1
|
Donaldson KJ, Chrenek MA, Boatright JH, Nickerson JM. High resolution imaging and interpretation of three-dimensional RPE sheet structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.04.626881. [PMID: 39677811 PMCID: PMC11643093 DOI: 10.1101/2024.12.04.626881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The retinal pigment epithelium (RPE), a monolayer of pigmented cells, is critical for visual function through its interaction with the neural retina. In healthy eyes, RPE cells exhibit a uniform hexagonal arrangement, but under stress or disease, such as age-related macular degeneration (AMD), dysmorphic traits like cell enlargement and apparent multinucleation emerge. Multinucleation has been hypothesized to result from cellular fusion, a compensatory mechanism to maintain cell to cell contact, barrier function, and conserve resources in unhealthy tissue. However, traditional two-dimensional (2D) imaging using apical border markers alone may misrepresent multinucleation due to the lack of lateral markers. We present high-resolution confocal images enabling three-dimensional (3D) visualization of apical (ZO-1) and lateral (alpha-catenin) markers alongside nuclei. In two RPE damage models, we find that seemingly multinucleated cells are often single cells with displaced neighboring nuclei and lateral membranes. This emphasizes the need for 3D analyses to avoid misinterpreting multinucleation and underlying fusion mechanisms. Lastly, images from the NaIO3 oxidative damage model reveal variability in RPE damage, with elongated, dysmorphic cells showing increased ZsGreen reporter protein expression driven by EMT-linked CAG promoter activity, while more regular RPE cells displayed somewhat reduced green signal more typical of epithelial phenotypes.
Collapse
|
2
|
Izrael M, Chebath J, Molakandov K, Revel M. Clinical perspective on pluripotent stem cells derived cell therapies for the treatment of neurodegenerative diseases. Adv Drug Deliv Rev 2025; 218:115525. [PMID: 39880333 DOI: 10.1016/j.addr.2025.115525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Self-renewal capacity and potential to differentiate into almost any cell type of the human body makes pluripotent stem cells a valuable starting material for manufacturing of clinical grade cell therapies. Neurodegenerative diseases are characterized by gradual loss of structure or function of neurons, often leading to neuronal death. This results in gradual decline of cognitive, motor, and physiological functions due to the degeneration of the central nervous systems. Over the past two decades, comprehensive preclinical efficacy (proof-of-concept) and safety studies have led to the initiation of First-in-Human phase I-II clinical trials for a range of neurodegenerative diseases. In this review, we explore the fundamentals and challenges of neural-cell therapies derived from pluripotent stem cells for treating neurodegenerative diseases. Additionally, we highlight key preclinical investigations that paved the way for regulatory approvals of these trials. Furthermore, we provide an overview on progress and status of clinical trials done so far in treating neurodegenerative diseases such as spinal cord injury (SCI), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), as well as advances in retina diseases such as Stargardt disease (a.k.a fundus flavimaculatus), retinitis pigmentosa (RP) and age-related macular degeneration (AMD). These trials will pave the way for the development of new cell-based therapies targeting additional neurological conditions, including Alzheimer's disease and epilepsy.
Collapse
Affiliation(s)
- Michal Izrael
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel.
| | - Judith Chebath
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Kfir Molakandov
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Michel Revel
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel; Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| |
Collapse
|
3
|
Qureshi MH, Metin E, Kesim C, Zakeri Z, Rumman B, Sahin A, Tasoglu S, Hasanreisoglu M, Sokullu E. A Hydrogel-Based Multiplex Coculture Platform for Retinal Component Cells. ACS APPLIED BIO MATERIALS 2025. [PMID: 39815824 DOI: 10.1021/acsabm.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
There is growing interest in generating in vitro models of tissues and tissue-related diseases to mimic normal tissue organization and pathogenesis for different purposes. The retina is a highly complex multicellular tissue where the organization of the cellular components relative to each other is critical for retinal function. Many retinopathies arise due to the disruption of this order. In this study, we aimed to generate a coculture model of retina-derived cells, namely RPE and Müller cells, in multiplexed 3D hydrogels. Using methacrylated gelatin (GelMA)-based 3D hydrogels, we compared the behavior of RPE and Müller cells when they were cultured together. These patterned multiplex hydrogels containing cells were cultured for several days to reflect how cells would reorganize themselves in the presence of another cellular component derived from the same tissue. Here, we present a multicellular multiplex platform for the creation of cellular networks with cells of retinal tissue that can be easily adapted to create more complex tissue-like alternatives for large-scale tissue modeling and screening purposes. We also present an alternative method of coculture by generating spheroids from one of the components while keeping the other component free and motile in the hydrogel. The latter model predicts enhanced possibilities of cellular interactions by retarding the movement of one of the component cells.
Collapse
Affiliation(s)
- Mohammad Haroon Qureshi
- Koç University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
- Dept. of Molecular Biology and Genetics, Boğaziçi University, Istanbul 34342, Turkey
| | - Ecem Metin
- Koç University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
| | - Cem Kesim
- Dept. of Ophthalmology, Koç University Hospital, Istanbul 34450, Turkey
| | - Ziba Zakeri
- Koç University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
| | - Baseerat Rumman
- Koç University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
| | - Afsun Sahin
- Koç University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
- Dept. of Ophthalmology, Koç University Hospital, Istanbul 34450, Turkey
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
- Dept. of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | - Murat Hasanreisoglu
- Koç University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
- Dept. of Ophthalmology, Koç University Hospital, Istanbul 34450, Turkey
| | - Emel Sokullu
- Koç University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey
- Dept. of Biophysics, Koç University School of Medicine, Istanbul 34450, Turkey
| |
Collapse
|
4
|
Zimmermann JA, Irlenbusch L, Hansen U, Himmler M, Zeng C, Eter N, Fuchsluger T, Heiduschka P. Long-term cultivation of retinal pigment epithelium cells on nanofiber scaffolds. Graefes Arch Clin Exp Ophthalmol 2025:10.1007/s00417-024-06707-3. [PMID: 39812800 DOI: 10.1007/s00417-024-06707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/30/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
PURPOSE The retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age-related macular degeneration (AMD) and other retinal degenerative diseases. The introduction of healthy RPE cell cultures into the subretinal space offers a potential treatment strategy. The aim of this study was the long-term culture and characterisation of RPE cells on nanofiber scaffolds. METHODS Nanofiber scaffolds consisting of polycaprolactone (PCL) and collagen were prepared by electrospinning. Porcine RPE cell cultures were maintained on PCL scaffolds, PCL-collagen scaffolds, and controls at the bottom of 24-well plates. Cell culture analysis was performed by immunohistochemistry, while the release of inflammatory cytokines IL-6, IL-8, TNF-α, and PDGF-β was measured by ELISA and multiplex assays. Ultrastructural features were examined by transmission electron microscopy. RESULTS The observation period averaged 42.7 weeks for controls, 38.7 weeks for PCL scaffold cultures, and 36.1 weeks for PCL-collagen scaffold cultures, with cell number and morphology remaining stable. TNF-α levels in the supernatants were minimal, IL-6 levels were consistently low, and IL-8 levels decreased from initially high to lower levels over time. CONCLUSION RPE cells were stably cultured on nanofiber scaffolds for extended periods of time. The long-term physiological properties of RPE cells, including phagocytic ability and visual cycle enzyme activity, need to be further investigated before clinical application. In addition, controlling the expression of inflammatory mediators is a major challenge. Despite these hurdles, overcoming them is critical given the increasing prevalence of retinal degenerative diseases.
Collapse
Affiliation(s)
| | - Lucy Irlenbusch
- Department of Ophthalmology, University Hospital Munster, Munster, Germany
| | - Uwe Hansen
- Institute of Musculoskeletal Medicine, University Hospital Munster, Munster, Germany
| | - Marcus Himmler
- Institute of Polymer Materials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Chun Zeng
- Department of Ophthalmology, University Hospital Munster, Munster, Germany
| | - Nicole Eter
- Department of Ophthalmology, University Hospital Munster, Munster, Germany
| | - Thomas Fuchsluger
- Department of Ophthalmology, University Medical Center Rostock, Rostock, Germany
| | - Peter Heiduschka
- Department of Ophthalmology, University Hospital Munster, Munster, Germany.
| |
Collapse
|
5
|
Leach LL, Gonzalez RG, Jayawardena SU, Gross JM. Interleukin-34 and debris clearance by mononuclear phagocytes drive retinal pigment epithelium regeneration in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632236. [PMID: 39868193 PMCID: PMC11761032 DOI: 10.1101/2025.01.10.632236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The retinal pigment epithelium (RPE) surrounds the posterior eye and maintains the health and function of the photoreceptors. Consequently, RPE dysfunction or damage has a devastating impact on vision. Due to complex etiologies, there are currently no cures for patients with RPE degenerative diseases, which remain some of the most prevalent causes of vision loss worldwide. Further, owing to a limited capacity for mammalian tissue repair, we know little about how the RPE regenerates. Here, we utilize zebrafish as a model to uncover novel mechanisms driving intrinsic RPE regeneration. We show that interleukin-34 signaling from damaged RPE is required for precisely timed recruitment of mononuclear phagocytes (MNPs) to the injury site. Additionally, we find that cellular debris clearance by MNPs is indispensable for regeneration, as microglia-deficient zebrafish fail to regenerate RPE and photoreceptor tissues. Together, our results establish specific pro-regenerative functions of MNPs after RPE damage.
Collapse
|
6
|
Godani K, Prabhu V, Gandhi P, Choudhary A, Darade S, Kathare R, Hande P, Venkatesh R. Supervised machine learning statistical models for visual outcome prediction in macular hole surgery: a single-surgeon, standardized surgery study. Int J Retina Vitreous 2025; 11:5. [PMID: 39806497 PMCID: PMC11727234 DOI: 10.1186/s40942-025-00630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
PURPOSE To evaluate the predictive accuracy of various machine learning (ML) statistical models in forecasting postoperative visual acuity (VA) outcomes following macular hole (MH) surgery using preoperative optical coherence tomography (OCT) parameters. METHODS This retrospective study included 158 eyes (151 patients) with full-thickness MHs treated between 2017 and 2023 by the same surgeon and using the same intraoperative surgical technique. Data from electronic medical records and OCT scans were extracted, with OCT-derived qualitative and quantitative MH characteristics recorded. Six supervised ML models-ANCOVA, Random Forest (RF) regression, K-Nearest Neighbor, Support Vector Machine, Extreme Gradient Boosting, and Lasso regression-were trained using an 80:20 training-to-testing split. Model performance was evaluated on an independent testing dataset using the XLSTAT software. In total, the ML statistical models were trained and tested on 14,652 OCT data points from 1332 OCT images. RESULTS Overall, 91% achieved MH closure post-surgery, with a median VA gain of -0.3 logMAR units. The RF regression model outperformed other ML models, achieving the lowest mean square error (MSE = 0.038) on internal validation. The most significant predictors of VA were postoperative MH closure status (variable importance = 43.078) and MH area index (21.328). The model accurately predicted the post-operative VA within 0.1, 0.2 and 0.3 logMAR units in 61%, 78%, and 87% of OCT images, respectively. CONCLUSION The RF regression model demonstrated superior predictive accuracy for forecasting postoperative VA, suggesting ML-driven approaches may improve surgical planning and patient counselling by providing reliable insights into expected visual outcomes based on pre-operative OCT features. CLINICAL TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Kanika Godani
- Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, 560010, India
| | - Vishma Prabhu
- Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, 560010, India
| | - Priyanka Gandhi
- Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, 560010, India
| | - Ayushi Choudhary
- Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, 560010, India
| | - Shubham Darade
- Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, 560010, India
| | - Rupal Kathare
- Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, 560010, India
| | - Prathiba Hande
- Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, 560010, India
| | - Ramesh Venkatesh
- Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, 560010, India.
