1
|
Sampaio Moura N, Schledwitz A, Alizadeh M, Kodan A, Njei LP, Raufman JP. Cholinergic Mechanisms in Gastrointestinal Neoplasia. Int J Mol Sci 2024; 25:5316. [PMID: 38791353 PMCID: PMC11120676 DOI: 10.3390/ijms25105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Acetylcholine-activated receptors are divided broadly into two major structurally distinct classes: ligand-gated ion channel nicotinic and G-protein-coupled muscarinic receptors. Each class encompasses several structurally related receptor subtypes with distinct patterns of tissue expression and post-receptor signal transduction mechanisms. The activation of both nicotinic and muscarinic cholinergic receptors has been associated with the induction and progression of gastrointestinal neoplasia. Herein, after briefly reviewing the classification of acetylcholine-activated receptors and the role that nicotinic and muscarinic cholinergic signaling plays in normal digestive function, we consider the mechanics of acetylcholine synthesis and release by neuronal and non-neuronal cells in the gastrointestinal microenvironment, and current methodology and challenges in measuring serum and tissue acetylcholine levels accurately. Then, we critically evaluate the evidence that constitutive and ligand-induced activation of acetylcholine-activated receptors plays a role in promoting gastrointestinal neoplasia. We focus primarily on adenocarcinomas of the stomach, pancreas, and colon, because these cancers are particularly common worldwide and, when diagnosed at an advanced stage, are associated with very high rates of morbidity and mortality. Throughout this comprehensive review, we concentrate on identifying novel ways to leverage these observations for prognostic and therapeutic purposes.
Collapse
Affiliation(s)
- Natalia Sampaio Moura
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
| | - Alyssa Schledwitz
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
| | - Madeline Alizadeh
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Asha Kodan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
| | - Lea-Pearl Njei
- Department of Biological Science, University of Maryland, Baltimore County, Baltimore, MD 21250, USA;
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
- Veterans Affairs Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Ledneczki I, Némethy Z, Molnár KD, Tapolcsányi P, Ilkei V, Vágó I, Kolok S, Thán M, Laszy J, Balázs O, Krámos B, Szigetvári Á, Bata I, Makó A, Visegrády A, Fodor L, Vastag M, Lévay G, Lendvai B, Greiner I, Éles J. Optimization of Novel α7 Nicotinic Acetylcholine Receptor Positive Allosteric Modulators and the Discovery of a Preclinical Development Candidate Molecule (RGH-560). J Med Chem 2023; 66:16276-16302. [PMID: 37989278 DOI: 10.1021/acs.jmedchem.3c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
During optimization of a previously identified lead compound, attempts were made to optimize the reactive indole structural element, the suboptimal metabolic stability, as well as the low kinetic solubility. It was concluded that the indole was important for in vitro activity. With the aim of further improvements, more thorough modifications were also carried out. As a result, a new chemotype (the azetidinespirochromone family) was identified, which proved to be 1 order of magnitude less lipophilic retaining the same high level of in vitro potency as the lead series itself, however, with improved metabolic stability and kinetic solubility. Compound 53 showed the most balanced physicochemical and pharmacological profile with significant in vivo efficacy in the scopolamine-induced amnesia test. Based on these promising results, cognitive enhancement through the positive modulation of α7 nAChRs appears to be a viable approach. Compound 53 was selected to be a preclinical development candidate (as RGH-560).
Collapse
Affiliation(s)
| | - Zsolt Némethy
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | | | - Pál Tapolcsányi
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Viktor Ilkei
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - István Vágó
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Sándor Kolok
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Márta Thán
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Judit Laszy
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Ottilia Balázs
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Balázs Krámos
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Áron Szigetvári
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Imre Bata
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Attila Makó
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | | | - László Fodor
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Mónika Vastag
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - György Lévay
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - Balázs Lendvai
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - István Greiner
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| | - János Éles
- Gedeon Richter Plc, 19-21 Gyömői útca, Budapest H-1103, Hungary
| |
Collapse
|
3
|
Matsumoto A, Yonehara K. Emerging computational motifs: Lessons from the retina. Neurosci Res 2023; 196:11-22. [PMID: 37352934 DOI: 10.1016/j.neures.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
The retinal neuronal circuit is the first stage of visual processing in the central nervous system. The efforts of scientists over the last few decades indicate that the retina is not merely an array of photosensitive cells, but also a processor that performs various computations. Within a thickness of only ∼200 µm, the retina consists of diverse forms of neuronal circuits, each of which encodes different visual features. Since the discovery of direction-selective cells by Horace Barlow and Richard Hill, the mechanisms that generate direction selectivity in the retina have remained a fascinating research topic. This review provides an overview of recent advances in our understanding of direction-selectivity circuits. Beyond the conventional wisdom of direction selectivity, emerging findings indicate that the retina utilizes complicated and sophisticated mechanisms in which excitatory and inhibitory pathways are involved in the efficient encoding of motion information. As will become evident, the discovery of computational motifs in the retina facilitates an understanding of how sensory systems establish feature selectivity.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan.
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
4
|
Dzhafarova AM, Saidov MB, Klichkhanov NK. The Time Profile of the Effects of Moderate Hypothermia on Synaptic Acetylcholinesterase in Rat Brain. Bull Exp Biol Med 2023; 175:191-195. [PMID: 37462806 DOI: 10.1007/s10517-023-05833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 07/28/2023]
Abstract
Hypothermia in homeotherms significantly affects the neurotransmitter systems of the brain, including the cholinergic system. The function of the brain cholinergic system during prolonged moderate hypothermia is not known yet. We studied the effects of moderate hypothermia of various durations on the activity and kinetic parameters of synaptic acetylcholinesterase in rat brain. Immediately after body temperature decrease to 30°C, the efficiency of synaptic acetylcholinesterase catalysis significantly increases due to changes in both the maximum rate of reaction (Vmax; the rate of reaction when the enzyme is saturated with substrate) and Michaelis constant (Km). However, in the dynamics of prolonged hypothermia (1-3 h), it decreases to a level of intact animals, which was associated with normalization of the kinetic parameters of the enzyme. The detected changes in the kinetic parameters of the enzyme are compensatory and can be associated with both its reversible post-translational modifications and changes in the annular lipids.
