1
|
Nakai M, Suzuki SI, Fuchimoto DI, Sembon S, Kikuchi K. Oocyte activation with phospholipase Cζ mRNA induces repetitive intracellular Ca 2+ rises and improves the quality of pig embryos after intracytoplasmic sperm injection. J Reprod Dev 2024; 70:229-237. [PMID: 38853022 PMCID: PMC11310388 DOI: 10.1262/jrd.2023-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/19/2024] [Indexed: 06/11/2024] Open
Abstract
For the intracytoplasmic sperm injection (ICSI) procedure in pigs, an electrical pulse (EP) has been used as an effective method for oocyte stimulation, but unlike sperm, EP is unable to induce Ca2+ oscillations. In this study, we investigated the effects of generating artificial Ca2+ oscillations with phospholipase Cζ (PLCζ) mRNA, a candidate sperm factor, on fertilization, embryonic development, and gene expression after ICSI. Firstly, the concentration of PLCζ mRNA of a fixed volume (1.0 pl) that would induce a pattern of Ca2+ rise similar to that of in vitro fertilized (IVF) sperm was examined and determined to be 300 ng/μl. Secondly, the effects of oocyte stimulation methods on fertilization and embryonic development were investigated. ICSI-oocytes were activated by EP (EP group) or by PLCζ mRNA (PLCζ group). Furthermore, IVF-oocytes (IVF group) and ICSI-oocytes with and without an injection of buffer (buffer and untreated groups, respectively) were used as controls. It was found that the rates of normal fertilization in the PLCζ and EP groups were significantly higher than those in the buffer and untreated groups. The blastocyst formation rates did not differ among the groups. The embryo quality in the EP group was inferior to those in the PLCζ and IVF groups. Additionally, the expression level of a proapoptosis-related gene (Caspase-3) in the EP group was significantly higher than those in the PLCζ and IVF groups. Our data suggest that oocyte activation by PLCζ mRNA has the effect of improving embryo quality.
Collapse
Affiliation(s)
- Michiko Nakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Shun-Ichi Suzuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Dai-Ichiro Fuchimoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Shoichiro Sembon
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
2
|
Fukuoka M, Kang W, Horiike S, Yamada M, Miyado K. Calcium oscillations and mitochondrial enzymes in stem cells. Regen Ther 2024; 26:811-818. [PMID: 39315118 PMCID: PMC11419779 DOI: 10.1016/j.reth.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Calcium oscillations are rhythmic fluctuations of the intracellular concentration of calcium ions (Ca2+). As Ca2+ evokes various cellular processes, its intracellular concentration is tightly regulated. Ca2+ oscillations control biological events, including neuronal differentiation and proliferation of mesenchymal stem cells. The frequency and pattern of Ca2+ oscillations depend on cell type. Researchers have studied Ca2+ oscillations to better understand how cells communicate and regulate physiological processes. Dysregulation of Ca2+ oscillations causes health problems, such as neurodegenerative disorders. This review discusses the potential functions of Ca2+ oscillations in stem cells.
Collapse
Affiliation(s)
- Mio Fukuoka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Sae Horiike
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Department of Bioscience, Graduate School of Life Science, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Mitsutoshi Yamada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
3
|
Bellido-Quispe DK, Mujica Lengua FR, Contreras Huamani M, Palomino JM. Effect of chemical activators after intracytoplasmic sperm injection (ICSI) on embryo development in alpacas. Anim Reprod Sci 2024; 263:107432. [PMID: 38401395 DOI: 10.1016/j.anireprosci.2024.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Low motility and low sperm concentration are characteristics of alpaca semen. Thus, the intracytoplasmic sperm injection (ICSI) technique represents an alternative to improve the reproductive capacity of the male. However, the effect of post-ICSI activation in alpaca is not yet known. The aim of the present study was to compare the effect of chemical activators on alpaca embryo development after ICSI. Alpaca ovaries were collected from a local slaughterhouse and transported to the laboratory. Category I, II and III oocytes were matured for 30 h at 38.5 °C. After ICSI, injected oocytes were randomly divided and activated as follows: i) 5 μM ionomycin for 5 min, ii) 7% ethanol for 4 min, iii) 5 μM ionomycin for 5 min, window period 3 h plus 7% ethanol for 4 min, iv) 5 μM ionomycin for 5 min, window period 3 h, a second ionomycin treatment for 5 min, followed by 1.9 mM 6-DMAP for 3 h, v) 10 mM SrCl2 for 3 h. Culture was carried out for 5 days in SOFaa at 38.5 °C. The cleavage rate was the lowest in the SrCl2 group, morula development was the lowest in the SrCl2 and without activation groups, and blastocyst stage was not different between groups (P<0.05). The rates with SrCl2 were lower in total embryos produced, whereas in transferable embryos they were lower with 2Io/6-DMAP and with SrCl2 (P<0.05). In conclusion, alpaca oocyte activation is more efficient with ionomycin and ethanol to produce transferable embryos.
Collapse
Affiliation(s)
- Dionet Keny Bellido-Quispe
- Instituto Nacional de Innovación Agraria, Estación Experimental Agraria Canaán, Laboratorio de Biotecnología Reproductiva, Ayacucho, Peru.
| | - Fidel Rodolfo Mujica Lengua
- Universidad Nacional de San Cristóbal de Huamanga, Facultad de Ciencias Biológicas, Laboratorio de Biotecnología, Ayacucho, Peru
| | - Mijaíl Contreras Huamani
- Instituto Nacional de Innovación Agraria, Estación Experimental Agraria Canaán, Laboratorio de Biotecnología Reproductiva, Ayacucho, Peru
| | - J Manuel Palomino
- Universidad Científica del Sur, Carrera de Medicina Veterinaria y Zootecnica, Lima, Peru
| |
Collapse
|
4
|
Poidevin M, Mazuras N, Bontonou G, Delamotte P, Denis B, Devilliers M, Akiki P, Petit D, de Luca L, Soulie P, Gillet C, Wicker-Thomas C, Montagne J. A fatty acid anabolic pathway in specialized-cells sustains a remote signal that controls egg activation in Drosophila. PLoS Genet 2024; 20:e1011186. [PMID: 38483976 DOI: 10.1371/journal.pgen.1011186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/26/2024] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
Egg activation, representing the critical oocyte-to-embryo transition, provokes meiosis completion, modification of the vitelline membrane to prevent polyspermy, and translation of maternally provided mRNAs. This transition is triggered by a calcium signal induced by spermatozoon fertilization in most animal species, but not in insects. In Drosophila melanogaster, mature oocytes remain arrested at metaphase-I of meiosis and the calcium-dependent activation occurs while the oocyte moves through the genital tract. Here, we discovered that the oenocytes of fruitfly females are required for egg activation. Oenocytes, cells specialized in lipid-metabolism, are located beneath the abdominal cuticle. In adult flies, they synthesize the fatty acids (FAs) that are the precursors of cuticular hydrocarbons (CHCs), including pheromones. The oenocyte-targeted knockdown of a set of FA-anabolic enzymes, involved in very-long-chain fatty acid (VLCFA) synthesis, leads to a defect in egg activation. Given that some but not all of the identified enzymes are required for CHC/pheromone biogenesis, this putative VLCFA-dependent remote control may rely on an as-yet unidentified CHC or may function in parallel to CHC biogenesis. Additionally, we discovered that the most posterior ventral oenocyte cluster is in close proximity to the uterus. Since oocytes dissected from females deficient in this FA-anabolic pathway can be activated in vitro, this regulatory loop likely operates upstream of the calcium trigger. To our knowledge, our findings provide the first evidence that a physiological extra-genital signal remotely controls egg activation. Moreover, our study highlights a potential metabolic link between pheromone-mediated partner recognition and egg activation.
Collapse
Affiliation(s)
- Mickael Poidevin
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Nicolas Mazuras
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gwénaëlle Bontonou
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Delamotte
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Béatrice Denis
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Maëlle Devilliers
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Perla Akiki
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Delphine Petit
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Laura de Luca
- Centre Médical Universitaire, Department of Cell Physiology and Metabolism, Geneva, Switzerland
| | - Priscilla Soulie
- Centre Médical Universitaire, Department of Cell Physiology and Metabolism, Geneva, Switzerland
| | - Cynthia Gillet
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Claude Wicker-Thomas
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jacques Montagne
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Swann K. Sperm-Induced Ca 2+ Release in Mammalian Eggs: The Roles of PLCζ, InsP 3, and ATP. Cells 2023; 12:2809. [PMID: 38132129 PMCID: PMC10741559 DOI: 10.3390/cells12242809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Mammalian egg activation at fertilization is triggered by a long-lasting series of increases in cytosolic Ca2+ concentration. These Ca2+ oscillations are due to the production of InsP3 within the egg and the subsequent release of Ca2+ from the endoplasmic reticulum into the cytosol. The generation of InsP3 is initiated by the diffusion of sperm-specific phospholipase Czeta1 (PLCζ) into the egg after gamete fusion. PLCζ enables a positive feedback loop of InsP3 production and Ca2+ release which then stimulates further InsP3 production. Most cytosolic Ca2+ increases in eggs at fertilization involve a fast Ca2+ wave; however, due to the limited diffusion of InsP3, this means that InsP3 must be generated from an intracellular source rather than at the plasma membrane. All mammalian eggs studied generated Ca2+ oscillations in response to PLCζ, but the sensitivity of eggs to PLCζ and to some other stimuli varies between species. This is illustrated by the finding that incubation in Sr2+ medium stimulates Ca2+ oscillations in mouse and rat eggs but not eggs from other mammalian species. This difference appears to be due to the sensitivity of the type 1 InsP3 receptor (IP3R1). I suggest that ATP production from mitochondria modulates the sensitivity of the IP3R1 in a manner that could account for the differential sensitivity of eggs to stimuli that generate Ca2+ oscillations.
Collapse
Affiliation(s)
- Karl Swann
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
6
|
Abstract
New work reveals differences in oogenic gene expression between parthenogenetic and sexually reproducing Drosophila mercatorum strains. Recapitulating those changes in D. melanogaster oocytes induced parthenogenesis in this normally sexually reproducing species, providing molecular insight into how these reproductive modes arise.
Collapse
Affiliation(s)
- Jonathon M Thomalla
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
7
|
Bainbridge RE, Rosenbaum JC, Sau P, Carlson AE. Xenopus laevis lack the critical sperm factor PLCζ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526858. [PMID: 36778253 PMCID: PMC9915601 DOI: 10.1101/2023.02.02.526858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Fertilization of eggs from the African clawed frog Xenopus laevis is characterized by an increase in cytosolic calcium, a phenomenon that is also observed in other vertebrates such as mammals and birds. During fertilization in mammals and birds, the transfer of the soluble PLCζ from sperm into the egg is thought to trigger the release of calcium from the endoplasmic reticulum (ER). Injecting sperm extracts into eggs reproduces this effect, reinforcing the hypothesis that a sperm factor is responsible for calcium release and egg activation. Remarkably, this occurs even when sperm extracts from X. laevis are injected into mouse eggs, suggesting that mammals and X. laevis share a sperm factor. However, X. laevis lacks an annotated PLCZ1 gene, which encodes the PLCζ enzyme. In this study, we attempted to determine whether sperm from X. laevis express an unannotated PLCZ1 ortholog. We identified PLCZ1 orthologs in 11 amphibian species, including 5 that had not been previously characterized, but did not find any in either X. laevis or the closely related Xenopus tropicalis. Additionally, we performed RNA sequencing on testes obtained from adult X. laevis males and did not identify potential PLCZ1 orthologs in our dataset or in previously collected ones. These findings suggest that PLCZ1 may have been lost in the Xenopus lineage and raise the question of how fertilization triggers calcium release and egg activation in these species.
