y445F tyrosine mutant AAV-6 and tested in dystrophin-null mdx4cv mice by direct muscle injection. All dual vectors expressed GFP/FLAG-tagged mini-dystrophin and restored sarcolemmal nNOS. However, the reconstitution efficiency was significantly different among different sets. The dual vector set YZ27/YZ22 yielded the highest transduction efficiency (∼90%). Further development of this set dual vector may lead to more effective DMD gene therapy.
Collapse
Affiliation(s)
- Yadong Zhang
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | | |
Collapse
|
33
|
COPP STEVENW, HIRAI DANIELM, FERGUSON SCOTTK, MUSCH TIMOTHYI, POOLE DAVIDC. Role of Neuronal Nitric Oxide Synthase in Modulating Microvascular and Contractile Function in Rat Skeletal Muscle. Microcirculation 2011; 18:501-11. [DOI: 10.1111/j.1549-8719.2011.00111.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
|
35
|
Zhang J, Boghossian AA, Barone PW, Rwei A, Kim JH, Lin D, Heller DA, Hilmer AJ, Nair N, Reuel NF, Strano MS. Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes. J Am Chem Soc 2010; 133:567-81. [PMID: 21142158 DOI: 10.1021/ja1084942] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report the selective detection of single nitric oxide (NO) molecules using a specific DNA sequence of d(AT)(15) oligonucleotides, adsorbed to an array of near-infrared fluorescent semiconducting single-walled carbon nanotubes (AT(15)-SWNT). While SWNT suspended with eight other variant DNA sequences show fluorescence quenching or enhancement from analytes such as dopamine, NADH, L-ascorbic acid, and riboflavin, d(AT)(15) imparts SWNT with a distinct selectivity toward NO. In contrast, the electrostatically neutral polyvinyl alcohol enables no response to nitric oxide, but exhibits fluorescent enhancement to other molecules in the tested library. For AT(15)-SWNT, a stepwise fluorescence decrease is observed when the nanotubes are exposed to NO, reporting the dynamics of single-molecule NO adsorption via SWNT exciton quenching. We describe these quenching traces using a birth-and-death Markov model, and the maximum likelihood estimator of adsorption and desorption rates of NO is derived. Applying the method to simulated traces indicates that the resulting error in the estimated rate constants is less than 5% under our experimental conditions, allowing for calibration using a series of NO concentrations. As expected, the adsorption rate is found to be linearly proportional to NO concentration, and the intrinsic single-site NO adsorption rate constant is 0.001 s(-1) μM NO(-1). The ability to detect nitric oxide quantitatively at the single-molecule level may find applications in new cellular assays for the study of nitric oxide carcinogenesis and chemical signaling, as well as medical diagnostics for inflammation.
Collapse
Affiliation(s)
- Jingqing Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sarelius I, Pohl U. Control of muscle blood flow during exercise: local factors and integrative mechanisms. Acta Physiol (Oxf) 2010; 199:349-65. [PMID: 20353492 DOI: 10.1111/j.1748-1716.2010.02129.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Understanding the control mechanisms of blood flow within the vasculature of skeletal muscle is clearly fascinating from a theoretical point of view due to the extremely tight coupling of tissue oxygen demands and blood flow. It also has practical implications as impairment of muscle blood flow and its prevention/reversal by exercise training has a major impact on widespread diseases such as hypertension and diabetes. Here we analyse the role of mediators generated by skeletal muscle activity on smooth muscle relaxation in resistance vessels in vitro and in vivo. We summarize their cellular mechanisms of action and their relative roles in exercise hyperaemia with regard to early and late responses. We also discuss the consequences of interactions among mediators with regard to identifying their functional significance. We focus on (potential) mechanisms integrating the action of the mediators and their effects among the cells of the intact arteriolar wall. This integration occurs both locally, partly due to myoendothelial communication, and axially along the vascular tree, thus enabling the local responses to be manifest along an entire functional vessel path. Though the concept of signal integration is intriguing, its specific role on the control of exercise hyperaemia and the consequences of its modulation under physiological and pathophysiological conditions still await additional analysis.