Collapse
Affiliation(s)
- A M Dzhafarova
- Dagestan State University, Makhachkala, Republic of Dagestan, Russia.
| | - M B Saidov
- Dagestan State University, Makhachkala, Republic of Dagestan, Russia
| | - N K Klichkhanov
- Dagestan State University, Makhachkala, Republic of Dagestan, Russia
| |
Collapse
|
5
|
Castro MFV, Assmann CE, Stefanello N, Reichert KP, Palma TV, da Silva AD, Miron VV, Mostardeiro VB, Morsch VMM, Schetinger MRC. Caffeic acid attenuates neuroinflammation and cognitive impairment in streptozotocin-induced diabetic rats: Pivotal role of the cholinergic and purinergic signaling pathways. J Nutr Biochem 2023; 115:109280. [PMID: 36796549 DOI: 10.1016/j.jnutbio.2023.109280] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
The present study evaluated the effect of caffeic acid (CA) on behavioral learning and memory tasks in the diabetic state. We also evaluated the effect of this phenolic acid on the enzymatic activities of acetylcholinesterase, ecto-nucleoside triphosphate diphosphohydrolase, ecto-5-nucleotidase and adenosine deaminase as well as on the density of M1R, α7nAChR, P2×7R, A1R, A2AR, and inflammatory parameters in the cortex and hippocampus of diabetic rats. Diabetes was induced by a single intraperitoneal dose of streptozotocin (55 mg/kg). The animals were divided into six groups: control/vehicle; control/CA 10 and 50 mg/kg; diabetic/vehicle; diabetic/CA 10 and 50 mg/kg, treated by gavage. The results showed that CA improved learning and memory deficits in diabetic rats. Also, CA reversed the increase in acetylcholinesterase and adenosine deaminase activities and reduced ATP and ADP hydrolysis. Moreover, CA increased the density of M1R, α7nAChR, and A1R receptors and reversed the increase in P2×7R and A2AR density in both evaluated structures. In addition, CA treatment attenuated the increase in NLRP3, caspase 1, and interleukin 1β density in the diabetic state; moreover, it increased the density of interleukin-10 in the diabetic/CA 10 mg/kg group. The results indicated that CA treatment positively modified the activities of cholinergic and purinergic enzymes and the density of receptors, and improved the inflammatory parameters of diabetic animals. Thus, the outcomes suggest that this phenolic acid could improve the cognitive deficit linked to cholinergic and purinergic signaling in the diabetic state.
Collapse
Affiliation(s)
- Milagros Fanny Vera Castro
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| | - Charles Elias Assmann
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Karine Paula Reichert
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Taís Vidal Palma
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Aniélen Dutra da Silva
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vanessa Valéria Miron
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Akomolafe SF, Asowata-Ayodele AM. Roasted cashew ( Anacardium occidentale L.) nut-enhanced diet forestalls cisplatin-initiated brain harm in rats. Heliyon 2022; 8:e11066. [PMID: 36276737 PMCID: PMC9578995 DOI: 10.1016/j.heliyon.2022.e11066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/16/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
The incessant dose constraining symptom of the chemotherapeutic agent, cisplatin is neurotoxicity. This examination tried to explore the neuroprotective impact of roasted cashew nut-enhanced diet against brain deficits related with treatment with cisplatin. Rats were separated in to six groups: Control, CIS (cisplatin [7 mg/kg body weight, i.p]), CIS +10% CN (cisplatin plus 10% roasted cashew nut), CIS +20% CN (cisplatin plus 20% roasted cashew nut), 10% CN (10% roasted cashew nut) and 20% CN (20% roasted cashew nut) for 28 days. Key enzymes associated with brain function, including cholinesterases (AChE and BChE), monoaminergic enzyme (MAO), arginase, and adenosine deaminase (ADA), were investigated after the treatment. The following oxidative stress indicators were also measured in the rat brain: glutathione-S-transferase (GST), glutathione peroxidase (GPx), total antioxidant capacity (TAC), total thiol (T-SH), non-protein thiol (NPSH), thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS), nitric oxide (NO), superoxide dismutase (SOD). Our outcomes demonstrated that roasted cashew nut enhanced diet showed inhibitory impact on activities of AChE, BChE, ADA, MAO and arginase in cisplatin-induced rats. The roasted cashew nut supplemented diet also boosted redox equilibrium and displayed protection against cispaltin-induced oxidative damage to rats' brains by an increase in SOD, CAT, GST and GPx activities, TAC, T-SH, NPSH and NO levels as well as a considerable drop in ROS and RBARS levels. Roasted cashew nut enhanced diet additionally forestalled neuronal degeneration in rat brain. Thus, roasted cashew nuts could be used as a nutraceutical or functional food to treat cisplatin-induced neurotoxicity. Practical applications The results show that increasing roasted cashew nut consumption can significantly improve antioxidant status, reduce lipid peroxidation, and suppress cholinesterase, adenosine deaminase, monoamine oxidase, and arginase activities in the brain under cisplatin-induced circumstances.
Collapse
Affiliation(s)
- Seun F. Akomolafe
- Department of Biochemistry, Ekiti State University, P.M.B. 5363, Ado Ekiti, Nigeria,Corresponding author.
| | | |
Collapse
|
7
|
Mazzaferro S, Msekela DJ, Cooper EC, Maheshwari A, Sine SM. Genetic Variant in Nicotinic Receptor α4-Subunit Causes Sleep-Related Hyperkinetic Epilepsy via Increased Channel Opening. Int J Mol Sci 2022; 23:12124. [PMID: 36292983 PMCID: PMC9602795 DOI: 10.3390/ijms232012124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 02/03/2023] Open
Abstract
We describe genetic and molecular-level functional alterations in the α4β2 neuronal nicotinic acetylcholine receptor (nAChR) from a patient with sleep-related hyperkinetic epilepsy and a family history of epilepsy. Genetic sequencing revealed a heterozygous variant c.851C>G in the CHRNA4 gene encoding the α4 subunit, resulting in the missense mutation p.Ser284Trp. Patch clamp recordings from genetically engineered nAChRs incorporating the α4-Ser284Trp subunit revealed aberrant channel openings in the absence of agonist and markedly prolonged openings in its presence. Measurements of single channel current amplitude distinguished two pentameric stoichiometries of the variant nAChR containing either two or three copies of the α4-Ser284Trp subunit, each exhibiting aberrant spontaneous and prolonged agonist-elicited channel openings. The α4-Ser284 residue is highly conserved and located within the M2 transmembrane α-helix that lines the ion channel. When mapped onto the receptor’s three-dimensional structure, the larger Trp substitution sterically clashes with the M2 α-helix from the neighboring subunit, promoting expansion of the pore and stabilizing the open relative to the closed conformation of the channel. Together, the clinical, genetic, functional, and structural observations demonstrate that α4-Ser284Trp enhances channel opening, predicting increased membrane excitability and a pathogenic seizure phenotype.
Collapse
Affiliation(s)
- Simone Mazzaferro
- Departments of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Deborah J. Msekela
- Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Edward C. Cooper
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven M. Sine
- Departments of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Departments of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Ma X, Shi L, Zhang B, Liu L, Fu Y, Zhang X. Recent advances in bioprobes and biolabels based on cyanine dyes. Anal Bioanal Chem 2022; 414:4551-4573. [PMID: 35359180 DOI: 10.1007/s00216-022-03995-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
As a functional dye, cyanine dye promotes the widespread application of bioprobes in the fields of medicine, genetics and environment, owing to its advantages of good photophysical properties, excellent biocompatibility and low toxicity to biological systems. Nowadays, it is mainly used in the fields of life sciences such as fluorescent labeling of biological macromolecules, disease diagnosis, immunoassay and DNA detection, all of which lie at the core of this review. First, we briefly introduced the characteristics and principles of the cyanine dye bioprobe. Afterward, we paid attention to the recent progress of cyanine dye bioprobes widely used in the 10 years from 2010 to 2020. The application of cyanine dyes as bioprobes with different identification elements, including enzymes, organelles, immunity and DNAs, was mainly summarized. Finally, this review gave an outlook on the future development trend of cyanine dye bioprobes. This facilitates the construction of a new type of multifunctional fluorescent probe and promotes its clinical application.