Collapse
Affiliation(s)
| | | | - Paushaly Sau
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Anne E. Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| |
Collapse
|
8
|
Artificial oocyte activation with ionomycin compared with A23187 among patients at risk of failed or impaired fertilization. Reprod Biomed Online 2023; 46:35-45. [PMID: 36379856 DOI: 10.1016/j.rbmo.2022.08.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 01/31/2023]
Abstract
RESEARCH QUESTION Do fertilization rates differ between intracytoplasmic sperm injection (ICSI) cycles treated with artificial oocyte activation (AOA) using 10 µmol/l ionomycin or commercial A23187 in women at risk of failed or impaired fertilization? DESIGN This single-centre, 7-year retrospective cohort study included 157 couples with a history of total fertilization failure (TFF, 0%) or low fertilization (<30%) after ICSI, or with severe oligo-astheno-teratozoospermia (OAT) in the male partner. Couples and underwent 171 ICSI-AOA cycles using either 10 µmol/l ionomycin or commercial A23187. The embryological and clinical outcomes were compared. RESULTS Fertilization rates in the ionomycin group were significantly higher than those in the A23187 group for all three subgroups (TFF, 46.9% versus 28.4%, P = 0.002; low fertilization, 67.7% versus 49.2%, P < 0.001; severe OAT, 66.4% versus 31.6%, P < 0.001). AOA with ionomycin significantly increased the day 3 cleavage rate (P = 0.009) when compared with A23187 in the low fertilization group, but not in the TFF or severe OAT group (both P > 0.05). The rates of day 3 good-quality embryos, clinical pregnancy, implantation and live birth, and the cumulative live birth, did not differ between the two groups (all P > 0.05). A total of 64 live births resulted in 72 healthy babies born. CONCLUSIONS AOA with 10 µmol/l ionomycin may be more effective than commercial A23187 in improving oocyte activation in patients at risk of failed or impaired fertilization, especially in cases of sperm-related defects.
Collapse
|
9
|
Qu P, Cao W, Zhang Y, Qi J, Meng B, Liu S, Zhuang Y, Duan C, Liu E. Sperm-borne proteins improve rabbit cloning efficiency via regulating embryonic cleavage and epigenetics. Proteomics 2022; 22:e2200020. [PMID: 35779011 DOI: 10.1002/pmic.202200020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/25/2022] [Accepted: 06/24/2022] [Indexed: 11/12/2022]
Abstract
Somatic cell nuclear transfer (SCNT) shows great application value in the generation of transgenic animals, protection of endangered species, and therapeutic cloning. However, the cloning efficiency is still very low, which greatly restricts its application. Compared to fertilized embryos, cloned embryos lack the sperm proteins, which are considered to play an important role in embryonic development. Here we compared the sperm proteome, with that of donor fibroblasts and oocytes, and identified 342 proteins unique to sperm, with 42 being highly expressed. The 384 proteins were mainly enriched in the categories of post-translational modification and cytoskeletal arrangement. Extracts of soluble sperm or fibroblast proteins were injected into cloned embryos, and the result showed that injection of sperm protein significantly inhibited abnormal embryonic cleavage, significantly decreased the level of trimethylated histone H3Lys9 (H3K9me3) and the apoptotic index, and increased the inner cell mass (ICM)-to-trophectoderm (TE) ratio. More importantly, the sperm proteins also significantly enhanced the birthrate. The results of in vitro and in vivo experiments demonstrate that sperm-derived proteins improve embryo cloning efficiency. Our findings not only provide new insights into ways to overcome low cloning efficiency, but also add to the understanding of sperm protein function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, China
| | - Yanru Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, China
| | - Jia Qi
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, China
| | - Bin Meng
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,The Assisted Reproduction Center, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Shuangqing Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Yanxin Zhuang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Chenjin Duan
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
West R, Coomarasamy A, Frew L, Hutton R, Kirkman-Brown J, Lawlor M, Lewis S, Partanen R, Payne-Dwyer A, Román-Montañana C, Torabi F, Tsagdi S, Miller D. Sperm selection with hyaluronic acid improved live birth outcomes among older couples and was connected to sperm DNA quality, potentially affecting all treatment outcomes. Hum Reprod 2022; 37:1106-1125. [PMID: 35459947 PMCID: PMC9156852 DOI: 10.1093/humrep/deac058] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Indexed: 11/23/2022] Open
Abstract
STUDY QUESTION What effects did treatment using hyaluronic acid (HA) binding/selection prior to ICSI have on clinical outcomes in the Hyaluronic Acid Binding sperm Selection (HABSelect) clinical trial? SUMMARY ANSWER Older women randomized to the trial's experimental arm (selection of sperm bound to immobilized (solid-state) HA) had the same live birth rates as younger women, most likely a result of better avoidance of sperm with damaged DNA. WHAT IS KNOWN ALREADY Recent randomized controlled trials (RCTs) investigating the efficacy of HA-based sperm selection prior to ICSI, including HABSelect, have consistently reported reductions in the numbers of miscarriages among couples randomized to the intervention, suggesting a pathological sperm-mediated factor mitigated by prior HA-binding/selection. The mechanism of that protection is unknown. STUDY DESIGN, SIZE, DURATION The original HABSelect Phase 3 RCT ran from 2014 to 2017 and included 2752 couples from whom sperm samples used in control (ICSI) and intervention (Physiological IntraCytoplasmic Sperm Injection; PICSI) arms of the trial were stored frozen for later assessment of DNA quality (DNAq). The trial overlapped with its mechanistic arm, running from 2016 to 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS As miscarriage reduction was a significant secondary outcome of the trial, samples (n = 1247) selected for the mechanistic analysis were deliberately enriched for miscarriage outcomes (n = 92 or 7.4%) from a total of 154 miscarriages (5.6%) among all (n = 2752) couples randomized by stratified random sampling. Values from fresh semen samples for sperm concentration (mml), percentage forward progressive motility and percentage HA-binding score (HBS) were obtained before being processed by differential density gradient centrifugation or (rarely) by swim-up on the day of treatment. Surplus sperm pellets were recovered, aliquoted and cryopreserved for later analysis of DNAq using slide-based Comet, TUNEL, acridine orange (AO) and the sperm chromatin dispersion (SCD) assays. Following their classification into normal and abnormal sample subcategories based on reference values for sperm concentration and motility, relationships with HBS and DNAq were examined by Spearman correlation, Student's t-tests, Mann Whitney U tests, and logistic regression (univariable and multivariable). Parsimonious selection enabled the development of models for exploring and explaining data trends. Potential differences in future cumulative pregnancy rates relating to embryo quality were also explored. MAIN RESULTS AND THE ROLE OF CHANCE Results from the 1247 sperm samples assayed for HBS and/or DNAq, generated data that were considered in relation to standard physiological measures of (sperm) vitality and to treatment outcomes. All measures of HBS and DNAq discriminated normal from abnormal sperm samples (P < 0.001). SCD correlated negatively with the Comet (r = -0.165; P < 0.001) and TUNEL assays (r = -0.200; P < 0.001). HBS correlated negatively with AO (r = -0.211; P < 0.001), Comet (r = -0.127; P < 0.001) and TUNEL (r = -0.214; P < 0.001) and positively with SCD (r = 0.255; P < 0.001). A model for predicting live birth (and miscarriage) rates included treatment allocation (odds ratio: OR 2.167, 95% CI 1.084-4.464, P = 0.031), female age (OR 0.301, 95% CI 0.133-0.761, P = 0.013, per decade) and the AO assay (OR 0.79, 95% CI 0.60-1. 02.761, P = 0.073, per 10 points rise). A model predicting the expected rate of biochemical pregnancy included male age (OR 0.464, 95% CI 0.314-0.674, P < 0.001, per decade) and the SCD assay (OR 1.04, 95% CI 1.007-1.075, P = 0.018, per 10 point rise). A model for conversion from biochemical to clinical pregnancy did not retain any significant patient or assay variables. A model for post-injection fertilization rates included treatment allocation (OR 0.83, 95% CI 0.75-0.91, P < 0.001) and the Comet assay (OR 0.950, 95% CI 0.91-1.00, P = 0.041). LIMITATIONS, REASONS FOR CAUTION HABSelect was a prospective RCT and the mechanistic study group was drawn from its recruitment cohort for retrospective analysis, without the full benefit of randomization. The clinical and mechanistic aspects of the study were mutually exclusive in that measures of DNAq were obtained from residual samples and not from HA-selected versus unselected sperm. Models for fitting mechanistic with baseline and other clinical data were developed to compensate for variable DNAq data quality. HABSelect used a solid-state version of PICSI and we did not assess the efficacy of any liquid-state alternatives. PICSI reduced fertilization rates and did not improve the outlook for cumulative pregnancy rates. WIDER IMPLICATIONS OF THE FINDINGS Notwithstanding the interventional effect on fertilization rates and possibly blastocyst formation (neither of which influenced pregnancy rates), poor sperm DNAq, reflected by lower HBS, probably contributed to the depression of all gestational outcomes including live births, in the HABSelect trial. The interventional avoidance of defective sperm is the best explanation for the equalization in live birth rates among older couples randomized to the trial's PICSI arm. As patients going forward for assisted conception cycles globally in future are likely to be dominated by an older demographic, HA-based selection of sperm for ICSI could be considered as part of their treatment plan. STUDY FUNDING/COMPETING INTEREST(S) The study was supported by the National Institute for Health Research (NIHR) EME (Efficacy and Mechanism Evaluation)-11-14-34. National Research Ethics Service approval 11/06/2013: 13/YH/0162. S.L. is CEO of ExamenLab Ltd (company number NI605309). TRIAL REGISTRATION NUMBER ISRCTN99214271.
Collapse
Affiliation(s)
- Robert West
- Correspondence address. Leeds Institute of Health Sciences, Room 1.27, Level 10, Worsley Building, University of Leeds, Leeds LS2 9JT, UK. E-mail: (R.W.); Centre for Human Reproductive Science, University of Birmingham, Birmingham Women’s Fertility Centre, Birmingham Women’s NHS Foundation Trust, Birmingham B15 2TG, UK. E-mail: (J.K.-B.)
| | - Arri Coomarasamy
- Centre for Human Reproductive Science, University of Birmingham, Birmingham Women’s Fertility Centre, Birmingham Women’s NHS Foundation Trust, Birmingham, UK
| | - Lorraine Frew
- Centre for Human Reproductive Science, University of Birmingham, Birmingham Women’s Fertility Centre, Birmingham Women’s NHS Foundation Trust, Birmingham, UK
| | - Rachel Hutton
- Queen’s University Belfast, Centre for Public Health, Royal Groups of Hospitals, Belfast, UK
| | - Jackson Kirkman-Brown
- Correspondence address. Leeds Institute of Health Sciences, Room 1.27, Level 10, Worsley Building, University of Leeds, Leeds LS2 9JT, UK. E-mail: (R.W.); Centre for Human Reproductive Science, University of Birmingham, Birmingham Women’s Fertility Centre, Birmingham Women’s NHS Foundation Trust, Birmingham B15 2TG, UK. E-mail: (J.K.-B.)
| | - Martin Lawlor
- Queen’s University Belfast, Centre for Public Health, Royal Groups of Hospitals, Belfast, UK
| | - Sheena Lewis
- Queen’s University Belfast, Centre for Public Health, Royal Groups of Hospitals, Belfast, UK
| | - Riitta Partanen
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | - Alex Payne-Dwyer
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | - Claudia Román-Montañana
- Centre for Human Reproductive Science, University of Birmingham, Birmingham Women’s Fertility Centre, Birmingham Women’s NHS Foundation Trust, Birmingham, UK
| | - Forough Torabi
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | - Sofia Tsagdi
- Centre for Human Reproductive Science, University of Birmingham, Birmingham Women’s Fertility Centre, Birmingham Women’s NHS Foundation Trust, Birmingham, UK
| | - David Miller
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| |
Collapse
|
11
|
Uh K, Hay A, Chen P, Reese E, Lee K. Design of novel oocyte activation methods: The role of zinc. Biol Reprod 2021; 106:264-273. [PMID: 34935887 DOI: 10.1093/biolre/ioab235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/15/2022] Open
Abstract
Oocyte activation occurs at the time of fertilization and is a series of cellular events initiated by intracellular Ca2+ increases. Consequently, oocytes are alleviated from their arrested state in meiotic metaphase II (MII), allowing for the completion of meiosis. Oocyte activation is also an essential step for somatic cell nuclear transfer (SCNT) and an important tool to overcome clinical infertility. Traditional artificial activation methods aim to mimic the intracellular Ca2+ changes which occur during fertilization. Recent studies emphasize the importance of cytoplasmic Zn2+ on oocyte maturation and the completion of meiosis, thus suggesting artificial oocyte activation approaches that are centered around the concentration of available Zn2+in oocytes. Depletion of intracellular Zn2+ in oocytes with heavy metal chelators leads to successful oocyte activation in the absence of cellular Ca2+ changes, indicating that successful oocyte activation does not always depends on intracellular Ca2+ increases. Current findings lead to new approaches to artificially activate mammalian oocytes by reducing available Zn2+ contents, and the approaches improve the outcome of oocyte activation when combined with existing Ca2+ based oocyte activation methods. Here, we review the important role of Ca2+ and Zn2+ in mammalian oocyte activation and development of novel oocyte activation approaches based on Zn2+ availability.