Collapse
Affiliation(s)
- I Sarelius
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | | |
Collapse
|
37
|
Grande LM, Noll BC, Oliver AG, Scheidt WR. Dynamics of NO motion in solid-state [Co(tetraphenylporphinato)(NO)]. Inorg Chem 2010; 49:6552-7. [PMID: 20545325 PMCID: PMC2912455 DOI: 10.1021/ic1003462] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The temperature dependence of the crystalline phase of (nitrosyl)(tetraphenylporphinato)cobalt(II), [Co(TPP)(NO)], has been explored over the temperature range of 100-250 K by X-ray diffraction experiments. The crystalline complex is found in the tetragonal crystal system at higher temperatures and in the triclinic crystal system at lower temperatures. In the tetragonal system, the axial ligand is strongly disordered, with the molecule having crystallographically required 4/m symmetry, leading to eight distinct positions of the single nitrosyl oxygen atom. The phase transition to the triclinic crystal system leads to a partial ordering with the molecule now having inversion symmetry and disorder of the axial nitrosyl ligand over only two positions. At an intermediate temperature near the transition point, a transition structure in which the ordering observed at lower temperatures is only partially complete has been characterized. The increase in ordering allows subtle molecular geometry features to be observed. The transition of the reversible phase change begins at about 195 K. This transition has been confirmed by both X-ray diffraction studies and a differential scanning calorimetry study.
Collapse
Affiliation(s)
- Laura M. Grande
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Bruce C. Noll
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - W. Robert Scheidt
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
38
|
Abstract
Endothelial dysfunction can develop at an early age in children with risk factors for cardiovascular disease. A clear understanding of the nature of this dysfunction and how it can worsen over time requires detailed information on the normal growth-related changes in endothelial function on which the pathological changes are superimposed. This review summarizes our current understanding of these normal changes, as derived from studies in four different mammalian species. Although the endothelium plays an important role in controlling vascular tone from birth onward, the vasoactive molecules that mediate this control often change during postnatal or juvenile growth. The specifics of this transition to an adult endothelial cell phenotype can vary depending on the vascular bed. During growth, the contribution of nitric oxide to endothelium-dependent dilation generally increases in the lung, cerebral cortex, and skeletal muscle, but decreases in the intestine. Endothelial capacity for release of other vasoactive factors (e.g., cyclooxygenase products, hydrogen peroxide, carbon monoxide) can also increase or decrease during growth. Although these changes have been well documented, there is less information on their underlying cellular or molecular events. Further research is required to clarify these mechanisms, and to evaluate the functional significance of such shifts in endothelial phenotype.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cardiovascular Diseases/etiology
- Cardiovascular Diseases/physiopathology
- Cerebrovascular Circulation/physiology
- Endothelium, Vascular/growth & development
- Endothelium, Vascular/physiology
- Enterocolitis, Necrotizing/etiology
- Enterocolitis, Necrotizing/physiopathology
- Humans
- Infant, Newborn
- Intestines/blood supply
- Models, Animal
- Muscle, Skeletal/blood supply
- Muscle, Smooth, Vascular/growth & development
- Muscle, Smooth, Vascular/physiology
- Nitric Oxide/physiology
- Persistent Fetal Circulation Syndrome/etiology
- Persistent Fetal Circulation Syndrome/physiopathology
- Pulmonary Circulation/physiology
- Rats
- Risk Factors
- Sheep
- Swine
- Vascular Resistance/physiology
Collapse
Affiliation(s)
- Matthew A Boegehold
- Department of Physiology and Pharmacology and Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV 26505-9105, USA.