Collapse
Affiliation(s)
- Xiaoying Ma
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Lei Shi
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China.
| | - Buyue Zhang
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Lu Liu
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Yao Fu
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Xiufeng Zhang
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China.
| |
Collapse
|
9
|
Ren M, Wang Y, Luo Y, Yao X, Yang Z, Zhang P, Zhao W, Jiang D. Functionalized Nanoparticles in Prevention and Targeted Therapy of Viral Diseases With Neurotropism Properties, Special Insight on COVID-19. Front Microbiol 2021; 12:767104. [PMID: 34867899 PMCID: PMC8634613 DOI: 10.3389/fmicb.2021.767104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Neurotropic viruses have neural-invasive and neurovirulent properties to damage the central nervous system (CNS), leading to humans' fatal symptoms. Neurotropic viruses comprise a lot of viruses, such as Zika virus (ZIKV), herpes simplex virus (HSV), rabies virus (RABV), and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Effective therapy is needed to prevent infection by these viruses in vivo and in vitro. However, the blood-brain barrier (BBB) usually prevents macromolecules from entering the CNS, which challenges the usage of the traditional probes, antiviral drugs, or neutralizing antibodies in the CNS. Functionalized nanoparticles (NPs) have been increasingly reported in the targeted therapy of neurotropic viruses due to their sensitivity and targeting characteristics. Therefore, the present review outlines efficient functionalized NPs to further understand the recent trends, challenges, and prospects of these materials.
Collapse
Affiliation(s)
| | - Yin Wang
- Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Natarajan K, Mukhtasimova N, Corradi J, Lasala M, Bouzat C, Sine SM. Mechanism of calcium potentiation of the α7 nicotinic acetylcholine receptor. J Gen Physiol 2021; 152:151971. [PMID: 32702089 PMCID: PMC7478872 DOI: 10.1085/jgp.202012606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/19/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is among the most abundant types of nAChR in the brain, yet the ability of nerve-released ACh to activate α7 remains enigmatic. In particular, a major population of α7 resides in extra-synaptic regions where the ACh concentration is reduced, owing to dilution and enzymatic hydrolysis, yet ACh shows low potency in activating α7. Using high-resolution single-channel recording techniques, we show that extracellular calcium is a powerful potentiator of α7 activated by low concentrations of ACh. Potentiation manifests as robust increases in the frequency of channel opening and the average duration of the openings. Molecular dynamics simulations reveal that calcium binds to the periphery of the five ligand binding sites and is framed by a pair of anionic residues from the principal and complementary faces of each site. Mutation of residues identified by simulation prevents calcium from potentiating ACh-elicited channel opening. An anionic residue is conserved at each of the identified positions in all vertebrate species of α7. Thus, calcium associates with a novel structural motif on α7 and is an obligate cofactor in regions of limited ACh concentration.
Collapse
Affiliation(s)
- Kathiresan Natarajan
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
| | - Nuriya Mukhtasimova
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas, Departamento de Biologia, Bioquimica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Matías Lasala
- Instituto de Investigaciones Bioquímicas, Departamento de Biologia, Bioquimica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas, Departamento de Biologia, Bioquimica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
11
|
Pancotti L, Topolnik L. Cholinergic Modulation of Dendritic Signaling in Hippocampal GABAergic Inhibitory Interneurons. Neuroscience 2021; 489:44-56. [PMID: 34129910 DOI: 10.1016/j.neuroscience.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Dendrites represent the "reception hub" of the neuron as they collect thousands of different inputs and send a coherent response to the cell body. A considerable portion of these signals, especially in vivo, arises from neuromodulatory sources, which affect dendritic computations and cellular activity. In this context, acetylcholine (ACh) exerts a coordinating role of different brain structures, contributing to goal-driven behaviors and sleep-wake cycles. Specifically, cholinergic neurons from the medial septum-diagonal band of Broca complex send numerous projections to glutamatergic principal cells and GABAergic inhibitory neurons in the hippocampus, differentially entraining them during network oscillations. Interneurons display abundant expression of cholinergic receptors and marked responses to stimulation by ACh. Nonetheless, the precise localization of ACh inputs is largely unknown, and evidence for cholinergic modulation of interneuronal dendritic signaling remains elusive. In this article, we review evidence that suggests modulatory effects of ACh on dendritic computations in three hippocampal interneuron subtypes: fast-spiking parvalbumin-positive (PV+) cells, somatostatin-expressing (SOM+) oriens lacunosum moleculare cells and vasoactive intestinal polypeptide-expressing (VIP+) interneuron-selective interneurons. We consider the distribution of cholinergic receptors on these interneurons, including information about their specific somatodendritic location, and discuss how the action of these receptors can modulate dendritic Ca2+ signaling and activity of interneurons. The implications of ACh-dependent Ca2+ signaling for dendritic plasticity are also discussed. We propose that cholinergic modulation can shape the dendritic integration and plasticity in interneurons in a cell type-specific manner, and the elucidation of these mechanisms will be required to understand the contribution of each cell type to large-scale network activity.
Collapse
Affiliation(s)
- Luca Pancotti
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Canada; Neuroscience Axis, CRCHUQ, Laval University, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Canada; Neuroscience Axis, CRCHUQ, Laval University, Canada.
| |
Collapse
|
12
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
13
|
Ledneczki I, Horváth A, Tapolcsányi P, Éles J, Molnár KD, Vágó I, Visegrády A, Kiss L, Szigetvári Á, Kóti J, Krámos B, Mahó S, Holm P, Kolok S, Fodor L, Thán M, Kostyalik D, Balázs O, Vastag M, Greiner I, Lévay G, Lendvai B, Némethy Z. HTS-based discovery and optimization of novel positive allosteric modulators of the α7 nicotinic acetylcholine receptor. Eur J Med Chem 2021; 222:113560. [PMID: 34111828 DOI: 10.1016/j.ejmech.2021.113560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 12/01/2022]
Abstract
HTS campaign of the corporate compound collection resulted in a novel, oxalic acid diamide scaffold of α7 nACh receptor positive allosteric modulators. During the hit expansion, several derivatives, such as 4, 11, 17 demonstrated not only high in vitro potency, but also in vivo efficacy in the mouse place recognition test. The advanced hit molecule 11 was further optimized by the elimination of the putatively mutagenic aromatic-amine building block that resulted in a novel, aminomethylindole compound family. The most balanced physico-chemical and pharmacological profile was found in case of compound 55. Docking study revealed an intersubunit binding site to be the most probable for our compounds. 55 demonstrated favorable cognitive enhancing profile not only in scopolamine-induced amnesia (place recognition test in mice) but also in natural forgetting (novel object recognition test in rats). Compound 55 was, furthermore, active in a cognitive paradigm of high translational value, namely in the rat touch screen visual discrimination test. Therefore, 55 was selected as a lead compound for further optimization. Based on the obtained favorable results, the invented aminomethylindole cluster may provide a viable approach for cognitive enhancement through positive allosteric modulation of α7 nAChRs.
