1
|
Fu S, Pan X, Lu M, Dong J, Yan Z. Human TMC1 and TMC2 are mechanically gated ion channels. Neuron 2024:S0896-6273(24)00834-1. [PMID: 39674179 DOI: 10.1016/j.neuron.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/16/2024]
Abstract
Mammalian transmembrane channel-like proteins 1 and 2 (TMC1 and TMC2) have emerged as very promising candidate mechanotransduction channels in hair cells. However, controversy persists because the heterogeneously expressed TMC1/2 in cultured cells lack evidence of mechanical gating, primarily due to their absence from the plasma membrane. By employing domain swapping with OSCA1.1 and subsequent point mutations, we successfully identified membrane-localized mouse TMC1/2 mutants, demonstrating that they are mechanically gated in heterologous cells. Further, whole-genome CRISPRi screening enabled wild-type human TMC1/2 localization in the plasma membrane, where they responded robustly to poking stimuli. In addition, wild-type human TMC1/2 showed stretch-activated currents and clear single-channel current activities. Deafness-related TMC1 mutations altered the reversal potential of TMC1, indicating that TMC1/2 are pore-forming mechanotransduction channels. In summary, our study provides evidence that human TMC1/2 are pore-forming, mechanically activated ion channels, supporting their roles as mechanotransduction channels in hair cells.
Collapse
Affiliation(s)
- Songdi Fu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China; Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xueqi Pan
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China; Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, China
| | - Mingshun Lu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jianying Dong
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China; Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, China
| | - Zhiqiang Yan
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China; Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, China; Institute for Medical Physiology, Chinese Institutes for Medical Research, Beijing, China.
| |
Collapse
|
2
|
O’Connor AP, Amariutei AE, Zanella A, Hool SA, Carlton AJ, Kong F, Saenz-Roldan M, Jeng JY, Lecomte MJ, Johnson SL, Safieddine S, Marcotti W. In vivo AAV9-Myo7a gene rescue restores hearing and cholinergic efferent innervation in inner hair cells. JCI Insight 2024; 9:e182138. [PMID: 39641274 PMCID: PMC11623941 DOI: 10.1172/jci.insight.182138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024] Open
Abstract
In the mammalian cochlea, sensory hair cells are crucial for the transduction of acoustic stimuli into electrical signals, which are then relayed to the central auditory pathway via spiral ganglion neuron (SGN) afferent dendrites. The SGN output is directly modulated by inhibitory cholinergic axodendritic synapses from the efferent fibers originating in the superior olivary complex. When the adult cochlea is subjected to noxious stimuli or aging, the efferent system undergoes major rewiring, such that it reestablishes direct axosomatic contacts with the inner hair cells (IHCs), which occur only transiently during prehearing stages of development. The trigger, origin, and degree of efferent plasticity in the cochlea remains largely unknown. Using functional and morphological approaches, we demonstrate that efferent plasticity in the adult cochlea occurs as a direct consequence of mechanoelectrical transducer current dysfunction. We also show that, different from prehearing stages of development, the lateral olivocochlear - but not the medial olivocochlear - efferent fibers are those that form the axosomatic synapses with the IHCs. The study also demonstrates that in vivo restoration of IHC function using AAV-Myo7a rescue reestablishes the synaptic profile of adult IHCs and improves hearing, highlighting the potential of using gene-replacement therapy for progressive hearing loss.
Collapse
Affiliation(s)
- Andrew P. O’Connor
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Ana E. Amariutei
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Alice Zanella
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Sarah A. Hool
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Adam J. Carlton
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Fanbo Kong
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Mauricio Saenz-Roldan
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Marie-José Lecomte
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Saaid Safieddine
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Lee C, Shokrian M, Henry KS, Carney LH, Holt JC, Nam JH. Outer hair cells stir cochlear fluids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607009. [PMID: 39149246 PMCID: PMC11326228 DOI: 10.1101/2024.08.07.607009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery. When outer-hair-cell motility was suppressed by salicylate, the facilitation effect was compromised. A low-frequency tone was more effective than broadband noise, especially for drug delivery to apical locations. Computational model simulations provided the physical basis for our observation, which incorporated solute diffusion, fluid advection, fluid-structure interaction, and outer-hair-cell motility. Active outer hair cells deformed the organ of Corti like a peristaltic tube to generate apically streaming flows along the tunnel of Corti and basally streaming flows along the scala tympani. Our measurements and simulations coherently suggest that active outer hair cells in the tail region of cochlear traveling waves drive cochlear fluid circulation.
Collapse
Affiliation(s)
- Choongheon Lee
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, United States
| | - Mohammad Shokrian
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, United States
| | - Kenneth S. Henry
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Laurel H. Carney
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Joseph C. Holt
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Jong-Hoon Nam
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| |
Collapse
|
4
|
Kui L, Ma P, Zhao W, Yan B, Kuang X, Li B, Geng R, Zheng T, Zheng Q. Developmental cochlear defects are involved in early-onset hearing loss in A/J mice. Dev Dyn 2024. [PMID: 39291400 DOI: 10.1002/dvdy.741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND A/J mice exhibited a severe hearing loss (HL) at juvenile stage. Up-to-date, studies on HL in A/J mice have mostly focused on the damage or dysfunction of hair cells (HCs), spiral ganglion neurons (SGNs), and stereocilia. We examined A/J mice at the early postnatal stage and found that the damage and the loss of outer hair cells (OHCs) are not severe enough to explain the profound HL observed at this age, which suggests that other cochlear defects may be responsible for HL. To better understand the mechanisms of early-onset HLin A/J mice, we characterized the pathology of the cochlea from postnatal day 3 to day 21. RESULTS Our results showed defects in cochlear HC stereocilia and MET channel function as early as 3 days old. We also found abnormal localization and a significant reduction in the number of ribbon synapses in 2-week-old A/J mice. There are also abnormalities in the cochlear nerve innervation and terminal swellings in 3-week-old A/J mice. CONCLUSION All of the abnormalities of cochlear existed in the A/J mice were identified in the juvenile stage and occurred before HCs or auditory nerve loss and was the initial pathological change. Our results suggest that developmental defects and subsequent cochlear degeneration are responsible for early-onset hearing loss in A/J mice.
Collapse
Affiliation(s)
- Lihong Kui
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Peng Ma
- Department of Medical Genetics and Cell Biology, Binzhou Medical University, Yantai, China
| | - Wenben Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Bin Yan
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Xiaojing Kuang
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| |
Collapse
|
5
|
Karayay B, Olze H, Szczepek AJ. Mammalian Inner Ear-Resident Immune Cells-A Scoping Review. Cells 2024; 13:1528. [PMID: 39329712 PMCID: PMC11430779 DOI: 10.3390/cells13181528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Several studies have demonstrated the presence of resident immune cells in the healthy inner ear. AIM This scoping review aimed to systematize this knowledge by collecting the data on resident immune cells in the inner ear of different species under steady-state conditions. METHODS The databases PubMed, MEDLINE (Ovid), CINAHL (EBSCO), and LIVIVO were used to identify articles. Systematic reviews, experimental studies, and clinical data in English and German were included without time limitations. RESULTS The search yielded 49 eligible articles published between 1979 and 2022. Resident immune cells, including macrophages, lymphocytes, leukocytes, and mast cells, have been observed in various mammalian inner ear structures under steady-state conditions. However, the physiological function of these cells in the healthy cochlea remains unclear, providing an opportunity for basic research in inner ear biology. CONCLUSIONS This review highlights the need for further investigation into the role of these cells, which is crucial for advancing the development of therapeutic methods for treating inner ear disorders, potentially transforming the field of otolaryngology and immunology.
Collapse
Affiliation(s)
- Betül Karayay
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
- Faculty of Medicine and Health Sciences, University of Zielona Góra, 65-046 Zielona Góra, Poland
| |
Collapse
|
6
|
Aguilar C, Williams D, Kurapati R, Bains RS, Mburu P, Parker A, Williams J, Concas D, Tateossian H, Haynes AR, Banks G, Vikhe P, Heise I, Hutchison M, Atkins G, Gillard S, Starbuck B, Oliveri S, Blake A, Sethi S, Kumar S, Bardhan T, Jeng JY, Johnson SL, Corns LF, Marcotti W, Simon M, Wells S, Potter PK, Lad HV. Pleiotropic brain function of whirlin identified by a novel mutation. iScience 2024; 27:110170. [PMID: 38974964 PMCID: PMC11225360 DOI: 10.1016/j.isci.2024.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Despite some evidence indicating diverse roles of whirlin in neurons, the functional corollary of whirlin gene function and behavior has not been investigated or broadly characterized. A single nucleotide variant was identified from our recessive ENU-mutagenesis screen at a donor-splice site in whirlin, a protein critical for proper sensorineural hearing function. The mutation (head-bob, hb) led to partial intron-retention causing a frameshift and introducing a premature termination codon. Mutant mice had a head-bobbing phenotype and significant hyperactivity across several phenotyping tests. Lack of complementation of head-bob with whirler mutant mice confirmed the head-bob mutation as functionally distinct with compound mutants having a mild-moderate hearing defect. Utilizing transgenics, we demonstrate rescue of the hyperactive phenotype and combined with the expression profiling data conclude whirlin plays an essential role in activity-related behaviors. These results highlight a pleiotropic role of whirlin within the brain and implicate alternative, central mediated pathways in its function.
Collapse
Affiliation(s)
- Carlos Aguilar
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Debbie Williams
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Ramakrishna Kurapati
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Rasneer S. Bains
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Philomena Mburu
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Andy Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Jackie Williams
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Danilo Concas
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Hilda Tateossian
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Andrew R. Haynes
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Gareth Banks
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Pratik Vikhe
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Ines Heise
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Marie Hutchison
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Gemma Atkins
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Simon Gillard
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Becky Starbuck
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Simona Oliveri
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Andrew Blake
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Siddharth Sethi
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Saumya Kumar
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Tanaya Bardhan
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Lara F. Corns
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Michelle Simon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Sara Wells
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Paul K. Potter
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Heena V. Lad
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| |
Collapse
|
7
|
Lee V, Hinton BT, Hirashima T. Collective cell dynamics and luminal fluid flow in the epididymis: A mechanobiological perspective. Andrology 2024; 12:939-948. [PMID: 37415418 PMCID: PMC11278975 DOI: 10.1111/andr.13490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND The mammalian epididymis is a specialized duct system that serves a critical role in sperm maturation and storage. Its distinctive, highly coiled tissue morphology provides a unique opportunity to investigate the link between form and function in reproductive biology. Although recent genetic studies have identified key genes and signaling pathways involved in the development and physiological functions of the epididymis, there has been limited discussion about the underlying dynamic and mechanical processes that govern these phenomena. AIMS In this review, we aim to address this gap by examining two key aspects of the epididymis across its developmental and physiological phases. RESULTS AND DISCUSSION First, we discuss how the complex morphology of the Wolffian/epididymal duct emerges through collective cell dynamics, including duct elongation, cell proliferation, and arrangement during embryonic development. Second, we highlight dynamic aspects of luminal fluid flow in the epididymis, essential for regulating the microenvironment for sperm maturation and motility, and discuss how this phenomenon emerges and interplays with epididymal epithelial cells. CONCLUSION This review not only aims to summarize current knowledge but also to provide a starting point for further exploration of mechanobiological aspects related to the cellular and extracellular fluid dynamics in the epididymis.