| |
Collapse
|
39
|
Faria TDO, Targueta GP, Angeli JK, Almeida EAS, Stefanon I, Vassallo DV, Lizardo JHDF. Acute resistance exercise reduces blood pressure and vascular reactivity, and increases endothelium-dependent relaxation in spontaneously hypertensive rats. Eur J Appl Physiol 2010; 110:359-66. [PMID: 20499250 DOI: 10.1007/s00421-010-1508-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2010] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to assess the effects of acute dynamic resistance exercise on resting blood pressure (BP) and on endothelial function of vascular bed of spontaneously hypertensive rats. Hemodynamic measurements were performed before and after acute dynamic resistance exercise in conscious animals. After exercise, the tail artery was cannulated for mean perfusion pressure with constant flow measurement and for performing concentration-response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) and dose-response curves to phenylephrine (PHE). PHE protocol was also repeated with damaged endothelium and after L-NAME and indomethacin perfusion on the tail. The maximal response (E(max)) and sensitivity (pD(2)) were evaluated to these drugs. Exercise reduced resting systolic and diastolic BP (Delta -79 +/- 1.8; -23 +/- 2.3 mmHg, respectively; P < 0.05). ACh-induced relaxation increased in the exercise group (pD(2) = 9.8 +/- 0.06, P < 0.05) when compared with control rats (pD(2) = 8.7 +/- 0.1). The E(max) to PHE with intact endothelium decreased following exercise condition (439 +/- 18 mmHg, P < 0.05) when compared with control rats (276 +/- 22 mmHg). This response was abolished after L-NAME and indomethacin administration. After damage of the endothelium, PHE responses were not significantly different between the groups; however, E(max) and pD(2) increased when compared with responses obtained with intact endothelium. The results demonstrated that acute dynamic resistance exercise decreased resting BP and reactivity to PHE and increased endothelium-dependent relaxation. Nitric oxide and vasodilators prostanoids appear to be involved in post-exercise endothelial and pressor responses.
Collapse
Affiliation(s)
- Thaís de Oliveira Faria
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
40
|
Beers JM, Borley KA, Sidell BD. Relationship among circulating hemoglobin, nitric oxide synthase activities and angiogenic poise in red- and white-blooded Antarctic notothenioid fishes. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:422-9. [PMID: 20362691 DOI: 10.1016/j.cbpa.2010.03.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/12/2010] [Accepted: 03/22/2010] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO)-mediated angiogenesis may play a role in establishing dense retinal vasculatures of Antarctic hemoglobinless icefishes (suborder: Notothenioidei). We hypothesized that loss of hemoglobin (Hb) leads to elevation in [NO] due to decreased degradation of the compound when the NO-scavenger Hb is absent, thereby inducing vascular growth. We found that total mass of NO metabolites, nitrite plus nitrate (NO(x)), in plasma is greater in icefishes than in red-blooded notothenioids [e.g. C. aceratus (Hb-), 22.7+/-2.9 microM; N. coriiceps (Hb+), 14.7+/-1.7 microM], suggesting a higher NO load in hemoglobinless animals. High NO levels do not appear to be a result of greater NO synthesis; we consistently measured lower activities of the enzyme catalyzing NO production, nitric oxide synthase, in tissues of icefishes than in Hb-expressing notothenioids [e.g. 96+/-10 and 216+/-39 pmol(min g wet wt)(-1) in brain tissue of C. aceratus (Hb-) and G. gibberifrons (Hb+), respectively]. Levels of mRNA for hypoxia-induced (HIF-1alpha and PHD2) and angiogenic genes (VEGF) were similar in red- and white-blooded species, indicating that vascular maintenance in adult animals does not require differences in angiogenic tone. This does not preclude a cause-and-effect relationship between absence of Hb and NO-mediated angiogenesis during earlier ontogenetic stages of icefishes.