Collapse
Affiliation(s)
- István Ledneczki
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary.
| | - Anita Horváth
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - Pál Tapolcsányi
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - János Éles
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | | | - István Vágó
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | - András Visegrády
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - László Kiss
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Áron Szigetvári
- Spectroscopic Research Department, Gedeon Richter Plc., Budapest, Hungary
| | - János Kóti
- Spectroscopic Research Department, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Krámos
- Spectroscopic Research Department, Gedeon Richter Plc., Budapest, Hungary
| | - Sándor Mahó
- Department of Chemistry, Gedeon Richter Plc., Budapest, Hungary
| | | | - Sándor Kolok
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - László Fodor
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Márta Thán
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Diána Kostyalik
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Ottilia Balázs
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Mónika Vastag
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - István Greiner
- Research Management, Gedeon Richter Plc., Budapest, Hungary
| | - György Lévay
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Lendvai
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Zsolt Némethy
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| |
Collapse
|
14
|
Sugimura T, Saito Y. Distinct proportions of cholinergic neurons in the rat prepositus hypoglossi nucleus according to their cerebellar projection targets. J Comp Neurol 2021; 529:1541-1552. [PMID: 32949021 DOI: 10.1002/cne.25035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/07/2022]
Abstract
Cerebellar functions are modulated by cholinergic inputs, the density of which varies among cerebellar regions. Although the prepositus hypoglossi nucleus (PHN), a brainstem structure involved in controlling gaze holding, is known as one of the major sources of these cholinergic inputs, the proportions of cholinergic neurons in PHN projections to distinct cerebellar regions have not been quantitatively analyzed. In this study, we identified PHN neurons projecting to the cerebellum by applying retrograde labeling with dextran-conjugated Alexa 488 in choline acetyltransferase (ChAT)-tdTomato transgenic rats and compared the proportion of cholinergic PHN neurons in the PHN projections to four different regions of the cerebellum, namely the flocculus (FL), the uvula and nodulus (UN), lobules III-V in the vermis (VM), and the hemispheric paramedian lobule and crus 2 (PC). In the PHN, the percentage of cholinergic PHN neurons was lower in the projection to the FL than in the projection to the UN, VM or PC. Preposito-cerebellar neurons, except for preposito-FL neurons, included different proportions of cholinergic neurons at different rostrocaudal positions in the PHN. These results suggest that cholinergic PHN neurons project to not only the vestibulocerebellum but also the anterior vermis and posterior hemisphere and that the proportion of cholinergic neurons among projection neurons from the PHN differs depending on cerebellar target areas and the rostro-caudal regions of the PHN. This study provides insights regarding the involvement of cerebellar cholinergic networks in gaze holding.
Collapse
Affiliation(s)
- Taketoshi Sugimura
- Department of Neurophysiology, Nara Medical University, Kashihara, Nara, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
15
|
Arias HR, Targowska-Duda KM, García-Colunga J, Ortells MO. Is the Antidepressant Activity of Selective Serotonin Reuptake Inhibitors Mediated by Nicotinic Acetylcholine Receptors? Molecules 2021; 26:molecules26082149. [PMID: 33917953 PMCID: PMC8068400 DOI: 10.3390/molecules26082149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/05/2022] Open
Abstract
It is generally assumed that selective serotonin reuptake inhibitors (SSRIs) induce antidepressant activity by inhibiting serotonin (5-HT) reuptake transporters, thus elevating synaptic 5-HT levels and, finally, ameliorates depression symptoms. New evidence indicates that SSRIs may also modulate other neurotransmitter systems by inhibiting neuronal nicotinic acetylcholine receptors (nAChRs), which are recognized as important in mood regulation. There is a clear and strong association between major depression and smoking, where depressed patients smoke twice as much as the normal population. However, SSRIs are not efficient for smoking cessation therapy. In patients with major depressive disorder, there is a lower availability of functional nAChRs, although their amount is not altered, which is possibly caused by higher endogenous ACh levels, which consequently induce nAChR desensitization. Other neurotransmitter systems have also emerged as possible targets for SSRIs. Studies on dorsal raphe nucleus serotoninergic neurons support the concept that SSRI-induced nAChR inhibition decreases the glutamatergic hyperstimulation observed in stress conditions, which compensates the excessive 5-HT overflow in these neurons and, consequently, ameliorates depression symptoms. At the molecular level, SSRIs inhibit different nAChR subtypes by noncompetitive mechanisms, including ion channel blockade and induction of receptor desensitization, whereas α9α10 nAChRs, which are peripherally expressed and not directly involved in depression, are inhibited by competitive mechanisms. According to the functional and structural results, SSRIs bind within the nAChR ion channel at high-affinity sites that are spread out between serine and valine rings. In conclusion, SSRI-induced inhibition of a variety of nAChRs expressed in different neurotransmitter systems widens the complexity by which these antidepressants may act clinically.
Collapse
Affiliation(s)
- Hugo R. Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK 74464, USA
- Correspondence: ; Tel.: +1-918-525-6324; Fax: +1-918-280-2515
| | | | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Marcelo O. Ortells
- Facultad de Medicina, Universidad de Morón, CONICET, Morón 1708, Argentina;
| |
Collapse
|
16
|
Castro MFV, Stefanello N, Assmann CE, Baldissarelli J, Bagatini MD, da Silva AD, da Costa P, Borba L, da Cruz IBM, Morsch VM, Schetinger MRC. Modulatory effects of caffeic acid on purinergic and cholinergic systems and oxi-inflammatory parameters of streptozotocin-induced diabetic rats. Life Sci 2021; 277:119421. [PMID: 33785337 DOI: 10.1016/j.lfs.2021.119421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by a chronic hyperglycemia state, increased oxidative stress parameters, and inflammatory processes. AIMS To evaluate the effect of caffeic acid (CA) on ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and adenosine deaminase (ADA) enzymatic activity and expression of the A2A receptor of the purinergic system, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymatic activity and expression of the α7nAChR receptor of the cholinergic system as well as inflammatory and oxidative parameters in diabetic rats. METHODS Diabetes was induced by a single dose intraperitoneally of streptozotocin (STZ, 55 mg/kg). Animals were divided into six groups (n = 10): control/oil; control/CA 10 mg/kg; control/CA 50 mg/kg; diabetic/oil; diabetic/CA 10 mg/kg; and diabetic/CA 50 mg/kg treated for thirty days by gavage. RESULTS CA treatment reduced ATP and ADP hydrolysis (lymphocytes) and ATP levels (serum), and reversed the increase in ADA and AChE (lymphocytes), BuChE (serum), and myeloperoxidase (MPO, plasma) activities in diabetic rats. CA treatment did not attenuate the increase in IL-1β and IL-6 gene expression (lymphocytes) in the diabetic state; however, it increased IL-10 and A2A gene expression, regardless of the animals' condition (healthy or diabetic), and α7nAChR gene expression. Additionally, CA attenuated the increase in oxidative stress markers and reversed the decrease in antioxidant parameters of diabetic animals. CONCLUSION Overall, our findings indicated that CA treatment positively modulated purinergic and cholinergic enzyme activities and receptor expression, and improved oxi-inflammatory parameters, thus suggesting that this phenolic acid could improve redox homeostasis dysregulation and purinergic and cholinergic signaling in the diabetic state.