Collapse
Affiliation(s)
- Veronica Lee
- Mechanobiology, Institute, National University of Singapore, Singapore, Singapore
| | - Barry T. Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Tsuyoshi Hirashima
- Mechanobiology, Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Pedro De-la-Torre, Wen H, Brower J, Martínez-Pérez K, Narui Y, Yeh F, Hale E, Ivanchenko MV, Corey DP, Sotomayor M, Indzhykulian AA. Elasticity and Thermal Stability are Key Determinants of Hearing Rescue by Mini-Protocadherin-15 Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599132. [PMID: 38948700 PMCID: PMC11212938 DOI: 10.1101/2024.06.16.599132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Protocadherin-15 is a core protein component of inner-ear hair-cell tip links pulling on transduction channels essential for hearing and balance. Protocadherin-15 defects can result in non-syndromic deafness or Usher syndrome type 1F (USH1F) with hearing loss, balance deficits, and progressive blindness. Three rationally engineered shortened versions of protocadherin-15 (mini-PCDH15s) amenable for gene therapy have been used to rescue function in USH1F mouse models. Two can successfully or partially rescue hearing, while another one fails. Here we show that despite varying levels of hearing rescue, all three mini-PCDH15 versions can rescue hair-cell mechanotransduction. Negative-stain electron microscopy shows that all three versions form dimers like the wild-type protein, while crystal structures of some engineered fragments show that these can properly fold and bind calcium ions essential for function. In contrast, simulations predict distinct elasticities and nano differential scanning fluorimetry shows differences in melting temperature measurements. Our data suggest that elasticity and thermal stability are key determinants of sustained hearing rescue by mini-PCDH15s.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
| | - Haosheng Wen
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
- Biophysics Program, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
| | - Joseph Brower
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
| | - Karina Martínez-Pérez
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Biology Program, Department of Basic Sciences, Universidad del Atlántico, Cra 30 # 8-49, Puerto Colombia, 081007, Colombia
| | - Yoshie Narui
- Center for Electron Microscopy and Analysis, The Ohio State University, 1275-1305 Kinnear Road, Columbus, OH, USA
| | - Frank Yeh
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
| | - Evan Hale
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Speech and Hearing Biosciences and Technology graduate program, Harvard University, Cambridge, MA, USA
| | - Maryna V. Ivanchenko
- Department of Neurobiology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - David P. Corey
- Department of Neurobiology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
- Biophysics Program, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
| | - Artur A. Indzhykulian
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Speech and Hearing Biosciences and Technology graduate program, Harvard University, Cambridge, MA, USA
| |
Collapse
|
9
|
Melrose J. Keratan sulfate, an electrosensory neurosentient bioresponsive cell instructive glycosaminoglycan. Glycobiology 2024; 34:cwae014. [PMID: 38376199 PMCID: PMC10987296 DOI: 10.1093/glycob/cwae014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
The roles of keratan sulfate (KS) as a proton detection glycosaminoglycan in neurosensory processes in the central and peripheral nervous systems is reviewed. The functional properties of the KS-proteoglycans aggrecan, phosphacan, podocalyxcin as components of perineuronal nets in neurosensory processes in neuronal plasticity, cognitive learning and memory are also discussed. KS-glycoconjugate neurosensory gels used in electrolocation in elasmobranch fish species and KS substituted mucin like conjugates in some tissue contexts in mammals need to be considered in sensory signalling. Parallels are drawn between KS's roles in elasmobranch fish neurosensory processes and its roles in mammalian electro mechanical transduction of acoustic liquid displacement signals in the cochlea by the tectorial membrane and stereocilia of sensory inner and outer hair cells into neural signals for sound interpretation. The sophisticated structural and functional proteins which maintain the unique high precision physical properties of stereocilia in the detection, transmittance and interpretation of acoustic signals in the hearing process are important. The maintenance of the material properties of stereocilia are essential in sound transmission processes. Specific, emerging roles for low sulfation KS in sensory bioregulation are contrasted with the properties of high charge density KS isoforms. Some speculations are made on how the molecular and electrical properties of KS may be of potential application in futuristic nanoelectronic, memristor technology in advanced ultrafast computing devices with low energy requirements in nanomachines, nanobots or molecular switches which could be potentially useful in artificial synapse development. Application of KS in such innovative areas in bioregulation are eagerly awaited.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
10
|
Segeritz P, Kolesnik K, Scott DJ, Collins DJ. Quantitative mechanical stimulation of GPR68 using a novel 96 well flow plugin. LAB ON A CHIP 2024; 24:1616-1625. [PMID: 38288761 DOI: 10.1039/d3lc00767g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Mechanosensitive proteins play a crucial role in a range of physiological processes, including hearing, tactile sensation and regulating blood flow. While previous work has demonstrated the mechanosensitivity of several proteins, the ability to apply precisely defined mechanical forces to cells in a consistent, replicable manner remains a significant challenge. In this work we present a novel 96-well plate-compatible plugin device for generating highly-controlled flow-based mechanical simulation of cells, which enables quantitative assessment of mechanosensitive protein function. The device is used to mechanically stimulate HEK 293T cells expressing the mechanosensitive protein GPR68, a G protein-coupled receptor. By assaying intracellular calcium levels during flow-based cell stimulation, we determine that GPR68 signalling is a function of the applied shear-force. As this approach is compatible with conventional cell culture plates and allows for simultaneous readout in a conventional fluorescence plate reader, this represents a valuable new tool to investigate mechanotransduction.
Collapse
Affiliation(s)
- Philipp Segeritz
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia.
| | - Kirill Kolesnik
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia.
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
11
|
Strimbu CE, Chiriboga LA, Frost BL, Olson ES. Regional differences in cochlear nonlinearity across the basal organ of Corti of gerbil: Regional differences in cochlear nonlinearity. Hear Res 2024; 443:108951. [PMID: 38277880 PMCID: PMC10922790 DOI: 10.1016/j.heares.2024.108951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Auditory sensation is based in nanoscale vibration of the sensory tissue of the cochlea, the organ of Corti complex (OCC). Motion within the OCC is now observable due to optical coherence tomography. In a previous study (Cooper et al., 2018), the region that includes the electro-motile outer hair cells (OHC) and Deiters cells (DC) was observed to move with larger amplitude than the basilar membrane (BM) and surrounding regions and was termed the "hotspot." In addition to this quantitative distinction, the hotspot moved qualitatively differently than the BM, in that its motion scaled nonlinearly with stimulus level at all frequencies, evincing sub-BF activity. Sub-BF activity enhances non-BF motion; thus the frequency tuning of the OHC/DC region was reduced relative to the BM. In this work we further explore the motion of the gerbil basal OCC and find that regions that lack significant sub-BF activity include the BM, the medial and lateral OCC, and the reticular lamina (RL) region. The observation that the RL region does not move actively sub-BF (already observed in Cho and Puria 2022), suggests that hair cell stereocilia are not exposed to sub-BF activity in the cochlear base. The observation that the lateral and RL regions move approximately linearly sub-BF indicates that linear forces dominate non-linear OHC-based forces on these components at sub-BF frequencies. A complex difference analysis was performed to reveal the internal motion of the OHC/DC region and showed that amplitude structure and phase shifts in the directly measured OHC/DC motion emerge due to the internal OHC/DC motion destructively interfering with BM motion.
Collapse
Affiliation(s)
- C Elliott Strimbu
- Department of Otolaryngology, Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 630 West 168th Street, New York City, NY 10032, USA
| | - Lauren A Chiriboga
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York City, NY 10027, USA
| | - Brian L Frost
- Department of Electrical Engineering, Columbia University, 500 West 120th Street, New York City, NY 10027, USA
| | - Elizabeth S Olson
- Department of Otolaryngology, Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, 630 West 168th Street, New York City, NY 10032, USA; Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York City, NY 10027, USA.
| |
Collapse
|
12
|
Shokrian M, Kelley D, Nam JH. Advective mass transport along the cochlear coil. AIP CONFERENCE PROCEEDINGS 2024; 3062:020004. [PMID: 39583090 PMCID: PMC11584059 DOI: 10.1063/5.0189936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Mammalian auditory epithelium (the organ of Corti) stands out among different inner-ear epithelia in that it has large extracellular fluid spaces such as the tunnel of Corti, Nuel's space, outer tunnel, and spacing between outer hair cells. We tested the hypothesis that advective flow facilitates mass transport in the cochlear fluids, using computational simulations of cochlear fluid dynamics and ex vivo experiments to investigate mass transport in extracellular fluid spaces of the cochlea. Three model simulations were performed in series-cochlear mechanics, nonlinear fluid dynamics, and mass transport. In nonlinear fluid dynamics, we incorporated convection terms for more accurate computation of drift flow. For mass transport, both diffusion and advection were considered. For experiments, we measured vibrations of excised cochlear turns using optical coherence tomography. The excised OoC was subjected to acoustic and electrical stimulations.
Collapse
Affiliation(s)
- Mohammad Shokrian
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, United States
| | - Douglas Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, United States
| | - Jong-Hoon Nam
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
13
|
Clark S, Jeong H, Posert R, Goehring A, Gouaux E. The structure of the Caenorhabditis elegans TMC-2 complex suggests roles of lipid-mediated subunit contacts in mechanosensory transduction. Proc Natl Acad Sci U S A 2024; 121:e2314096121. [PMID: 38354260 PMCID: PMC10895266 DOI: 10.1073/pnas.2314096121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Mechanotransduction is the process by which a mechanical force, such as touch, is converted into an electrical signal. Transmembrane channel-like (TMC) proteins are an evolutionarily conserved family of membrane proteins whose function has been linked to a variety of mechanosensory processes, including hearing and balance sensation in vertebrates and locomotion in Drosophila. TMC1 and TMC2 are components of ion channel complexes, but the molecular features that tune these complexes to diverse mechanical stimuli are unknown. Caenorhabditis elegans express two TMC homologs, TMC-1 and TMC-2, both of which are the likely pore-forming subunits of mechanosensitive ion channels but differ in their expression pattern and functional role in the worm. Here, we present the single-particle cryo-electron microscopy structure of the native TMC-2 complex isolated from C. elegans. The complex is composed of two copies of the pore-forming TMC-2 subunit, the calcium and integrin binding protein CALM-1 and the transmembrane inner ear protein TMIE. Comparison of the TMC-2 complex to the recently published cryo-EM structure of the C. elegans TMC-1 complex highlights conserved protein-lipid interactions, as well as a π-helical structural motif in the pore-forming helices, that together suggest a mechanism for TMC-mediated mechanosensory transduction.