Collapse
Affiliation(s)
- Jody M Beers
- School of Marine Sciences, University of Maine, 5751 Murray Hall, Orono, Maine 04469-5751, USA
| | | | | |
Collapse
|
41
|
Copp SW, Hirai DM, Schwagerl PJ, Musch TI, Poole DC. Effects of neuronal nitric oxide synthase inhibition on resting and exercising hindlimb muscle blood flow in the rat. J Physiol 2010; 588:1321-31. [PMID: 20176629 DOI: 10.1113/jphysiol.2009.183723] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nitric oxide (NO) derived from endothelial NO synthase (eNOS) is an integral mediator of vascular control during muscle contractions. However, it is not known whether neuronal NOS (nNOS)-derived NO regulates tissue hyperaemia in healthy subjects, particularly during exercise. We tested the hypothesis that selective nNOS inhibition would reduce blood flow and vascular conductance (VC) in rat hindlimb locomotor muscle(s), kidneys and splanchnic organs at rest and during dynamic treadmill exercise (20 m min(-1), 10% grade). Nineteen male Sprague-Dawley rats (555 +/- 23 g) were assigned to either rest (n = 9) or exercise (n = 10) groups. Blood flow and VC were determined via radiolabelled microspheres before and after the intra-arterial administration of the selective nNOS inhibitor S-methyl-L-thiocitrulline (SMTC, 2.1 +/- 0.1 micromol kg(-1)). Total hindlimb muscle blood flow (control: 20 +/- 2 ml min(-1) 100g(-1), SMTC: 12 +/- 2 ml min(-1) 100g(-1), P < 0.05) and VC (control: 0.16 +/- 0.02 ml min(-1) 100 g(-1) mmHg(1), SMTC: 0.09 +/- 0.01 ml min(-1) 100 g(-1) mmHg(-1), P < 0.05) were reduced substantially at rest. Moreover, the magnitude of the absolute reduction in blood flow and VC correlated (P < 0.05) with the proportion of oxidative muscle fibres found in the individual muscles or muscle parts of the hindlimb. During exercise, total hindlimb blood flow (control: 108 +/- 7 ml min(-1) 100 g(-1), SMTC: 105 +/- 8 ml min(-1) 100 g(-1)) and VC (control: 0.77 +/- 0.06 ml min(-1) 100g(-1) mmHg(-1); SMTC: 0.70 +/- 0.05 ml min(-1) 100g(-1) mmHg(-1)) were not different (P > 0.05) between control and SMTC conditions. SMTC reduced (P < 0.05) blood flow and VC at rest and during exercise in the kidneys, adrenals and liver. These results enhance our understanding of the role of NO-mediated circulatory control by demonstrating that nNOS does not appear to subserve an obligatory role in the exercising muscle hyperaemic response in the rat.
Collapse
Affiliation(s)
- Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506-5802, USA
| | | | | | | | | |
Collapse
|
42
|
Pedersen BK. Edward F. Adolph Distinguished Lecture: Muscle as an endocrine organ: IL-6 and other myokines. J Appl Physiol (1985) 2009; 107:1006-14. [DOI: 10.1152/japplphysiol.00734.2009] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle is an endocrine organ that produces and releases myokines in response to contraction. Some myokines are likely to work in a hormone-like fashion, exerting specific endocrine effects on other organs such as the liver, the brain, and the fat. Other myokines will work locally via paracrine mechanisms, exerting, e.g., angiogenetic effects, whereas yet other myokines work via autocrine mechanisms and influence signaling pathways involved in fat oxidation and glucose uptake. The finding that muscles produce and release myokines creates a paradigm shift and opens new scientific, technological, and scholarly horizons. This finding represents a breakthrough within integrative physiology and contributes to our understanding of why regular exercise protects against a wide range of chronic diseases. Thus the myokine field provides a conceptual basis for the molecular mechanisms underlying, e.g., muscle-fat, muscle-liver, muscle-pancreas, and muscle-brain cross talk.