Collapse
Affiliation(s)
- Milagros Fanny Vera Castro
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil.
| | - Naiara Stefanello
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Margarete Dulce Bagatini
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Aniélen Dutra da Silva
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Pauline da Costa
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Loren Borba
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Post-Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
17
|
Sethuramanujam S, Matsumoto A, deRosenroll G, Murphy-Baum B, Grosman C, McIntosh JM, Jing M, Li Y, Berson D, Yonehara K, Awatramani GB. Rapid multi-directed cholinergic transmission in the central nervous system. Nat Commun 2021; 12:1374. [PMID: 33654091 PMCID: PMC7925691 DOI: 10.1038/s41467-021-21680-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
In many parts of the central nervous system, including the retina, it is unclear whether cholinergic transmission is mediated by rapid, point-to-point synaptic mechanisms, or slower, broad-scale 'non-synaptic' mechanisms. Here, we characterized the ultrastructural features of cholinergic connections between direction-selective starburst amacrine cells and downstream ganglion cells in an existing serial electron microscopy data set, as well as their functional properties using electrophysiology and two-photon acetylcholine (ACh) imaging. Correlative results demonstrate that a 'tripartite' structure facilitates a 'multi-directed' form of transmission, in which ACh released from a single vesicle rapidly (~1 ms) co-activates receptors expressed in multiple neurons located within ~1 µm of the release site. Cholinergic signals are direction-selective at a local, but not global scale, and facilitate the transfer of information from starburst to ganglion cell dendrites. These results suggest a distinct operational framework for cholinergic signaling that bears the hallmarks of synaptic and non-synaptic forms of transmission.
Collapse
Affiliation(s)
| | - Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | | | - Claudio Grosman
- Department of Molecular and Integrative Physiology, 407 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - J Michael McIntosh
- George E. Whalen Veterans Affairs Medical Center, Department of Psychiatry, School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry; School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Miao Jing
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - David Berson
- Neuroscience, Brown University, Providence, RI, USA
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | | |
Collapse
|
18
|
Noftz WA, Beebe NL, Mellott JG, Schofield BR. Cholinergic Projections From the Pedunculopontine Tegmental Nucleus Contact Excitatory and Inhibitory Neurons in the Inferior Colliculus. Front Neural Circuits 2020; 14:43. [PMID: 32765226 PMCID: PMC7378781 DOI: 10.3389/fncir.2020.00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
The inferior colliculus processes nearly all ascending auditory information. Most collicular cells respond to sound, and for a majority of these cells, the responses can be modulated by acetylcholine (ACh). The cholinergic effects are varied and, for the most part, the underlying mechanisms are unknown. The major source of cholinergic input to the inferior colliculus is the pedunculopontine tegmental nucleus (PPT), part of the pontomesencephalic tegmentum known for projections to the thalamus and roles in arousal and the sleep-wake cycle. Characterization of PPT inputs to the inferior colliculus has been complicated by the mixed neurotransmitter population within the PPT. Using selective viral-tract tracing techniques in a ChAT-Cre Long Evans rat, the present study characterizes the distribution and targets of cholinergic projections from PPT to the inferior colliculus. Following the deposit of viral vector in one PPT, cholinergic axons studded with boutons were present bilaterally in the inferior colliculus, with the greater density of axons and boutons ipsilateral to the injection site. On both sides, cholinergic axons were present throughout the inferior colliculus, distributing boutons to the central nucleus, lateral cortex, and dorsal cortex. In each inferior colliculus (IC) subdivision, the cholinergic PPT axons appear to contact both GABAergic and glutamatergic neurons. These findings suggest cholinergic projections from the PPT have a widespread influence over the IC, likely affecting many aspects of midbrain auditory processing. Moreover, the effects are likely to be mediated by direct cholinergic actions on both excitatory and inhibitory circuits in the inferior colliculus.
Collapse
Affiliation(s)
- William A. Noftz
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Nichole L. Beebe
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jeffrey G. Mellott
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Brett R. Schofield
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
19
|
Böhm E, Brunert D, Rothermel M. Input dependent modulation of olfactory bulb activity by HDB GABAergic projections. Sci Rep 2020; 10:10696. [PMID: 32612119 PMCID: PMC7329849 DOI: 10.1038/s41598-020-67276-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
Basal forebrain modulation of central circuits is associated with active sensation, attention, and learning. While cholinergic modulations have been studied extensively the effect of non-cholinergic basal forebrain subpopulations on sensory processing remains largely unclear. Here, we directly compare optogenetic manipulation effects of two major basal forebrain subpopulations on principal neuron activity in an early sensory processing area, i.e. mitral/tufted cells (MTCs) in the olfactory bulb. In contrast to cholinergic projections, which consistently increased MTC firing, activation of GABAergic fibers from basal forebrain to the olfactory bulb leads to differential modulation effects: while spontaneous MTC activity is mainly inhibited, odor-evoked firing is predominantly enhanced. Moreover, sniff-triggered averages revealed an enhancement of maximal sniff evoked firing amplitude and an inhibition of firing rates outside the maximal sniff phase. These findings demonstrate that GABAergic neuromodulation affects MTC firing in a bimodal, sensory-input dependent way, suggesting that GABAergic basal forebrain modulation could be an important factor in attention mediated filtering of sensory information to the brain.
Collapse
Affiliation(s)
- Erik Böhm
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany
| | - Daniela Brunert
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany.
| |
Collapse
|
20
|
Nolan SO, Zachry JE, Johnson AR, Brady LJ, Siciliano CA, Calipari ES. Direct dopamine terminal regulation by local striatal microcircuitry. J Neurochem 2020; 155:475-493. [PMID: 32356315 DOI: 10.1111/jnc.15034] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Regulation of axonal dopamine release by local microcircuitry is at the hub of several biological processes that govern the timing and magnitude of signaling events in reward-related brain regions. An important characteristic of dopamine release from axon terminals in the striatum is that it is rapidly modulated by local regulatory mechanisms. These processes can occur via homosynaptic mechanisms-such as presynaptic dopamine autoreceptors and dopamine transporters - as well heterosynaptic mechanisms such as retrograde signaling from postsynaptic cholinergic and dynorphin systems, among others. Additionally, modulation of dopamine release via diffusible messengers, such as nitric oxide and hydrogen peroxide, allows for various metabolic factors to quickly and efficiently regulate dopamine release and subsequent signaling. Here we review how these mechanisms work in concert to influence the timing and magnitude of striatal dopamine signaling, independent of action potential activity at the level of dopaminergic cell bodies in the midbrain, thereby providing a parallel pathway by which dopamine can be modulated. Understanding the complexities of local regulation of dopamine signaling is required for building comprehensive frameworks of how activity throughout the dopamine system is integrated to drive signaling and control behavior.