Collapse
Affiliation(s)
- Kyungjun Uh
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201, USA
| | - Alayna Hay
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Paula Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201, USA
| | - Emily Reese
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201, USA
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201, USA
| |
Collapse
|
12
|
Kang W, Suzuki M, Saito T, Miyado K. Emerging Role of TCA Cycle-Related Enzymes in Human Diseases. Int J Mol Sci 2021; 22:13057. [PMID: 34884868 PMCID: PMC8657694 DOI: 10.3390/ijms222313057] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023] Open
Abstract
The tricarboxylic acid (TCA) cycle is the main source of cellular energy and participates in many metabolic pathways in cells. Recent reports indicate that dysfunction of TCA cycle-related enzymes causes human diseases, such as neurometabolic disorders and tumors, have attracted increasing interest in their unexplained roles. The diseases which develop as a consequence of loss or dysfunction of TCA cycle-related enzymes are distinct, suggesting that each enzyme has a unique function. This review aims to provide a comprehensive overview of the relationship between each TCA cycle-related enzyme and human diseases. We also discuss their functions in the context of both mitochondrial and extra-mitochondrial (or cytoplasmic) enzymes.
Collapse
Affiliation(s)
- Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (K.M.)
| | - Miki Suzuki
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (K.M.)
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan;
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (K.M.)
| |
Collapse
|
13
|
York-Andersen AH, Wood BW, Wilby EL, Berry AS, Weil TT. Osmolarity-regulated swelling initiates egg activation in Drosophila. Open Biol 2021; 11:210067. [PMID: 34343463 PMCID: PMC8331238 DOI: 10.1098/rsob.210067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Egg activation is a series of highly coordinated processes that prepare the mature oocyte for embryogenesis. Typically associated with fertilization, egg activation results in many downstream outcomes, including the resumption of the meiotic cell cycle, translation of maternal mRNAs and cross-linking of the vitelline membrane. While some aspects of egg activation, such as initiation factors in mammals and environmental cues in sea animals, have been well-documented, the mechanics of egg activation in insects are less well-understood. For many insects, egg activation can be triggered independently of fertilization. In Drosophila melanogaster, egg activation occurs in the oviduct resulting in a single calcium wave propagating from the posterior pole of the oocyte. Here we use physical manipulations, genetics and live imaging to demonstrate the requirement of a volume increase for calcium entry at egg activation in ex vivo mature Drosophila oocytes. The addition of water, modified with sucrose to a specific osmolarity, is sufficient to trigger the calcium wave in the mature oocyte and the downstream events associated with egg activation. We show that the swelling process is regulated by the conserved osmoregulatory channels, aquaporins and DEGenerin/Epithelial Na+ channels. Furthermore, through pharmacological and genetic disruption, we reveal a concentration-dependent requirement of transient receptor potential M channels to transport calcium, most probably from the perivitelline space, across the plasma membrane into the mature oocyte. Our data establish osmotic pressure as a mechanism that initiates egg activation in Drosophila and are consistent with previous work from evolutionarily distant insects, including dragonflies and mosquitos, and show remarkable similarities to the mechanism of egg activation in some plants.
Collapse
Affiliation(s)
- Anna H York-Andersen
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Benjamin W Wood
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Elise L Wilby
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Alexander S Berry
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
14
|
Yuan P, Yang C, Ren Y, Yan J, Nie Y, Yan L, Qiao J. A novel homozygous mutation of phospholipase C zeta leading to defective human oocyte activation and fertilization failure. Hum Reprod 2021; 35:977-985. [PMID: 32142120 DOI: 10.1093/humrep/dez293] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Is a novel homozygous phospholipase C zeta (PLCζ), c.1658 G>C; p. R553P mutation in the C2 domain associated with the outcomes of recurrent fertilization failure after ICSI? SUMMARY ANSWER PLCζ, c.1658 G>C led to defective human oocyte activation and fertilization failure, while this mutation in the C2 domain of PLCζ did not compromise concentration, motility and chromosome ploidy of sperm. WHAT IS KNOWN ALREADY Sperm-specific PLCζ is now widely considered to be the physiological stimulus that evokes intracellular calcium (Ca2+) oscillations, which are essential for egg activation during mammalian fertilization. Thus far, few genetic studies have shown that different point mutations in the PLCζ gene are associated with male infertility. STUDY DESIGN, SIZE, DURATION This was a basic medical research to assess pathogenicity for novel mutation in the C2 domain of PLCζ during human fertilization. PARTICIPANTS/MATERIALS, SETTING, METHODS Single-cell omics were applied to analyze the DNA methylation state of the fertilization failure oocytes and the ploidy of the patient's sperm. Whole genome sequencing data for the patient were analyzed for mutations in PLCζ. Sanger sequencing confirmed the presence of a rare variant, and then the mutant and wild-type PLCζ mRNA were injected to observe oocyte activation. MAIN RESULTS AND THE ROLE OF CHANCE The fertilization failure oocytes (n = 4) were triploid and lacking proper DNA demethylation. The whole genome sequencing analysis revealed a novel missense homozygous mutation in PLCζ, c.1658 G>C; p. R553P, which leads to the conversion of arginine 553 to proline. This point mutation does not affect the production of the corresponding protein in sperm. However, microinjection of the mRNA transcribed from the PLCζ R553P mutation gene failed to trigger oocyte activation and the subsequent embryo development. LIMITATIONS, REASONS FOR CAUTION Only one patient with PLCζ mutations was available because of its rare incidence. WIDER IMPLICATIONS OF THE FINDINGS Notably, we discovered a novel homozygous mutation in PLCζ, which results in an abnormal conformation at the C2 domain of the PLCζ protein. Our findings indicate an essential role of PLCζ in human fertilization and the requirement of a normal structure of C2 domain in PLCζ-mediated physiological function. STUDY FUNDING/COMPETING INTEREST(S) This project is funded by the National Natural Science Foundation of China (31571544, 31871482, 31871447) and National Key Research and Development Program (2018YFC1004000, 2017YFA0103801). All authors declared no competing interests. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Peng Yuan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Cen Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Yixin Ren
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Yanli Nie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Identification of SH2 Domain-Mediated Protein Interactions that Operate at Fertilization in the Sea Star Patiria miniata. Methods Mol Biol 2021. [PMID: 33074537 DOI: 10.1007/978-1-0716-0974-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The signaling mechanisms controlling internal calcium release at fertilization in animals are still largely unknown. Echinoderms, such as the sea star Patiria miniata, produce abundant and easily accessible sperm and eggs. In addition, eggs are naturally synchronized at the same cell cycle stage, collectively making these animals an attractive model to study the signaling proteins controlling fertilization. However, the lack of antibodies to identify proteins in this model system has slowed progress in identifying key signaling molecules. With the advances in mass spectrometry, we present a method for identifying tyrosine phosphorylated proteins binding to GST-tagged SH2 domains in sea star cell lysates for downstream mass spectrometry analysis.
Collapse
|
16
|
Storey A, Elgmati K, Wang Y, Knaggs P, Swann K. The role of ATP in the differential ability of Sr2+ to trigger Ca2+ oscillations in mouse and human eggs. Mol Hum Reprod 2021; 27:gaaa086. [PMID: 33543292 PMCID: PMC7846092 DOI: 10.1093/molehr/gaaa086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
At fertilization in mice and humans, the activation of the egg is caused by a series of repetitive Ca2+ oscillations which are initiated by phospholipase-C(zeta)ζ that generates inositol-1,4,5-trisphophate (InsP3). Ca2+ oscillations and egg activation can be triggered in mature mouse eggs by incubation in Sr2+ containing medium, but this does not appear to be effective in human eggs. Here, we have investigated the reason for this apparent difference using mouse eggs, and human eggs that failed to fertilize after IVF or ICSI. Mouse eggs incubated in Ca2+-free, Sr2+-containing medium immediately underwent Ca2+ oscillations but human eggs consistently failed to undergo Ca2+ oscillations in the same Sr2+ medium. We tested the InsP3-receptor (IP3R) sensitivity directly by photo-release of caged InsP3 and found that mouse eggs were about 10 times more sensitive to InsP3 than human eggs. There were no major differences in the Ca2+ store content between mouse and human eggs. However, we found that the ATP concentration was consistently higher in mouse compared to human eggs. When ATP levels were lowered in mouse eggs by incubation in pyruvate-free medium, Sr2+ failed to cause Ca2+ oscillations. When pyruvate was added back to these eggs, the ATP levels increased and Ca2+ oscillations were induced. This suggests that ATP modulates the ability of Sr2+ to stimulate IP3R-induced Ca2+ release in eggs. We suggest that human eggs may be unresponsive to Sr2+ medium because they have a lower level of cytosolic ATP.
Collapse
Affiliation(s)
- Anna Storey
- Wales Fertility Institute, University Hospital of Wales, Cardiff, UK
| | | | - Yisu Wang
- School of Biosiences, Cardiff University, Cardiff, UK
| | - Paul Knaggs
- Wales Fertility Institute, University Hospital of Wales, Cardiff, UK
| | - Karl Swann
- School of Biosiences, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Hu Q, Wolfner MF. Regulation of Trpm activation and calcium wave initiation during Drosophila egg activation. Mol Reprod Dev 2020; 87:880-886. [PMID: 32735035 DOI: 10.1002/mrd.23403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/24/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
The transition from a developmentally arrested mature oocyte to a developing embryo requires a series of highly conserved events, collectively known as egg activation. All of these events are preceded by a ubiquitous rise of intracellular calcium, which results from influx of external calcium and/or calcium release from internal storage. In Drosophila, this calcium rise initiates from the pole(s) of the oocyte by influx of external calcium in response to mechanical triggers. It is thought to trigger calcium responsive kinases and/or phosphatases, which in turn alter the oocyte phospho-proteome to initiate downstream events. Recent studies revealed that external calcium enters the activating Drosophila oocyte through Trpm channels, a feature conserved in mouse. The local entry of calcium raises the question of whether Trpm channels are found locally at the poles of the oocyte or are localized around the oocyte periphery, but activated only at the poles. Here, we show that Trpm is distributed all around the oocyte. This requires that it thus be specially regulated at the poles to allow calcium wave initiation. We show that neither egg shape nor local pressure is sufficient to explain this local activation of Trpm channels.