Collapse
Affiliation(s)
- Bente K. Pedersen
- The Centre of Inflammation and Metabolism at the Department of Infectious Diseases, and Copenhagen Muscle Research Centre, Rigshospitalet, the Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
43
|
Da Silva-Azevedo L, Jähne S, Hoffmann C, Stalder D, Heller M, Pries AR, Zakrzewicz A, Baum O. Up-regulation of the peroxiredoxin-6 related metabolism of reactive oxygen species in skeletal muscle of mice lacking neuronal nitric oxide synthase. J Physiol 2008; 587:655-68. [PMID: 19047200 DOI: 10.1113/jphysiol.2008.164947] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although neuronal nitric oxide synthase (nNOS) plays a substantial role in skeletal muscle physiology, nNOS-knockout mice manifest an only mild phenotypic malfunction in this tissue. To identify proteins that might be involved in adaptive responses in skeletal muscle of knockout mice lacking nNOS, 2D-PAGE with silver-staining and subsequent tandem mass spectrometry (LC-MS/MS) was performed using extracts of extensor digitorum longus muscle (EDL) derived from nNOS-knockout mice in comparison to C57Bl/6 control mice. Six proteins were significantly (P < or = 0.05) more highly expressed in EDL of nNOS-knockout mice than in that of C57 control mice, all of which are involved in the metabolism of reactive oxygen species (ROS). These included prohibitin (2.0-fold increase), peroxiredoxin-3 (1.9-fold increase), Cu(2+)/Zn(2+)-dependent superoxide dismutase (SOD; 1.9-fold increase), heat shock protein beta-1 (HSP25; 1.7-fold increase) and nucleoside diphosphate kinase B (2.6-fold increase). A significantly higher expression (4.1-fold increase) and a pI shift from 6.5 to 5.9 of peroxiredoxin-6 in the EDL of nNOS-knockout mice were confirmed by quantitative immunoblotting. The concentrations of the mRNA encoding five of these proteins (the exception being prohibitin) were likewise significantly (P < or = 0.05) higher in the EDL of nNOS-knockout mice. A higher intrinsic hydrogen peroxidase activity (P < or = 0.05) was demonstrated in EDL of nNOS-knockout mice than C57 control mice, which was related to the presence of peroxiredoxin-6. The treatment of mice with the chemical NOS inhibitor L-NAME for 3 days induced a significant 3.4-fold up-regulation of peroxiredoxin-6 in the EDL of C57 control mice (P < or = 0.05), but did not alter its expression in EDL of nNOS-knockout mice. ESR spectrometry demonstrated the levels of superoxide to be 2.5-times higher (P < or = 0.05) in EDL of nNOS-knockout mice than in C57 control mice while an in vitro assay based on the emission of 2,7-dichlorofluorescein fluorescence disclosed the concentration of ROS to be similar in both strains of mice. We suggest that the up-regulation of proteins that are implicated in the metabolism of ROS, particularly of peroxiredoxin-6, within skeletal muscles of nNOS-knockout mice functionally compensates for the absence of nNOS in scavenging of superoxide.
Collapse
Affiliation(s)
- Luis Da Silva-Azevedo
- Department of Physiology, Charité-Campus Benjamin Franklin, Arnimallee 22, Berlin-Dahlem, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 2008; 88:1379-406. [PMID: 18923185 DOI: 10.1152/physrev.90100.2007] [Citation(s) in RCA: 1395] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle has recently been identified as an endocrine organ. It has, therefore, been suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert paracrine, autocrine, or endocrine effects should be classified as "myokines." Recent research demonstrates that skeletal muscles can produce and express cytokines belonging to distinctly different families. However, the first identified and most studied myokine is the gp130 receptor cytokine interleukin-6 (IL-6). IL-6 was discovered as a myokine because of the observation that it increases up to 100-fold in the circulation during physical exercise. Identification of IL-6 production by skeletal muscle during physical activity generated renewed interest in the metabolic role of IL-6 because it created a paradox. On one hand, IL-6 is markedly produced and released in the postexercise period when insulin action is enhanced but, on the other hand, IL-6 has been associated with obesity and reduced insulin action. This review focuses on the myokine IL-6, its regulation by exercise, its signaling pathways in skeletal muscle, and its role in metabolism in both health and disease.
Collapse
Affiliation(s)
- Bente K Pedersen
- The Centre of Inflammation and Metabolism at Department of Infectious Diseases, Rigshospitalet, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
45
|
Liu VW, Huang PL. Cardiovascular roles of nitric oxide: a review of insights from nitric oxide synthase gene disrupted mice. Cardiovasc Res 2008; 77:19-29. [PMID: 17658499 PMCID: PMC2731989 DOI: 10.1016/j.cardiores.2007.06.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO) is a gaseous molecule that plays many key roles in the cardiovascular system. Each of the enzymes that generate NO--neuronal, inducible and endothelial NO synthase-has been genetically disrupted in mice. This review discusses the cardiovascular phenotypes of each of the NO synthase (NOS) gene knockout mice, and the insights gained into the roles of NO in the cardiovascular system. Mice lacking the endothelial isoform are hypertensive, have endothelial dysfunction and show a more severe outcome in response to vascular injury, to stroke and cerebral ischaemia, and to diet-induced atherosclerosis. Mice lacking the neuronal isoform show a less severe outcome in response to stroke and cerebral ischaemia but have increased diet-induced atherosclerosis. Mice lacking the inducible isoform show reduced hypotension to septic shock. Together, NOS gene knockout mice have been useful tools that complement our other approaches to studying the multiple roles of NO in the cardiovascular system.