Collapse
Affiliation(s)
- Suzanne O Nolan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jennifer E Zachry
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Amy R Johnson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Lillian J Brady
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN TN, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
21
|
Abstract
The full functionality of the brain is determined by its molecular, cellular and circuit structure. Modern neuroscience now prioritizes the mapping of whole brain connectomes by detecting all direct neuron to neuron synaptic connections, a feat first accomplished for C. elegans, a full reconstruction of a 302-neuron nervous system. Efforts at Janelia Research Campus will soon reconstruct the whole brain connectomes of a larval and an adult Drosophila. These connectomes will provide a framework for incorporating detailed neural circuit information that Drosophila neuroscientists have gathered over decades. But when viewed in the context of a whole brain, it becomes difficult to isolate the contributions of distinct circuits, whether sensory systems or higher brain regions. The complete wiring diagram tells us that sensory information is not only processed in separate channels, but that even the earliest sensory layers are strongly synaptically interconnected. In the higher brain, long-range projections densely interconnect major brain regions and convergence centers that integrate input from different sensory systems. Furthermore, we also need to understand the impact of neuronal communication beyond direct synaptic modulation. Nevertheless, all of this can be pursued with Drosophila, combining connectomics with a diverse array of genetic tools and behavioral paradigms that provide effective approaches to entire brain function.
Collapse
Affiliation(s)
- Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.,Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
22
|
Klichkhanov NK, Dzhafarova AM, Ramazanova PA, Ali AMM, Abakarov GM, Dzharaeva MM. A New Tellurium- and Selenoorganic Compound as an Inhibitor of Acetylcholinesterase in Brain. Bull Exp Biol Med 2019; 168:229-232. [DOI: 10.1007/s10517-019-04680-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Indexed: 12/18/2022]
|
23
|
Abstract
The brain hosts a vast and diverse repertoire of neuropeptides, a class of signalling molecules often described as neurotransmitters. Here I argue that this description entails a catalogue of misperceptions, misperceptions that feed into a narrative in which information processing in the brain can be understood only through mapping neuronal connectivity and by studying the transmission of electrically conducted signals through chemical synapses. I argue that neuropeptide signalling in the brain involves primarily autocrine, paracrine and neurohormonal mechanisms that do not depend on synaptic connectivity and that it is not solely dependent on electrical activity but on mechanisms analogous to secretion from classical endocrine cells. As in classical endocrine systems, to understand the role of neuropeptides in the brain, we must understand not only how their release is regulated, but also how their synthesis is regulated and how the sensitivity of their targets is regulated. We must also understand the full diversity of effects of neuropeptides on those targets, including their effects on gene expression.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Correspondence should be addressed to G Leng:
| |
Collapse
|
24
|
Page SJ, Zhu M, Appleyard SM. Effects of acute and chronic nicotine on catecholamine neurons of the nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 2018; 316:R38-R49. [PMID: 30354182 DOI: 10.1152/ajpregu.00344.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotine is an addictive drug that has broad effects throughout the brain. One site of action is the nucleus of the solitary tract (NTS), where nicotine initiates a stress response and modulates cardiovascular and gastric function through nicotinic acetylcholine receptors (nAChRs). Catecholamine (CA) neurons in the NTS influence stress and gastric and cardiovascular reflexes, making them potential mediators of nicotine's effects; however nicotine's effect on these neurons is unknown. Here, we determined nicotine's actions on NTS-CA neurons by use of patch-clamp techniques in brain slices from transgenic mice expressing enhanced green fluorescent protein driven by the tyrosine hydroxylase promoter (TH-EGFP). Picospritzing nicotine both induced a direct inward current and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in NTS-CA neurons, effects blocked by nonselective nAChR antagonists TMPH and MLA. The increase in sEPSC frequency was mimicked by nAChRα7 agonist AR-R17779 and blocked by nAChRα7 antagonist MG624. AR-R17779 also increased the firing of TH-EGFP neurons, an effect dependent on glutamate inputs, as it was blocked by the glutamate antagonist NBQX. In contrast, the nicotine-induced current was mimicked by nAChRα4β2 agonist RJR2403 and blocked by nAChRα4β2 antagonist DHβE. RJR2403 also increased the firing rate of TH-EGFP neurons independently of glutamate. Finally, both somatodendritic and sEPSC nicotine responses from NTS-CA neurons were larger in nicotine-dependent mice that had under gone spontaneous nicotine withdrawal. These results demonstrate that 1) nicotine activates NTS-CA neurons both directly, by inducing a direct current, and indirectly, by increasing glutamate inputs, and 2) NTS-CA nicotine responsiveness is altered during nicotine withdrawal.
Collapse
Affiliation(s)
- Stephen J Page
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Mingyan Zhu
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Suzanne M Appleyard
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| |
Collapse
|
25
|
Takács VT, Cserép C, Schlingloff D, Pósfai B, Szőnyi A, Sos KE, Környei Z, Dénes Á, Gulyás AI, Freund TF, Nyiri G. Co-transmission of acetylcholine and GABA regulates hippocampal states. Nat Commun 2018; 9:2848. [PMID: 30030438 PMCID: PMC6054650 DOI: 10.1038/s41467-018-05136-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
The basal forebrain cholinergic system is widely assumed to control cortical functions via non-synaptic transmission of a single neurotransmitter. Yet, we find that mouse hippocampal cholinergic terminals invariably establish GABAergic synapses, and their cholinergic vesicles dock at those synapses only. We demonstrate that these synapses do not co-release but co-transmit GABA and acetylcholine via different vesicles, whose release is triggered by distinct calcium channels. This co-transmission evokes composite postsynaptic potentials, which are mutually cross-regulated by presynaptic autoreceptors. Although postsynaptic cholinergic receptor distribution cannot be investigated, their response latencies suggest a focal, intra- and/or peri-synaptic localisation, while GABAA receptors are detected intra-synaptically. The GABAergic component alone effectively suppresses hippocampal sharp wave-ripples and epileptiform activity. Therefore, the differentially regulated GABAergic and cholinergic co-transmission suggests a hitherto unrecognised level of control over cortical states. This novel model of hippocampal cholinergic neurotransmission may lead to alternative pharmacotherapies after cholinergic deinnervation seen in neurodegenerative disorders.