Collapse
Affiliation(s)
- Sarah Clark
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
| | - Hanbin Jeong
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
| | - Rich Posert
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
| | - April Goehring
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
- HHMI, Oregon Health and Science University, Portland, OR97239
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
- HHMI, Oregon Health and Science University, Portland, OR97239
| |
Collapse
|
14
|
Arjmandi MK, Behroozmand R. On the interplay between speech perception and production: insights from research and theories. Front Neurosci 2024; 18:1347614. [PMID: 38332858 PMCID: PMC10850291 DOI: 10.3389/fnins.2024.1347614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
The study of spoken communication has long been entrenched in a debate surrounding the interdependence of speech production and perception. This mini review summarizes findings from prior studies to elucidate the reciprocal relationships between speech production and perception. We also discuss key theoretical perspectives relevant to speech perception-production loop, including hyper-articulation and hypo-articulation (H&H) theory, speech motor theory, direct realism theory, articulatory phonology, the Directions into Velocities of Articulators (DIVA) and Gradient Order DIVA (GODIVA) models, and predictive coding. Building on prior findings, we propose a revised auditory-motor integration model of speech and provide insights for future research in speech perception and production, focusing on the effects of impaired peripheral auditory systems.
Collapse
Affiliation(s)
- Meisam K. Arjmandi
- Translational Auditory Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Speech, Language, and Hearing, Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
15
|
Beurg M, Schwalbach ET, Fettiplace R. LHFPL5 is a key element in force transmission from the tip link to the hair cell mechanotransducer channel. Proc Natl Acad Sci U S A 2024; 121:e2318270121. [PMID: 38194445 PMCID: PMC10801851 DOI: 10.1073/pnas.2318270121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
During auditory transduction, sound-evoked vibrations of the hair cell stereociliary bundles open mechanotransducer (MET) ion channels via tip links extending from one stereocilium to its neighbor. How tension in the tip link is delivered to the channel is not fully understood. The MET channel comprises a pore-forming subunit, transmembrane channel-like protein (TMC1 or TMC2), aided by several accessory proteins, including LHFPL5 (lipoma HMGIC fusion partner-like 5). We investigated the role of LHFPL5 in transduction by comparing MET channel activation in outer hair cells of Lhfpl5-/- knockout mice with those in Lhfpl5+/- heterozygotes. The 10 to 90 percent working range of transduction in Tmc1+/+; Lhfpl5+/- was 52 nm, from which the single-channel gating force, Z, was evaluated as 0.34 pN. However, in Tmc1+/+; Lhfpl5-/- mice, the working range increased to 123 nm and Z more than halved to 0.13 pN, indicating reduced sensitivity. Tip link tension is thought to activate the channel via a gating spring, whose stiffness is inferred from the stiffness change on tip link destruction. The gating stiffness was ~40 percent of the total bundle stiffness in wild type but was virtually abolished in Lhfpl5-/-, implicating LHFPL5 as a principal component of the gating spring. The mutation Tmc1 p.D569N reduced the LHFPL5 immunolabeling in the stereocilia and like Lhfpl5-/- doubled the MET working range, but other deafness mutations had no effect on the dynamic range. We conclude that tip-link tension is transmitted to the channel primarily via LHFPL5; residual activation without LHFPL5 may occur by direct interaction between PCDH15 and TMC1.
Collapse
Affiliation(s)
- Maryline Beurg
- Department of Neuroscience, University of WisconsinSchool of Medicine and Public Health, Madison, WI53706
| | - Evan Travis Schwalbach
- Department of Neuroscience, University of WisconsinSchool of Medicine and Public Health, Madison, WI53706
| | - Robert Fettiplace
- Department of Neuroscience, University of WisconsinSchool of Medicine and Public Health, Madison, WI53706
| |
Collapse
|
16
|
Qi J, Tan F, Zhang L, Zhou Y, Zhang Z, Sun Q, Li N, Fang Y, Chen X, Wu Y, Zhong G, Chai R. Critical role of TPRN rings in the stereocilia for hearing. Mol Ther 2024; 32:204-217. [PMID: 37952086 PMCID: PMC10787140 DOI: 10.1016/j.ymthe.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/29/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Inner ear hair cells detect sound vibration through the deflection of mechanosensory stereocilia. Cytoplasmic protein TPRN has been shown to localize at the taper region of the stereocilia, and mutations in TPRN cause hereditary hearing loss through an unknown mechanism. Here, using biochemistry and dual stimulated emission depletion microscopy imaging, we show that the TPRN, together with its binding proteins CLIC5 and PTPRQ, forms concentric rings in the taper region of stereocilia. The disruption of TPRN rings, triggered by the competitive inhibition of the interaction of TPRN and CLIC5 or exogenous TPRN overexpression, leads to stereocilia degeneration and severe hearing loss. Most importantly, restoration of the TPRN rings can rescue the damaged auditory function of Tprn knockout mice by exogenously expressing TPRN at an appropriate level in HCs via promoter recombinant adeno-associated virus (AAV). In summary, our results reveal highly structured TPRN rings near the taper region of stereocilia that are crucial for stereocilia function and hearing. Also, TPRN ring restoration in stereocilia by AAV-Tprn effectively repairs damaged hearing, which lays the foundation for the clinical application of AAV-mediated gene therapy in patients with TPRN mutation.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China.
| | - Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Ziyu Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Qiuhan Sun
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Nianci Li
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yuan Fang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xin Chen
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yunhao Wu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Southeast University Shenzhen Research Institute, Shenzhen 518063, China.
| |
Collapse
|
17
|
Wang ZH, Zhao W, Combs CA, Zhang F, Knutson JR, Lilly MA, Xu H. Mechanical stimulation from the surrounding tissue activates mitochondrial energy metabolism in Drosophila differentiating germ cells. Dev Cell 2023; 58:2249-2260.e9. [PMID: 37647895 PMCID: PMC10843713 DOI: 10.1016/j.devcel.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
In multicellular lives, the differentiation of stem cells and progenitor cells is often accompanied by a transition from glycolysis to mitochondrial oxidative phosphorylation (OXPHOS). However, the underlying mechanism of this metabolic transition remains largely unknown. In this study, we investigate the role of mechanical stress in activating OXPHOS during differentiation of the female germline cyst in Drosophila. We demonstrate that the surrounding somatic cells flatten the 16-cell differentiating cyst, resulting in an increase of the membrane tension of germ cells inside the cyst. This mechanical stress is necessary to maintain cytosolic Ca2+ concentration in germ cells through a mechanically activated channel, transmembrane channel-like. The sustained cytosolic Ca2+ triggers a CaMKI-Fray-JNK signaling relay, leading to the transcriptional activation of OXPHOS in differentiating cysts. Our findings demonstrate a molecular link between cell mechanics and mitochondrial energy metabolism, with implications for other developmentally orchestrated metabolic transitions in mammals.
Collapse
Affiliation(s)
- Zong-Heng Wang
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenjing Zhao
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian A Combs
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fan Zhang
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jay R Knutson
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary A Lilly
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Xu
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Goodarzi Z, Khavanin A, Karami E, Rashidy-Pour A, Belji Kangarlou M, Kiani M, Razmjouei J. Otoprotective Effects of Quercetin Against Oxidative Damage in the Rat's Cochlea Induced by Noise and Silver Nanoparticles. Neuroscience 2023; 531:99-116. [PMID: 37714258 DOI: 10.1016/j.neuroscience.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The aim of this study was to investigate the otoprotective effects of Quercetin (Que) against both noise-induced hearing loss (NIHL) and the ototoxicity of silver nanoparticles (SNPs) in rats. Forty-two male Wistar rats were divided into seven groups (n = 6): control, SNPs, Que (100 mg/kg) plus SNPs (100 mg/kg), noise (104 dB), Que plus noise, noise plus SNPs, and noise plus Que plus SNPs. In the weight change results, there was no significant difference between the groups exposed to noise plus SNPs and SNPs compared to the control group. However, animals had significant changes in DPOAE amplitude at 1 and 3 days post-exposure when compared to baseline. Additionally, the DPOAE value of rats administered with Que plus SNPs was higher than in all other groups. Que also decreased the levels of TACT, MDA, IL-6, TNF-α, and NOX3 in the groups exposed to noise and SNPs and increased the SOD level and expression of myosin heavy chain VII (MYH7) and β-tubulin III (TUBB3) proteins. Furthermore, Que decreased structural changes in the animals' cochlea. Our findings indicate that pretreatment with Que efficiently counteracted the adverse effects of noise and SNPs on inner hair cell, outer hair cell, and nerve cells, which are responsible for high-frequency perception.
Collapse
Affiliation(s)
- Zahra Goodarzi
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Khavanin
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Esmaeil Karami
- Department of Occupational Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Marzieh Belji Kangarlou
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mehrafarin Kiani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Jaleh Razmjouei
- Masters of Health, Safety & Environment (HSE), Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran.
| |
Collapse
|
19
|
Strimbu CE, Chiriboga LA, Frost BL, Olson ES. A frame and a hotspot in cochlear mechanics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547111. [PMID: 37873430 PMCID: PMC10592637 DOI: 10.1101/2023.06.29.547111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Auditory sensation is based in nanoscale vibration of the sensory tissue of the cochlea, the organ of Corti complex (OCC). Motion within the OCC is now observable due to optical coherence tomography. In the cochlear base, in response to sound stimulation, the region that includes the electro-motile outer hair cells (OHC) was observed to move with larger amplitude than the basilar membrane (BM) and surrounding regions. The intense motion is based in active cell mechanics, and the region was termed the "hotspot" (Cooper et al., 2018, Nature comm). In addition to this quantitative distinction, the hotspot moved qualitatively differently than the BM, in that its motion scaled nonlinearly with stimulus level at all frequencies, evincing sub-BF activity. Sub-BF activity enhances non-BF motion; thus the frequency tuning of the hotspot was reduced relative to the BM. Regions that did not exhibit sub-BF activity are here defined as the OCC "frame". By this definition the frame includes the BM, the medial and lateral OCC, and most significantly, the reticular lamina (RL). The frame concept groups the majority OCC as a structure that is largely shielded from sub-BF activity. This shielding, and how it is achieved, are key to the active frequency tuning of the cochlea. The observation that the RL does not move actively sub-BF indicates that hair cell stereocilia are not exposed to sub-BF activity. A complex difference analysis reveals the motion of the hotspot relative to the frame.
Collapse
|
20
|
Derudas M, O’Reilly M, Kirkwood NK, Kenyon EJ, Grimsey S, Kitcher SR, Workman S, Bull JC, Ward SE, Kros CJ, Richardson GP. Charge and lipophilicity are required for effective block of the hair-cell mechano-electrical transducer channel by FM1-43 and its derivatives. Front Cell Dev Biol 2023; 11:1247324. [PMID: 37900280 PMCID: PMC10601989 DOI: 10.3389/fcell.2023.1247324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
The styryl dye FM1-43 is widely used to study endocytosis but behaves as a permeant blocker of the mechano-electrical transducer (MET) channel in sensory hair cells, loading rapidly and specifically into the cytoplasm of hair cells in a MET channel-dependent manner. Patch clamp recordings of mouse outer hair cells (OHCs) were used to determine how a series of structural modifications of FM1-43 affect MET channel block. Fluorescence microscopy was used to assess how the modifications influence hair-cell loading in mouse cochlear cultures and zebrafish neuromasts. Cochlear cultures were also used to evaluate otoprotective potential of the modified FM1-43 derivatives. Structure-activity relationships reveal that the lipophilic tail and the cationic head group of FM1-43 are both required for MET channel block in mouse cochlear OHCs; neither moiety alone is sufficient. The extent of MET channel block is augmented by increasing the lipophilicity/bulkiness of the tail, by reducing the number of positive charges in the head group from two to one, or by increasing the distance between the two charged head groups. Loading assays with zebrafish neuromasts and mouse cochlear cultures are broadly in accordance with these observations but reveal a loss of hair-cell specific labelling with increasing lipophilicity. Although FM1-43 and many of its derivatives are generally cytotoxic when tested on cochlear cultures in the presence of an equimolar concentration of the ototoxic antibiotic gentamicin (5 µM), at a 10-fold lower concentration (0.5 µM), two of the derivatives protect OHCs from cell death caused by 48 h-exposure to 5 µM gentamicin.