Collapse
Affiliation(s)
- Qinan Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
18
|
Hu Q, Duncan FE, Nowakowski AB, Antipova OA, Woodruff TK, O'Halloran TV, Wolfner MF. Zinc Dynamics during Drosophila Oocyte Maturation and Egg Activation. iScience 2020; 23:101275. [PMID: 32615472 PMCID: PMC7330606 DOI: 10.1016/j.isci.2020.101275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Temporal fluctuations in zinc concentration are essential signals, including during oogenesis and early embryogenesis. In mammals, zinc accumulation and release are required for oocyte maturation and egg activation, respectively. Here, we demonstrate that zinc flux occurs in Drosophila oocytes and activated eggs, and that zinc is required for female fertility. Our synchrotron-based X-ray fluorescence microscopy reveals zinc as the most abundant transition metal in Drosophila oocytes. Its levels increase during oocyte maturation, accompanied by the appearance of zinc-enriched intracellular granules in the oocyte, which depend on transporters. Subsequently, in egg activation, which mediates the transition from oocyte to embryo, oocyte zinc levels decrease significantly, as does the number of zinc-enriched granules. This pattern of zinc dynamics in Drosophila oocytes follows a similar trajectory to that in mammals, extending the parallels in female gamete processes between Drosophila and mammals and establishing Drosophila as a model for dissecting reproductive roles of zinc.
Collapse
Affiliation(s)
- Qinan Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrew B Nowakowski
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Olga A Antipova
- X-ray Sciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Thomas V O'Halloran
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
19
|
Avidor-Reiss T, Zhang Z, Li XZ. Editorial: Sperm Differentiation and Spermatozoa Function: Mechanisms, Diagnostics, and Treatment. Front Cell Dev Biol 2020; 8:219. [PMID: 32318570 PMCID: PMC7154170 DOI: 10.3389/fcell.2020.00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States.,Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, MI, United States.,Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI, United States
| | - Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States.,Department of Urology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
20
|
Kashir J. Increasing associations between defects in phospholipase C zeta and conditions of male infertility: not just ICSI failure? J Assist Reprod Genet 2020; 37:1273-1293. [PMID: 32285298 PMCID: PMC7311621 DOI: 10.1007/s10815-020-01748-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Oocyte activation is a fundamental event at mammalian fertilization. In mammals, this process is initiated by a series of characteristic calcium (Ca2+) oscillations, induced by a sperm-specific phospholipase C (PLC) termed PLCzeta (PLCζ). Dysfunction/reduction/deletion of PLCζ is associated with forms of male infertility where the sperm is unable to initiate Ca2+ oscillations and oocyte activation, specifically in cases of fertilization failure. This review article aims to systematically summarize recent advancements and controversies in the field to update expanding clinical associations between PLCζ and various male factor conditions. This article also discusses how such associations may potentially underlie defective embryogenesis and recurrent implantation failure following fertility treatments, alongside potential diagnostic and therapeutic PLCζ approaches, aiming to direct future research efforts to utilize such knowledge clinically. METHODS An extensive literature search was performed using literature databases (PubMed/MEDLINE/Web of Knowledge) focusing on phospholipase C zeta (PLCzeta; PLCζ), oocyte activation, and calcium oscillations, as well as specific male factor conditions. RESULTS AND DISCUSSION Defective PLCζ or PLCζ-induced Ca2+ release can be linked to multiple forms of male infertility including abnormal sperm parameters and morphology, sperm DNA fragmentation and oxidation, and abnormal embryogenesis/pregnancies. Such sperm exhibit absent/reduced levels, and abnormal localization patterns of PLCζ within the sperm head. CONCLUSIONS Defective PLCζ and abnormal patterns of Ca2+ release are increasingly suspected a significant causative factor underlying abnormalities or insufficiencies in Ca2+ oscillation-driven early embryogenic events. Such cases could potentially strongly benefit from relevant therapeutic and diagnostic applications of PLCζ, or even alternative mechanisms, following further focused research efforts.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia. .,School of Biosciences, Cardiff University, Cardiff, UK. .,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
21
|
Hu Q, Vélez-Avilés AN, Wolfner MF. Drosophila Plc21C is involved in calcium wave propagation during egg activation. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 32550503 PMCID: PMC7252351 DOI: 10.17912/micropub.biology.000235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Qinan Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Adriana N Vélez-Avilés
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.,University of Puerto Rico-Río Piedras, Río Piedras, PR
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
22
|
York-Andersen AH, Hu Q, Wood BW, Wolfner MF, Weil TT. A calcium-mediated actin redistribution at egg activation in Drosophila. Mol Reprod Dev 2019; 87:293-304. [PMID: 31880382 PMCID: PMC7044060 DOI: 10.1002/mrd.23311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022]
Abstract
Egg activation is the essential process in which mature oocytes gain the competency to proceed into embryonic development. Many events of egg activation are conserved, including an initial rise of intracellular calcium. In some species, such as echinoderms and mammals, changes in the actin cytoskeleton occur around the time of fertilization and egg activation. However, the interplay between calcium and actin during egg activation remains unclear. Here, we use imaging, genetics, pharmacological treatment, and physical manipulation to elucidate the relationship between calcium and actin in living Drosophila eggs. We show that, before egg activation, actin is smoothly distributed between ridges in the cortex of the dehydrated mature oocytes. At the onset of egg activation, we observe actin spreading out as the egg swells though the intake of fluid. We show that a relaxed actin cytoskeleton is required for the intracellular rise of calcium to initiate and propagate. Once the swelling is complete and the calcium wave is traversing the egg, it leads to a reorganization of actin in a wavelike manner. After the calcium wave, the actin cytoskeleton has an even distribution of foci at the cortex. Together, our data show that calcium resets the actin cytoskeleton at egg activation, a model that we propose to be likely conserved in other species.
Collapse
Affiliation(s)
| | - Qinan Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Benjamin W Wood
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Wakai T, Mehregan A, Fissore RA. Ca 2+ Signaling and Homeostasis in Mammalian Oocytes and Eggs. Cold Spring Harb Perspect Biol 2019; 11:a035162. [PMID: 31427376 PMCID: PMC6886447 DOI: 10.1101/cshperspect.a035162] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in the intracellular concentration of calcium ([Ca2+]i) represent a vital signaling mechanism enabling communication between and among cells as well as with the environment. Cells have developed a sophisticated set of molecules, "the Ca2+ toolkit," to adapt [Ca2+]i changes to specific cellular functions. Mammalian oocytes and eggs, the subject of this review, are not an exception, and in fact the initiation of embryo devolvement in all species is entirely dependent on distinct [Ca2+]i responses. Here, we review the components of the Ca2+ toolkit present in mammalian oocytes and eggs, the regulatory mechanisms that allow these cells to accumulate Ca2+ in the endoplasmic reticulum, release it, and maintain basal and stable cytoplasmic concentrations. We also discuss electrophysiological and genetic studies that have uncovered Ca2+ influx channels in oocytes and eggs, and we analyze evidence supporting the role of a sperm-specific phospholipase C isoform as the trigger of Ca2+ oscillations during mammalian fertilization including its implication in fertility.
Collapse
Affiliation(s)
- Takuya Wakai
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Aujan Mehregan
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
24
|
Hamilton LE, Suzuki J, Acteau G, Shi M, Xu W, Meinsohn MC, Sutovsky P, Oko R. WBP2 shares a common location in mouse spermatozoa with WBP2NL/PAWP and like its descendent is a candidate mouse oocyte-activating factor. Biol Reprod 2019; 99:1171-1183. [PMID: 30010725 PMCID: PMC6299249 DOI: 10.1093/biolre/ioy156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/12/2018] [Indexed: 11/19/2022] Open
Abstract
The sperm-borne oocyte-activating factor (SOAF) resides in the sperm perinuclear theca (PT). A consensus has been reached that SOAF most likely resides in the postacrosomal sheath (PAS), which is the first region of the PT to solubilize upon sperm–oocyte fusion. There are two SOAF candidates under consideration: PLCZ1 and WBP2NL. A mouse gene germline ablation of the latter showed that mice remain fertile with no observable phenotype despite the fact that a competitive inhibitor of WBP2NL, derived from its PPXY motif, blocks oocyte activation when coinjected with WBP2NL or spermatozoa. This suggested that the ortholog of WBP2NL, WBP2, containing the same domain and motifs associated with WBP2NL function, might compensate for its deficiency in oocyte activation. Our objectives were to examine whether WBP2 meets the developmental criteria established for SOAF and whether it has oocyte-activating potential. Immunoblotting detected WBP2 in mice testis and sperm and immunofluorescence localized WBP2 to the PAS and perforatorium of the PT. Immunohistochemistry of the testes revealed that WBP2 reactivity was highest in round spermatids and immunofluorescence detected WBP2 in the cytoplasmic lobe of elongating spermatids and colocalized it with the microtubular manchette during PT assembly. Microinjection of the recombinant forms of WBP2 and WBP2NL into metaphase II mouse oocytes resulted in comparable rates of oocyte activation. This study shows that WBP2 shares a similar testicular developmental pattern and location with WBP2NL and a shared ability to activate the oocyte, supporting its consideration as a mouse SOAF component that can compensate for a WBP2NL.
Collapse
Affiliation(s)
- Lauren E Hamilton
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Joao Suzuki
- Centre de recherche en reproduction fertilité, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Quebec, Canada
| | - Genevieve Acteau
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Mengqi Shi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Wei Xu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Marie-Charlotte Meinsohn
- Centre de recherche en reproduction fertilité, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Quebec, Canada
| | - Peter Sutovsky
- Division of Animal Sciences, College of Food, Agriculture and Natural Resources, University of Missouri, Columbia, Missouri, USA.,Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
25
|
Hu Q, Wolfner MF. The Drosophila Trpm channel mediates calcium influx during egg activation. Proc Natl Acad Sci U S A 2019; 116:18994-19000. [PMID: 31427540 PMCID: PMC6754564 DOI: 10.1073/pnas.1906967116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Egg activation is the process in which mature oocytes are released from developmental arrest and gain competency for embryonic development. In Drosophila and other arthropods, eggs are activated by mechanical pressure in the female reproductive tract, whereas in most other species, eggs are activated by fertilization. Despite the difference in the trigger, Drosophila shares many conserved features with higher vertebrates in egg activation, including a rise of intracellular calcium in response to the trigger. In Drosophila, this calcium rise is initiated by entry of extracellular calcium due to opening of mechanosensitive ion channels and initiates a wave that passes across the egg prior to initiation of downstream activation events. Here, we combined inhibitor tests, germ-line-specific RNAi knockdown, and germ-line-specific CRISPR/Cas9 knockout to identify the Transient Receptor Potential (TRP) channel subfamily M (Trpm) as a critical channel that mediates the calcium influx and initiates the calcium wave during Drosophila egg activation. We observed a reduction in the proportion of eggs that hatched from trpm germ-line knockout mutant females, although eggs were able to complete some egg activation events including cell cycle resumption. Since a mouse ortholog of Trpm was recently reported also to be involved in calcium influx during egg activation and in further embryonic development, our results suggest that calcium uptake from the environment via TRPM channels is a deeply conserved aspect of egg activation.