Collapse
Affiliation(s)
- Virág T Takács
- Laboratory of Cerebral Cortex Research Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u 43, Budapest, 1083, Hungary
| | - Csaba Cserép
- Laboratory of Cerebral Cortex Research Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u 43, Budapest, 1083, Hungary.,Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u 43, Budapest, 1083, Hungary
| | - Dániel Schlingloff
- Laboratory of Cerebral Cortex Research Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u 43, Budapest, 1083, Hungary.,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, 1085, Hungary
| | - Balázs Pósfai
- Laboratory of Cerebral Cortex Research Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u 43, Budapest, 1083, Hungary
| | - András Szőnyi
- Laboratory of Cerebral Cortex Research Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u 43, Budapest, 1083, Hungary.,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, 1085, Hungary
| | - Katalin E Sos
- Laboratory of Cerebral Cortex Research Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u 43, Budapest, 1083, Hungary.,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, 1085, Hungary
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u 43, Budapest, 1083, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u 43, Budapest, 1083, Hungary
| | - Attila I Gulyás
- Laboratory of Cerebral Cortex Research Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u 43, Budapest, 1083, Hungary
| | - Tamás F Freund
- Laboratory of Cerebral Cortex Research Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u 43, Budapest, 1083, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u 43, Budapest, 1083, Hungary.
| |
Collapse
|
26
|
Oboh G, Adeoyo OO, Ademosun AO, Ogunsuyi OB, Agunloye OM. Effect of combinations of caffeine and caffeic acid on key enzymes linked to hypertension (in vitro). ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s13596-018-0313-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Guidolin D, Marcoli M, Maura G, Agnati LF. New dimensions of connectomics and network plasticity in the central nervous system. Rev Neurosci 2018; 28:113-132. [PMID: 28030363 DOI: 10.1515/revneuro-2016-0051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022]
Abstract
Cellular network architecture plays a crucial role as the structural substrate for the brain functions. Therefore, it represents the main rationale for the emerging field of connectomics, defined as the comprehensive study of all aspects of central nervous system connectivity. Accordingly, in the present paper the main emphasis will be on the communication processes in the brain, namely wiring transmission (WT), i.e. the mapping of the communication channels made by cell components such as axons and synapses, and volume transmission (VT), i.e. the chemical signal diffusion along the interstitial brain fluid pathways. Considering both processes can further expand the connectomics concept, since both WT-connectomics and VT-connectomics contribute to the structure of the brain connectome. A consensus exists that such a structure follows a hierarchical or nested architecture, and macro-, meso- and microscales have been defined. In this respect, however, several lines of evidence indicate that a nanoscale (nano-connectomics) should also be considered to capture direct protein-protein allosteric interactions such as those occurring, for example, in receptor-receptor interactions at the plasma membrane level. In addition, emerging evidence points to novel mechanisms likely playing a significant role in the modulation of intercellular connectivity, increasing the plasticity of the system and adding complexity to its structure. In particular, the roamer type of VT (i.e. the intercellular transfer of RNA, proteins and receptors by extracellular vesicles) will be discussed since it allowed us to introduce a new concept of 'transient changes of cell phenotype', that is the transient acquisition of new signal release capabilities and/or new recognition/decoding apparatuses.
Collapse
|
28
|
Changes on the activity of cholinesterase's in an immunomodulatory response of cattle infected by Listeria monocytogenes. Microb Pathog 2018; 114:36-40. [DOI: 10.1016/j.micpath.2017.10.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023]
|
29
|
Bouzat C, Lasala M, Nielsen BE, Corradi J, Esandi MDC. Molecular function of α7 nicotinic receptors as drug targets. J Physiol 2017; 596:1847-1861. [PMID: 29131336 DOI: 10.1113/jp275101] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels involved in many physiological and pathological processes. In vertebrates, there are seventeen different nAChR subunits that combine to yield a variety of receptors with different pharmacology, function, and localization. The homomeric α7 receptor is one of the most abundant nAChRs in the nervous system and it is also present in non-neuronal cells. It plays important roles in cognition, memory, pain, neuroprotection, and inflammation. Its diverse physiological actions and associated disorders have made of α7 an attractive novel target for drug modulation. Potentiation of the α7 receptor has emerged as a novel therapeutic strategy for several neurological diseases, such as Alzheimer's and Parkinson's diseases, and inflammatory disorders. In contrast, increased α7 activity has been associated with cancer cell proliferation. The presence of different drug target sites offers a great potential for α7 modulation in different pathological contexts. In particular, compounds that target allosteric sites offer significant advantages over orthosteric agonists due to higher selectivity and a broader spectrum of degrees and mechanisms of modulation. Heterologous expression of α7, together with chaperone proteins, combined with patch clamp recordings have provided important advances in our knowledge of the molecular basis of α7 responses and their potential modulation for pathological processes. This review gives a synthetic view of α7 and its molecular function, focusing on how its unique activation and desensitization features can be modified by pharmacological agents. This fundamental information offers insights into therapeutic strategies.
Collapse
Affiliation(s)
- Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - Matías Lasala
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - Beatriz Elizabeth Nielsen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET/UNS, 8000, Bahía Blanca, Argentina
| |
Collapse
|
30
|
Mukherjee J, Lao PJ, Betthauser TJ, Samra GK, Pan ML, Patel IH, Liang C, Metherate R, Christian BT. Human brain imaging of nicotinic acetylcholine α4β2* receptors using [ 18 F]Nifene: Selectivity, functional activity, toxicity, aging effects, gender effects, and extrathalamic pathways. J Comp Neurol 2017; 526:80-95. [PMID: 28875553 DOI: 10.1002/cne.24320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023]
Abstract
Nicotinic acetylcholinergic receptors (nAChR's) have been implicated in several brain disorders, including addiction, Parkinson's disease, Alzheimer's disease and schizophrenia. Here we report in vitro selectivity and functional properties, toxicity in rats, in vivo evaluation in humans, and comparison across species of [18 F]Nifene, a fast acting PET imaging agent for α4β2* nAChRs. Nifene had subnanomolar affinities for hα2β2 (0.34 nM), hα3β2 (0.80 nM) and hα4β2 (0.83 nM) nAChR but weaker (27-219 nM) for hβ4 nAChR subtypes and 169 nM for hα7 nAChR. In functional assays, Nifene (100 μM) exhibited 14% agonist and >50% antagonist characteristics. In 14-day acute toxicity in rats, the maximum tolerated dose (MTD) and the no observed adverse effect level (NOAEL) were estimated to exceed 40 μg/kg/day (278 μg/m2 /day). In human PET studies, [18 F]Nifene (185 MBq; <0.10 μg) was well tolerated with no adverse effects. Distribution volume ratios (DVR) of [18 F]Nifene in white matter thalamic radiations were ∼1.6 (anterior) and ∼1.5 (superior longitudinal fasciculus). Habenula known to contain α3β2 nAChR exhibited low levels of [18 F]Nifene binding while the red nucleus with α2β2 nAChR had DVR ∼1.6-1.7. Females had higher [18 F]Nifene binding in all brain regions, with thalamus showing >15% than males. No significant aging effect was observed in [18 F]Nifene binding over 5 decades. In all species (mice, rats, monkeys, and humans) thalamus showed highest [18 F]Nifene binding with reference region ratios >2 compared to extrathalamic regions. Our findings suggest that [18 F]Nifene PET may be used to study α4β2* nAChRs in various CNS disorders and for translational research.