Collapse
Affiliation(s)
- Marco Derudas
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Molly O’Reilly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, Netherlands
| | - Nerissa K. Kirkwood
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Emma J. Kenyon
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- School of Medicine, Institute of Life Sciences, Swansea University, Swansea, United Kingdom
| | - Sybil Grimsey
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Siân R. Kitcher
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders NIH, Bethesda, MD, United States
| | - Shawna Workman
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - James C. Bull
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Simon E. Ward
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Medicines Discovery Institute, Cardiff University, Cardiff, United Kingdom
| | - Corné J. Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Guy P. Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
21
|
Santos DOC, Trindade MAS, da Silva AJ. Nonextensive realizations in interacting ion channels: Implications for mechano-electrical transducer mechanisms. Biosystems 2023; 232:105005. [PMID: 37611860 DOI: 10.1016/j.biosystems.2023.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
We propose a theoretical model to investigate the thermodynamics of single and coupled two-state ion channels, associated with mechanoelectrical transduction (MET) and hair cell biophysics. The modeling was based on the Tsallis nonextensive statistical mechanics. The choice for a nonextensive framework in modeling ion channels is encouraged on the fact that we take into account the presence of interactions or long-range correlations in the dynamics of single and coupled ion channels. However, the basic assumptions that support Boltzmann-Gibbs statistics, traditionally used to model ion channel dynamics, state that the system is formed by independent or weakly interacting elements. Despite being well studied in many biological systems, the literature has not yet addressed the study of both entropy and mutual information related to isolated or physically interacting pairs of MET channels. Inspired by hair cell biophysics, we show how the presence of nonextensivity, or subadditivity and superadditivity modulates the nonextensive entropy and mutual information as functions of stereocilia displacements. We also observe that the magnitude of the interaction between the two channels, given by a nonextensive parameter, influences the amplitude of the nonextensive joint entropy and mutual information as functions of the hair cell displacements. Finally, we show how nonextensivity regulates the current versus displacement curve for a single and a pair of interacting two-state channels. The present findings shed light on the thermodynamic process involved in the molecular mechanisms of the auditory system.
Collapse
Affiliation(s)
- D O C Santos
- Universidade Federal do Sul da Bahia, CEP 45600-923, Itabuna, Bahia, Brazil
| | - M A S Trindade
- Colegiado de Física, Departamento de Ciências Exatas e da Terra, Universidade do Estado da Bahia, CEP 41150-000, Salvador, Bahia, Brazil
| | - A J da Silva
- Universidade Federal do Sul da Bahia, CEP 45600-923, Itabuna, Bahia, Brazil.
| |
Collapse
|
22
|
Rivetti S, Romano A, Mastrangelo S, Attinà G, Maurizi P, Ruggiero A. Aminoglycosides-Related Ototoxicity: Mechanisms, Risk Factors, and Prevention in Pediatric Patients. Pharmaceuticals (Basel) 2023; 16:1353. [PMID: 37895824 PMCID: PMC10610175 DOI: 10.3390/ph16101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Aminoglycosides are broad-spectrum antibiotics largely used in children, but they have potential toxic side effects, including ototoxicity. Ototoxicity from aminoglycosides is permanent and is a consequence of its action on the inner ear cells via multiple mechanisms. Both uncontrollable risk factors and controllable risk factors are involved in the pathogenesis of aminoglycoside-related ototoxicity and, because of the irreversibility of ototoxicity, an important undertaking for preventing ototoxicity includes antibiotic stewardship to limit the use of aminoglycosides. Aminoglycosides are fundamental in the treatment of numerous infectious conditions at neonatal and pediatric age. In childhood, normal auditory function ensures adequate neurocognitive and social development. Hearing damage from aminoglycosides can therefore strongly affect the normal growth of the child. This review describes the molecular mechanisms of aminoglycoside-related ototoxicity and analyzes the risk factors and the potential otoprotective strategies in pediatric patients.
Collapse
Affiliation(s)
- Serena Rivetti
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
| | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
23
|
Clark S, Jeong H, Posert R, Goehring A, Gouaux E. Structure of C. elegans TMC-2 complex suggests roles of lipid-mediated subunit contacts in mechanosensory transduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553618. [PMID: 37645790 PMCID: PMC10462014 DOI: 10.1101/2023.08.16.553618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mechanotransduction is the process by which a mechanical force, such as touch, is converted into an electrical signal. Transmembrane channel-like (TMC) proteins are an evolutionarily-conserved family of ion channels whose function has been linked to a variety of mechanosensory processes, including hearing and balance sensation in vertebrates and locomotion in Drosophila. The molecular features that tune homologous TMC ion channel complexes to diverse mechanical stimuli are unknown. Caenorhabditis elegans express two TMC homologs, TMC-1 and TMC-2, both of which are the likely pore-forming subunits of mechanosensitive ion channels but differ in their expression pattern and functional role in the worm. Here we present the single particle cryo-electron microscopy structure of the native TMC-2 complex isolated from C. elegans. The complex is composed of two copies each of the pore-forming TMC-2 subunit, the calcium and integrin binding protein CALM-1 and the transmembrane inner ear protein TMIE. Comparison of the TMC-2 complex to the recently published cryo-EM structure of the C. elegans TMC-1 complex reveals differences in subunit composition and highlights conserved protein-lipid interactions, as well as other structural features, that together suggest a mechanism for TMC-mediated mechanosensory transduction.
Collapse
Affiliation(s)
- Sarah Clark
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Hanbin Jeong
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Rich Posert
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - April Goehring
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
24
|
Cherkashin AP, Rogachevskaja OA, Khokhlov AA, Kabanova NV, Bystrova MF, Kolesnikov SS. Contribution of TRPC3-mediated Ca 2+ entry to taste transduction. Pflugers Arch 2023:10.1007/s00424-023-02834-8. [PMID: 37369785 DOI: 10.1007/s00424-023-02834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
The current concept of taste transduction implicates the TASR/PLCβ2/IP3R3/TRPM5 axis in mediating chemo-electrical coupling in taste cells of the type II. While generation of IP3 has been verified as an obligatory step, DAG appears to be a byproduct of PIP2 cleavage by PLCβ2. Here, we provide evidence that DAG-signaling could play a significant and not yet recognized role in taste transduction. In particular, we found that DAG-gated channels are functional in type II cells but not in type I and type III cells. The DAG-gated current presumably constitutes a fraction of the generator current triggered by taste stimulation in type II cells. Bitter stimuli and DAG analogs produced Ca2+ transients in type II cells, which were greatly decreased at low bath Ca2+, indicating their dependence on Ca2+ influx. Among DAG-gated channels, transcripts solely for TRPC3 were detected in the taste tissue, thus implicating this channel in mediating DAG-regulated Ca2+ entry. Release of the afferent neurotransmitter ATP from CV papillae was monitored online by using the luciferin/luciferase method and Ussing-like chamber. It was shown that ATP secretion initiated by bitter stimuli and DAG analogs strongly depended on mucosal Ca2+. Based on the overall findings, we speculate that in taste transduction, IP3-driven Ca2+ release is transient and mainly responsible for rapid activation of Ca2+-gated TRPM5 channels, thus forming the initial phase of receptor potential. DAG-regulated Ca2+ entry through apically situated TRPC3 channels extends the primary Ca2+ signal and preserves TRPM5 activity, providing a needful prolongation of the receptor potential.
Collapse
Affiliation(s)
- Alexander P Cherkashin
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Olga A Rogachevskaja
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Alexander A Khokhlov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Natalia V Kabanova
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Marina F Bystrova
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Stanislav S Kolesnikov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
25
|
Chakraborty S, Gangwar R, Zahra S, Poddar N, Singh A, Kumar S. Genome-wide characterization and comparative analysis of the OSCA gene family and identification of its potential stress-responsive members in legumes. Sci Rep 2023; 13:5914. [PMID: 37041245 PMCID: PMC10090146 DOI: 10.1038/s41598-023-33226-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/10/2023] [Indexed: 04/13/2023] Open
Abstract
Cicer arietinum, Cajanus cajan, Vigna radiata, and Phaseolus vulgaris are economically important legume crops with high nutritional value. They are negatively impacted globally by different biotic and abiotic stresses. Hyperosmolality-gated calcium-permeable channels (OSCA) have been characterized as osmosensors in Arabidopsis thaliana but have not previously reported in legumes. This study provides a genome-wide identification, characterization, and comparative analysis of OSCA genes in legumes. Our study identified and characterized 13 OSCA genes in C. cajan, V. radiata, P. vulgaris, and 12 in C. arietinum, classified into four distinct clades. We found evidence to suggest that the OSCAs might be involved in the interaction between hormone signalling pathways and stress signalling pathways. Furthermore, they play a major role in plant growth and development. The expression levels of the OSCAs vary under different stress conditions in a tissue-specific manner. Our study can be used to develop a detailed understanding of stress regulatory mechanisms of the OSCA gene family in legumes.
Collapse
Affiliation(s)
- Srija Chakraborty
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rashmi Gangwar
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shafaque Zahra
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nikita Poddar
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Amarjeet Singh
- Stress Signalling Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
26
|
Le TA, Hiba T, Chaudhari D, Preston AN, Palowsky ZR, Ahmadzadeh S, Shekoohi S, Cornett EM, Kaye AD. Aminoglycoside-Related Nephrotoxicity and Ototoxicity in Clinical Practice: A Review of Pathophysiological Mechanism and Treatment Options. Adv Ther 2023; 40:1357-1365. [PMID: 36738370 DOI: 10.1007/s12325-023-02436-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
Aminoglycosides are a class of medications used to treat certain bacterial infections, specifically gram-negative aerobes. These drugs can be used alone as first-line treatments or in combination with other medications. There can be many different formulations of aminoglycosides including oral, inhalants, intravascular, intramuscular, or intraventricular. There are many distinctive types of aminoglycosides, and although they provide excellent coverage, they can have a wide variety of side effects. The most prevalent side effects of aminoglycosides are nephrotoxicity and ototoxicity. Aminoglycoside-induced nephrotoxicity is concerning because of the effects that abnormal creatinine levels can have on other drugs and the potential for neurotoxicity. Fortunately, changes in renal function are typically reversible. The kidney is affected by the drug's ability to enter the proximal tubule and cause a buildup of phospholipids in the lysosomes, inhibiting their function. Exposure to aminoglycosides in utero can result in permanent ototoxicity. The mechanism of ototoxicity is through the drug's ability to freely pass into hair cells and cause reactive oxygen species to damage the mitochondria, resulting in cell death. There is not a substantial amount of research regarding the prevention and treatment of adverse effects of aminoglycosides. Future research on the mediation or modulation of these pathophysiological processes would expand their usage in modern medicine.