- Narayana Nethralaya, #121/C, Chord Road, 1st R Block Rajaji Nagar, Bangalore, 560010, India.
| |
Collapse
|
7
|
Behnke V, Wolf A, Hector M, Langmann T. C3aR1-Deletion Delays Retinal Degeneration in a White-Light Damage Mouse Model. Invest Ophthalmol Vis Sci 2025; 66:15. [PMID: 39775695 PMCID: PMC11717133 DOI: 10.1167/iovs.66.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Purpose In the aging retina, persistent activation of microglia is known to play a key role in retinal degenerative diseases like age-related macular degeneration (AMD). Furthermore, dysregulation of the alternative complement pathway is generally accepted as the main driver for AMD disease progression and microglia are important producers of local complement and are equipped with complement receptors themselves. Here, we investigate the involvement of anaphylatoxin signaling, predominantly on Iba1+ cell activity, in light-induced retinal degeneration as a model for dry AMD, using anaphylatoxin receptor knockout (KO) mice. Methods Bright white light with an intensity of 10,000 lux was applied for 30 minutes to complement component 3a receptor 1 (C3ar1) or complement component 5a receptor 1 (C5ar1) KO and wildtype (WT) mice. Analyses of transcriptome changes and migration activity of Iba1+ cells as well as retinal thickness were performed 4 days after light exposure. Results Full body KO mice of either C3aR1 or C5aR1 were tested, but none led to mitigated migration of Iba1+ cells to the subretinal space or decreased expression of complement factors after light damage compared to WT mice. However, a partial rescue of retinal thickness was shown in C3aR1 KO mice, which was mirrored by significant less membrane attack complex (MAC) occurrence in the outer retina. Conclusions We conclude that deletion of the anaphylatoxin receptor C3aR1 cannot modulate mononuclear phagocytes but diminishes retinal degeneration through interference with the complement pathway and thus decreased MAC assembling. C3aR1-targeted therapy may be considered for patients with dry AMD.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Knockout
- Disease Models, Animal
- Retinal Degeneration/metabolism
- Retinal Degeneration/etiology
- Retinal Degeneration/genetics
- Retinal Degeneration/pathology
- Light/adverse effects
- Mice, Inbred C57BL
- Microglia/metabolism
- Microglia/pathology
- Retina/metabolism
- Retina/pathology
- Retina/radiation effects
- Receptor, Anaphylatoxin C5a/genetics
- Receptor, Anaphylatoxin C5a/metabolism
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Radiation Injuries, Experimental/pathology
- Radiation Injuries, Experimental/metabolism
- Radiation Injuries, Experimental/genetics
- Calcium-Binding Proteins
- Microfilament Proteins
- Receptors, G-Protein-Coupled
Collapse
Affiliation(s)
- Verena Behnke
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Mandy Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| |
Collapse
|
8
|
Lee YJ, Jo DH. Retinal Organoids from Induced Pluripotent Stem Cells of Patients with Inherited Retinal Diseases: A Systematic Review. Stem Cell Rev Rep 2025; 21:167-197. [PMID: 39422807 PMCID: PMC11762450 DOI: 10.1007/s12015-024-10802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Currently, most inherited retinal diseases lack curative interventions, and available treatment modalities are constrained to symptomatic approaches. Retinal organoid technology has emerged as a method for treating inherited retinal diseases, with growing academic interest in recent years. The purpose of this review was to systematically organize the current protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal disease and to investigate the application of retinal organoids in inherited retinal disease research. METHODS Data were collected from the PubMed, Scopus, and Web of Science databases using a keyword search. The main search term used was "retinal organoid," accompanied by secondary keywords such as "optic cup," "three-dimensional," and "self-organizing." The final search was conducted on October 2, 2024. RESULTS Of the 2,129 studies retrieved, 130 were included in the qualitative synthesis. The protocols for the generation of retinal organoids in inherited retinal disease research use five major approaches, categorized into 3D and a combination of 2D/3D approaches, implemented with modifications. Disease phenotypes have been successfully reproduced via the generation of retinal organoids from the induced pluripotent stem cells of individuals with inherited retinal diseases, facilitating the progression of research into novel therapeutic developments. Cells have been obtained from retinal organoids for cell therapy, and progress toward their potential integration into clinical practice is underway. Considering their potential applications, retinal organoid technology has shown promise across various domains. CONCLUSION In this systematic review, we organized protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal diseases. Retinal organoid technology has various applications including disease modeling, screening for novel therapies, and cell replacement therapy. Further advancements would make this technology a clinically significant tool for patients with inherited retinal diseases.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
9
|
Wang K, Liu Y, Li S, Zhao N, Qin F, Tao Y, Song Z. Unveiling the therapeutic potential and mechanisms of stanniocalcin-1 in retinal degeneration. Surv Ophthalmol 2025; 70:106-120. [PMID: 39270826 DOI: 10.1016/j.survophthal.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
Retinal degeneration (RD) is a group of ocular diseases characterized by progressive photoreceptor apoptosis and visual impairment. Mitochondrial malfunction, excessive oxidative stress, and chronic activation of neuroglia collectively contribute to the development of RD. Currently, there is a lack of efficacious therapeutic interventions for RD. Stanniocalcin-1 (STC-1) is a promising candidate molecule to decelerate photoreceptor cell death. STC-1 is a secreted calcium/phosphorus regulatory protein that exerts diverse protective effects. Accumulating evidence suggests that STC-1 protects retinal cells from ischemic injury, oxidative stress, and excessive apoptosis through enhancing the expression of uncoupling protein-2 (UCP-2). Furthermore, STC-1 exerts its antiinflammatory effects by inhibiting the activation of microglia and macrophages, as well as the synthesis and secretion of proinflammatory cytokines, such as TNF-α, IL-1, and IL-6. By employing these mechanisms, STC-1 effectively shields the retinal photoreceptors and optic nerve, thereby slowing down the progression of RD. We summarize the STC-1-mediated therapeutic effects on the degenerating retina, with a particular focus on its underlying mechanisms. These findings highlight that STC-1 may act as a versatile molecule to treat degenerative retinopathy. Further research on STC-1 is imperative to establish optimal protocols for its clinical use.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Yashuang Liu
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Na Zhao
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Fangyuan Qin
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Ye Tao
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| | - Zongming Song
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| |
Collapse
|
10
|
Yin S, Wang J, Zhu J, Feng X, Zhang H, Li H, Xiu J, Zhou C, Ren Q, Wei W. A multimodal imaging approach to investigate retinal oxygen and vascular dynamics, and neural dysfunction in bietti crystalline dystrophy. Microvasc Res 2025; 157:104762. [PMID: 39522674 DOI: 10.1016/j.mvr.2024.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND This study aimed to explore retinal changes in Bietti crystalline dystrophy (BCD) patients, including retinal metabolism, blood flow, vascular remodeling, and pupillary light reflex (PLR) abnormalities. METHODS This cross-sectional study included 120 eyes from BCD patients and 120 eyes from healthy controls, utilizing a multimodal imaging system (MEFIAS 3200, SYSEYE, Chongqing, China) to evaluate retinal oxygenation, blood flow, vascular structure, and PLR. Measurements included oxygen saturation, blood flow velocity, vessel diameters, and pulsatility metrics. PLR parameters were assessed under specific light stimuli. RESULTS BCD patients demonstrated significantly higher retinal oxygen saturation and content, but lower oxygen utilization and metabolism compared to controls, with more pronounced declines in those over 40 years old. Vascular parameters revealed smaller external diameters and larger lumen diameters, indicating vascular remodeling. Retinal blood flow was lower, while the resistivity index was higher in BCD patients. Additionally, PLR abnormalities were noted, including reduced constriction amplitude, pupil constriction ratio, constriction duration, and maximum constriction velocity, along with prolonged latency were observed in BCD patients. CONCLUSION BCD patients had significant retinal and vascular changes, along with PLR impairments, especially in patients over 40. More targeted interventions should be focused in future research.
Collapse
Affiliation(s)
- Shiyi Yin
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jinyuan Wang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Jingyuan Zhu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ximeng Feng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Haihan Zhang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Haowen Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jingying Xiu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chuanqing Zhou
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China; College of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China; Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China; Institute of Medical Technology, Peking University, Beijing, China; National Biomedical Imaging Center, Beijing, China.
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
11
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
Lunegova DA, Gvozdev DA, Senin II, Gudkova VR, Sidorenko SV, Tiulina VV, Shebardina NG, Yakovleva MA, Feldman TB, Ramonova AA, Moysenovich AM, Semenov AN, Zernii EY, Maksimov EG, Sluchanko NN, Kirpichnikov MP, Ostrovsky MA. Antioxidant properties of the soluble carotenoprotein AstaP and its feasibility for retinal protection against oxidative stress. FEBS J 2025; 292:355-372. [PMID: 39580658 DOI: 10.1111/febs.17335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Photodamage to the outer segments of photoreceptor cells and their impaired utilization by retinal pigment epithelium (RPE) cells contribute to the development of age-related macular degeneration (AMD) leading to blindness. Degeneration of photoreceptor cells and RPE cells is triggered by reactive oxygen species (ROS) produced by photochemical reactions involving bisretinoids, by-products of the visual cycle, which accumulate in photoreceptor discs and lipofuscin granules of RPE. Carotenoids, natural antioxidants with high potential efficacy against a wide range of ROS, may protect against the cytotoxic properties of lipofuscin. To solve the problem of high hydrophobicity of carotenoids and increase their bioaccessibility, specialized proteins can ensure their targeted delivery to the affected tissues. In this study, we present new capabilities of the recombinant water-soluble protein AstaP from Coelastrella astaxanthina Ki-4 (Scenedesmaceae) for protein-mediated carotenoid delivery and demonstrate how zeaxanthin delivery suppresses oxidative stress in a lipofuscin-enriched model of photoreceptor and pigment epithelium cells. AstaP in complex with zeaxanthin can effectively scavenge various ROS (singlet oxygen, free radical cations, hydrogen peroxide) previously reported to be generated in AMD. In addition, we explore the potential of optimizing the structure of AstaP to enhance its thermal stability and resistance to proteolytic activity in the ocular media. This optimization aims to maximize the prevention of retinal degenerative changes in AMD.
Collapse
Affiliation(s)
- Daria A Lunegova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Danil A Gvozdev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
| | - Ivan I Senin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | | | - Veronika V Tiulina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Natalia G Shebardina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Marina A Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana B Feldman
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alla A Ramonova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
| | | | - Alexey N Semenov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
| | - Evgeni Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | - Nikolai N Sluchanko
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Mikhail A Ostrovsky
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Panda P, Mohanty S, Gouda SR, Mohapatra R. Advances in nanomedicine for retinal drug delivery: overcoming barriers and enhancing therapeutic outcomes. J Drug Target 2024:1-25. [PMID: 39694681 DOI: 10.1080/1061186x.2024.2443144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/16/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Nanomedicine offers a promising avenue for improving retinal drug delivery, effectively addressing challenges associated with ocular diseases like age-related macular degeneration and diabetic retinopathy. Nanoparticles, with their submicron size and customisable surface properties, enable enhanced permeability and retention within retinal tissues, supporting sustained drug release and minimising systemic side effects. Nanostructured scaffolds further provide a supportive environment for retinal cell growth and tissue regeneration, crucial for treating degenerative conditions. Additionally, advanced nanodevices facilitate real-time monitoring and controlled drug release, marking significant progress in retinal therapy. This study reviews recent advancements in nanomedicine for retinal drug delivery, critically analysing design innovations, therapeutic benefits, and limitations of these systems. By advancing nanotechnology integration in ocular therapies, this field holds strong potential for overcoming current barriers, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Pratikeswar Panda
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Shreyashree Mohanty
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Sangita Ranee Gouda
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Rajaram Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
14
|
Li H, Sharma R, Bharti K. iPSC-derived retinal pigment epithelium: an in vitro platform to reproduce key cellular phenotypes and pathophysiology of retinal degenerative diseases. Stem Cells Transl Med 2024:szae097. [PMID: 39729520 DOI: 10.1093/stcltm/szae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/30/2024] [Indexed: 12/29/2024] Open
Abstract
Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment. When derived from patients, iRPE are able to recapitulate critical cellular phenotypes of retinal degenerative diseases, such as the drusen-like sub-RPE deposits in the L-ORD and AMD models; lipid droplets and cholesterol accumulation in the STGD1 and AMD models. The iRPE model has helped discover the unexpected role of RPE in understanding retinal degenerative diseases, such as a cell-autonomous function of ABCA4 in STGD1. The iRPE model has helped uncover the pathological mechanism of retinal degenerative diseases, including the roles of alternate complement cascades and oxidative stress in AMD pathophysiology, abnormal POS processing in STGD1 and L-ORD, and its association with lipid accumulation. These studies have helped better understand-the role of RPE in retinal degenerative diseases, and molecular mechanisms underlying RPE atrophy, and have provided a basis to discover therapeutics to target RPE-associated diseases.
Collapse
Affiliation(s)
- Huirong Li
- NEI/OSCTRS/OGVFB, Bethesda, MD, United States
| | | | | |
Collapse
|
15
|
Lee TT, Bell BA, Song Y, Dunaief JL. Testosterone promotes photoreceptor degeneration in the sodium iodate model. Exp Eye Res 2024; 251:110221. [PMID: 39710099 DOI: 10.1016/j.exer.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Previously, we found that retinas of young male mice were more damaged than those of young female mice in the sodium iodate (NaIO3) model. The purpose of this study was to test whether reducing testosterone levels would be retina-protective. Male C57Bl/6J mice underwent surgical castration or sham surgery, then were given an intraperitoneal injection of NaIO3 at 25 mg/kg. The mice were imaged a week later using optical coherence tomography (OCT). ImageJ with a custom macro was utilized to measure retinal thicknesses in OCT images. Electroretinography (ERG) was used to measure retinal function one week post-injection. After euthanasia, quantitative real-time PCR (qRT-PCR) was performed. Surgical castration partially protected photoreceptors, which was indicated by less photoreceptor layer thinning exhibited in OCT images compared to the sham surgery group. Consistent with this, qRT-PCR of castration group neural retinas revealed less reduction of rhodopsin mRNAs, and less upregulation of antioxidant as well as glucose transporter 1 mRNAs. ERG results also demonstrated partial preservation of both cone and rod function. These results indicate that surgical castration provided structural and functional protection to photoreceptors against NaIO3. These neuroprotective effects suggest that testosterone may be harmful to the stressed retina. Further investigation of this pathway could lead to a better understanding of the mechanisms involved in retinal degeneration.