Collapse
Affiliation(s)
- Qinan Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
26
|
Jones KT. Mammalian sperm contain two factors for calcium release and egg activation: Phospholipase C zeta and a cryptic activating factor. Mol Hum Reprod 2019; 24:465-468. [PMID: 30257016 DOI: 10.1093/molehr/gay038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Keith T Jones
- Faculty of Sciences, University of Adelaide, 5005, South Australia, Australia, and School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, UK
| |
Collapse
|
27
|
Haghighat S, Tavalaee M, Kouhkan A, Zakeri Z, Noureddini M, Shahverdi AH, Nasr Esfahani MH. Reduction of truncated Kit Expression in Men with Abnormal Semen Parameters, Globozoospermia and History of Low or Fertilization Failure. CELL JOURNAL 2019; 21:314-321. [PMID: 31210438 PMCID: PMC6582429 DOI: 10.22074/cellj.2019.6112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/22/2018] [Indexed: 01/27/2023]
Abstract
Objective Phospholipase C zeta 1 (PLCζ) is one of the main sperm factor involved in oocyte activation and other
factors may assist this factor to induce successful fertilization. Microinjection of recombinant tr-kit, a truncated form of
c-kit receptor, into metaphase II-arrested mouse oocytes initiate egg activation. Considering the potential roles of tr-
KIT during spermiogenesis and fertilization, we aimed to assess expression of tr-KIT in sperm of men with normal and
abnormal parameters and also in infertile men with previous failed fertilization and globozoospermia.
Materials and Methods This experimental study was conducted from September 2015 to July 2016 on 30
normozoospermic and 20 abnormozoospermic samples for experiment one, and also was carried out on 10
globozoospermic men, 10 men with a history low or failed fertilization and 13 fertile men for experiment two. Semen
parameters and sperm DNA fragmentation were assessed according to WHO protocol, and TUNEL assay. Sperm tr-
KIT was evaluated by flow cytometry, immunostaining and western blot.
Results The results show that tr-KIT mainly was detected in post-acrosomal, equatorial and tail regions. Percentage
of tr-KIT-positive spermatozoa in abnormozoospermic men was significantly lower than normozoospermic men. Also
significant correlations were observed between sperm tr-KIT with sperm count (r=0.8, P<0.001), motility (r=0.31, P=0.03)
and abnormal morphology (r=-0.6, P<0.001). Expression of tr-KIT protein was significantly lower in infertile men with low/
failed fertilization and globozoospermia compared to fertile men. The significant correlation was also observed between
tr-KIT protein with fertilization rate (r=-0.46, P=0.04). In addition, significant correlations were observed between sperm
DNA fragmentation with fertilization rate (r=-0.56, P=0.019) and tr-KIT protein (r=-0.38, P=0.04).
Conclusion tr-KIT may play a direct or indirect role in fertilization. Therefore, to increase our insight regarding the role
of tr-KIT in fertilization further research is warranted.
Collapse
Affiliation(s)
- Somayeh Haghighat
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azam Kouhkan
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Zahra Zakeri
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - Mahdi Noureddini
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.Electronic Address:
| | - Abdol Hossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Medicine, ACECR, Tehran, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.Electronic Address:.,Isfahan Fertility and Infertility Center, Isfahan, Iran
| |
Collapse
|
28
|
González-Rojo S, Lombó M, Fernández-Díez C, Herráez MP. Male exposure to bisphenol a impairs spermatogenesis and triggers histone hyperacetylation in zebrafish testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:368-379. [PMID: 30818116 DOI: 10.1016/j.envpol.2019.01.127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 05/18/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor whose ubiquitous presence in the environment has been related with impairment of male reproduction. BPA can cause both transcriptomic and epigenetic changes during spermatogenesis. To evaluate the potential effects of male exposure to BPA, adult zebrafish males were exposed during spermatogenesis to doses of 100 and 2000 μg/L, which were reported in contaminated water bodies and higher than those allowed for human consumption. Fertilization capacity and survival at hatching were analysed after mating with untreated females. Spermatogenic progress was analysed through a morphometrical study of testes and apoptosis was evaluated by TUNEL assay. Testicular gene expression was evaluated by RT-qPCR and epigenetics by using ELISA and immunocytochemistry. In vitro studies were performed to investigate the role of Gper. Chromatin fragmentation and the presence of transcripts were also evaluated in ejaculated sperm. Results on testes from males treated with the highest dose showed a significant decrease in spermatocytes, an increase in apoptosis, a downregulation of ccnb1 and sycp3, all of which point to an alteration of spermatogenesis and to meiotic arrest and an upregulation of gper1 and esrrga receptors. Additionally, BPA at 2000 μg/L caused missregulation of epigenetic remodelling enzymes transcripts in testes and promoted DNA hypermethylation and H3K27me3 demethylation. BPA also triggered an increase in histone acetyltransferase activity, which led to hyperacetylation of histones (H3K9ac, H3K14ac, H4K12ac). In vitro reversion of histone acetylation changes using a specific GPER antagonist, G-36, suggested this receptor as mediator of histone hyperacetylation. Males treated with the lower dose only showed an increase in some histone acetylation marks (H3K14ac, H4K12ac) but their progeny displayed very limited survival at hatching, revealing the deleterious effects of unbalanced paternal epigenetic information. Furthermore, the highest dose of BPA led to chromatin fragmentation, promoting direct reproductive effects, which are incompatible with embryo development.
Collapse
Affiliation(s)
- S González-Rojo
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain
| | - M Lombó
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain
| | - C Fernández-Díez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain
| | - M P Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain.
| |
Collapse
|
29
|
Khakpour S, Sadeghi E, Tavalaee M, Bahadorani M, Nasr‐Esfahani MH. Zeta method: A noninvasive method based on membrane charge for selecting spermatozoa expressing high level of phospholipaseCζ. Andrologia 2019; 51:e13249. [DOI: 10.1111/and.13249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 01/14/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- Shima Khakpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology ACECR Isfahan Iran
| | - Elham Sadeghi
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology ACECR Isfahan Iran
| | - Marziyeh Tavalaee
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology ACECR Isfahan Iran
| | | | - Mohammad H. Nasr‐Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology ACECR Isfahan Iran
- Isfahan Fertility and Infertility Center Isfahan Iran
| |
Collapse
|
30
|
Ferrer-Buitrago M, Dhaenens L, Lu Y, Bonte D, Vanden Meerschaut F, De Sutter P, Leybaert L, Heindryckx B. Human oocyte calcium analysis predicts the response to assisted oocyte activation in patients experiencing fertilization failure after ICSI. Hum Reprod 2019; 33:416-425. [PMID: 29329390 DOI: 10.1093/humrep/dex376] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/12/2017] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION Can human oocyte calcium analysis predict fertilization success after assisted oocyte activation (AOA) in patients experiencing fertilization failure after ICSI? SUMMARY ANSWER ICSI-AOA restores the fertilization rate only in patients displaying abnormal Ca2+ oscillations during human oocyte activation. WHAT IS KNOWN ALREADY Patients capable of activating mouse oocytes and who showed abnormal Ca2+ profiles after mouse oocyte Ca2+ analysis (M-OCA), have variable responses to ICSI-AOA. It remains unsettled whether human oocyte Ca2+ analysis (H-OCA) would yield an improved accuracy to predict fertilization success after ICSI-AOA. STUDY DESIGN, SIZE, DURATION Sperm activation potential was first evaluated by MOAT. Subsequently, Ca2+ oscillatory patterns were determined with sperm from patients showing moderate to normal activation potential based on the capacity of human sperm to generate Ca2+ responses upon microinjection in mouse and human oocytes. Altogether, this study includes a total of 255 mouse and 122 human oocytes. M-OCA was performed with 16 different sperm samples before undergoing ICSI-AOA treatment. H-OCA was performed for 11 patients who finally underwent ICSI-AOA treatment. The diagnostic accuracy to predict fertilization success was calculated based on the response to ICSI-AOA. PARTICIPANTS/MATERIALS, SETTING, METHODS Patients experiencing low or total failed fertilization after conventional ICSI were included in the study. All participants showed moderate to high rates of activation after MOAT. Metaphase II (MII) oocytes from B6D2F1 mice were used for M-OCA. Control fertile sperm samples were used to obtain a reference Ca2+ oscillation profile elicited in human oocytes. Donated human oocytes, non-suitable for IVF treatments, were collected and vitrified at MII stage for further analysis by H-OCA. MAIN RESULTS AND THE ROLE OF CHANCE M-OCA and H-OCA predicted the response to ICSI-AOA in 8 out of 11 (73%) patients. Compared to M-OCA, H-OCA detected the presence of sperm activation deficiencies with greater sensitivity (75 vs 100%, respectively). ICSI-AOA never showed benefit to overcome fertilization failure in patients showing normal capacity to generate Ca2+ oscillations in H-OCA and was likely to be beneficial in cases displaying abnormal H-OCA Ca2+ oscillations patterns. LIMITATIONS, REASONS FOR CAUTION The scarce availability of human oocytes donated for research purposes is a limiting factor to perform H-OCA. Ca2+ imaging requires specific equipment to monitor fluorescence changes over time. WIDER IMPLICATIONS OF THE FINDINGS H-OCA is a sensitive test to diagnose gamete-linked fertilization failure. H-OCA allows treatment counseling for couples experiencing ICSI failures to either undergo ICSI-AOA or to participate in gamete donation programs. The present data provide an important template of the Ca2+ signature observed during human fertilization in cases with normal, low and failed fertilization after conventional ICSI. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Flemish fund for scientific research (FWO-Vlaanderen, G060615N). The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- M Ferrer-Buitrago
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - L Dhaenens
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Y Lu
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - D Bonte
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - F Vanden Meerschaut
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - P De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - L Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
31
|
Ferrer-Buitrago M, Bonte D, Dhaenens L, Vermorgen S, Lu Y, De Sutter P, Heindryckx B. Assessment of the calcium releasing machinery in oocytes that failed to fertilize after conventional ICSI and assisted oocyte activation. Reprod Biomed Online 2018; 38:497-507. [PMID: 30745236 DOI: 10.1016/j.rbmo.2018.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/20/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
RESEARCH QUESTION Can oocyte-related activation deficiencies be evaluated in oocytes that failed to fertilize after intracytoplasmic sperm injection (ICSI) combined with assisted oocyte activation (AOA)? DESIGN Evaluation of the spindle-chromosome complexes and intracellular distribution of inositol trisphosphate type 1 receptors (IP3R1) in in-vitro matured (IVM) and failed-to-fertilize oocytes from patients undergoing AOA. Assessment of the oocyte-related Ca2+ releasing capacity in response to Ca2+ ionophores and sperm microinjection in oocytes that failed to fertilize after ICSI or ICSI-AOA. RESULTS IVM oocytes from patients undergoing conventional ICSI (control) and ICSI-AOA (study group) revealed a similar normalcy of spindle-chromosome complexes and distribution patterns of IP3R1. Failed-to-fertilize oocytes from both groups showed significant differences in proportion of normal or abnormal spindle-chromosome complex conformations. However, migration of IP3R1 was identified in a higher proportion of failed-to-fertilize oocytes after ICSI-AOA than after conventional ICSI. It was further observed that oocytes which failed to fertilize, either after ICSI or ICSI-AOA, mostly retain their capacity to respond to stimuli such as exposure to Ca2+ ionophores or to sperm microinjection. CONCLUSIONS Evaluation of spindle-chromosome normalcy and distribution of IP3R1 does not help identify the presence of Ca2+ releasing deficiencies in these oocytes. However, oocyte Ca2+ analysis adds value in identifying Ca2+ releasing incapacity of oocytes that failed to fertilize after ICSI or ICSI-AOA. Some patients experiencing fertilization failure after ICSI-AOA present with a suspected activation deficiency downstream of the Ca2+ machinery, which cannot be overcome by ICSI-AOA based on the use of Ca2+ ionophores.