Collapse
Affiliation(s)
- Tyler A Le
- American University of the Caribbean, 1 University Drive at, Jordan Dr, Cupecoy, Sint Maarten
| | - Tasneem Hiba
- American University of the Caribbean, 1 University Drive at, Jordan Dr, Cupecoy, Sint Maarten
| | - Disha Chaudhari
- American University of the Caribbean, 1 University Drive at, Jordan Dr, Cupecoy, Sint Maarten
| | - Arielle N Preston
- American University of the Caribbean, 1 University Drive at, Jordan Dr, Cupecoy, Sint Maarten
| | - Zachary R Palowsky
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Alan D Kaye
- Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| |
Collapse
|
27
|
Krey JF, Chatterjee P, Halford J, Cunningham CL, Perrin BJ, Barr-Gillespie PG. Control of stereocilia length during development of hair bundles. PLoS Biol 2023; 21:e3001964. [PMID: 37011103 PMCID: PMC10101650 DOI: 10.1371/journal.pbio.3001964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/13/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Assembly of the hair bundle, the sensory organelle of the inner ear, depends on differential growth of actin-based stereocilia. Separate rows of stereocilia, labeled 1 through 3 from tallest to shortest, lengthen or shorten during discrete time intervals during development. We used lattice structured illumination microscopy and surface rendering to measure dimensions of stereocilia from mouse apical inner hair cells during early postnatal development; these measurements revealed a sharp transition at postnatal day 8 between stage III (row 1 and 2 widening; row 2 shortening) and stage IV (final row 1 lengthening and widening). Tip proteins that determine row 1 lengthening did not accumulate simultaneously during stages III and IV; while the actin-bundling protein EPS8 peaked at the end of stage III, GNAI3 peaked several days later-in early stage IV-and GPSM2 peaked near the end of stage IV. To establish the contributions of key macromolecular assemblies to bundle structure, we examined mouse mutants that eliminated tip links (Cdh23v2J or Pcdh15av3J), transduction channels (TmieKO), or the row 1 tip complex (Myo15ash2). Cdh23v2J/v2J and Pcdh15av3J/av3J bundles had adjacent stereocilia in the same row that were not matched in length, revealing that a major role of these cadherins is to synchronize lengths of side-by-side stereocilia. Use of the tip-link mutants also allowed us to distinguish the role of transduction from effects of transduction proteins themselves. While levels of GNAI3 and GPSM2, which stimulate stereocilia elongation, were greatly attenuated at the tips of TmieKO/KO row 1 stereocilia, they accumulated normally in Cdh23v2J/v2J and Pcdh15av3J/av3J stereocilia. These results reinforced the suggestion that the transduction proteins themselves facilitate localization of proteins in the row 1 complex. By contrast, EPS8 concentrates at tips of all TmieKO/KO, Cdh23v2J/v2J, and Pcdh15av3J/av3J stereocilia, correlating with the less polarized distribution of stereocilia lengths in these bundles. These latter results indicated that in wild-type hair cells, the transduction complex prevents accumulation of EPS8 at the tips of shorter stereocilia, causing them to shrink (rows 2 and 3) or disappear (row 4 and microvilli). Reduced rhodamine-actin labeling at row 2 stereocilia tips of tip-link and transduction mutants suggests that transduction's role is to destabilize actin filaments there. These results suggest that regulation of stereocilia length occurs through EPS8 and that CDH23 and PCDH15 regulate stereocilia lengthening beyond their role in gating mechanotransduction channels.
Collapse
Affiliation(s)
- Jocelyn F. Krey
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Paroma Chatterjee
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Julia Halford
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Christopher L. Cunningham
- Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Benjamin J. Perrin
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Peter G. Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
28
|
Lewkowicz M, Jones M, Kovacevic B, Ionescu CM, Wagle SR, Foster T, Mikov M, Mooranian A, Al-Salami H. Potentials and limitations of pharmaceutical and pharmacological applications of bile acids in hearing loss treatment. Ther Deliv 2023; 13:477-488. [PMID: 36803017 DOI: 10.4155/tde-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Hearing loss is a worldwide epidemic, with approximately 1.5 billion people currently struggling with hearing-related conditions. Currently, the most wildly used and effective treatments for hearing loss are primarily focus on the use of hearing aids and cochlear implants. However, these have many limitations, highlighting the importance of developing a pharmacological solution that may be used to overcome barriers associated with such devices. Due to the challenges of delivering therapeutic agents to the inner ear, bile acids are being explored as potential drug excipients and permeation enhancers. This review, therefore, aims to explore the pathophysiology of hearing loss, the challenges in treatment and the manners in which bile acids could potentially aid in overcoming these challenges.
Collapse
Affiliation(s)
- Michael Lewkowicz
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Melissa Jones
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| |
Collapse
|
29
|
O'Sullivan JDB, Bullen A, Mann ZF. Mitochondrial form and function in hair cells. Hear Res 2023; 428:108660. [PMID: 36525891 DOI: 10.1016/j.heares.2022.108660] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Hair cells (HCs) are specialised sensory receptors residing in the neurosensory epithelia of inner ear sense organs. The precise morphological and physiological properties of HCs allow us to perceive sound and interact with the world around us. Mitochondria play a significant role in normal HC function and are also intricately involved in HC death. They generate ATP essential for sustaining the activity of ion pumps, Ca2+ transporters and the integrity of the stereociliary bundle during transduction as well as regulating cytosolic calcium homoeostasis during synaptic transmission. Advances in imaging techniques have allowed us to study mitochondrial populations throughout the HC, and how they interact with other organelles. These analyses have identified distinct mitochondrial populations between the apical and basolateral portions of the HC, in which mitochondrial morphology appears determined by the physiological processes in the different cellular compartments. Studies in HCs across species show that ototoxic agents, ageing and noise damage directly impact mitochondrial structure and function resulting in HC death. Deciphering the molecular mechanisms underlying this mitochondrial sensitivity, and how their morphology relates to their function during HC death, requires that we first understand this relationship in the context of normal HC function.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K
| | - Anwen Bullen
- UCL Ear Institute, University College London, London WC1×8EE, U.K.
| | - Zoë F Mann
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K.
| |
Collapse
|
30
|
A minimal physics-based model for musical perception. Proc Natl Acad Sci U S A 2023; 120:e2216146120. [PMID: 36693091 PMCID: PMC9945942 DOI: 10.1073/pnas.2216146120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Some people, entirely untrained in music, can listen to a song and replicate it on a piano with unnerving accuracy. What enables some to "hear" music so much better than others? Long-standing research confirms that part of the answer is undoubtedly neurological and can be improved with training. However, are there structural, physical, or engineering attributes of the human hearing mechanism apparatus (i.e., the hair cells of the internal ear) that render one human innately superior to another in terms of propensity to listen to music? In this work, we investigate a physics-based model of the electromechanics of the hair cells in the inner ear to understand why a person might be physiologically better poised to distinguish musical sounds. A key feature of the model is that we avoid a "black-box" systems-type approach. All parameters are well-defined physical quantities, including membrane thickness, bending modulus, electromechanical properties, and geometrical features, among others. Using the two-tone interference problem as a proxy for musical perception, our model allows us to establish the basis for exploring the effect of external factors such as medicine or environment. As an example of the insights we obtain, we conclude that the reduction in bending modulus of the cell membranes (which for instance may be caused by the usage of a certain class of analgesic drugs) or an increase in the flexoelectricity of the hair cell membrane can interfere with the perception of two-tone excitation.
Collapse
|
31
|
Using mobile audiometry (Wulira App) to assess noise induced hearing loss among industrial workers in Kampala, Uganda: A cross-sectional study. PLoS One 2023; 18:e0279407. [PMID: 36608035 PMCID: PMC9821776 DOI: 10.1371/journal.pone.0279407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/04/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Occupational noise is a common cause of hearing loss in low-income countries. Unfortunately, screening for hearing loss is rarely done due to technical and logistical challenges associated with pure tone audiometry. Wulira app is a valid and potentially cost-effective alternative to pure tone audiometry in screening for occupational hearing loss. We aimed to determine the prevalence of occupational hearing loss among workers in a metal industry company in Kampala district. METHODOLOGY We recruited 354 participants conveniently from a steel and iron manufacturing industry in Kampala. All eligible participants answered a pretested and validated questionnaire and were assessed for noise induced hearing loss in a quiet office room approximately 500 meters from the heavy machinery area using the Wulira app. Descriptive statistics such as proportions were used to describe the study population while inferential statistics were used to determine associations. RESULTS Of the 354 participants sampled, 333 (94.1%) were male, and the median age was 27, IQR (25-30). Regarding the risk factors of hearing loss, fourteen (3.9%) had history of smoking and more than half (65.5%) had worked in the industry for more than 2 years. The overall prevalence of hearing loss among industrial workers was 11.3% (40/354). 16.2% and 9% had mild hearing loss in the right and left ear respectively. Bilateral audiometric notch was present where fourteen (4%) of the participants had notch in their right ear while seven (2%) had notch in their left ear. Residing outside Kampala district was associated with hearing loss (OR, 95% CI, 0.213 (0.063-0.725), p = 0.013). CONCLUSION One in 10 workers in a metal manufacturing industry in Kampala had occupational hearing loss. Industrial workers residing outside Kampala were likely to develop hearing loss. Periodic screening should be done for early detection and intervention to prevent progression of hearing loss in this population.