Collapse
Affiliation(s)
- Timothy T Lee
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Brent A Bell
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ying Song
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Joshua L Dunaief
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Sorrentino FS, Di Terlizzi P, De Rosa F, Salati C, Spadea L, Gagliano C, Musa M, Zeppieri M. New frontiers in retinal transplantation. World J Transplant 2024; 14:97690. [PMID: 39697450 PMCID: PMC11438945 DOI: 10.5500/wjt.v14.i4.97690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/20/2024] Open
Abstract
New frontiers about retinal cell transplantation for retinal degenerative diseases start from the idea that acting on stem cells can help regenerate retinal layers and establish new synapses among retinal cells. Deficiency or alterations of synaptic input and neurotrophic factors result in trans-neuronal degeneration of the inner retinal cells. Thus, the disruption of photoreceptors takes place. However, even in advanced forms of retinal degeneration, a good percentage of the ganglion cells and the inner nuclear layer neurons remain intact. This phenomenon provides evidence for obtaining retinal circuitry through the transplantation of photoreceptors into the subretinal region. The eye is regarded as an optimal organ for cell transplantation because of its immunological privilege and the relatively small number of cells collaborating to carry out visual activities. The eyeball's immunological privilege, characterized by the suppression of delayed-type hypersensitivity responses in ocular tissues, is responsible for the low rate of graft rejection in transplant patients. The main discoveries highlight the capacity of embryonic stem cells (ESCs) and induced pluripotent stem cells to regenerate damaged retinal regions. Recent progress has shown significant enhancements in transplant procedures and results. The research also explores the ethical ramifications linked to the utilization of stem cells, emphasizing the ongoing issue surrounding ESCs. The analysis centers on recent breakthroughs, including the fabrication of three-dimensional retinal organoids and the innovation of scaffolding for cell transportation. Moreover, researchers are currently assessing the possibility of CRISPR and other advanced gene editing technologies to enhance the outcomes of retinal transplantation. The widespread use of universally recognized safe surgical and imaging methods enables retinal transplantation and monitoring of transplanted cell growth toward the correct location. Currently, most therapy approaches are in the first phases of development and necessitate further research, including both pre-clinical and clinical trials, to attain favorable visual results for individuals suffering from retinal degenerative illnesses.
Collapse
Affiliation(s)
| | - Patrick Di Terlizzi
- Department of Surgical Sciences, Unit of Ophthalmology, Ospedale Maggiore, Bologna 40100, Italy
| | - Francesco De Rosa
- Department of Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”, Meldola 47014, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Enna 94100, Italy
- Eye Clinic, Catania University San Marco Hospital, Catania 95121, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Onitsha 434112, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
17
|
Goenka S. E-cigarette flavoring chemicals and vehicles adversely impact the functions of pigmented human retinal ARPE-19 cells. Toxicol Rep 2024; 13:101789. [PMID: 39526232 PMCID: PMC11550671 DOI: 10.1016/j.toxrep.2024.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Electronic cigarettes (ECs) have been shown to adversely impact the human eye's retinal pigment epithelium (RPE). Flavored e-liquids induced cytotoxicity in unpigmented human ARPE-19 cells independent of nicotine's presence in my previous study. In the current study, human ARPE-19 cells pigmented by sepia melanin were employed to examine the effects of four flavoring chemicals, vanillin, menthol, furanone, and cinnamaldehyde, and EC vehicles propylene glycol (PG)/vegetable glycerin (VG) ratios (0:100, 80:20, 100:0 % v/v), on metabolic activity, membrane integrity, oxidative stress, and wound healing capacity of these cells. Results demonstrate that cinnamaldehyde was the most cytotoxic flavoring, and all vehicles showed marked cytotoxicity at the highest concentration of 10 %. All four flavorings elicited a significant production of reactive oxygen species (ROS), while the three vehicles did not impact ROS levels. Vanillin significantly (p < 0.05) suppressed wound healing, while furanone and cinnamaldehyde had no effects, although menthol promoted wound healing at the lowest concentration. Moreover, the vehicles with two ratios of 0:100 PG/VG and 80:20 PG/VG suppressed wound healing. Together, these results suggest that vanillin and VG-containing vehicles exert the greatest adverse effects on ARPE-19 cells. These findings underscore the potential harm that exposure to ECs can cause to the human retina.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
18
|
Zueva L, Tsytsarev V, Alves J, Inyushin M. Melanin in the Retinal Epithelium and Magnetic Sensing: A Review of Current Studies. BIOPHYSICA 2024; 4:466-476. [PMID: 39464574 PMCID: PMC11500728 DOI: 10.3390/biophysica4040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Coming in a variety of forms, melanin is one of the most abundant, stable, diverse, and evolutionarily ancient pigments found in living things in nature. These pigments often serve protective functions, typically well-adapted to their specific roles. One such protective function is metal chelation and cation exchange, which help regulate and buffer metal concentrations within cells. By binding to certain metals, melanin can acquire magnetic properties. Because of this, it may play a role in magnetic effects and possibly in the response of organisms to external magnetic fields and magnetic sensing. While there is melanin in plants, microbes, fungi, and invertebrates, certain types of melanin are specifically associated with the retina in vertebrates, including migrating bird and fish species. In this review, we examine studies focusing on the properties of melanin in these parts of the body and their possible association with magnetic sensing, and generally, magnetic sensing in the retina.
Collapse
Affiliation(s)
- Lidia Zueva
- Department of Microbiology and Immunology, Universidad Central del Caribe, Bayamon, PR 00960, USA
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Janaina Alves
- Department of Microbiology and Immunology, Universidad Central del Caribe, Bayamon, PR 00960, USA
| | - Mikhail Inyushin
- Department of Microbiology and Immunology, Universidad Central del Caribe, Bayamon, PR 00960, USA
| |
Collapse
|
19
|
Di Rienzo M, Romagnoli A, Refolo G, Vescovo T, Ciccosanti F, Zuchegna C, Lozzi F, Occhigrossi L, Piacentini M, Fimia GM. Role of AMBRA1 in mitophagy regulation: emerging evidence in aging-related diseases. Autophagy 2024; 20:2602-2615. [PMID: 39113560 PMCID: PMC11587829 DOI: 10.1080/15548627.2024.2389474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Aging is a gradual and irreversible physiological process that significantly increases the risks of developing a variety of pathologies, including neurodegenerative, cardiovascular, metabolic, musculoskeletal, and immune system diseases. Mitochondria are the energy-producing organelles, and their proper functioning is crucial for overall cellular health. Over time, mitochondrial function declines causing an increased release of harmful reactive oxygen species (ROS) and DNA, which leads to oxidative stress, inflammation and cellular damage, common features associated with various age-related pathologies. The impairment of mitophagy, the selective removal of damaged or dysfunctional mitochondria by autophagy, is relevant to the development and progression of age-related diseases. The molecular mechanisms that regulates mitophagy levels in aging remain largely uncharacterized. AMBRA1 is an intrinsically disordered scaffold protein with a unique property of regulating the activity of both proliferation and autophagy core machineries. While the role of AMBRA1 during embryonic development and neoplastic transformation has been extensively investigated, its functions in post-mitotic cells of adult tissues have been limited due to the embryonic lethality caused by AMBRA1 deficiency. Recently, a key role of AMBRA1 in selectively regulating mitophagy in post-mitotic cells has emerged. Here we summarize and discuss these results with the aim of providing a comprehensive view of the mitochondrial roles of AMBRA1, and how defective activity of AMBRA1 has been functionally linked to mitophagy alterations observed in age-related degenerative disorders, including muscular dystrophy/sarcopenia, Parkinson diseases, Alzheimer diseases and age-related macular degeneration.Abbreviations: AD: Alzheimer disease; AMD: age-related macular degeneration; AMBRA1: autophagy and beclin 1 regulator 1; APOE4: apolipoprotein E4; ATAD3A: ATPase family AAA domain containing 3A; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BH3: BCL2-homology-3; BNIP3L/NIX: BCL2 interacting protein 3 like; CDK: cyclin dependent kinase; CHUK/IKKα: component of inhibitor of nuclear factor kappa B kinase complex; CRL2: CUL2-RING ubiquitin ligase; DDB1: damage specific DNA binding protein 1; ER: endoplasmic reticulum; FOXO: forkhead box O; FUNDC1: FUN14 domain containing 1; GBA/β-glucocerebrosidase: glucosylceramidase beta; HUWE1: HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; IDR: intrinsically disordered region; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MCL1: MCL1 apoptosis regulator, BCL2 family member; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MSA: multiple system atrophy; MYC: MYC proto-oncogene, bHLH transcription factor; NUMA1: nuclear mitotic apparatus protein 1; OMM; mitochondria outer membrane; PD: Parkinson disease; PHB2: prohibitin 2; PINK1: PTEN induced kinase 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PTK2/FAK: protein tyrosine kinase 2; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SAD: sporadic AD; SOCS3: suppressor of cytokine signaling 3; SRC, SRC proto-oncogene, non-receptor tyrosine kinase; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TGFB/TGFβ: transforming growth factor beta; TOMM: translocase of outer mitochondrial membrane; TRAF6: TNF receptor associated factor 6; TRIM32: tripartite motif containing 32; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Alessandra Romagnoli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Tiziana Vescovo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Candida Zuchegna
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Francesca Lozzi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Luca Occhigrossi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
20
|
Soltanian-Zadeh S, Kovalick K, Aghayee S, Miller DT, Liu Z, Hammer DX, Farsiu S. Identifying retinal pigment epithelium cells in adaptive optics-optical coherence tomography images with partial annotations and superhuman accuracy. BIOMEDICAL OPTICS EXPRESS 2024; 15:6922-6939. [PMID: 39679394 PMCID: PMC11640571 DOI: 10.1364/boe.538473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024]
Abstract
Retinal pigment epithelium (RPE) cells are essential for normal retinal function. Morphological defects in these cells are associated with a number of retinal neurodegenerative diseases. Owing to the cellular resolution and depth-sectioning capabilities, individual RPE cells can be visualized in vivo with adaptive optics-optical coherence tomography (AO-OCT). Rapid, cost-efficient, and objective quantification of the RPE mosaic's structural properties necessitates the development of an automated cell segmentation algorithm. This paper presents a deep learning-based method with partial annotation training for detecting RPE cells in AO-OCT images with accuracy better than human performance. We have made the code, imaging datasets, and the manual expert labels available online.
Collapse
Affiliation(s)
- Somayyeh Soltanian-Zadeh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Katherine Kovalick
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Samira Aghayee
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Donald T. Miller
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
21
|
Modaresinejad M, Yang X, Mohammad Nezhady MA, Zhu T, Bajon E, Hou X, Tahiri H, Hardy P, Rivera JC, Lachapelle P, Chemtob S. Endoplasmic Reticulum Stress Delays Choroid Development in the HCAR1 Knockout Mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2382-2397. [PMID: 39332673 DOI: 10.1016/j.ajpath.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024]
Abstract
The subretina, composed of the choroid and the retinal pigment epithelium (RPE), plays a critical role in proper vision. In addition to phagocytosis of photoreceptor debris, the RPE shuttles oxygen and nutrients to the neuroretina. For their own energy production, RPE cells mainly rely on lactate, a major by-product of glycolysis. Lactate, in turn, conveys most of its biological effects via the hydroxycarboxylic acid receptor 1 (HCAR1). Herein, the lactate-specific receptor, HCAR1, was found to be exclusively expressed in the RPE cells within the subretina, and Hcar1-/- mice exhibited a substantially thinner choroidal vasculature during development. Notably, the angiogenic properties of lactate on the choroid were impacted by the absence of Hcar1. HCAR1-deficient mice exhibited elevated endoplasmic reticulum stress along with eukaryotic translation initiation factor 2α phosphorylation, a significant decrease in the global protein translation rate, and a lower proliferation rate of choroidal vasculature. Strikingly, inhibition of the integrated stress response using an inhibitor that reverses the effect of eukaryotic translation initiation factor 2α phosphorylation restored protein translation and rescued choroidal thinning. These results provide evidence that lactate signalling via HCAR1 is important for choroidal development/angiogenesis and highlight the importance of this receptor in establishing mature vision.