Collapse
Affiliation(s)
- Minerva Ferrer-Buitrago
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Davina Bonte
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Lien Dhaenens
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sanne Vermorgen
- Ghent University (UGent Honours Programme in Life Sciences), Ghent, Belgium
| | - Yuechao Lu
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Petra De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
32
|
Iwai M, Harada Y, Miyabayashi R, Kang W, Nakamura A, Kawano N, Miyamoto Y, Yamada M, Hamatani T, Miyado M, Yoshida K, Saito H, Tanaka M, Umezawa A, Miyado K. Chemotactic behavior of egg mitochondria in response to sperm fusion in mice. Heliyon 2018; 4:e00944. [PMID: 30480160 PMCID: PMC6240845 DOI: 10.1016/j.heliyon.2018.e00944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/09/2018] [Accepted: 11/14/2018] [Indexed: 12/05/2022] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells and their positioning contributes to fertilization and early developmental processes. We report that sperm fusion triggers Ca2+ oscillations and mitochondrial movement toward fused sperm (mitochondrial chemotaxis) in mouse eggs. Mitochondria functioned in Ca2+ storage and were colocalized with endoplasmic reticulum (ER) during Ca2+ oscillations. Mitochondria then moved toward the fused sperm. Sperm extracts lacking nuclei induced Ca2+ oscillations, but did not promote mitochondrial chemotaxis. Our results suggest that sperm fusion motivates Ca2+ oscillation-independent mitochondrial chemotaxis. This phenomenon indicates that egg mitochondria interact with sperm materials, presumably nuclear substances, and their network tethers egg and sperm nuclei at the early stage of zygote formation.
Collapse
Affiliation(s)
- Maki Iwai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.,Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Yuichirou Harada
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo 192-0397, Japan
| | | | - Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.,Department of Perinatal Medicine and Oocyte Care, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Akihiro Nakamura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.,Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Natsuko Kawano
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.,Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama, Kawasaki, Kanagawa 214-8571, Japan
| | - Yoshitaka Miyamoto
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Mitsutoshi Yamada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Toshio Hamatani
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Keiichi Yoshida
- Advanced Medicine, Innovation and Clinical Research Center, Tottori University Hospital, 36-1 Nishicho, Yonago, Tottori 683-8504, Japan
| | - Hidekazu Saito
- Department of Perinatal Medicine and Oocyte Care, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
33
|
Rapid Evolution of Sperm Produces Diverse Centriole Structures that Reveal the Most Rudimentary Structure Needed for Function. Cells 2018; 7:cells7070067. [PMID: 29949922 PMCID: PMC6071034 DOI: 10.3390/cells7070067] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 11/17/2022] Open
Abstract
Centrioles are ancient subcellular protein-based organelles that maintain a conserved number and structure across many groups of eukaryotes. Centriole number (two per cells) is tightly regulated; each pre-existing centriole nucleates only one centriole as the cell prepares for division. The structure of centrioles is barrel-shaped, with a nine-fold symmetry of microtubules. This organization of microtubules is essential for the ancestral function of centriole–cilium nucleation. In animal cells, centrioles have gained an additional role: recruiting pericentriolar material (PCM) to form a centrosome. Therefore, it is striking that in animal spermatozoa, the centrioles have a remarkable diversity of structures, where some are so anomalous that they are referred to as atypical centrioles and are barely recognizable. The atypical centriole maintains the ability to form a centrosome and nucleate a new centriole, and therefore reveals the most rudimentary structure that is needed for centriole function. However, the atypical centriole appears to be incapable of forming a cilium. Here, we propose that the diversity in sperm centriole structure is due to rapid evolution in the shape of the spermatozoa head and neck. The enhanced diversity may be driven by a combination of direct selection for novel centriole functions and pleiotropy, which eliminates centriole properties that are dispensable in the spermatozoa function.
Collapse
|
34
|
Regulation of the meiotic divisions of mammalian oocytes and eggs. Biochem Soc Trans 2018; 46:797-806. [PMID: 29934303 PMCID: PMC6103459 DOI: 10.1042/bst20170493] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022]
Abstract
Initiated by luteinizing hormone and finalized by the fertilizing sperm, the mammalian oocyte completes its two meiotic divisions. The first division occurs in the mature Graafian follicle during the hours preceding ovulation and culminates in an extreme asymmetric cell division and the segregation of the two pairs of homologous chromosomes. The newly created mature egg rearrests at metaphase of the second meiotic division prior to ovulation and only completes meiosis following a Ca2+ signal initiated by the sperm at gamete fusion. Here, we review the cellular events that govern the passage of the oocyte through meiosis I with a focus on the role of the spindle assembly checkpoint in regulating its timing. In meiosis II, we examine how the egg achieves its arrest and how the fertilization Ca2+ signal allows the initiation of embryo development.
Collapse
|
35
|
Dehydroepiandrosterone (DHEA) and Its Sulfate (DHEA-S) in Mammalian Reproduction: Known Roles and Novel Paradigms. VITAMINS AND HORMONES 2018; 108:223-250. [PMID: 30029728 DOI: 10.1016/bs.vh.2018.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Steroid hormones form an integral part of normal development in mammalian organisms. Cholesterol is the parent compound from which all steroid hormones are synthesized. The product pregnenolone formed from cholesterol serves as precursor for mineralocorticoids, glucocorticoids, as well as dehydroepiandrosterone (DHEA) and its derived sexual hormones. DHEA assumes the prohormone status of a predominant endogenous precursor and a metabolic intermediate in ovarian follicular steroidogenesis. DHEA supplementation has been used to enhance ovarian reserve. Steroids like estradiol and testosterone have long been contemplated to play important roles in regulating meiotic maturation of oocytes in conjunction with gonadotropins. It is known that oocyte priming with estrogen is necessary to develop calcium (Ca2+) oscillations during maturation. Accruing evidence from diverse studies suggests that DHEA and its sulfate (dehydroepiandrosterone sulfate, DHEA-S) play significantly vital role not only as intermediates in androgen and estrogen formation, but may also be the probable 'oocyte factor' and behave as endogenous agonists triggering calcium oscillations for oocyte activation. DHEA/DHEA-S have been reported to regulate calcium channels for the passage of Ca2+ through the oocyte cytoplasm and for maintaining required threshold of Ca2+ oscillations. This role of DHEA/DHEA-S assumes critical significance in assisted reproductive technology and in-vitro fertilization treatment cycles where physical, chemical, and mechanical methods are employed for artificial oocyte activation to enhance fertilization rates. However, since these methods are invasive and may also cause adverse epigenetic modifications; oral or culture-media supplementation with DHEA/DHEA-S provides a noninvasive innate mechanism of in-vitro oocyte activation based on physiological metabolic pathway.
Collapse
|
36
|
Chávez JC, De la Vega-Beltrán JL, José O, Torres P, Nishigaki T, Treviño CL, Darszon A. Acrosomal alkalization triggers Ca 2+ release and acrosome reaction in mammalian spermatozoa. J Cell Physiol 2018; 233:4735-4747. [PMID: 29135027 DOI: 10.1002/jcp.26262] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023]
Abstract
The sperm acrosome reaction (AR), an essential event for mammalian fertilization, involves Ca2+ permeability changes leading to exocytosis of the acrosomal vesicle. The acrosome, an intracellular Ca2+ store whose luminal pH is acidic, contains hydrolytic enzymes. It is known that acrosomal pH (pHacr ) increases during capacitation and this correlates with spontaneous AR. Some AR inducers increase intracellular Ca2+ concentration ([Ca2+ ]i ) through Ca2+ release from internal stores, mainly the acrosome. Catsper, a sperm specific Ca2+ channel, has been suggested to participate in the AR. Curiously, Mibefradil and NNC55-0396, two CatSper blockers, themselves elevate [Ca2+ ]i by unknown mechanisms. Here we show that these compounds, as other weak bases, can elevate pHacr , trigger Ca2+ release from the acrosome, and induce the AR in both mouse and human sperm. To our surprise, μM concentrations of NNC55-0396 induced AR even in nominally Ca2+ free media. Our findings suggest that alkalization of the acrosome is critical step for Ca2+ release from the acrosome that leads to the acrosome reaction.
Collapse
Affiliation(s)
- Julio C Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - José L De la Vega-Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - Omar José
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - Paulina Torres
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP, México
| |
Collapse
|
37
|
Moundoyi H, Demouy J, Le Panse S, Morales J, Sarels B, Cormier P. Toward Multiscale Modeling of Molecular and Biochemical Events Occurring at Fertilization Time in Sea Urchins. Results Probl Cell Differ 2018; 65:69-89. [DOI: 10.1007/978-3-319-92486-1_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
38
|
Tavalaee M, Nomikos M, Lai FA, Nasr-Esfahani MH. Expression of sperm PLCζ and clinical outcomes of ICSI-AOA in men affected by globozoospermia due to DPY19L2 deletion. Reprod Biomed Online 2017; 36:348-355. [PMID: 29339016 DOI: 10.1016/j.rbmo.2017.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Globozoospermia is characterized by the presence of 100% acrosomeless round-headed spermatozoa in an ejaculate. Failed fertilization after intracytoplasmic sperm injection (ICSI) is commonly reported for globozoospermic couples and can be overcome by artificial oocyte activation (AOA). Phospholipase C zeta (PLCζ) is one of the main sperm factors involved in oocyte activation and its low expression levels mainly account for fertilization failure. Deletion of the DPY19L2 gene is reported as a main genetic cause in over 70% of infertile men with globozoospermia. The current study assesses the expression profile of sperm PLCζ at RNA and protein levels in 32 DPY19L2 deletion-mediated globozoospermic men and reports corresponding clinical outcomes following ICSI with AOA. The expression of PLCζ relative to GAPDH at RNA (0.78 ± 0.16 versus 1.65 ± 0.24; P = 0.02) and protein (0.39 ± 0.12 versus 0.83 ± 0.13; P = 0.01) levels in globozoospermic men with DPY19L2 deletion was significantly lower compared with fertile men (n = 32). Fertilization rate in globozoospermic couples following ICSI-AOA was significantly lower compared with fertile men (53.14 ± 5.13% versus 87.64 ± 2.38%, P < 0.001). However, implantation (26.2%) and pregnancy (53.8%) rates were not jeopardized by DPY19L2 deletion in these couples.
Collapse
Affiliation(s)
- Marziyeh Tavalaee
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Michail Nomikos
- College of Medicine, Member of QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - F Anthony Lai
- College of Medicine, Member of QU Health, Qatar University, PO Box 2713, Doha, Qatar; College of Biomedical and Life Sciences, School of Biosciences, Cardiff University, Cardiff, UK
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Isfahan Fertility and Infertility Centre, Isfahan, Iran.
| |
Collapse
|
39
|
Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 2017; 154:F111-F124. [PMID: 29196493 DOI: 10.1530/rep-17-0357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) has become a useful technique for clinical applications in the horse-breeding industry. However, both ICSI blastocyst and offspring production continues to be limited for most farm and wild species. This article reviews technical differences of ICSI performance among species, possible biological and methodological reasons for the variable efficiency and potential strategies to improve the outcomes. One of the major applications of ICSI in animal production is the reproduction of high-value specimens. Unfortunately, some domestic species like the bovine show low rates of pronuclei formation after sperm injection, which led to the development of various artificial activation protocols and sperm pre-treatments that are discussed in this article. The impact of ICSI technique on equine breeding programs is considered in detail, since in contrast to other species, its use for elite horse reproduction has increased in recent years. ICSI has also been used to produce genetically modified animals; however, despite numerous attempts in several domestic species, only transgenic pigs have been consistently produced. Finally, the ICSI is a promising tool for genetic rescue of endangered and wild species. In conclusion, while ICSI has become a consistent ART for some species, it needs further development for others. The low results obtained for some domestic species, the high training needed and the equipment required have limited this technique to the production of elite specimens or for research purposes.