Collapse
Affiliation(s)
| | - Paul L. Huang
- Corresponding author. Cardiovascular Research Center, Massachusetts General Hospital East, 149 Thirteenth Street, Charlestown, MA 02129. Tel: +1 617 724 9849; fax: +1 617 726 5806. E-mail address: (P.L. Huang)
| |
Collapse
|
46
|
Lizardo JHF, Silveira EAA, Vassallo DV, Oliveira EM. Post-resistance exercise hypotension in spontaneously hypertensive rats is mediated by nitric oxide. Clin Exp Pharmacol Physiol 2008; 35:782-7. [PMID: 18430048 DOI: 10.1111/j.1440-1681.2008.04950.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Postexercise hypotension (PEH) plays an important role in the non-pharmacological treatment of hypertension. It is characterized by a decrease in blood pressure (BP) after a single bout of exercise in relation to pre-exercise levels. 2. The present study investigated the effect of a single session of resistance exercise, as well as the effect of nitric oxide (NO) and the autonomic nervous system (ANS), in PEH in spontaneously hypertensive rats (SHR). 3. Catheters were inserted into the left carotid artery and left jugular vein of male SHR (n = 37) for the purpose of measuring BP or heart rate (HR) and drug or vehicle administration, respectively. Haemodynamic measurements were made before and after acute resistance exercise. The roles of NO and the ANS were investigated by using N(G)-nitro-L-arginine methyl ester (L-NAME; 15 mg/kg, i.v.) and hexamethonium (20 mg/kg, i.v.) after a session of acute resistance exercise. 4. Acute resistance exercise promoted a pronounced reduction in systolic and diastolic BP (-37 +/- 1 and -8 +/- 1 mmHg, respectively; P < 0.05), which was suppressed after treatment with L-NAME. The reduction in systolic BP caused by exercise (-37 +/- 1 mmHg) was not altered by the administration of hexamethonium (-38 +/- 2 mmHg; P > 0.05). After exercise, the decrease in diastolic BP was greater with hexamethonium (-26 +/- 1 mmHg; P < 0.05) compared with the decrease caused by exercise alone. 5. The results suggest that acute resistance exercise has an important hypotensive effect on SHR and that NO plays a crucial role in this response.
Collapse
Affiliation(s)
- J H F Lizardo
- Laboratory of Cardiac Eletromechanical, Department of Physiological Sciences, Universidade Federal do Espirito Santo, Vitória, Brazil.