Collapse
Affiliation(s)
- Monir Modaresinejad
- Program in Biomedical Science, Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada; Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Xiaojuan Yang
- School of Optometry, Université de Montréal, Montreal, Quebec, Canada; Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada; Departments of Ophthalmology and Neurology-Neurosurgery, Research Institute of the McGill University Health Centre-Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Mohammad A Mohammad Nezhady
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada; Program in Molecular Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Tang Zhu
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Emmanuel Bajon
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Xin Hou
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Houda Tahiri
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Pierre Hardy
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - José C Rivera
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Pierre Lachapelle
- Departments of Ophthalmology and Neurology-Neurosurgery, Research Institute of the McGill University Health Centre-Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Sylvain Chemtob
- Program in Biomedical Science, Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada; Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada; School of Optometry, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
Yang S, Yu F, Yang M, Ni H, Bu W, Yin H, Yang J, Wang W, Zhai D, Wu X, Ma N, Li T, Hao H, Ran J, Song T, Li D, Yoshida S, Lu Q, Yang Y, Zhou J, Liu M. CYLD Maintains Retinal Homeostasis by Deubiquitinating ENKD1 and Promoting the Phagocytosis of Photoreceptor Outer Segments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404067. [PMID: 39373352 PMCID: PMC11615780 DOI: 10.1002/advs.202404067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Phagocytosis of shed photoreceptor outer segments by the retinal pigment epithelium (RPE) is essential for retinal homeostasis. Dysregulation of the phagocytotic process is associated with irreversible retinal degenerative diseases. However, the molecular mechanisms underlying the phagocytic activity of RPE cells remain elusive. In an effort to uncover proteins orchestrating retinal function, the cylindromatosis (CYLD) deubiquitinase is identified as a critical regulator of photoreceptor outer segment phagocytosis. CYLD-deficient mice exhibit abnormal retinal structure and function. Mechanistically, CYLD interacts with enkurin domain containing protein 1 (ENKD1) and deubiquitinates ENKD1 at lysine residues K141 and K242. Deubiquitinated ENKD1 interacts with Ezrin, a membrane-cytoskeleton linker, and stimulates the microvillar localization of Ezrin, which is essential for the phagocytic activity of RPE cells. These findings thus reveal a crucial role for the CYLD-ENKD1-Ezrin axis in regulating retinal homeostasis and may have important implications for the prevention and treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Song Yang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
- School of Health and Life SciencesQingdao Central HospitalUniversity of Health and Rehabilitation SciencesQingdao266113China
| | - Fan Yu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
- School of Health and Life SciencesQingdao Central HospitalUniversity of Health and Rehabilitation SciencesQingdao266113China
| | - Mulin Yang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Hua Ni
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Weiwen Bu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Hanxiao Yin
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Jia Yang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Weishu Wang
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Denghui Zhai
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Xuemei Wu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Nan Ma
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Te Li
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Huijie Hao
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Jie Ran
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Ting Song
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Dengwen Li
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Sei Yoshida
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Quanlong Lu
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Yunfan Yang
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Jun Zhou
- Department of Genetics and Cell BiologyCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Min Liu
- Laboratory of Tissue HomeostasisHaihe Laboratory of Cell EcosystemTianjin300462China
| |
Collapse
|
23
|
Soto TB, Tenconi PE, Buzzi ED, Dionisio L, Mateos MV, Rotstein NP, Spitzmaul G, Politi LE, German OL. Activation of retinoid X receptors protects retinal neurons and pigment epithelial cells from BMAA-induced death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119816. [PMID: 39159686 DOI: 10.1016/j.bbamcr.2024.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Exposure to the non-protein amino acid cyanotoxin β-N-methylamino-L-alanine (BMAA), released by cyanobacteria found in many water reservoirs has been associated with neurodegenerative diseases. We previously demonstrated that BMAA induced cell death in both retina photoreceptors (PHRs) and amacrine neurons by triggering different molecular pathways, as activation of NMDA receptors and formation of carbamate-adducts was only observed in amacrine cell death. We established that activation of Retinoid X Receptors (RXR) protects retinal cells, including retina pigment epithelial (RPE) cells from oxidative stress-induced apoptosis. We now investigated the mechanisms underlying BMAA toxicity in these cells and those involved in RXR protection. BMAA addition to rat retinal neurons during early development in vitro increased reactive oxygen species (ROS) generation and polyADP ribose polymers (PAR) formation, while pre-treatment with serine (Ser) before BMAA addition decreased PHR death. Notably, RXR activation with the HX630 agonist prevented BMAA-induced death in both neuronal types, reducing ROS generation, preserving mitochondrial potential, and decreasing TUNEL-positive cells and PAR formation. This suggests that BMAA promoted PHR death by substituting Ser in polypeptide chains and by inducing polyADP ribose polymerase activation. BMAA induced cell death in ARPE-19 cells, a human epithelial cell line; RXR activation prevented this death, decreasing ROS generation and caspase 3/7 activity. These findings suggest that RXR activation prevents BMAA harmful effects on retinal neurons and RPE cells, supporting this activation as a broad-spectrum strategy for treating retina degenerations.
Collapse
Affiliation(s)
- Tamara B Soto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Paula E Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Edgardo D Buzzi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Leonardo Dionisio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guillermo Spitzmaul
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Luis E Politi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Olga L German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
24
|
Shang P, Ambrosino H, Hoang J, Geng Z, Zhu X, Shen S, Eminhizer M, Hong E, Zhang M, Qu J, Du J, Montezuma SR, Dutton JR, Ferrington DA. The Complement Factor H (Y402H) risk polymorphism for age-related macular degeneration affects metabolism and response to oxidative stress in the retinal pigment epithelium. Free Radic Biol Med 2024; 225:833-845. [PMID: 39491736 PMCID: PMC11662989 DOI: 10.1016/j.freeradbiomed.2024.10.307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Age-related macular degeneration (AMD), the leading cause of central vision loss in the elderly, involves death of the retinal pigment epithelium (RPE) and light-sensing photoreceptors. This multifactorial disease includes contributions from both genetic and environmental risk factors. The current study examined the effect of the Y402H polymorphism of Complement Factor H (CFH, rs1061170) and cigarette smoke, predominant genetic and environmental risk factors associated with AMD. We used targeted and discovery-based approaches to identify genotype-dependent responses to chronic oxidative stress induced by cigarette smoke extract (CSE) in RPE differentiated from induced pluripotent stem cells (iPSC) derived from human donors harboring either the low risk (LR) or high risk (HR) CFH genotype. Chronic CSE altered the metabolic profile in both LR and HR iPSC-RPE and caused a dose-dependent reduction in mitochondrial function despite an increase in mitochondrial content. Notably, cells with the HR CFH SNP showed a greater reduction in maximal respiration and ATP production. Significant genotype-dependent changes in the proteome were observed for HR RPE at baseline (cytoskeleton, MAPK signaling) and after CSE exposure, where a less robust upregulation of the antioxidants and significant downregulation in proteins involved in nucleic acid metabolism and membrane trafficking were noted compared to LR cells. In LR cells, uniquely upregulated proteins were involved in lipid metabolism and chemical detoxification. These genotype-dependent differences at baseline and in response to chronic CSE exposure suggest a broader role for CFH in modulating the response to oxidative stress in RPE and provides insight into the interaction between environmental and genetic factors in AMD pathogenesis.
Collapse
Affiliation(s)
- Peng Shang
- Doheny Eye Institute, Pasadena, CA, 91103, USA
| | | | | | - Zhaohui Geng
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Xiaoyu Zhu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, 14214, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, 14214, USA
| | - Mark Eminhizer
- Departments of Ophthalmology and Visual Sciences, Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Elise Hong
- Doheny Eye Institute, Pasadena, CA, 91103, USA
| | - Ming Zhang
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, 14214, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, 14214, USA
| | - Jianhai Du
- Departments of Ophthalmology and Visual Sciences, Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Deborah A Ferrington
- Doheny Eye Institute, Pasadena, CA, 91103, USA; Department of Ophthalmology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
25
|
Antonio Marín Guzmán J, Erker P, Gasparinetti S, Huber M, Yunger Halpern N. Key issues review: useful autonomous quantum machines. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:122001. [PMID: 39419064 DOI: 10.1088/1361-6633/ad8803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Controlled quantum machines have matured significantly. A natural next step is to increasingly grant them autonomy, freeing them from time-dependent external control. For example, autonomy could pare down the classical control wires that heat and decohere quantum circuits; and an autonomous quantum refrigerator recently reset a superconducting qubit to near its ground state, as is necessary before a computation. Which fundamental conditions are necessary for realizing useful autonomous quantum machines? Inspired by recent quantum thermodynamics and chemistry, we posit conditions analogous to DiVincenzo's criteria for quantum computing. Furthermore, we illustrate the criteria with multiple autonomous quantum machines (refrigerators, circuits, clocks, etc) and multiple candidate platforms (neutral atoms, molecules, superconducting qubits, etc). Our criteria are intended to foment and guide the development of useful autonomous quantum machines.
Collapse
Affiliation(s)
- José Antonio Marín Guzmán
- Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, MD 20742, United States of America
| | - Paul Erker
- Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3 1090 Vienna, Austria
| | - Simone Gasparinetti
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Marcus Huber
- Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3 1090 Vienna, Austria
| | - Nicole Yunger Halpern
- Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, MD 20742, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States of America
| |
Collapse
|
26
|
Xiao J, Xu Z. Roles of noncoding RNAs in diabetic retinopathy: Mechanisms and therapeutic implications. Life Sci 2024; 357:123092. [PMID: 39368772 DOI: 10.1016/j.lfs.2024.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes that leads to vision loss. The striking features of DR are hard exudate, cotton-wool spots, hemorrhage, and neovascularization. The dysregulated retinal cells, encompassing microvascular endothelial cells, pericytes, Müller cells, and adjacent retinal pigment epithelial cells, are involved in the pathological processes of DR. According to recent research, oxidative stress, inflammation, ferroptosis, pyroptosis, apoptosis, and angiogenesis contribute to DR. Recent advancements have highlighted that noncoding RNAs could regulate diverse targets in pathological processes that contribute to DR. Noncoding RNAs, including long noncoding RNAs, microRNAs (miRNA), and circular RNAs, are dysregulated in DR, and interact with miRNA, mRNA, or proteins to control the pathological processes of DR. Hence, modulation of noncoding RNAs may have therapeutic effects on DR. Small extracellular vesicles may be valuable tools for transferring noncoding RNAs and regulating the genes involved in progression of DR. However, the roles of noncoding RNA in developing DR are not fully understood; it is critical to summarize the mechanisms for noncoding RNA regulation of pathological processes and pathways related to DR. This review provides a fundamental understanding of the relationship between noncoding RNAs and DR, exploring the mechanism of how noncoding RNA modulates different signaling pathways, and pave the way for finding potential therapeutic strategies for DR.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
27
|
Eltanahy AM, Aupetit A, Buhr ED, Van Gelder RN, Gonzales AL. Light-sensitive Ca 2+ signaling in the mammalian choroid. Proc Natl Acad Sci U S A 2024; 121:e2418429121. [PMID: 39514305 PMCID: PMC11573543 DOI: 10.1073/pnas.2418429121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The choroid is the thin, vasculature-filled layer of the eye situated between the sclera and the retina, where it serves the metabolic needs of the light-sensing photoreceptors in the retina. Illumination of the interior surface of the back of the eye (fundus) is a critical regulator of subretinal fluid homeostasis, which determines the overall shape of the eye, but it is also important for choroidal perfusion. Noted for having some of the highest blood flow rates in the body, the choroidal vasculature has been reported to lack intrinsic, intravascular pressure-induced (myogenic) autoregulatory mechanisms. Here, we ask how light directly regulates choroid perfusion and ocular fluid homeostasis, testing the hypothesis that light facilitates ocular fluid absorption by directly increasing choroid endothelial permeability and decreasing choroid perfusion. Utilizing ex vivo pressurized whole-choroid and whole-eye preparations from mice expressing cell-specific Ca2+ indicators, we found that the choroidal vasculature has two intrinsically light-sensitive Ca2+-signaling mechanisms: One increases Ca2+-dependent production of nitric oxide in choroidal endothelial cells; the other promotes vasoconstriction through Ca2+ elevation in vascular smooth muscle cells. In addition, we found that choroidal flow, or pressure, modulates endothelial and smooth muscle photosensitivity and trans-retinal absorption of fluid into the choroid. These results collectively suggest that the choroid vasculature exhibits an inverted form of autoregulatory control, where pressure- and light-induced mechanisms work in opposition to regulate blood flow and maintain fluid balance in response to changes in light and dark, aligning with the metabolic needs of photoreceptors.