Collapse
Affiliation(s)
- Daniel F Salamone
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - Natalia G Canel
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - María Belén Rodríguez
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| |
Collapse
|
40
|
Satouh Y, Nozawa K, Yamagata K, Fujimoto T, Ikawa M. Viable offspring after imaging of Ca2+ oscillations and visualization of the cortical reaction in mouse eggs. Biol Reprod 2017; 96:563-575. [PMID: 28339615 DOI: 10.1093/biolre/iox002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/27/2017] [Indexed: 11/14/2022] Open
Abstract
– During mammalian fertilization, egg Ca 2+ oscillations are known to play pivotal roles in triggering downstream events such as resumption of the cell cycle and the establishment of blocks to polyspermy. However, viable offspring have not been obtained after monitoring Ca 2+ oscillations, and their spatiotemporal links to subsequent events are still to be examined. Therefore, the development of imaging methods to avoid phototoxic damage while labeling these events is required. Here, we examined the usefulness of genetically encoded Ca 2+ indicators for optical imaging (GECOs), in combination with spinning-disk confocal imaging. The Ca 2+ imaging of fertilized mouse eggs with GEM-, G-, or R-GECO recorded successful oscillations (8.19 ± 0.31, 7.56 ± 0.23, or 7.53 ± 0.27 spikes in the first 2 h, respectively), similar to those obtained with chemical indicators. Then, in vitro viability tests revealed that imaging with G- or R-GECO did not interfere with the rate of development to the blastocyst stage (61.8 or 70.0%, respectively, vs 75.0% in control). Furthermore, two-cell transfer to recipient female mice after imaging with G- or R-GECO resulted in a similar birthrate (53.3 or 52.0%, respectively) to that of controls (48.7%). Next, we assessed the quality of the cortical reaction (CR) in artificially activated or fertilized eggs using fluorescently labeled Lens culinaris agglutinin fluorescein isothiocyanate. Multicolor imaging demonstrated that the first few Ca 2+ spikes are sufficient for the completion of the CR and subsequent hardening of the zona pellucida in mouse eggs. These methods provide a framework for studying Ca 2+ dynamics in mammalian fertilization.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kaori Nozawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuo Yamagata
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Takao Fujimoto
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
41
|
Ferrer-Buitrago M, Bonte D, De Sutter P, Leybaert L, Heindryckx B. Single Ca 2+ transients vs oscillatory Ca 2+ signaling for assisted oocyte activation: limitations and benefits. Reproduction 2017; 155:R105-R119. [PMID: 29122969 DOI: 10.1530/rep-17-0098] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 11/08/2022]
Abstract
Oocyte activation is a calcium (Ca2+)-dependent process that has been investigated in depth, in particular, regarding its impact on assisted reproduction technology (ART). Following a standard model of signal transduction, Ca2+ drives the meiotic progression upon fertilization in all species studied to date. However, Ca2+ changes during oocyte activation are species specific, and they can be classified in two modalities based on the pattern defined by the Ca2+ signature: a single Ca2+ transient (e.g. amphibians) or repetitive Ca2+ transients called Ca2+ oscillations (e.g. mammals). Interestingly, assisted oocyte activation (AOA) methods have highlighted the ability of mammalian oocytes to respond to single Ca2+ transients with normal embryonic development. In this regard, there is evidence supporting that cellular events during the process of oocyte activation are initiated by different number of Ca2+ oscillations. Moreover, it was proposed that oocyte activation and subsequent embryonic development are dependent on the total summation of the Ca2+ peaks, rather than to a specific frequency pattern of Ca2+ oscillations. The present review aims to demonstrate the complexity of mammalian oocyte activation by describing the series of Ca2+-linked physiological events involved in mediating the egg-to-embryo transition. Furthermore, mechanisms of AOA and the limitations and benefits associated with the application of different activation agents are discussed.
Collapse
Affiliation(s)
- Minerva Ferrer-Buitrago
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Davina Bonte
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Petra De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Luc Leybaert
- Physiology GroupDepartment of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
42
|
Berridge MJ. Vitamin D deficiency: infertility and neurodevelopmental diseases (attention deficit hyperactivity disorder, autism, and schizophrenia). Am J Physiol Cell Physiol 2017; 314:C135-C151. [PMID: 29070492 DOI: 10.1152/ajpcell.00188.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The process of development depends on a number of signaling systems that regulates the progressive sequence of developmental events. Infertility and neurodevelopmental diseases, such as attention deficit hyperactivity disorder, autism spectrum disorders, and schizophrenia, are caused by specific alterations in these signaling processes. Calcium signaling plays a prominent role throughout development beginning at fertilization and continuing through early development, implantation, and organ differentiation such as heart and brain development. Vitamin D plays a major role in regulating these signaling processes that control development. There is an increase in infertility and an onset of neurodevelopmental diseases when vitamin D is deficient. The way in which vitamin D deficiency acts to alter development is a major feature of this review. One of the primary functions of vitamin D is to maintain the phenotypic stability of both the Ca2+ and redox signaling pathways that play such a key role throughout development.
Collapse
Affiliation(s)
- Michael J Berridge
- Laboratory of Molecular Signalling, The Babraham Institute , Cambridge , United Kingdom
| |
Collapse
|
43
|
The role and mechanism of action of sperm PLC-zeta in mammalian fertilisation. Biochem J 2017; 474:3659-3673. [PMID: 29061915 DOI: 10.1042/bcj20160521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
At mammalian fertilisation, the fundamental stimulus that triggers oocyte (egg) activation and initiation of early embryonic development is an acute rise of the intracellular-free calcium (Ca2+) concentration inside the egg cytoplasm. This essential Ca2+ increase comprises a characteristic series of repetitive Ca2+ oscillations, starting soon after sperm-egg fusion. Over the last 15 years, accumulating scientific and clinical evidence supports the notion that the physiological stimulus that precedes the cytosolic Ca2+ oscillations is a novel, testis-specific phospholipase C (PLC) isoform, known as PLC-zeta (PLCζ). Sperm PLCζ catalyses the hydrolysis of phosphatidylinositol 4,5-bisphosphate triggering cytosolic Ca2+ oscillations through the inositol 1,4,5-trisphosphate signalling pathway. PLCζ is the smallest known mammalian PLC isoform with the most elementary domain organisation. However, relative to somatic PLCs, the PLCζ isoform possesses a unique potency in stimulating Ca2+ oscillations in eggs that is attributed to its novel biochemical characteristics. In this review, we discuss the latest developments that have begun to unravel the vital role of PLCζ at mammalian fertilisation and decipher its unique mechanism of action within the fertilising egg. We also postulate the significant potential diagnostic and therapeutic capacity of PLCζ in alleviating certain types of male infertility.
Collapse
|
44
|
De novo assembly of a transcriptome from the eggs and early embryos of Astropecten aranciacus. PLoS One 2017; 12:e0184090. [PMID: 28873438 PMCID: PMC5584759 DOI: 10.1371/journal.pone.0184090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/17/2017] [Indexed: 11/19/2022] Open
Abstract
Starfish have been instrumental in many fields of biological and ecological research. Oocytes of Astropecten aranciacus, a common species native to the Mediterranean Sea and the East Atlantic, have long been used as an experimental model to study meiotic maturation, fertilization, intracellular Ca2+ signaling, and cell cycle controls. However, investigation of the underlying molecular mechanisms has often been hampered by the overall lack of DNA or protein sequences for the species. In this study, we have assembled a transcriptome for this species from the oocytes, eggs, zygotes, and early embryos, which are known to have the highest RNA sequence complexity. Annotation of the transcriptome identified over 32,000 transcripts including the ones that encode 13 distinct cyclins and as many cyclin-dependent kinases (CDK), as well as the expected components of intracellular Ca2+ signaling toolkit. Although the mRNAs of cyclin and CDK families did not undergo significant abundance changes through the stages from oocyte to early embryo, as judged by real-time PCR, the transcript encoding Mos, a negative regulator of mitotic cell cycle, was drastically reduced during the period of rapid cleavages. Molecular phylogenetic analysis using the homologous amino acid sequences of cytochrome oxidase subunit I from A. aranciacus and 30 other starfish species indicated that Paxillosida, to which A. aranciacus belongs, is not likely to be the most basal order in Asteroidea. Taken together, the first transcriptome we assembled in this species is expected to enable us to perform comparative studies and to design gene-specific molecular tools with which to tackle long-standing biological questions.
Collapse
|
45
|
Gadella BM. Reproductive tract modifications of the boar sperm surface. Mol Reprod Dev 2017; 84:822-831. [PMID: 28452082 DOI: 10.1002/mrd.22821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 01/25/2023]
Abstract
The sperm cell has a unique, polarized, and segregated surface that is modified extensively by the changing environments in both the male and the female reproductive tracts. The sperm cannot refresh its surface, as protein translation and membrane recycling by intracellular vesicular transport have ceased upon its maturation. So, how is the sperm surface modified in the reproductive tracts and how do these processes affect fertilization? This review traces these modifications as boar sperm travels from their liberation from the Sertoli cell into the lumen of seminiferous tubules of the testis to the site of fertilization in the ampulla of the oviduct in the sow, via an artificial insemination route. The effect of sperm dilution for artificial insemination, as well as more extensive sperm processing for in vitro fertilization, cryopreservation, or sex sorting, are also discussed with respect to how these procedures affect sperm surface organization and fertilization capacity.
Collapse
Affiliation(s)
- Bart M Gadella
- Faculty of Veterinary Medicine, Department of Farm Animal Health and Biochemistry and Cell Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
46
|
Martin JH, Bromfield EG, Aitken RJ, Nixon B. Biochemical alterations in the oocyte in support of early embryonic development. Cell Mol Life Sci 2017; 74:469-485. [PMID: 27604868 PMCID: PMC11107538 DOI: 10.1007/s00018-016-2356-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/28/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023]
Abstract
Notwithstanding the enormous reproductive potential encapsulated within a mature mammalian oocyte, these cells present only a limited window for fertilization before defaulting to an apoptotic cascade known as post-ovulatory oocyte aging. The only cell with the capacity to rescue this potential is the fertilizing spermatozoon. Indeed, the union of these cells sets in train a remarkable series of events that endows the oocyte with the capacity to divide and differentiate into the trillions of cells that comprise a new individual. Traditional paradigms hold that, beyond the initial stimulation of fluctuating calcium (Ca2+) required for oocyte activation, the fertilizing spermatozoon plays limited additional roles in the early embryo. While this model has now been drawn into question in view of the recent discovery that spermatozoa deliver developmentally important classes of small noncoding RNAs and other epigenetic modulators to oocytes during fertilization, it is nevertheless apparent that the primary responsibility for oocyte activation rests with a modest store of maternally derived proteins and mRNA accumulated during oogenesis. It is, therefore, not surprising that widespread post-translational modifications, in particular phosphorylation, hold a central role in endowing these proteins with sufficient functional diversity to initiate embryonic development. Indeed, proteins targeted for such modifications have been linked to oocyte activation, recruitment of maternal mRNAs, DNA repair and resumption of the cell cycle. This review, therefore, seeks to explore the intimate relationship between Ca2+ release and the suite of molecular modifications that sweep through the oocyte to ensure the successful union of the parental germlines and ensure embryogenic fidelity.