Collapse
|
32
|
Jeng JY, Carlton AJ, Goodyear RJ, Chinowsky C, Ceriani F, Johnson SL, Sung TC, Dayn Y, Richardson GP, Bowl MR, Brown SD, Manor U, Marcotti W. AAV-mediated rescue of Eps8 expression in vivo restores hair-cell function in a mouse model of recessive deafness. Mol Ther Methods Clin Dev 2022; 26:355-370. [PMID: 36034774 PMCID: PMC9382420 DOI: 10.1016/j.omtm.2022.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
The transduction of acoustic information by hair cells depends upon mechanosensitive stereociliary bundles that project from their apical surface. Mutations or absence of the stereociliary protein EPS8 cause deafness in humans and mice, respectively. Eps8 knockout mice (Eps8 -/- ) have hair cells with immature stereocilia and fail to become sensory receptors. Here, we show that exogenous delivery of Eps8 using Anc80L65 in P1-P2 Eps8 -/- mice in vivo rescued the hair bundle structure of apical-coil hair cells. Rescued hair bundles correctly localize EPS8, WHIRLIN, MYO15, and BAIAP2L2, and generate normal mechanoelectrical transducer currents. Inner hair cells with normal-looking stereocilia re-expressed adult-like basolateral ion channels (BK and KCNQ4) and have normal exocytosis. The number of hair cells undergoing full recovery was not sufficient to rescue hearing in Eps8 -/- mice. Adeno-associated virus (AAV)-transduction of P3 apical-coil and P1-P2 basal-coil hair cells does not rescue hair cells, nor does Anc80L65-Eps8 delivery in adult Eps8 -/- mice. We propose that AAV-induced gene-base therapy is an efficient strategy to recover the complex hair-cell defects in Eps8 -/- mice. However, this therapeutic approach may need to be performed in utero since, at postnatal ages, Eps8 -/- hair cells appear to have matured or accumulated damage beyond the point of repair.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Adam J. Carlton
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Richard J. Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Colbie Chinowsky
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Federico Ceriani
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
| | - Stuart L. Johnson
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Tsung-Chang Sung
- Transgenic Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yelena Dayn
- Transgenic Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guy P. Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD UK
| | - Steve D.M. Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD UK
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Walter Marcotti
- School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
33
|
Melese M, Adugna DG, Mulat B, Adera A. Hearing loss and its associated factors among metal workshop workers at Gondar city, Northwest Ethiopia. Front Public Health 2022; 10:919239. [PMID: 36003635 PMCID: PMC9393372 DOI: 10.3389/fpubh.2022.919239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionNoise-induced hearing loss is a permanent sensorineural deficiency, which is caused by exposure to excessive noise sound. Although noise-induced hearing loss due to industrialization is a main public health problem in Ethiopia, studies on the prevalence and associated factors of hearing loss are scarce.ObjectivesThis study aimed to assess the prevalence and associated factors of hearing loss among workers at a metal workshop in Gondar city, Northwest Ethiopia.MethodsA cross-sectional study was employed among 300 participants using a stratified sampling technique. Data were collected using an interviewer-administered questionnaire. Bivariable and multivariable logistic regressions were conducted. In the multivariable logistic regression model, adjusted odds ratios (AOR) with a 95% confidence interval (CI) and a p < 0.05 were computed to determine the level of significance.ResultsThe prevalence of hearing loss among metal workshop workers was 30.7% [95% CI: (25.7, 35.7)]. Age between 30 and 44 years [AOR = 2.9; 95% CI: 1.2, 7.1], age between 45 and 65 years [AOR = 3.8; 95% CI (1.5, 9.5)], cigarette smoking [AOR = 2.3; 95% CI: 1.2, 4.5], working area noise level >85 dB [AOR = 2.2; 95% CI: 1.1, 6.5], working experience of 6–10 years [AOR = 1.8; 95% CI: 1.4, 6.0], working experience >10 years [AOR = 3.5; 95% CI: 1.3, 4.3], and using ear protection devices [AOR = 0.3; 95% CI: 0.1, 0.6] were significantly associated with hearing loss.ConclusionThe prevalence of hearing loss was considerably high. This study revealed that advanced age, cigarette smoking, increased working area noise level, and working experiences were found to increase the odds of having hearing loss. Therefore, it is important to emphasize metal workshop workers that are at high risk of hearing loss and develop preventive strategies to reduce the burden of this problem. Besides, minimizing working area noise levels, proper utilization of ear protection devices, and creating awareness about the impact of hearing loss are recommended.
Collapse
Affiliation(s)
- Mihret Melese
- Department of Human Physiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Dagnew Getnet Adugna
- Department of Human Anatomy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bezawit Mulat
- Department of Human Physiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Ayechew Adera
- Department of Human Physiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
34
|
Ballesteros A, Swartz KJ. Regulation of membrane homeostasis by TMC1 mechanoelectrical transduction channels is essential for hearing. SCIENCE ADVANCES 2022; 8:eabm5550. [PMID: 35921424 PMCID: PMC9348795 DOI: 10.1126/sciadv.abm5550] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The mechanoelectrical transduction (MET) channel in auditory hair cells converts sound into electrical signals, enabling hearing. Transmembrane-like channel 1 and 2 (TMC1 and TMC2) are implicated in forming the pore of the MET channel. Here, we demonstrate that inhibition of MET channels, breakage of the tip links required for MET, or buffering of intracellular Ca... induces pronounced phosphatidylserine externalization, membrane blebbing, and ectosome release at the hair cell sensory organelle, culminating in the loss of TMC1. Membrane homeostasis triggered by MET channel inhibition requires Tmc1 but not Tmc2, and three deafness-causing mutations in Tmc1 cause constitutive phosphatidylserine externalization that correlates with deafness phenotype. Our results suggest that, in addition to forming the pore of the MET channel, TMC1 is a critical regulator of membrane homeostasis in hair cells, and that Tmc1-related hearing loss may involve alterations in membrane homeostasis.
Collapse
|
35
|
Zhao Z, Yao W, Wang M, Wang J, Zhang T. Radial Flow Field of Spiral Cochlea and Its Effect On Stereocilia. J Biomech Eng 2022; 144:1143034. [PMID: 35789250 DOI: 10.1115/1.4054930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/08/2022]
Abstract
The opening of the ion channels ultimately depends on the movement and energy conversion of the microstructural organization. It has not been clear how active sound amplification is generated by the microstructure of the cochlea's characteristic spiral shape. In this paper, an analytical model of the spiral cochlea is developed to investigate the radial flow field generated by the spiral shape of the cochlea and its effect on the outer hair cell stereocilia, and to analyze the effect of the spiral shape on the micromechanics of the cochlea. The results show that the spiral shape of the cochlea exerts a radial shear force on the hair cell stereocilia by generating a radial flow field. This causes the stereocilia to deflect in the radial flow field, with the maximum deflection occurring at the apex of the cochlea. This finding explains the microscopic mechanism that causes the cochlea's spiral shape to enhance low-frequency hearing in humans, and it provides a basis for further studies on the contribution of the movement of stereocilia in the radial flow field of the lymphatic fluid to activate ion channels for auditory production.
Collapse
Affiliation(s)
- Zhengshan Zhao
- School of Mechanics and Engineering Science, Shanghai University, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, 200072, PRC
| | - Wenjuan Yao
- School of Mechanics and Engineering Science, Shanghai University, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, 200072, PRC
| | - Mianzhi Wang
- School of Mechanics and Engineering Science, Shanghai University, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, 200072, PRC
| | - Jiakun Wang
- School of Mechanics and Engineering Science, Shanghai University, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, 200072, PRC
| | - Tianyu Zhang
- ENT Institute, Eye & ENT Hospital of Fudan University, Hearing Medicine Key Laboratory, National Health Commission of China; Department of Facial Plastic Reconstruction Surgery, Eye & ENT Hospital of Fudan University, Shanghai 200031, PRC
| |
Collapse
|
36
|
Jang MW, Lim J, Park MG, Lee JH, Lee CJ. Active role of glia-like supporting cells in the organ of Corti: Membrane proteins and their roles in hearing. Glia 2022; 70:1799-1825. [PMID: 35713516 DOI: 10.1002/glia.24229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
The organ of Corti, located in the cochlea in the inner ear, is one of the major sensory organs involved in hearing. The organ of Corti consists of hair cells, glia-like supporting cells, and the cochlear nerve, which work in harmony to receive sound from the outer ear and transmit auditory signals to the cochlear nucleus in the auditory ascending pathway. In this process, maintenance of the endocochlear potential, with a high potassium gradient and clearance of electrolytes and biochemicals in the inner ear, is critical for normal sound transduction. There is an emerging need for a thorough understanding of each cell type involved in this process to understand the sophisticated mechanisms of the organ of Corti. Hair cells have long been thought to be active, playing a primary role in the cochlea in actively detecting and transmitting signals. In contrast, supporting cells are thought to be silent and function to support hair cells. However, growing lines of evidence regarding the membrane proteins that mediate ionic movement in supporting cells have demonstrated that supporting cells are not silent, but actively play important roles in normal signal transduction. In this review, we summarize studies that characterize diverse membrane proteins according to the supporting cell subtypes involved in cochlear physiology and hearing. This review contributes to a better understanding of supporting cell functions and facilitates the development of potential therapeutic tools for hearing loss.
Collapse
Affiliation(s)
- Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
37
|
Maudoux A, Vitry S, El-Amraoui A. Vestibular Deficits in Deafness: Clinical Presentation, Animal Modeling, and Treatment Solutions. Front Neurol 2022; 13:816534. [PMID: 35444606 PMCID: PMC9013928 DOI: 10.3389/fneur.2022.816534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The inner ear is responsible for both hearing and balance. These functions are dependent on the correct functioning of mechanosensitive hair cells, which convert sound- and motion-induced stimuli into electrical signals conveyed to the brain. During evolution of the inner ear, the major changes occurred in the hearing organ, whereas the structure of the vestibular organs remained constant in all vertebrates over the same period. Vestibular deficits are highly prevalent in humans, due to multiple intersecting causes: genetics, environmental factors, ototoxic drugs, infections and aging. Studies of deafness genes associated with balance deficits and their corresponding animal models have shed light on the development and function of these two sensory systems. Bilateral vestibular deficits often impair individual postural control, gaze stabilization, locomotion and spatial orientation. The resulting dizziness, vertigo, and/or falls (frequent in elderly populations) greatly affect patient quality of life. In the absence of treatment, prosthetic devices, such as vestibular implants, providing information about the direction, amplitude and velocity of body movements, are being developed and have given promising results in animal models and humans. Novel methods and techniques have led to major progress in gene therapies targeting the inner ear (gene supplementation and gene editing), 3D inner ear organoids and reprograming protocols for generating hair cell-like cells. These rapid advances in multiscale approaches covering basic research, clinical diagnostics and therapies are fostering interdisciplinary research to develop personalized treatments for vestibular disorders.
Collapse
Affiliation(s)
- Audrey Maudoux
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
- Center for Balance Evaluation in Children (EFEE), Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert-Debré University Hospital, Paris, France
| | - Sandrine Vitry
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
38
|
Abstract
Geckos are lizards capable of vocalization and can detect frequencies up to 5 kHz, but the mechanism of frequency discrimination is incompletely understood. The gecko’s auditory papilla has a unique arrangement over the high-frequency zone, with rows of mechanically sensitive hair bundles covered with gelatinous sallets. Lower-frequency hair cells are tuned by an electrical resonance employing Ca2+-activated K+ channels, but hair cells tuned above 1 kHz probably rely on a mechanical resonance of the sallets. The resonance may be boosted by an electromotile force from hair bundles found to be evoked by changes in hair cell membrane potential. This unusual mechanism operates independently of mechanotransduction and differs from mammals which amplify the mechanical input using the motor protein prestin. The auditory papilla of geckos contains two zones of sensory hair cells, one covered by a continuous tectorial membrane affixed to the hair bundles and the other by discrete tectorial sallets each surmounting a transverse row of bundles. Gecko papillae are thought to encode sound frequencies up to 5 kHz, but little is known about the hair cell electrical properties or their role in frequency tuning. We recorded from hair cells in the isolated auditory papilla of the crested gecko, Correlophus ciliatus, and found that in both the nonsalletal region and part of the salletal region, the cells displayed electrical tuning organized tonotopically. Along the salletal zone, occupying the apical two-thirds of the papilla, hair bundle length decreased threefold and stereociliary complement increased 1.5-fold. The two morphological variations predict a 13-fold gradient in bundle stiffness, confirmed experimentally, which, when coupled with salletal mass, could provide passive mechanical resonances from 1 to 6 kHz. Sinusoidal electrical currents injected across the papilla evoked hair bundle oscillations at twice the stimulation frequency, consistent with fast electromechanical responses from hair bundles of two opposing orientations across the papilla. Evoked bundle oscillations were diminished by reducing Ca2+ influx, but not by blocking the mechanotransduction channels or inhibiting prestin action, thereby distinguishing them from known electromechanical mechanisms in hair cells. We suggest the phenomenon may be a manifestation of an electromechanical amplification that augments the passive mechanical tuning of the sallets over the high-frequency region.