Collapse
Affiliation(s)
- Ahmed M Eltanahy
- Department of Physiology and Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318
| | - Alex Aupetit
- Department of Physiology and Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington, Seattle, WA 98104
- Roger and Angie Karalis Retina Center, Department of Ophthalmology, University of Washington, Seattle, WA 98104
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington, Seattle, WA 98104
- Roger and Angie Karalis Retina Center, Department of Ophthalmology, University of Washington, Seattle, WA 98104
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
- Department of Neurobiology & Biophysics, University of Washington, Seattle, WA 98104
| | - Albert L Gonzales
- Department of Physiology and Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318
| |
Collapse
|
28
|
Hernandez BJ, Strain M, Suarez MF, Stamer WD, Ashley-Koch A, Liu Y, Klingeborn M, Bowes Rickman C. Small Extracellular Vesicle-Associated MiRNAs in Polarized Retinal Pigmented Epithelium. Invest Ophthalmol Vis Sci 2024; 65:57. [PMID: 39589346 PMCID: PMC11601136 DOI: 10.1167/iovs.65.13.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
Purpose Oxidative stress in the retinal pigmented epithelium (RPE) has been implicated in age-related macular degeneration by impacting endocytic trafficking, including the formation, content, and secretion of extracellular vesicles (EVs). Using our model of polarized primary porcine RPE (pRPE) cells under chronic subtoxic oxidative stress, we tested the hypothesis that RPE miRNAs packaged into EVs are secreted in a polarized manner and contribute to maintaining RPE homeostasis. Methods Small EVs (sEVs) enriched for exosomes were isolated from apical and basal conditioned media from pRPE cells grown for up to four weeks with or without low concentrations of hydrogen peroxide using two sEV isolation methods, leading to eight experimental groups. The sEV miRNA expression was profiled using miRNA-Seq with Illumina MiSeq, followed by quality control and bioinformatics analysis for differential expression using the R computing environment. Expression of selected miRNAs were validated using qRT-PCR. Results We identified miRNA content differences carried by sEVs isolated using two ultracentrifugation-based methods. Regardless of the sEV isolation method, miR-182 and miR-183 were enriched in the cargo of apically secreted sEVs, and miR-122 in the cargo of basally secreted sEVs from RPE cells during normal homeostatic conditions. After oxidative stress, miR-183 levels were significantly decreased in the cargo of apically released sEVs from stressed RPE cells. Conclusions We curated RPE sEV miRNA datasets based on cell polarity and oxidative stress. Unbiased miRNA analysis identified differences based on polarity, stress, and sEV isolation methods. These findings suggest that miRNAs in sEVs may contribute to RPE homeostasis and function in a polarized manner.
Collapse
Affiliation(s)
- Belinda J. Hernandez
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Madison Strain
- Duke Molecular Physiology Institute, Department of Medicine, Duke University, Durham, North Carolina, United States
| | - Maria Fernanda Suarez
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Department of Medicine, Duke University, Durham, North Carolina, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| | - Mikael Klingeborn
- McLaughlin Research Institute, Great Falls, Montana, United States
- Touro College of Osteopathic Medicine Montana, Great Falls, Montana, United States
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Cell Biology, Duke University, Durham, North Carolina, United States
| |
Collapse
|
29
|
Chen S, Sun D, Zhang S, Xu L, Wang N, Li H, Xu X, Wei F. TIN2 modulates FOXO1 mitochondrial shuttling to enhance oxidative stress-induced apoptosis in retinal pigment epithelium under hyperglycemia. Cell Death Differ 2024; 31:1487-1505. [PMID: 39080375 PMCID: PMC11519896 DOI: 10.1038/s41418-024-01349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 10/30/2024] Open
Abstract
Progressive dysfunction of the retinal pigment epithelium (RPE) and the adjacent photoreceptor cells in the outer retina plays a pivotal role in the pathogenesis of diabetic retinopathy (DR). Here, we observed a marked increase in oxidative stress-induced apoptosis in parallel with higher expression of telomeric protein TIN2 in RPE cells under hyperglycemia in vivo and in vitro. Delving deeper, we confirm that high glucose-induced elevation of mitochondria-localized TIN2 compromises mitochondrial activity and weakens the intrinsic antioxidant defense, thereby leading to the activation of mitochondria-dependent apoptotic pathways. Mechanistically, mitochondrial TIN2 promotes the phosphorylation of FOXO1 and its relocation to the mitochondria. Such translocation of transcription factor FOXO1 not only promotes its binding to the D-loop region of mitochondrial DNA-resulting in the inhibition of mitochondrial respiration-but also hampers its availability to nuclear target DNA, thereby undermining the intrinsic antioxidant defense. Moreover, TIN2 knockdown effectively mitigates oxidative-induced apoptosis in diabetic mouse RPE by preserving mitochondrial homeostasis, which concurrently prevents secondary photoreceptor damage. Our study proposes the potential of TIN2 as a promising molecular target for therapeutic interventions for diabetic retinopathy, which emphasizes the potential significance of telomeric proteins in the regulation of metabolism and mitochondrial function. Created with BioRender ( https://www.biorender.com/ ).
Collapse
Affiliation(s)
- Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Li Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Ning Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Huiming Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
30
|
Li CH, Yang TM, Fitriana I, Fang TC, Wu LH, Hsiao G, Cheng YW. Maintaining KEAP1 levels in retinal pigment epithelial cells preserves their viability during prolonged exposure to artificial blue light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113037. [PMID: 39332313 DOI: 10.1016/j.jphotobiol.2024.113037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/07/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Exposure to artificial blue light, one of the most energetic forms of visible light, can increase oxidative stress in retinal cells, potentially enhancing the risk of macular degeneration. Retinal pigment epithelial (RPE) cells play a crucial role in this process; the loss of RPE cells is the primary pathway through which retinal degeneration occurs. In RPE cells, Kelch-like ECH-associated protein 1 (KEAP1) is located in both the nucleus and cytosol, where it binds to nuclear factor erythroid 2-related factor 2 (NRF2) and p62 (sequestosome-1), respectively. Blue light exposure activates the NRF2-heme oxygenase 1 (HMOX1) axis through both canonical and noncanonical p62 pathways thereby reducing oxidative damage, and initiates autophagy, which helps remove damaged proteins. These protective responses may support the survival of RPE cells. However, extended exposure to blue light drastically decreases the viability of RPE cells. This exposure diminishes the ability of KEAP1 to bind to p62 and reduces the level of KEAP1. Inhibition of autophagy does not prevent KEAP1 degradation, the NRF2-HMOX1 axis, or blue-light-induced cytotoxicity. However, proteasome inhibitor along with a transient increase in the amount of KEAP1 in RPE cells, partially restores the p62-KEAP1 complex and reduces blue-light-induced cytotoxicity. In vivo studies confirmed the downregulation of KEAP1 in damaged RPE cells. Mice subjected to periodic blue light exposure exhibited significant atrophy in the outer retina, particularly in the peripheral areas. Additionally, there was a significant decrease in c-wave electroretinography and pupillary light reflex, indicating functional impairments in both visual and nonvisual physiological processes. These data underscore the essential role of KEAP1 in managing oxidative defense and autophagy pathways triggered by blue light exposure in RPE cells.
Collapse
Affiliation(s)
- Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Min Yang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ida Fitriana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Te-Chao Fang
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Taipei Medical University-Research Center of Urology and Kidney (RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Liang-Huan Wu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
31
|
Wang S, Li W, Chen M, Cao Y, Lu W, Li X. The retinal pigment epithelium: Functions and roles in ocular diseases. FUNDAMENTAL RESEARCH 2024; 4:1710-1718. [PMID: 39734536 PMCID: PMC11670733 DOI: 10.1016/j.fmre.2023.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 12/31/2024] Open
Abstract
The retinal pigment epithelium (RPE) between retinal photoreceptors and choroidal capillaries is a single layer of cells that are of critical importance to the eye. RPE cells are derived from the anterior neural plate of neuroectodermal origin. Instructed by specific molecules and signaling pathways, the RPE undergoes formation and maturation to form a functional unit together with photoreceptors. The RPE plays crucial roles in maintaining normal retinal structure and functions, such as phagocytosis; barrier function; transportation of nutrients, ions, and water; resistance to oxidative damage; maintenance of visual cycle; and production of various important factors. RPE cells have an efficient metabolic machinery to provide sufficient energy to the retina. RPE dysfunction or atrophy can lead to many retinopathies, such as age-related macular degeneration and proliferative vitreoretinopathy. Here, we discuss RPE development, functions, and roles in various ocular diseases, and the mechanisms involved. A better understanding of the functions of the RPE and related regulatory pathways may help identify novel or better therapies for the treatment of many blinding diseases.
Collapse
Affiliation(s)
- Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wanhong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Min Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17165, Sweden
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
32
|
Carr BJ, Skitsko D, Kriese LM, Song J, Li Z, Ju MJ, Moritz OL. prominin-1-null Xenopus laevis develop subretinal drusenoid-like deposits, cone-rod dystrophy and RPE atrophy. J Cell Sci 2024; 137:jcs262298. [PMID: 39355864 PMCID: PMC11586525 DOI: 10.1242/jcs.262298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Prominin-1 (PROM1) variants are associated with inherited, non-syndromic vision loss. We used CRISPR/Cas9 to induce prom1-null mutations in Xenopus laevis and then tracked retinal disease progression from the ages of 6 weeks to 3 years. We found that prom1-null-associated retinal degeneration in frogs was age-dependent and involved retinal pigment epithelium (RPE) dysfunction preceding photoreceptor degeneration. Before photoreceptor degeneration occurred, aging prom1-null frogs developed larger and increasing numbers of cellular debris deposits in the subretinal space and outer segment layer, which resembled subretinal drusenoid deposits (SDDs) in their location, histology and representation as seen by color fundus photography and optical coherence tomography (OCT). Evidence for an RPE origin of these deposits included infiltration of pigment granules into the deposits, thinning of the RPE as measured by OCT, and RPE disorganization as measured by histology and OCT. The appearance and accumulation of SDD-like deposits and RPE thinning and disorganization in our animal model suggests an underlying disease mechanism for prom1-null-mediated blindness that involves death and dysfunction of the RPE preceding photoreceptor degeneration, instead of direct effects upon photoreceptor outer segment morphogenesis, as was previously hypothesized.
Collapse
Affiliation(s)
- Brittany J. Carr
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Ophthalmology and Visual Sciences, Edmonton, AB T6G 2E1, Canada
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Cell Biology, Edmonton, AB T6G 2H7, Canada
| | - Dominic Skitsko
- The University of British Columbia, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Vancouver, BC V5Z 0A6, Canada
| | - Linnea M. Kriese
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Ophthalmology and Visual Sciences, Edmonton, AB T6G 2E1, Canada
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Cell Biology, Edmonton, AB T6G 2H7, Canada
| | - Jun Song
- The University of British Columbia, Faculty of Applied Science, Faculty of Medicine, School of Biomedical Engineering, Vancouver, BC V6T 2B9, Canada
| | - Zixuan Li
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Ophthalmology and Visual Sciences, Edmonton, AB T6G 2E1, Canada
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Cell Biology, Edmonton, AB T6G 2H7, Canada
| | - Myeong Jin Ju
- The University of British Columbia, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Vancouver, BC V5Z 0A6, Canada
- The University of British Columbia, Faculty of Applied Science, Faculty of Medicine, School of Biomedical Engineering, Vancouver, BC V6T 2B9, Canada
| | - Orson L. Moritz
- The University of British Columbia, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Vancouver, BC V5Z 0A6, Canada
| |
Collapse
|
33
|
Liu H, Huang SS, Lingam G, Kai D, Su X, Liu Z. Advances in retinal pigment epithelial cell transplantation for retinal degenerative diseases. Stem Cell Res Ther 2024; 15:390. [PMID: 39482729 PMCID: PMC11526680 DOI: 10.1186/s13287-024-04007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Retinal degenerative diseases are a leading cause of vision loss and blindness globally, impacting millions. These diseases result from progressive damage to retinal pigment epithelial (RPE) cells for which no curative or palliative treatments exist. Cell therapy, particularly RPE transplantation, has emerged as a promising strategy for vision restoration. This review provides a comprehensive overview of the recent advancements in clinical trials related to RPE transplantation. We discuss scaffold-free and scaffold-based approaches, including RPE cell suspensions and pre-organized RPE monolayers on biomaterial scaffolds. Key considerations, such as the form and preparation of RPE implants, delivery devices, strategies, and biodegradability of scaffolds, are examined. The article also explores the challenges and opportunities in RPE scaffold development, emphasising the crucial need for functional integration, immunomodulation, and long-term biocompatibility to ensure therapeutic efficacy. We also highlight ongoing efforts to optimise RPE transplantation methods and their potential to address retinal degenerative diseases.