Collapse
Affiliation(s)
- Jacinta H Martin
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| | - Elizabeth G Bromfield
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - R John Aitken
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Brett Nixon
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
47
|
Yeste M, Jones C, Amdani SN, Coward K. Oocyte Activation and Fertilisation: Crucial Contributors from the Sperm and Oocyte. Results Probl Cell Differ 2017; 59:213-239. [PMID: 28247051 DOI: 10.1007/978-3-319-44820-6_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This chapter intends to summarise the importance of sperm- and oocyte-derived factors in the processes of sperm-oocyte binding and oocyte activation. First, we describe the initial interaction between sperm and the zona pellucida, with particular regard to acrosome exocytosis. We then describe how sperm and oocyte membranes fuse, with special reference to the discovery of the sperm protein IZUMO1 and its interaction with the oocyte membrane receptor JUNO. We then focus specifically upon oocyte activation, the fundamental process by which the oocyte is alleviated from metaphase II arrest by a sperm-soluble factor. The identity of this sperm factor has been the source of much debate recently, although mounting evidence, from several different laboratories, provides strong support for phospholipase C ζ (PLCζ), a sperm-specific phospholipase. Herein, we discuss the evidence in support of PLCζ and evaluate the potential role of other candidate proteins, such as post-acrosomal WW-binding domain protein (PAWP/WBP2NL). Since the cascade of downstream events triggered by the sperm-borne oocyte activation factor heavily relies upon specialised cellular machinery within the oocyte, we also discuss the critical role of oocyte-borne factors, such as the inositol trisphosphate receptor (IP3R), protein kinase C (PKC), store-operated calcium entry (SOCE) and calcium/calmodulin-dependent protein kinase II (CaMKII), during the process of oocyte activation. In order to place the implications of these various factors and processes into a clinical context, we proceed to describe their potential association with oocyte activation failure and discuss how clinical techniques such as the in vitro maturation of oocytes may affect oocyte activation ability. Finally, we contemplate the role of artificial oocyte activating agents in the clinical rescue of oocyte activation deficiency and discuss options for more endogenous alternatives.
Collapse
Affiliation(s)
- Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, C/ Maria Aurèlia Campany, 69, Campus Montilivi, E-17071, Girona, Spain. .,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK.
| | - Celine Jones
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | - Siti Nornadhirah Amdani
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
48
|
Kashir J, Buntwal L, Nomikos M, Calver BL, Stamatiadis P, Ashley P, Vassilakopoulou V, Sanders D, Knaggs P, Livaniou E, Bunkheila A, Swann K, Lai FA. Antigen unmasking enhances visualization efficacy of the oocyte activation factor, phospholipase C zeta, in mammalian sperm. Mol Hum Reprod 2016; 23:54-67. [PMID: 27932551 DOI: 10.1093/molehr/gaw073] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/23/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Is it possible to improve clinical visualization of phospholipase C zeta (PLCζ) as a diagnostic marker of sperm oocyte activation capacity and male fertility? SUMMARY ANSWER Poor PLCζ visualization efficacy using current protocols may be due to steric or conformational occlusion of native PLCζ, hindering antibody access, and is significantly enhanced using antigen unmasking/retrieval (AUM) protocols. WHAT IS KNOWN ALREADY Mammalian oocyte activation is mediated via a series of intracellular calcium (Ca2+) oscillations induced by sperm-specific PLCζ. PLCζ represents not only a potential clinical therapeutic in cases of oocyte activation deficiency but also a diagnostic marker of sperm fertility. However, there are significant concerns surrounding PLCζ antibody specificity and detection protocols. STUDY DESIGN, SIZE DURATION Two PLCζ polyclonal antibodies, with confirmed PLCζ specificity, were employed in mouse, porcine and human sperm. Experiments evaluated PLCζ visualization efficacy, and whether AUM improved this. Antibodies against two sperm-specific proteins [post-acrosomal WW-binding protein (PAWP) and acrosin] were used as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS Aldehyde- and methanol-fixed sperm were subject to immunofluorescence analysis following HCl exposure (pH = 0.1-0.5), acid Tyrode's solution exposure (pH = 2.5) or heating in 10 mM sodium citrate solution (pH = 6.0). Fluorescence intensity of at least 300 cells was recorded for each treatment, with three independent repeats. MAIN RESULTS AND THE ROLE OF CHANCE Despite high specificity for native PLCζ following immunoblotting using epitope-specific polyclonal PLCζ antibodies in mouse, porcine and human sperm, immunofluorescent visualization efficacy was poor. In contrast, sperm markers PAWP and acrosin exhibited relatively impressive results. All methods of AUM on aldehyde-fixed sperm enhanced visualization efficacy for PLCζ compared to visualization efficacy before AUM (P < 0.05 for all AUM interventions), but exerted no significant change upon PAWP or acrosin immunofluorescence following AUM. All methods of AUM enhanced PLCζ visualization efficacy in mouse and human methanol-fixed sperm compared to without AUM (P < 0.05 for all AUM interventions), while no significant change was observed in methanol-fixed porcine sperm before and after. In the absence of aldehyde-induced cross-linkages, such results suggest that poor PLCζ visualization efficacy may be due to steric or conformational occlusion of native PLCζ, hindering antibody access. Importantly, examination of sperm from individual donors revealed that AUM differentially affects observable PLCζ fluorescence, and the proportion of sperm exhibiting detectable PLCζ fluorescence in sperm from different males. LIMITATIONS, REASONS FOR CAUTION Direct correlation of fertility outcomes with the level of PLCζ in the sperm samples studied was not available. Such analyses would be required in future to determine whether the improved methodology for PLCζ visualization we propose would indeed reflect fertility status. WIDER IMPLICATIONS OF THE FINDINGS We propose that AUM alters conformational interactions to enhance PLCζ epitope availability and visualization efficacy, supporting prospective application of AUM to reduce misinterpretation in clinical diagnosis of PLCζ-linked male infertility. Our current results suggest that it is perhaps prudent that previous studies investigating links between PLCζ and fertility parameters are re-examined in the context of AUM, and may pave the way for future work to answer significant questions such as how PLCζ appears to be kept in an inactive form in the sperm. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTERESTS J.K. is supported by a Health Fellowship award from the National Institute for Social Care and Health Research (NISCHR). M.N. is supported by a Marie Curie Intra-European Research Fellowship award. This work was also partly funded by a research grant from Cook Medical Technologies LLC. There are no competing financial interests to declare.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Biomedical and Life Sciences, Schools of Bioscience & Medicine, Cardiff University, Cardiff, UK .,Alfaisal University, College of Medicine, Riyadh, Saudi Arabia.,King Faisal Specialist Hospital & Research Center, Department of Comparative Medicine, Riyadh, Saudi Arabia
| | - Luke Buntwal
- College of Biomedical and Life Sciences, Schools of Bioscience & Medicine, Cardiff University, Cardiff, UK
| | - Michail Nomikos
- Qatar University, College of Medicine, PO BOX 2713, Doha, Qatar.,School of Medicine, Cardiff University, UK
| | - Brian L Calver
- College of Biomedical and Life Sciences, Schools of Bioscience & Medicine, Cardiff University, Cardiff, UK
| | - Panagiotis Stamatiadis
- College of Biomedical and Life Sciences, Schools of Bioscience & Medicine, Cardiff University, Cardiff, UK
| | - Peter Ashley
- Wales Fertility Institute, University Hospital Wales, Cardiff, UK
| | | | - David Sanders
- Wales Fertility Institute, University Hospital Wales, Cardiff, UK
| | - Paul Knaggs
- Wales Fertility Institute, University Hospital Wales, Cardiff, UK
| | - Evangelia Livaniou
- National Center for Scientific Research 'Demokritos', 15310 Aghia Paraskevi, Greece
| | - Adnan Bunkheila
- Wales Fertility Institute, University Hospital Wales, Cardiff, UK
| | - Karl Swann
- College of Biomedical and Life Sciences, Schools of Bioscience & Medicine, Cardiff University, Cardiff, UK
| | - F Anthony Lai
- College of Biomedical and Life Sciences, Schools of Bioscience & Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
49
|
Ellinger I. The Calcium-Sensing Receptor and the Reproductive System. Front Physiol 2016; 7:371. [PMID: 27625611 PMCID: PMC5003915 DOI: 10.3389/fphys.2016.00371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022] Open
Abstract
Active placental transport of maternal serum calcium (Ca2+) to the offspring is pivotal for proper development of the fetal skeleton as well as various organ systems. Moreover, extracellular Ca2+ levels impact on distinct processes in mammalian reproduction. The calcium-sensing receptor (CaSR) translates changes in extracellular Ca2+-concentrations into cellular reactions. This review summarizes current knowledge on the expression of CaSR and its putative functions in reproductive organs. CaSR was detected in placental cells mediating materno-fetal Ca2+-transport such as the murine intraplacental yolk sac (IPYS) and the human syncytiotrophoblast. As shown in casr knock-out mice, ablation of CaSR downregulates transplacental Ca2+-transport. Receptor expression was reported in human and rat ovarian surface epithelial (ROSE) cells, where CaSR activation stimulates cell proliferation. In follicles of various species a role of CaSR activation in oocyte maturation was suggested. Based on studies in avian follicles, the activation of CaSR expressed in granulosa cells may support the survival of follicles after their selection. CaSR in rat and equine sperms was functionally linked to sperm motility and sperm capacitation. Implantation involves complex interactions between the blastocyst and the uterine epithelium. During early pregnancy, CaSR expression at the implantation site as well as in decidual cells indicates that CaSR is important for blastocyst implantation and decidualization in the rat uterus. Localization of CaSR in human extravillous cytotrophoblasts suggests a role of CaSR in placentation. Overall, evidence for functional involvement of CaSR in physiologic mammalian reproductive processes exists. Moreover, several studies reported altered expression of CaSR in cells of reproductive tissues under pathologic conditions. However, in many tissues we still lack knowledge on physiological ligands activating CaSR, CaSR-linked G-proteins, activated intracellular signaling pathway, and functional relevance of CaSR activation. Clearly, more work is required in the future to decode the complex physiologic and pathophysiologic relationship of CaSR and the mammalian reproductive system.
Collapse
Affiliation(s)
- Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna Vienna, Austria
| |
Collapse
|
50
|
Tosti E, Ménézo Y. Gamete activation: basic knowledge and clinical applications. Hum Reprod Update 2016; 22:420-39. [PMID: 27278231 PMCID: PMC4917743 DOI: 10.1093/humupd/dmw014] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/01/2016] [Indexed: 01/07/2023] Open
Abstract
Background The first clues to the process of gamete activation date back to nearly 60 years ago. The mutual activation of gametes is a crucial event during fertilization. In the testis and ovaries, spermatozoa and oocytes are in a state of meiotic and metabolic quiescence and require reciprocal signals in order to undergo functional changes that lead to competence for fertilization. First, the oocyte activates sperm by triggering motility, chemoattraction, binding and the acrosome reaction, culminating with the fusion of the two plasma membranes. At the end of this cascade of events, collectively known as sperm capacitation, sperm-induced oocyte activation occurs, generating electrical, morphological and metabolic modifications in the oocyte. Objective and rationale The aim of this review is to provide the current state of knowledge regarding the entire process of gamete activation in selected specific animal models that have contributed to our understanding of fertilization in mammals, including humans. Here we describe in detail the reciprocal induction of the two activation processes, the molecules involved and the mechanisms of cell interaction and signal transduction that ultimately result in successful embryo development and creation of a new individual. Search methods We carried out a literature survey with no restrictions on publication date (from the early 1950s to March 2016) using PubMed/Medline, Google Scholar and Web of Knowledge by utilizing common keywords applied in the field of fertilization and embryo development. We also screened the complete list of references published in the most recent research articles and relevant reviews published in English (both animal and human studies) on the topics investigated. Outcomes Literature on the principal animal models demonstrates that gamete activation is a pre-requisite for successful fertilization, and is a process common to all species studied to date. We provide a detailed description of the dramatic changes in gamete morphology and behavior, the regulatory molecules triggering gamete activation and the intracellular ions and second messengers involved in active metabolic pathways in different species. Recent scientific advances suggest that artificial gamete activation may represent a novel technique to improve human IVF outcomes, but this approach requires caution. Wider implications Although controversial, manipulation of gamete activation represents a promising tool for ameliorating the fertilization rate in assisted reproductive technologies. A better knowledge of mechanisms that transform the quiescent oocyte into a pluripotent cell may also provide new insights for the clinical use of stem cells.
Collapse
Affiliation(s)
- Elisabetta Tosti
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| | - Yves Ménézo
- London Fertility Associates, 104 Harley Street, London WIG7JD, UK
| |
Collapse
|