Collapse
|
39
|
Gianoli F, Hogan B, Dilly É, Risler T, Kozlov AS. Fast adaptation of cooperative channels engenders Hopf bifurcations in auditory hair cells. Biophys J 2022; 121:897-909. [PMID: 35176272 PMCID: PMC8943817 DOI: 10.1016/j.bpj.2022.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 12/01/2022] Open
Abstract
Since the pioneering work of Thomas Gold, published in 1948, it has been known that we owe our sensitive sense of hearing to a process in the inner ear that can amplify incident sounds on a cycle-by-cycle basis. Called the active process, it uses energy to counteract the viscous dissipation associated with sound-evoked vibrations of the ear's mechanotransduction apparatus. Despite its importance, the mechanism of the active process and the proximate source of energy that powers it have remained elusive, especially at the high frequencies characteristic of amniote hearing. This is partly due to our insufficient understanding of the mechanotransduction process in hair cells, the sensory receptors and amplifiers of the inner ear. It has been proposed previously that cyclical binding of Ca2+ ions to individual mechanotransduction channels could power the active process. That model, however, relied on tailored reaction rates that structurally forced the direction of the cycle. Here we ground our study on our previous model of hair-cell mechanotransduction, which relied on cooperative gating of pairs of channels, and incorporate into it the cyclical binding of Ca2+ ions. With a single binding site per channel and reaction rates drawn from thermodynamic principles, the current model shows that hair cells behave as nonlinear oscillators that exhibit Hopf bifurcations, dynamical instabilities long understood to be signatures of the active process. Using realistic parameter values, we find bifurcations at frequencies in the kilohertz range with physiological Ca2+ concentrations. The current model relies on the electrochemical gradient of Ca2+ as the only energy source for the active process and on the relative motion of cooperative channels within the stereociliary membrane as the sole mechanical driver. Equipped with these two mechanisms, a hair bundle proves capable of operating at frequencies in the kilohertz range, characteristic of amniote hearing.
Collapse
Affiliation(s)
| | - Brenna Hogan
- Department of Bioengineering, Imperial College London, London, UK
| | - Émilien Dilly
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France
| | - Thomas Risler
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France.
| | - Andrei S Kozlov
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
40
|
Lorente-Cánovas B, Eckrich S, Lewis MA, Johnson SL, Marcotti W, Steel KP. Grxcr1 regulates hair bundle morphogenesis and is required for normal mechanoelectrical transduction in mouse cochlear hair cells. PLoS One 2022; 17:e0261530. [PMID: 35235570 PMCID: PMC8890737 DOI: 10.1371/journal.pone.0261530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
Tasmanian devil (tde) mice are deaf and exhibit circling behaviour. Sensory hair cells of mutants show disorganised hair bundles with abnormally thin stereocilia. The origin of this mutation is the insertion of a transgene which disrupts expression of the Grxcr1 (glutaredoxin cysteine rich 1) gene. We report here that Grxcr1 exons and transcript sequences are not affected by the transgene insertion in tde homozygous (tde/tde) mice. Furthermore, 5'RACE PCR experiments showed the presence of two different transcripts of the Grxcr1 gene, expressed in both tde/tde and in wild-type controls. However, quantitative analysis of Grxcr1 transcripts revealed a significantly decreased mRNA level in tde/tde mice. The key stereociliary proteins ESPN, MYO7A, EPS8 and PTPRQ were distributed in hair bundles of homozygous tde mutants in a similar pattern compared with control mice. We found that the abnormal morphology of the stereociliary bundle was associated with a reduction in the size and Ca2+-sensitivity of the mechanoelectrical transducer (MET) current. We propose that GRXCR1 is key for the normal growth of the stereociliary bundle prior to the onset of hearing, and in its absence hair cells are unable to mature into fully functional sensory receptors.
Collapse
Affiliation(s)
- Beatriz Lorente-Cánovas
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stephanie Eckrich
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Morag A. Lewis
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
41
|
Jiang P, Ma X, Han S, Ma L, Ai J, Wu L, Zhang Y, Xiao H, Tian M, Tao WA, Zhang S, Chai R. Characterization of the microRNA transcriptomes and proteomics of cochlear tissue-derived small extracellular vesicles from mice of different ages after birth. Cell Mol Life Sci 2022; 79:154. [PMID: 35218422 PMCID: PMC11072265 DOI: 10.1007/s00018-022-04164-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 12/22/2022]
Abstract
The cochlea is an important sensory organ for both balance and sound perception, and the formation of the cochlea is a complex developmental process. The development of the mouse cochlea begins on embryonic day (E)9 and continues until postnatal day (P)21 when the hearing system is considered mature. Small extracellular vesicles (sEVs), with a diameter ranging from 30 to 200 nm, have been considered a significant medium for information communication in both physiological and pathological processes. However, there are no studies exploring the role of sEVs in the development of the cochlea. Here, we isolated tissue-derived sEVs from the cochleae of FVB mice at P3, P7, P14, and P21 by ultracentrifugation. These sEVs were first characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Next, we used small RNA-seq and mass spectrometry to characterize the microRNA transcriptomes and proteomes of cochlear sEVs from mice at different ages. Many microRNAs and proteins were discovered to be related to inner ear development, anatomical structure development, and auditory nervous system development. These results all suggest that sEVs exist in the cochlea and are likely to be essential for the normal development of the auditory system. Our findings provide many sEV microRNA and protein targets for future studies of the roles of cochlear sEVs.
Collapse
Affiliation(s)
- Pei Jiang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shanying Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingru Ai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hairong Xiao
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Mengyao Tian
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - W Andy Tao
- Department of Chemistry, Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907, USA.
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
42
|
Halford J, Bateschell M, Barr-Gillespie PG. Ca 2+ entry through mechanotransduction channels localizes BAIAP2L2 to stereocilia tips. Mol Biol Cell 2022; 33:br6. [PMID: 35044843 PMCID: PMC9250357 DOI: 10.1091/mbc.e21-10-0491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 2 (BAIAP2L2), a membrane-binding protein required for the maintenance of mechanotransduction in hair cells, is selectively retained at the tips of transducing stereocilia. BAIAP2L2 trafficked to stereocilia tips in the absence of EPS8, but EPS8 increased the efficiency of localization. A tripartite complex of BAIAP2L2, EPS8, and MYO15A formed efficiently in vitro, and these three proteins robustly targeted to filopodia tips when coexpressed in cultured cells. Mice lacking functional transduction channels no longer concentrated BAIAP2L2 at row 2 stereocilia tips, a result that was phenocopied by blocking channels with tubocurarine in cochlear explants. Transduction channels permit Ca2+ entry into stereocilia, and we found that membrane localization of BAIAP2L2 was enhanced in the presence of Ca2+. Finally, reduction of intracellular Ca2+ in hair cells using BAPTA-AM led to a loss of BAIAP2L2 at stereocilia tips. Taken together, our results show that a MYO15A-EPS8 complex transports BAIAP2L2 to stereocilia tips, and Ca2+ entry through open channels at row 2 tips retains BAIAP2L2 there.
Collapse
Affiliation(s)
- Julia Halford
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael Bateschell
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
43
|
Alvarado JC, Fuentes-Santamaría V, Juiz JM. Frailty Syndrome and Oxidative Stress as Possible Links Between Age-Related Hearing Loss and Alzheimer’s Disease. Front Neurosci 2022; 15:816300. [PMID: 35115905 PMCID: PMC8804094 DOI: 10.3389/fnins.2021.816300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
As it is well known, a worldwide improvement in life expectancy has taken place. This has brought an increase in chronic pathologies associated with aging. Cardiovascular, musculoskeletal, psychiatric, and neurodegenerative conditions are common in elderly subjects. As far as neurodegenerative diseases are concerned dementias and particularly, Alzheimer’s disease (AD) occupy a central epidemiological position given their high prevalence and their profound negative impact on the quality of life and life expectancy. The amyloid cascade hypothesis partly explains the immediate cause of AD. However, limited therapeutical success based on this hypothesis suggests more complex remote mechanisms underlying its genesis and development. For instance, the strong association of AD with another irreversible neurodegenerative pathology, without curative treatment and complex etiology such as presbycusis, reaffirms the intricate nature of the etiopathogenesis of AD. Recently, oxidative stress and frailty syndrome have been proposed, independently, as key factors underlying the onset and/or development of AD and presbycusis. Therefore, the present review summarizes recent findings about the etiology of the above-mentioned neurodegenerative diseases, providing a critical view of the possible interplay among oxidative stress, frailty syndrome, AD and presbycusis, that may help to unravel the common mechanisms shared by both pathologies. This knowledge would help to design new possible therapeutic strategies that in turn, will improve the quality of life of these patients.
Collapse
|
44
|
Jeong H, Clark S, Goehring A, Dehghani-Ghahnaviyeh S, Rasouli A, Tajkhorshid E, Gouaux E. Structures of the TMC-1 complex illuminate mechanosensory transduction. Nature 2022; 610:796-803. [PMID: 36224384 PMCID: PMC9605866 DOI: 10.1038/s41586-022-05314-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023]
Abstract
The initial step in the sensory transduction pathway underpinning hearing and balance in mammals involves the conversion of force into the gating of a mechanosensory transduction channel1. Despite the profound socioeconomic impacts of hearing disorders and the fundamental biological significance of understanding mechanosensory transduction, the composition, structure and mechanism of the mechanosensory transduction complex have remained poorly characterized. Here we report the single-particle cryo-electron microscopy structure of the native transmembrane channel-like protein 1 (TMC-1) mechanosensory transduction complex isolated from Caenorhabditis elegans. The two-fold symmetric complex is composed of two copies each of the pore-forming TMC-1 subunit, the calcium-binding protein CALM-1 and the transmembrane inner ear protein TMIE. CALM-1 makes extensive contacts with the cytoplasmic face of the TMC-1 subunits, whereas the single-pass TMIE subunits reside on the periphery of the complex, poised like the handles of an accordion. A subset of complexes additionally includes a single arrestin-like protein, arrestin domain protein (ARRD-6), bound to a CALM-1 subunit. Single-particle reconstructions and molecular dynamics simulations show how the mechanosensory transduction complex deforms the membrane bilayer and suggest crucial roles for lipid-protein interactions in the mechanism by which mechanical force is transduced to ion channel gating.