Collapse
Affiliation(s)
- Hang Liu
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Innovation and Prevision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Suber S Huang
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Retina Center of Ohio, Cleveland, OH, USA
- Bascom Palmer Eye Institute, University of Miami, Coral Gables, FL, USA
| | - Gopal Lingam
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Innovation and Prevision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xinyi Su
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Centre for Innovation and Prevision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Ophthalmology, National University Hospital, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
| | - Zengping Liu
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Centre for Innovation and Prevision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
| |
Collapse
|
34
|
Adegboro CO, Luo W, Kabra M, McAdams RM, York NW, Wijenayake RI, Suchla KM, Pillers DAM, Pattnaik BR. Transplacental Transfer of Oxytocin and Its Impact on Neonatal Cord Blood and In Vitro Retinal Cell Activity. Cells 2024; 13:1735. [PMID: 39451253 PMCID: PMC11506339 DOI: 10.3390/cells13201735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
The development of fetal organs can be impacted by systemic changes in maternal circulation, with the placenta playing a pivotal role in maintaining pregnancy homeostasis and nutrient exchange. In clinical obstetrics, oxytocin (OXT) is commonly used to induce labor. To explore the potential role of OXT in the placental homeostasis of OXT, we compared OXT levels in neonatal cord blood among neonates (23-42 weeks gestation) whose mothers either received prenatal OXT or experienced spontaneous labor. Our previous research revealed that the oxytocin receptor (OXTR), essential in forming the blood-retina barrier, is expressed in the retinal pigment epithelium (RPE). We hypothesized that perinatal OXT administration might influence the development of the neural retina and its vasculature, offering therapeutic potential for retinal diseases such as retinopathy of prematurity (ROP). Plasma OXT levels were measured using a commercial OXT ELISA kit. Human fetal RPE (hfRPE) cells treated with OXT (10 µM) were assessed for gene expression via RNA sequencing, revealing 14 downregulated and 32 upregulated genes. To validate these differentially expressed genes (DEGs), hfRPE cells were exposed to OXT (0.01, 0.1, 1, or 10 µM) for 12 h, followed by RNA analysis via real-time PCR. Functional, enrichment, and network analyses (Gene Ontology term, FunRich, Cytoscape) were performed to predict the affected pathways. This translational study suggests that OXT likely crosses the placenta, altering fetal OXT concentrations. RNA sequencing identified 46 DEGs involved in vital metabolic and signaling pathways and critical cellular components. Our results indicate that the perinatal administration of OXT may affect neural retina and retinal vessel development, making OXT a potential therapeutic option for developmental eye diseases, including ROP.
Collapse
Affiliation(s)
- Claudette O. Adegboro
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - Wenxiang Luo
- Department of Pediatrics, Division of Neonatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (W.L.); (D.-A.M.P.)
| | - Meha Kabra
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
- McPherson Eye Research Institute, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
| | - Ryan M. McAdams
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - Nathaniel W. York
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
- Endocrine and Reproductive Physiology Program, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
| | - Ruwandi I. Wijenayake
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - Kiana M. Suchla
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - De-Ann M. Pillers
- Department of Pediatrics, Division of Neonatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (W.L.); (D.-A.M.P.)
- Children’s Hospital University of Illinois, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA
| | - Bikash R. Pattnaik
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
- McPherson Eye Research Institute, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
- Endocrine and Reproductive Physiology Program, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
| |
Collapse
|
35
|
Azuma K, Suzuki T, Kobayashi K, Nagahara M, Imai H, Suga A, Iwata T, Shiraya T, Aihara M, Ueta T. Retinal pigment epithelium-specific ablation of GPx4 in adult mice recapitulates key features of geographic atrophy in age-related macular degeneration. Cell Death Dis 2024; 15:763. [PMID: 39426958 PMCID: PMC11490617 DOI: 10.1038/s41419-024-07150-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the elderly population, particularly the late-stage of dry AMD known as geographic atrophy (GA), lacks effective treatment options. Genetic mouse models of AMD have revealed the significance of impaired lipid metabolism and anti-oxidative capacity in early/intermediate stage of AMD, but remains unclear in GA that severely damages visual function. Here, to investigate the potential relevance of peroxidized lipids in RPE for late-stage dry AMD, GPx4fl/fl mice underwent subretinal injections of RPE-specific AAV-Cre vector or control AAV vector. RPE-specific GPx4 deficiency led to rapid RPE degeneration resembling key features of late-stage dry AMD, including preceding loss of RPE cell polarity, accumulation of acrolein, malondialdehyde, and 4-hydroxynonenal, photoreceptor loss, lipofuscin-laden subretinal melanophage infiltration, and complement activation. Treatment with α-tocopherol and ferrostatin-1 mitigated RPE degeneration, and shrunk mitochondria were observed in GPx4 deficient mice, suggesting involvement of ferroptosis. Unexpectedly, necrostatin-1s, an inhibitor of necroptosis, also ameliorated RPE degeneration, and activation of RIP3 and MLKL along with inactivation of caspase-8 was observed, indicating crosstalk between ferroptosis and necroptosis pathways. Our findings shed light on the intricate mechanisms underlying RPE degeneration in AMD and highlight GPx4/lipid peroxidation as potential therapeutic targets. RPE-specific ablation of GPx4 in mice provides a valuable tool for further elucidating the interplay between lipid peroxidation, cell death pathways, and AMD pathogenesis, offering new insights for preclinical research and therapeutic development targeting GA.
Collapse
Affiliation(s)
- Kunihiro Azuma
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo Ward, Japan
- Department of Ophthalmology, National Center for Global Health and Medicine, Shinjuku Ward, Japan
| | - Takafumi Suzuki
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo Ward, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Masako Nagahara
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo Ward, Japan
| | - Hirotaka Imai
- Department of Hygienic Chemistry and Medical Research Laboratories, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Akiko Suga
- Molecular and Cellular Biology Division, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Takeshi Iwata
- Molecular and Cellular Biology Division, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Tomoyasu Shiraya
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo Ward, Japan
| | - Makoto Aihara
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo Ward, Japan
| | - Takashi Ueta
- Department of Ophthalmology, The Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo Ward, Japan.
| |
Collapse
|
36
|
Wu KY, Wang XC, Anderson M, Tran SD. Innovative Use of Nanomaterials in Treating Retinopathy of Prematurity. Pharmaceuticals (Basel) 2024; 17:1377. [PMID: 39459018 PMCID: PMC11509985 DOI: 10.3390/ph17101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/22/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Retinopathy of prematurity (ROP) is a severe condition primarily affecting premature infants with a gestational age (GA) of 30 weeks or less and a birth weight (BW) of 1500 g or less. The objective of this review is to examine the risk factors, pathogenesis, and current treatments for ROP, such as cryotherapy, laser photocoagulation, and anti-VEGF therapy, while exploring the limitations of these approaches. Additionally, this review evaluates emerging nanotherapeutic strategies to address these challenges, aiming to improve ROP management. METHODS A comprehensive literature review was conducted to gather data on the pathogenesis, traditional treatment methods, and novel nanotherapeutic approaches for ROP. This included assessing the efficacy and safety profiles of cryotherapy, laser treatment, anti-VEGF therapy, and nanotherapies currently under investigation. RESULTS Traditional treatments, while effective in reducing disease progression, exhibit limitations, including long-term complications, tissue damage, and systemic side effects. Nanotherapeutic approaches, on the other hand, have shown potential in offering targeted drug delivery with reduced systemic toxicity, improved ocular drug penetration, and sustained release, which could decrease the frequency of treatments and enhance therapeutic outcomes. CONCLUSIONS Nanotherapies represent a promising advancement in ROP treatment, offering safer and more effective management strategies. These innovations could address the limitations of traditional therapies, reducing complications and improving outcomes for premature infants affected by ROP. Further research is needed to confirm their efficacy and safety in clinical practice.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Xingao C. Wang
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1J4, Canada
| | - Maude Anderson
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
37
|
Subrahmanian SM, Yerlikaya EI, Sunilkumar S, Toro AL, McCurry CM, Grillo SL, Barber AJ, Sundstrom JM, Dennis MD. Deletion of the stress response protein REDD1 prevents sodium iodate-induced RPE damage and photoreceptor loss. GeroScience 2024:10.1007/s11357-024-01362-2. [PMID: 39367169 DOI: 10.1007/s11357-024-01362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in elderly populations, yet the molecular events that initiate the early retinal defects that lead to visual function deficits remain poorly understood. The studies here explored a role for the stress response protein Regulated in Development and DNA damage response 1 (REDD1) in the development of retinal pathology by using the oxidant stressor sodium iodate (NaIO3) to model dry AMD in mice. REDD1 protein abundance was increased in the retinal pigmented epithelium (RPE) and retina of mice administered NaIO3. In wild-type REDD1+/+ mice, reactive oxygen species (ROS) levels were robustly increased in the outer retinal layers 1 day after NaIO3 administration, with focal areas of increased ROS seen throughout the outer retina after 7 days. In contrast with REDD1+/+ mice, ROS levels were blunted in REDD1-/- mice after NaIO3 administration. REDD1 was also required for upregulated expression of pro-inflammatory factors in the RPE/retina and immune cell activation in the outer retina following NaIO3 administration. In REDD1+/+ mice, NaIO3 reduced RPE65 and rhodopsin levels in the RPE and photoreceptor layers, respectively. Unlike REDD1+/+ mice, REDD1-/- mice did not exhibit disrupted RPE integrity, retinal degeneration, or photoreceptor thinning. Overall, REDD1 deletion was sufficient to prevent retinal oxidative stress, RPE damage, immune cell activation, and photoreceptor loss in response to NaIO3. The findings support a potential role for REDD1 in the development of retinal complications in the context of dry AMD.
Collapse
Affiliation(s)
- Sandeep M Subrahmanian
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Esma I Yerlikaya
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Christopher M McCurry
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Stephanie L Grillo
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Alistair J Barber
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Jeffrey M Sundstrom
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
38
|
Ugarte M, Lawless C. Putative retina metal/metalloid-binding proteins: molecular functions, biological processes and retina disease associations. Metallomics 2024; 16:mfae045. [PMID: 39322243 PMCID: PMC11523097 DOI: 10.1093/mtomcs/mfae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
The mammalian retina contains high amounts of metals/metalloid-selenium. Their dyshomeostases are associated with certain retinal diseases. We carried out this bioinformatics study to identify the relationships between putative retinal metal/selenium binding proteins, their molecular functions, and biological processes. Identification of putative mouse metal/selenium binding proteins was based on known binding motifs, domains, patterns, and profiles. Annotations were obtained from Uniprot keywords 'metal binding', 'metal ion co-factors', 'selenium proteins'. Protein functions were estimated by associative frequency with key words in UniProt annotations. The raw data of five mouse proteomics PRIDE datasets (available to date) were downloaded and processed with Mascot against the mouse taxa of Uniprot (SwissProt/Trembl) and MaxQuant (version 1.6.10.43) for qualitative and quantitative datasets, respectively. Clinically relevant variants were evaluated using archives and aggregated information in ClinVar. The 438 proteins common to all the retina proteomics datasets were used to identify over-represented Gene Ontology categories. The putative mouse retinal metal/metalloid binding proteins identified are mainly involved in: (1) metabolic processes (enzymes), (2) homeostasis, (3) transport (vesicle mediated, transmembrane, along microtubules), (4) cellular localization, (5) regulation of signalling and exocytosis, (6) organelle organization, (7) (de)phosphorylation, and (8) complex assembly. Twenty-one proteins were identified as involved in response to light stimulus and/or visual system development. An association of metal ion binding proteins rhodopsin, photoreceptor specific nuclear receptor, calcium binding protein 4 with disease-related mutations in inherited retinal conditions was identified, where the mutations affected an area within or in close proximity to the metal binding site or domain. These findings suggest a functional role for the putative metal/metalloid binding site in retinal proteins in certain retinal disorders.
Collapse
Affiliation(s)
- Marta Ugarte
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Rm A.3034a Michael-Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
39
|
Supe S, Dighe V, Upadhya A, Singh K. Analysis of RNA Interference Targeted Against Human Antigen R (HuR) to Reduce Vascular Endothelial Growth Factor (VEGF) Protein Expression in Human Retinal Pigment Epithelial Cells. Mol Biotechnol 2024; 66:2972-2984. [PMID: 37856012 DOI: 10.1007/s12033-023-00913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
VEGF-A or vascular endothelial growth factor-A is an important factor in enabling neovascularization and angiogenesis. VEGF-A is regulated transcriptionally as well as post transcriptionally. Human antigen R (HuR) belonging to the embryonic lethal abnormal vision (ELAV) family is a key regulator promoting stabilization of VEGF-A mRNA. In this research we investigate, whether HuR targeted RNA interference would enable the reduction of the VEGF-A protein in human retinal pigment epithelial cells (ARPE-19) in-vitro, in normoxic conditions. Three siRNA molecules with sequences complementary to three regions of the HuR mRNA were designed. The three designed siRNA molecules were individually transfected in ARPE-19 cells using Lipofectamine™2000 reagent. Post-transfection (24 h, 48 h, 72 h), downregulation of HuR mRNA was estimated by real-time polymerase reaction, while HuR protein and VEGF-A protein levels were semi-quantitatively determined by western blotting techniques. VEGF-A protein levels were additionally quantified using ELISA techniques. All experiments were done in triplicate. The designed siRNA could successfully downregulate HuR mRNA with concomitant decreases in HuR and VEGF-A protein. The study reveals that HuR downregulation can prominently downregulate VEGF-A, making the protein a target for therapy against pathological angiogenesis conditions such as diabetic retinopathy.
Collapse
Affiliation(s)
- Shibani Supe
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Vikas Dighe
- National Centre for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive and Child Health, J.M. Street, Parel, Mumbai, Maharashtra, 400012, India
| | - Archana Upadhya
- Maharashtra Educational Society's H. K. College of Pharmacy, H. K. College Campus, Oshiwara, Jogeshwari (W), Mumbai, Maharashtra, 400102, India.