| | | | | | | |
Collapse
|
47
|
Takeya K, Loutzenhiser K, Shiraishi M, Loutzenhiser R, Walsh MP. A highly sensitive technique to measure myosin regulatory light chain phosphorylation: the first quantification in renal arterioles. Am J Physiol Renal Physiol 2008; 294:F1487-92. [PMID: 18400874 DOI: 10.1152/ajprenal.00060.2008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphorylation of the 20-kDa myosin regulatory light chains (LC(20)) plays a key role in the regulation of smooth muscle contraction. The level of LC(20) phosphorylation is governed by the relative activities of myosin light chain kinase and phosphatase pathways. The regulation of these two pathways differs in different smooth muscle types and in the actions of different vasoactive stimuli. Little is known concerning the regulation of LC(20) phosphorylation in the renal microcirculation. The available pharmacological probes are often nonspecific, and current techniques to directly measure LC(20) phosphorylation are not sensitive enough for quantification in small arterioles. We describe here a novel approach to address this important issue. Using SDS-PAGE with polyacrylamide-bound Mn(2+)-phosphate-binding tag and enhanced Western blot analysis, we were able to detect LC(20) phosphorylation using as little as 5 pg (250 amol) of isolated LC(20). Phosphorylated and unphosphorylated LC(20) were detected in single isolated afferent arterioles, and LC(20) phosphorylation levels could be accurately quantified in pooled samples of three arterioles (<300 cells). The phosphorylation level of LC(20) in the afferent arteriole was 6.8 +/- 1.7% under basal conditions and increased to 34.7 +/- 5.1% and 44.6 +/- 6.6% in response to 30 mM KCl and 10(-8) M angiotensin II, respectively. The application of this technique will enable investigations of the different determinants of LC(20) phosphorylation in afferent and efferent arterioles and provide insights into the signaling pathways that regulate LC(20) phosphorylation in the renal microvasculature under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Kosuke Takeya
- Department of Pharmacology, Univ. of Calgary Faculty of Medicine, Smooth Muscle Research Group, 3330 Hospital Dr. N.W., Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | |
Collapse
|
48
|
Tschakovsky ME, Joyner MJ. Nitric oxide and muscle blood flow in exercise. Appl Physiol Nutr Metab 2008; 33:151-61. [DOI: 10.1139/h07-148] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Despite being the subject of investigation for well over 100 years, the nature of exercising muscle blood flow control remains, in many respects, poorly understood. In this review we focus on the potential role of nitric oxide in vasodilation of muscle resistance vessels during a bout of exercise. Its contribution is explored in the context of whether it contributes to steady-state exercise hyperemia, the dynamic adjustment of muscle blood flow to exercise, or the modulation of sympathetic vasoconstriction in exercising muscle. It appears that the obligatory role of nitric oxide in all three of these categories is modest at best. The elucidation of the integrated nature of exercise hyperemia control in terms of synergy and redundancy of mechanism interaction remains in its infancy, and much more remains to be learned about the role of nitric oxide in this type of integrated control.
Collapse
Affiliation(s)
- Michael E. Tschakovsky
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | - Michael J. Joyner
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| |
Collapse
|
49
|
|
50
|
Steensberg A, Keller C, Hillig T, Frøsig C, Wojtaszewski JFP, Pedersen BK, Pilegaard H, Sander M. Nitric oxide production is a proximal signaling event controlling exercise-induced mRNA expression in human skeletal muscle. FASEB J 2007; 21:2683-94. [PMID: 17470570 DOI: 10.1096/fj.06-7477com] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have described the magnitude and time course by which several genes are regulated within exercising skeletal muscle. These include interleukin-6 (IL-6), interleukin-8 (IL-8), heme oxygenase-1 (HO-1), and heat shock protein-72 (HSP72), which are involved in secondary signaling and preservation of intracellular environment. However, the primary signaling mechanisms coupling contraction to transcription are unknown. We hypothesized that exercise-induced nitric oxide (NO) production is an important signaling event for IL-6, IL-8, HO-1, and HSP72 expression in muscle. Twenty healthy males participated in the study. By real-time PCR, mRNA levels for 11 genes were determined in thigh muscle biopsies obtained 1) before and after 2 h knee extensor exercise without (control) and with concomitant NO synthase inhibition (nitro-L-arginine methyl ester, L-NAME, 5 mg x kg(-1)); or 2) before and after 2 h femoral artery infusion of the NO donor nitroglycerin (NTG, 1.5 microg x kg(-1) x min(-1)). L-NAME caused marked reductions in exercise-induced expression of 4 of 11 mRNAs including IL-6, IL-8, and HO-1. IL-6 protein release from the study leg to the circulation increased in the control but not in the L-NAME trial. NTG infusion significantly augmented expression of the mRNAs attenuated by L-NAME. These findings advance the novel concept that NO production contributes to regulation of gene expression in muscle during exercise. Subsequently, we sought evidence for involvement of AMP-activated kinase or nuclear factor kappa B, but found none.
Collapse
Affiliation(s)
- Adam Steensberg
- Centre of Inflammation and Metabolism, Department of Infectious Diseases, National Hospital, Copenhagen O, Denmark
| | | | | | | | | | | | | | | |
Collapse
|