Collapse
Affiliation(s)
- Hanbin Jeong
- grid.433851.80000 0004 0608 3919Vollum Institute, Oregon Health and Science University, Portland, OR USA
| | - Sarah Clark
- grid.433851.80000 0004 0608 3919Vollum Institute, Oregon Health and Science University, Portland, OR USA
| | - April Goehring
- grid.433851.80000 0004 0608 3919Vollum Institute, Oregon Health and Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR USA
| | - Sepehr Dehghani-Ghahnaviyeh
- grid.35403.310000 0004 1936 9991Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Ali Rasouli
- grid.35403.310000 0004 1936 9991Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Emad Tajkhorshid
- grid.35403.310000 0004 1936 9991Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Eric Gouaux
- grid.433851.80000 0004 0608 3919Vollum Institute, Oregon Health and Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR USA
| |
Collapse
|
45
|
Chen BJ, Qian XQ, Yang XY, Jiang T, Wang YM, Lyu JH, Chi FL, Chen P, Ren DD. Rab11a Regulates the Development of Cilia and Establishment of Planar Cell Polarity in Mammalian Vestibular Hair Cells. Front Mol Neurosci 2021; 14:762916. [PMID: 34867187 PMCID: PMC8640494 DOI: 10.3389/fnmol.2021.762916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Vestibular organs have unique planar cell polarity (Figure 1A), and their normal development and function are dependent on the regular polarity of cilia (Figure 1B) requires. Rab11a is a small G protein that participates in the transportation of intracellular and extracellular materials required for polarity formation; however, our understanding of the mechanisms of the actions of Rab11a in vestibular organs is limited. Here, we showed that the general shape of the utricle was abnormal in Rab11a CKO/CKO mice. These mice also showed abnormal morphology of the stereocilia bundles, which were reduced in both length and number, as well as disturbed tissue-level polarity. Rab11a affected the distribution of polarity proteins in the vestibular organs, indicating that the normal development of cilia requires Rab11a and intraflagellar transportation. Furthermore, small G protein migration works together with intraflagellar transportation in the normal development of cilia. FIGURE 1Morphological changes of stereocilia in the extrastriolar hair cells from Rab11a single or Rab11a/IFT88 double-mutant utricles. (A) Medial view of a mouse left inner ear with its five vestibular sensory organs (gray). Enlarged are the utricle showing their subdivisions, LPR (yellow line), and striola (blue). LES, lateral extrastriola; MES, medial extrastriola; LPR, line of polarity reversal. (B) Schematic view of vestibular hair cell. Kinocilium is marked with ace-tubulin. Basal body is marked with γ-tubulin. (C,C1,D,D1) Normal appearance of the stereocilia of extrastriolar hair cells of wild-type controls. (E,E1,F,F1) Altered morphology in Rab11a CKO/CKO animals. (G,G1,H,H1) The changes in the stereocilia morphology were more severe in Rab11a CKO/CKO /IFT 88 CKO/+ mice. (I-L) Higher magnification of confocal images of hair cells. (M-P) Scanning electron microscopy images of hair cells from wild-type controls and Rab11a mutants. (I,M) Morphology of normal. hair cells of wild-type controls. (J,N) The number of stereocilia on a single hair cell was deceased in the Rab11a mutant. (K,O) Stereocilia were shorter in mutants compared to the wild-type controls. (L,P) The staircase-like hair bundle architecture of hair cells was lost in Rab11a mutant mice. (Q) The percentage of hair cells with abnormal development of static cilia bundles in the extrastriola region was counted as a percentage of the total (n = 5). The percentage of abnormal hair cells was higher in Rab11a CKO/CKO , IFT88 CKO/+ mice compared to Rab11a CKO/CKO . The abnormal ratios of single and double knockout hair cells were 42.1 ± 5.7 and 71.5 ± 10.4, respectively. In (A-J), for all primary panels, hair cell stereociliary bundles were marked with phalloidin (green), the actin-rich cuticular plate of hair cells was labeled with β-spectrin (red), while the basal body of the hair cell was labeled with γ-tubulin (blue). Scale bars: 10 μm (C-H1), 5 μm (J-N). *P < 0.05.
Collapse
Affiliation(s)
- Bin-Jun Chen
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| | - Xiao-Qing Qian
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| | - Xiao-Yu Yang
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| | - Tao Jiang
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| | - Yan-Mei Wang
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| | - Ji-Han Lyu
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| | - Fang-Lu Chi
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| | - Ping Chen
- Department of Cell Biology, Emory University, Atlanta, GA, United States.,Department of Otolaryngology, Emory University, Atlanta, GA, United States
| | - Dong-Dong Ren
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Shanghai Auditory Medical Center, Shanghai, China
| |
Collapse
|
46
|
Bile acid-permeation enhancement for inner ear cochlear drug - pharmacological uptake: bio-nanotechnologies in chemotherapy-induced hearing loss. Ther Deliv 2021; 12:807-819. [PMID: 34761700 DOI: 10.4155/tde-2021-0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ototoxicity is the damage to inner ear sensory epithelia due to exposure to certain medications and chemicals. This occurs when toxins enter the tightly controlled inner ear environment inducing hair cell death, resulting in hearing loss. Recent studies have explored hydrogel-based bio-nanotechnologies and new drug delivery formulations to prevent drug-induced hearing loss, with much attention given to administration of antioxidant drugs. Bile acids have been recognized as promising excipients due to their biocompatibility and unique physiochemical properties. As yet bile acids have not been explored in improving drug delivery to the inner ear despite improving drug stability and delivery in other systems and demonstrating positive biological effects in their own right.
Collapse
|
47
|
Poole K. The Diverse Physiological Functions of Mechanically Activated Ion Channels in Mammals. Annu Rev Physiol 2021; 84:307-329. [PMID: 34637325 DOI: 10.1146/annurev-physiol-060721-100935] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many aspects of mammalian physiology are mechanically regulated. One set of molecules that can mediate mechanotransduction are the mechanically activated ion channels. These ionotropic force sensors are directly activated by mechanical inputs, resulting in ionic flux across the plasma membrane. While there has been much research focus on the role of mechanically activated ion channels in touch sensation and hearing, recent data have highlighted the broad expression pattern of these molecules in mammalian cells. Disruption of mechanically activated channels has been shown to impact (a) the development of mechanoresponsive structures, (b) acute mechanical sensing, and (c) mechanically driven homeostatic maintenance in multiple tissue types. The diversity of processes impacted by these molecules highlights the importance of mechanically activated ion channels in mammalian physiology. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; .,Cellular and Systems Physiology, School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
48
|
Beurg M, Nam JH, Fettiplace R. The speed of the hair cell mechanotransducer channel revealed by fluctuation analysis. J Gen Physiol 2021; 153:212584. [PMID: 34411238 PMCID: PMC8383808 DOI: 10.1085/jgp.202112959] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/01/2021] [Indexed: 11/22/2022] Open
Abstract
Although mechanoelectrical transducer (MET) channels have been extensively studied, uncertainty persists about their molecular architecture and single-channel conductance. We made electrical measurements from mouse cochlear outer hair cells (OHCs) to reexamine the MET channel conductance comparing two different methods. Analysis of fluctuations in the macroscopic currents showed that the channel conductance in apical OHCs determined from nonstationary noise analysis was about half that of single-channel events recorded after tip link destruction. We hypothesized that this difference reflects a bandwidth limitation in the noise analysis, which we tested by simulations of stochastic fluctuations in modeled channels. Modeling indicated that the unitary conductance depended on the relative values of the channel activation time constant and the applied low-pass filter frequency. The modeling enabled the activation time constant of the channel to be estimated for the first time, yielding a value of only a few microseconds. We found that the channel conductance, assayed with both noise and recording of single-channel events, was reduced by a third in a new deafness mutant, Tmc1 p.D528N. Our results indicate that noise analysis is likely to underestimate MET channel amplitude, which is better characterized from recordings of single-channel events.
Collapse
Affiliation(s)
- Maryline Beurg
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jong-Hoon Nam
- Departments of Mechanical Engineering and Biomechanical Engineering, University of Rochester, Rochester, NY
| | - Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
49
|
Peng AW, Scharr AL, Caprara GA, Nettles D, Steele CR, Ricci AJ. Fluid Jet Stimulation of Auditory Hair Bundles Reveal Spatial Non-uniformities and Two Viscoelastic-Like Mechanisms. Front Cell Dev Biol 2021; 9:725101. [PMID: 34513845 PMCID: PMC8427531 DOI: 10.3389/fcell.2021.725101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Hair cell mechanosensitivity resides in the sensory hair bundle, an apical protrusion of actin-filled stereocilia arranged in a staircase pattern. Hair bundle deflection activates mechano-electric transduction (MET) ion channels located near the tops of the shorter rows of stereocilia. The elicited macroscopic current is shaped by the hair bundle motion so that the mode of stimulation greatly influences the cell’s output. We present data quantifying the displacement of the whole outer hair cell bundle using high-speed imaging when stimulated with a fluid jet. We find a spatially non-uniform stimulation that results in splaying, where the hair bundle expands apart. Based on modeling, the splaying is predominantly due to fluid dynamics with a small contribution from hair bundle architecture. Additionally, in response to stimulation, the hair bundle exhibited a rapid motion followed by a slower motion in the same direction (creep) that is described by a double exponential process. The creep is consistent with originating from a linear passive system that can be modeled using two viscoelastic processes. These viscoelastic mechanisms are integral to describing the mechanics of the mammalian hair bundle.
Collapse
Affiliation(s)
- Anthony W Peng
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alexandra L Scharr
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States.,Neuroscience Graduate Program, School of Medicine, Stanford University, Stanford, CA, United States
| | - Giusy A Caprara
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dailey Nettles
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charles R Steele
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering and Aeronautics and Astronautics, School of Engineering, Stanford University, Stanford, CA, United States
| | - Anthony J Ricci
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States.,Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
50
|
Berger J, Rubinstein J. A flexible anatomical set of mechanical models for the organ of Corti. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210016. [PMID: 34540242 PMCID: PMC8441134 DOI: 10.1098/rsos.210016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
We build a flexible platform to study the mechanical operation of the organ of Corti (OoC) in the transduction of basilar membrane (BM) vibrations to oscillations of an inner hair cell bundle (IHB). The anatomical components that we consider are the outer hair cells (OHCs), the outer hair cell bundles, Deiters cells, Hensen cells, the IHB and various sections of the reticular lamina. In each of the components we apply Newton's equations of motion. The components are coupled to each other and are further coupled to the endolymph fluid motion in the subtectorial gap. This allows us to obtain the forces acting on the IHB, and thus study its motion as a function of the parameters of the different components. Some of the components include a nonlinear mechanical response. We find that slight bending of the apical ends of the OHCs can have a significant impact on the passage of motion from the BM to the IHB, including critical oscillator behaviour. In particular, our model implies that the components of the OoC could cooperate to enhance frequency selectivity, amplitude compression and signal to noise ratio in the passage from the BM to the IHB. Since the model is modular, it is easy to modify the assumptions and parameters for each component.
Collapse
Affiliation(s)
- Jorge Berger
- Department of Physics and Optical Engineering, Ort Braude College, Karmiel, Israel
| | | |
Collapse
|