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
40
|
Karmoker JR, Bounds SE, Cai J. Aryl hydrocarbon receptor (AhR)-mediated immune responses to degeneration of the retinal pigment epithelium. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167351. [PMID: 39004382 PMCID: PMC11330344 DOI: 10.1016/j.bbadis.2024.167351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Injuries to the retinal pigment epithelium (RPE) trigger immune responses, orchestrating interactions within the innate and adaptive immune systems in the outer retina and choroid. We previously reported that interleukin 17 (IL-17) is a pivotal signaling molecule originating from choroidal γδ T cells, exerting protective effects by mediating functional connections between the RPE and subretinal microglia. In this current study, we generated mice with aryl hydrocarbon receptor (AhR) knockout specifically in IL-17-producing cells. These animals had deficiency in IL-17 production from γδ T cells, and exhibited increased sensitivity to both acute and chronic insults targeting the RPE. These findings imply that IL-17 plays a crucial role as a signaling cytokine in preserving the homeostasis of the outer retina and choroid.
Collapse
Affiliation(s)
- James Regun Karmoker
- Department of Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Sarah E Bounds
- Department of Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Jiyang Cai
- Department of Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
41
|
Scheepers R, Levi NL, Araujo RP. A distributed integral control mechanism for regulation of cholesterol concentration in the human retina. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240432. [PMID: 39479233 PMCID: PMC11521609 DOI: 10.1098/rsos.240432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 08/11/2024] [Indexed: 11/02/2024]
Abstract
Tight homeostatic control of cholesterol concentration within the complex tissue microenvironment of the retina is the hallmark of a healthy eye. By contrast, dysregulation of biochemical mechanisms governing retinal cholesterol homeostasis likely contributes to the aetiology and progression of age-related macular degeneration (AMD). While the signalling mechanisms maintaining cellular cholesterol homeostasis are well-studied, a systems-level description of molecular interactions regulating cholesterol balance within the human retina remains elusive. Here, we provide a comprehensive overview of all currently-known molecular-level interactions involved in cholesterol regulation across the major compartments of the human retina, encompassing the retinal pigment epithelium (RPE), photoreceptor cell layer, Müller cell layer and Bruch's membrane. We develop a comprehensive chemical reaction network (CRN) of these interactions, involving 71 molecular species, partitioned into 10 independent subnetworks. These subnetworks collectively ensure robust homeostasis of 14 forms of cholesterol across distinct retinal cellular compartments. We provide mathematical evidence that three independent antithetic integral feedback controllers tightly regulate ER cholesterol in retinal cells, with additional independent mechanisms extending this regulation to other forms of cholesterol throughout the retina. Our novel mathematical model of retinal cholesterol regulation provides a framework for understanding the mechanisms of cholesterol dysregulation in diseased eyes and for exploring potential therapeutic strategies.
Collapse
Affiliation(s)
- Ronél Scheepers
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane4000, Australia
| | - Noa L. Levi
- School of Mathematics and Statistics, University of Melbourne, Victoria3010, Australia
| | - Robyn P. Araujo
- School of Mathematics and Statistics, University of Melbourne, Victoria3010, Australia
| |
Collapse
|
42
|
de Oliveira Figueiredo EC, Bucolo C, Eandi CM. Therapeutic innovations for geographic atrophy: A promising horizon. Curr Opin Pharmacol 2024; 78:102484. [PMID: 39243634 DOI: 10.1016/j.coph.2024.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
This mini review spotlights the most promising treatments for geographic atrophy, the advanced form of age-related macular degeneration, often resulting in severe and irreversible vision loss. The pathophysiology is complex, and various therapeutic strategies, including anticomplement therapies, gene therapies, cell-based interventions, and artificial intelligence-driven diagnostics are discussed. Anticomplement therapies (antifactors C3 and C5) showed promise in reducing the inflammatory response and the progression of the atrophy. Gene therapies, targeting specific genetic mutations, are under development to correct underlying defects and potentially reverse disease progression. Cell-based therapies are gaining momentum, with early studies indicating encouraging results in the replacement of damaged retinal pigment epithelium cells.
Collapse
Affiliation(s)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Chiara M Eandi
- Hôpital Ophtalmique Jules-Gonin, Fondation Asile des Aveugles, Lausanne, Switzerland; Department of Surgical Science, University of Torino, Torino, Italy.
| |
Collapse
|
43
|
Zou Y, Jiang J, Li Y, Ding X, Fang F, Chen L. Quercetin Regulates Microglia M1/M2 Polarization and Alleviates Retinal Inflammation via ERK/STAT3 Pathway. Inflammation 2024; 47:1616-1633. [PMID: 38411775 DOI: 10.1007/s10753-024-01997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Retinal inflammation is a pivotal characteristic observed in various retinal degenerative disorders, notably age-related macular degeneration (AMD), primarily orchestrated by the activation of microglia. Targeting the inhibition of microglial activation has emerged as a therapeutic focal point. Quercetin (Qu), ubiquitously present in dietary sources and tea, has garnered attention for its anti-neuroinflammatory properties. However, the impact of Qu on retinal inflammation and the associated mechanistic pathways remains incompletely elucidated. In this study, retinal inflammation was induced in adult male C57BL/6 J mice through intraperitoneal administration of LPS. The results revealed that Qu pre-treatment induces a phenotypic shift in microglia from M1 phenotype to M2 phenotype. Furthermore, Qu attenuated retinal inflammation and stabilized the integrity of the blood-retina barrier (BRB). In vitro experiments revealed that Qu impedes microglial activation, proliferation, and migration, primarily via modulation the ERK/STAT3 signaling pathway. Notably, these actions of Qu significantly contributed to the preservation of photoreceptors. Consequently, Qu pre-treatment holds promise as an effective strategy for controlling retinal inflammation and preserving visual function.
Collapse
Affiliation(s)
- Yue Zou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, China NHC Key Laboratory of Myopia (Fudan University) Key Laboratory of Myopia Chinese Academy of Medical Sciences, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Junliang Jiang
- Department of Orthopedics & Traumatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Yunqin Li
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Xinyi Ding
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, China NHC Key Laboratory of Myopia (Fudan University) Key Laboratory of Myopia Chinese Academy of Medical Sciences, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Fang Fang
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Ling Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, China NHC Key Laboratory of Myopia (Fudan University) Key Laboratory of Myopia Chinese Academy of Medical Sciences, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China.
| |
Collapse
|
44
|
Miyatani T, Tanaka H, Numa K, Uehara A, Otsuki Y, Hamuro J, Kinoshita S, Sotozono C. Clustered ARPE-19 cells distinct in mitochondrial membrane potential may play a pivotal role in cell differentiation. Sci Rep 2024; 14:22391. [PMID: 39333742 PMCID: PMC11436949 DOI: 10.1038/s41598-024-73145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Age-related macular degeneration (AMD) is associated with the dysfunction and degeneration of retinal pigment epithelium (RPE) cells. Here, we examined how the formation and expansions of cell clusters are regulated by the differentiation of the RPE cells. In this study, ARPE-19 cells were cultivated in standard or differentiation media, i.e., without or with nicotinamide, to evaluate the spreading of cell clusters specified with differentiated cell phenotypes. Mitochondria membrane potential (MMP) and the distribution of the RPE cell clusters was also monitored with or without rotenone, a mitochondrial electron transport chain (ETC) complex I inhibitor. Cultured ARPE-19 cells generated scattered cell clusters composed mostly of smaller size cells expressing the differentiation markers mouse anti-cellular retinaldehyde-binding protein (CRALBP) and Bestrophin only in differentiation medium. After the increase of the number of clusters, the clusters appeared to paracellularly merge, resulting in expansion of the area occupied by the clusters. Of note, the cells within the clusters selectively had high MMP and were in accordance with the expression of RPE differentiation markers. Rotenone repressed the formation of the clusters and decreased intracellular MMP. The above results suggest that clustering of RPE cells with functional mitochondria plays a pivotal role in RPE cell differentiation process and the ETC complex I inhibition greatly influences the composition of RPE cells that are degenerated or differentiation disposed.
Collapse
Affiliation(s)
- Takafumi Miyatani
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Hiroshi Tanaka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan.
| | - Kosaku Numa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Asako Uehara
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Yohei Otsuki
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Junji Hamuro
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| |
Collapse
|
45
|
García-Llorca A, Eysteinsson T. The Microphthalmia-Associated Transcription Factor (MITF) and Its Role in the Structure and Function of the Eye. Genes (Basel) 2024; 15:1258. [PMID: 39457382 PMCID: PMC11508060 DOI: 10.3390/genes15101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The microphthalmia-associated transcription factor (Mitf) has been found to play an important role in eye development, structure, and function. The Mitf gene is responsible for controlling cellular processes in a range of cell types, contributing to multiple eye development processes. In this review, we survey what is now known about the impact of Mitf on eye structure and function in retinal disorders. Several mutations in the human and mouse Mitf gene are now known, and the effects of these on eye phenotype are addressed. We discuss the importance of Mitf in regulating ion transport across the retinal pigment epithelium (RPE) and the vasculature of the eye. METHODS The literature was searched using the PubMed, Scopus, and Google Scholar databases. Fundus and Optical Coherence Tomography (OCT) images from mice were obtained with a Micron IV rodent imaging system. RESULTS Defects in neural-crest-derived melanocytes resulting from any Mitf mutations lead to hypopigmentation in the eye, coat, and inner functioning of the animals. While many Mitf mutations target RPE cells in the eye, fewer impact osteoclasts at the same time. Some of the mutations in mice lead to microphthalmia, and ultimately vision loss, while other mice show a normal eye size; however, the latter, in some cases, show hypopigmentation in the fundus and the choroid is depigmented and thickened, and in rare cases Mitf mutations lead to progressive retinal degeneration. CONCLUSIONS The Mitf gene has an impact on the structure and function of the retina and its vasculature, the RPE, and the choroid in the adult eye.
Collapse
Affiliation(s)
- Andrea García-Llorca
- Department of Physiology, Biomedical Center, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland;
| | - Thor Eysteinsson
- Department of Physiology, Biomedical Center, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland;
- Department of Ophthalmology, Biomedical Center, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
| |
Collapse
|
46
|
Guan JX, Wang YL, Wang JL. How Advanced are Nanocarriers for Effective Subretinal Injection? Int J Nanomedicine 2024; 19:9273-9289. [PMID: 39282576 PMCID: PMC11401526 DOI: 10.2147/ijn.s479327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Subretinal injection (SR injection) is a commonly used method of ocular drug delivery and has been mainly applied for the treatment of neovascular age-associated macular degeneration (nAMD) and sub-macular hemorrhage (SMH) caused by nAMD, as well as various types of hereditary retinopathies (IRD) such as Stargardt's disease (STGD), retinitis pigmentosa (RP), and a series of fundus diseases such as Leber's congenital dark haze (LCA), choroidal defects, etc. The commonly used carriers of SR injection are mainly divided into viral and non-viral vectors. Leber's congenital amaurosis (LCA), choroidal agenesis, and a series of other fundus diseases are also commonly treated using SR injection. The commonly used vectors for SR injection are divided into two categories: viral vectors and non-viral vectors. Viral vectors are a traditional class of SR injection drug carriers that have been extensively studied in clinical treatment, but they still have many limitations that cannot be ignored, such as poor reproduction efficiency, small loading genes, and triggering of immune reactions. With the rapid development of nanotechnology in the treatment of ocular diseases, nanovectors have become a research hotspot in the field of non-viral vectors. Nanocarriers have numerous attractive properties such as low immunogenicity, robust loading capacity, stable structure, and easy modification. These valuable features imply greater safety, improved therapeutic efficacy, longer duration, and more flexible indications. In recent years, there has been a growing interest in nanocarriers, which has led to significant advancements in the treatment of ocular diseases. Nanocarriers have not only successfully addressed clinical problems that viral vectors have failed to overcome but have also introduced new therapeutic possibilities for certain classical disease types. Nanocarriers offer undeniable advantages over viral vectors. This review discusses the advantages of subretinal (SR) injection, the current status of research, and the research hotspots of gene therapy with viral vectors. It focuses on the latest progress of nanocarriers in SR injection and enumerates the limitations and future perspectives of nanocarriers in the treatment of fundus lesions. Furthermore, this review also covers the research progress of nanocarriers in the field of subretinal injection and highlights the value of nanocarrier-mediated SR injection in the treatment of fundus disorders. Overall, it provides a theoretical basis for the application of nanocarriers in SR injection.
Collapse
Affiliation(s)
- Jia-Xin Guan
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
47
|
Pattanaik DK, Lakshminarayanan V, Sharma NK, Sahu AP. Leading edge of the a-wave of the electroretinogram and sodium iodate-induced age-related macular degeneration: A model. J Theor Biol 2024; 592:111879. [PMID: 38909882 DOI: 10.1016/j.jtbi.2024.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/12/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Iron-induced oxidative stress was thought to be the reason why the a-wave amplitude of the electroretinogram (ERG) dropped when iron ions were present. It is assumed that reactive oxygen species (ROS) are generated in the presence of iron ions, and this leads to a decrease in hyperpolarization of the photoreceptor. It is known that in age-related macular degeneration (AMD), sodium iodate can induce oxidative stress, apoptosis, and retinal damage, which mimic the effects of clinical AMD. Here, the reduction of the a-wave amplitude in mice with sodium iodate-induced age-related macular degeneration is explained. METHODS The leading edge of the a-wave is divided into voltages developed by cones and rods. The same oxidative stress model is applied here since sodium iodate causes the creation of ROS in a manner similar to that caused by iron ions, with the exception that the retina is treated as a circuit of various resistances when computing the photoresponse. Moreover, sodium iodate also leads to apoptosis and, hence, may cause misalignment in cones (not in rods) during the initial stage of apoptosis in AMD. To include the effects of apoptosis and shortening in cones and rods, we have used a factor representing the fraction of total cones and rods that are alive. To include the effect of misalignment of cones on the reduction of the a-wave amplitude, we have used the Stiles-Crawford function to calculate the number of photoisomerizations occurring in a photoreceptor misaligned at an angle θ. The results are compared with experimental data. RESULTS In sodium iodate-treated eyes, the ROS produced can attract calcium ions in the photoreceptor, which increases the calcium influx. In the case of the cones, the inclusion of the misalignment angle in the phototransduction process helps in determining the voltage and slope of the voltage vs. time graph.The smaller the fraction of active photoreceptors, the smaller the amplitude of the a-wave. The calcium influx, misaligned photoreceptors, and total photoreceptor loss all cause the amplitude of the a-wave to decrease, and at any time from the beginning of phototransduction cascade, the calcium influx causes the slope of the a-wave to increase. CONCLUSION The reduction in the a-wave amplitude in the eyes of sodium iodate-treated mice is attributed to oxidative stress in both cones and rods and cone misalignment, which ultimately lead to apoptosis and vision loss in AMD.
Collapse
Affiliation(s)
| | - Vasudevan Lakshminarayanan
- School of Optometry and Vision Science and Departments of Physics, Electrical and Computer Engineering and System Design Engineering, University of Waterloo, Waterloo, Canada.
| | | | - Amir Prasad Sahu
- Centurion University of Technology and Management, Bhubaneswar, OR, India.
| |
Collapse
|
48
|
Napoli D, Orsini N, Salamone G, Calvello MA, Capsoni S, Cattaneo A, Strettoi E. Human NGF "Painless" Ocular Delivery for Retinitis Pigmentosa: An In Vivo Study. eNeuro 2024; 11:ENEURO.0096-24.2024. [PMID: 39293937 PMCID: PMC11412101 DOI: 10.1523/eneuro.0096-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 09/20/2024] Open
Abstract
Retinitis pigmentosa (RP) is a family of genetically heterogeneous diseases still without a cure. Despite the causative genetic mutation typically not expressed in cone photoreceptors, these cells inevitably degenerate following the primary death of rods, causing blindness. The reasons for the "bystander" degeneration of cones are presently unknown but decrement of survival factors, oxidative stress, and inflammation all play a role. Targeting these generalized biological processes represents a strategy to develop mutation-agnostic therapies for saving vision in large populations of RP individuals. A classical method to support neuronal survival is by employing neurotrophic factors, such as NGF. This study uses painless human NGF (hNGFp), a TrkA receptor-biased variant of the native molecule with lower affinity for nociceptors and limited activity as a pain inducer; the molecule has identical neurotrophic power of the native form but a reduced affinity for the p75NTR receptors, known to trigger apoptosis. hNGFp has a recognized activity on brain microglial cells, which are induced to a phenotype switch from a highly activated to a more homeostatic configuration. hNGFp was administered to RP-like mice in vivo with the aim of decreasing retinal inflammation and also providing retinal neuroprotection. However, the ability of this treatment to counteract the bystander degeneration of cones remained limited.
Collapse
Affiliation(s)
- Debora Napoli
- CNR Neuroscience Institute, Pisa 56124, Italy
- Regional Doctorate School in Neuroscience, University of Florence, Italy
| | - Noemi Orsini
- CNR Neuroscience Institute, Pisa 56124, Italy
- Regional Doctorate School in Neuroscience, University of Florence, Italy
| | | | | | - Simona Capsoni
- Section of Human Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- Rita Levi-Montalcini European Brain Research Institute (EBRI), Roma 00161, Italy
| | | |
Collapse
|
49
|
Pollalis D, Nair GKG, Leung J, Bloemhof CM, Bailey JK, Pennington BO, Kelly KR, Khan AI, Yeh AK, Sundaram KS, Clegg DO, Peng CC, Xu L, Georgescu C, Wren JD, Lee SY. Dynamics of microRNA secreted via extracellular vesicles during the maturation of embryonic stem cell-derived retinal pigment epithelium. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70001. [PMID: 39281021 PMCID: PMC11393772 DOI: 10.1002/jex2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/18/2024]
Abstract
Retinal pigment epithelial (RPE) cells are exclusive to the retina, critically multifunctional in maintaining the visual functions and health of photoreceptors and the retina. Despite their vital functions throughout lifetime, RPE cells lack regenerative capacity, rendering them vulnerable which can lead to degenerative retinal diseases. With advancements in stem cell technology enabling the differentiation of functional cells from pluripotent stem cells and leveraging the robust autocrine and paracrine functions of RPE cells, extracellular vesicles (EVs) secreted by RPE cells hold significant therapeutic potential in supplementing RPE cell activity. While previous research has primarily focused on the trophic factors secreted by RPE cells, there is a lack of studies investigating miRNA, which serves as a master regulator of gene expression. Profiling and defining the functional role of miRNA contained within RPE-secreted EVs is critical as it constitutes a necessary step in identifying the optimal phenotype of the EV-secreting cell and understanding the biological cargo of EVs to develop EV-based therapeutics. In this study, we present a comprehensive profile of miRNA in small extracellular vesicles (sEVs) secreted during RPE maturation following differentiation from human embryonic stem cells (hESCs); early-stage hESC-RPE (20-21 days in culture), mid-stage hESC-RPE (30-31 days in culture) and late-stage hESC-RPE (60-61 days in culture). This exploration is essential for ongoing efforts to develop and optimize EV-based intraocular therapeutics utilizing RPE-secreted EVs, which may significantly impact the function of dysfunctional RPE cells in retinal diseases.
Collapse
Affiliation(s)
- Dimitrios Pollalis
- USC Roski Eye Institute, Keck School of Medicine University of Southern California Los Angeles California USA
- USC Ginsburg Institute for Biomedical Therapeutics University of Southern California Los Angeles California USA
| | - Gopa Kumar Gopinadhan Nair
- USC Roski Eye Institute, Keck School of Medicine University of Southern California Los Angeles California USA
- USC Ginsburg Institute for Biomedical Therapeutics University of Southern California Los Angeles California USA
| | - Justin Leung
- USC Roski Eye Institute, Keck School of Medicine University of Southern California Los Angeles California USA
- USC Dornsife College of Letters, Arts and Sciences Los Angeles California USA
| | - Clarisa Marie Bloemhof
- USC Roski Eye Institute, Keck School of Medicine University of Southern California Los Angeles California USA
- University of Southern California Los Angeles California USA
- School of Medicine California University of Science and Medicine Colton California USA
| | - Jeffrey K Bailey
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute University of California Santa Barbara California USA
- Department of Molecular Cellular and Developmental Biology University of California Santa Barbara California USA
| | - Britney O Pennington
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute University of California Santa Barbara California USA
- Department of Molecular Cellular and Developmental Biology University of California Santa Barbara California USA
| | - Kaitlin R Kelly
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute University of California Santa Barbara California USA
- Department of Molecular Cellular and Developmental Biology University of California Santa Barbara California USA
| | - Amir I Khan
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute University of California Santa Barbara California USA
- Department of Molecular Cellular and Developmental Biology University of California Santa Barbara California USA
| | - Ashley K Yeh
- Department of Molecular Cellular and Developmental Biology University of California Santa Barbara California USA
- College of Creative Studies, Biology University of California Santa Barbara California USA
| | - Kartik S Sundaram
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute University of California Santa Barbara California USA
- Biomolecular Science and Engineering University of California Santa Barbara California USA
| | - Dennis O Clegg
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute University of California Santa Barbara California USA
- Department of Molecular Cellular and Developmental Biology University of California Santa Barbara California USA
- Biomolecular Science and Engineering University of California Santa Barbara California USA
| | - Chen-Ching Peng
- USC Roski Eye Institute, Keck School of Medicine University of Southern California Los Angeles California USA
- Children's Hospital Los Angeles Vision Center Los Angeles California USA
| | - Liya Xu
- USC Roski Eye Institute, Keck School of Medicine University of Southern California Los Angeles California USA
- Children's Hospital Los Angeles Vision Center Los Angeles California USA
| | - Constantin Georgescu
- Genes & Human Diseases Research Program Oklahoma Medical Research Foundation Oklahoma City Oklahoma USA
| | - Jonathan D Wren
- Genes & Human Diseases Research Program Oklahoma Medical Research Foundation Oklahoma City Oklahoma USA
| | - Sun Young Lee
- USC Roski Eye Institute, Keck School of Medicine University of Southern California Los Angeles California USA
- USC Ginsburg Institute for Biomedical Therapeutics University of Southern California Los Angeles California USA
- Department of Physiology and Neuroscience, Keck School of Medicine University of Southern California Los Angeles California USA
| |
Collapse
|
50
|
Motipally SI, Kolson DR, Guan T, Kolandaivelu S. Aberrant lipid accumulation and retinal pigment epithelium dysfunction in PRCD-deficient mice. Exp Eye Res 2024; 246:110016. [PMID: 39098587 PMCID: PMC11388538 DOI: 10.1016/j.exer.2024.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Progressive Rod-Cone Degeneration (PRCD) is an integral membrane protein found in photoreceptor outer segment (OS) disc membranes and its function remains unknown. Mutations in Prcd are implicated in Retinitis pigmentosa (RP) in humans and multiple dog breeds. PRCD-deficient models exhibit decreased levels of cholesterol in the plasma. However, potential changes in the retinal cholesterol remain unexplored. In addition, impaired phagocytosis observed in these animal models points to potential deficits in the retinal pigment epithelium (RPE). Here, using a Prcd-/- murine model we investigated the alterations in the retinal cholesterol levels and impairments in the structural and functional integrity of the RPE. Lipidomic and immunohistochemical analyses show a 5-fold increase in the levels of cholesteryl esters (C.Es) and lipid deposits in the PRCD-deficient retina, respectively, indicating alterations in total retinal cholesterol. Furthermore, the RPE of Prcd-/- mice exhibit a 1.7-fold increase in the expression of lipid transporter gene ATP-binding cassette transporter A1 (Abca1). Longitudinal fundus and spectral domain optical coherence tomography (SD-OCT) examinations showed focal lesions and RPE hyperreflectivity. Strikingly, the RPE of Prcd-/- mice exhibited age-related pathological features such as lipofuscin accumulation, Bruch's membrane (BrM) deposits and drusenoid focal deposits, mirroring an Age-related Macular Degeneration (AMD)-like phenotype. We propose that the extensive lipofuscin accumulation likely impairs lysosomal function, leading to the defective phagocytosis observed in Prcd-/- mice. Our findings support the dysregulation of retinal cholesterol homeostasis in the absence of PRCD. Further, we demonstrate that progressive photoreceptor degeneration in Prcd-/- mice is accompanied by progressive structural and functional deficits in the RPE, which likely exacerbates vision loss over time.
Collapse
Affiliation(s)
- Sree I Motipally
- Department of Neuroscience, Rockefeller Neuroscience Institute, 33 Medical Centre Drive, West Virginia University, Morgantown, WV, 26506, USA; Department of Ophthalmology and Visual Sciences, One Medical Center Drive, ERMA 2nd Floor, West Virginia University, Morgantown, WV, 26505-9193, USA
| | - Douglas R Kolson
- Department of Ophthalmology and Visual Sciences, One Medical Center Drive, ERMA 2nd Floor, West Virginia University, Morgantown, WV, 26505-9193, USA
| | - Tongju Guan
- Department of Ophthalmology and Visual Sciences, One Medical Center Drive, ERMA 2nd Floor, West Virginia University, Morgantown, WV, 26505-9193, USA; Department of Biochemistry and Molecular Medicine, 64 Medical Center Drive, West Virginia University, Morgantown, WV, 26505-9193, USA
| | - Saravanan Kolandaivelu
- Department of Ophthalmology and Visual Sciences, One Medical Center Drive, ERMA 2nd Floor, West Virginia University, Morgantown, WV, 26505-9193, USA; Department of Biochemistry and Molecular Medicine, 64 Medical Center Drive, West Virginia University, Morgantown, WV, 26505-9193, USA.
| |
Collapse
|