Collapse
Affiliation(s)
- Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California
| | - Patrick J Lao
- Department of Medical Physics and Waisman Center, University of Wisconsin, Madison, Wisconsin
| | - Tobey J Betthauser
- Department of Medical Physics and Waisman Center, University of Wisconsin, Madison, Wisconsin
| | - Gurleen K Samra
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California
| | - Min-Liang Pan
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California
| | - Ishani H Patel
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California
| | | | - Raju Metherate
- Department of Neurobiology and Behavior, University of California, Irvine, California
| | - Bradley T Christian
- Department of Medical Physics and Waisman Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
31
|
Dunant Y, Gisiger V. Ultrafast and Slow Cholinergic Transmission. Different Involvement of Acetylcholinesterase Molecular Forms. Molecules 2017; 22:E1300. [PMID: 28777299 PMCID: PMC6152031 DOI: 10.3390/molecules22081300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 02/06/2023] Open
Abstract
Acetylcholine (ACh), an ubiquitous mediator substance broadly expressed in nature, acts as neurotransmitter in cholinergic synapses, generating specific communications with different time-courses. (1) Ultrafast transmission. Vertebrate neuromuscular junctions (NMJs) and nerve-electroplaque junctions (NEJs) are the fastest cholinergic synapses; able to transmit brief impulses (1-4 ms) at high frequencies. The collagen-tailed A12 acetylcholinesterase is concentrated in the synaptic cleft of NMJs and NEJs, were it curtails the postsynaptic response by ultrafast ACh hydrolysis. Here, additional processes contribute to make transmission so rapid. (2) Rapid transmission. At peripheral and central cholinergic neuro-neuronal synapses, transmission involves an initial, relatively rapid (10-50 ms) nicotinic response, followed by various muscarinic or nicotinic effects. Acetylcholinesterase (AChE) being not concentrated within these synapses, it does not curtail the initial rapid response. In contrast, the late responses are controlled by a globular form of AChE (mainly G4-AChE), which is membrane-bound and/or secreted. (3) SlowAChsignalling. In non-neuronal systems, in muscarinic domains, and in most regions of the central nervous system (CNS), many ACh-releasing structures (cells, axon terminals, varicosities, boutons) do not form true synaptic contacts, most muscarinic and also part of nicotinic receptors are extra-synaptic, often situated relatively far from ACh releasing spots. A12-AChE being virtually absent in CNS, G4-AChE is the most abundant form, whose function appears to modulate the "volume" transmission, keeping ACh concentration within limits in time and space.
Collapse
Affiliation(s)
- Yves Dunant
- Département des Neurosciences Fondamentales, Faculté de Médecine, Université de Genève, CH-1211-Genève 4, Switzerland.
| | - Victor Gisiger
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal QC H3C 3J7, Canada.
| |
Collapse
|
32
|
Akomolafe SF, Akinyemi AJ, Ogunsuyi OB, Oyeleye SI, Oboh G, Adeoyo OO, Allismith YR. Effect of caffeine, caffeic acid and their various combinations on enzymes of cholinergic, monoaminergic and purinergic systems critical to neurodegeneration in rat brain-In vitro. Neurotoxicology 2017; 62:6-13. [PMID: 28465162 DOI: 10.1016/j.neuro.2017.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/08/2017] [Accepted: 04/24/2017] [Indexed: 12/29/2022]
Abstract
Caffeine and caffeic acid are two bioactive compounds that are present in plant foods and are major constituent of coffee, cocoa, tea, cola drinks and chocolate. Although not structurally related, caffeine and caffeic acid has been reported to elicit neuroprotective properties. However, their different proportional distribution in food sources and possible effect of such interactions are not often taken into consideration. Therefore, in this study, we investigated the effect of caffeine, caffeic acid and their various combinations on activities of some enzymes [acetylcholinesterase (AChE), monoamine oxidase (MAO) ecto-nucleoside triphosphate diphosphohydrolase (E-NTPase), ecto-51-nucleotidase (E-NTDase) and Na+/K+ ATPase relevant to neurodegeneration in vitro in rat brain. The stock concentration of caffeine and caffiec acid and their various proportional combinations were prepared and their interactions with the activities of these enzymes were assessed (in vitro) in different brain structures. The Fe2+ and Cu2+ chelating abilities of the samples were also investigated. The results revealed that caffeine, caffeic acid and their various combinations exhibited inhibitory effect on activities of AChE, MAO, E-NTPase and E-NTDase, but stimulatory effect on Na+/K+ ATPase activity. The combinations also exhibited Fe2+ and Cu2+ chelating abilities. Considering the various combinations, a higher caffeine to caffeic acid ratio produced significantly highest enzyme modulatory effects; these were significantly lower to the effect of caffeine alone but significantly higher than the effect of caffeic acid alone. These findings may provide new insight into the effect of proportional combination of these bioactive compounds as obtained in many foods especially with respect to their neuroprotective effects.
Collapse
Affiliation(s)
- S F Akomolafe
- Department of Biochemistry, Ekiti State University, Ado-Ekiti, Private Mail Bag 5363, Nigeria.
| | - A J Akinyemi
- Department of Biochemistry, Afe Babalola University, Ado-Ekiti, Private Mail Bag 5454, Nigeria
| | - O B Ogunsuyi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology Akure, Private Mail Bag 704, Akure 340001, Nigeria; Department of Biomedical Technology, School of Health and Health Technology, Federal University of Technology Akure, Private Mail Bag 704, Akure 340001, Nigeria
| | - S I Oyeleye
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology Akure, Private Mail Bag 704, Akure 340001, Nigeria; Department of Biomedical Technology, School of Health and Health Technology, Federal University of Technology Akure, Private Mail Bag 704, Akure 340001, Nigeria
| | - G Oboh
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology Akure, Private Mail Bag 704, Akure 340001, Nigeria
| | - O O Adeoyo
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology Akure, Private Mail Bag 704, Akure 340001, Nigeria
| | - Y R Allismith
- Department of Biochemistry, Ekiti State University, Ado-Ekiti, Private Mail Bag 5363, Nigeria
| |
Collapse
|
33
|
VanPatten S, Al-Abed Y. The challenges of modulating the ‘rest and digest’ system: acetylcholine receptors as drug targets. Drug Discov Today 2017; 22:97-104. [DOI: 10.1016/j.drudis.2016.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/09/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022]
|
34
|
Baldissarelli J, Santi A, Schmatz R, Abdalla FH, Cardoso AM, Martins CC, Dias GRM, Calgaroto NS, Pelinson LP, Reichert KP, Loro VL, Morsch VMM, Schetinger MRC. Hypothyroidism Enhanced Ectonucleotidases and Acetylcholinesterase Activities in Rat Synaptosomes can be Prevented by the Naturally Occurring Polyphenol Quercetin. Cell Mol Neurobiol 2017; 37:53-63. [PMID: 26879755 DOI: 10.1007/s10571-016-0342-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Thyroid hormones have an influence on the functioning of the central nervous system. Furthermore, the cholinergic and purinergic systems also are extensively involved in brain function. In this context, quercetin is a polyphenol with antioxidant and neuroprotective properties. This study investigated the effects of (MMI)-induced hypothyroidism on the NTPDase, 5'-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes of rats and whether the quercetin can prevent it. MMI at a concentration of 20 mg/100 mL was administered for 90 days in the drinking water. The animals were divided into six groups: control/water (CT/W), control/quercetin 10 mg/kg, control/quercetin 25 mg/kg, methimazole/water (MMI/W), methimazole/quercetin 10 mg/kg (MMI/Q10), and methimazole/quercetin 25 mg/kg (MMI/Q25). On the 30th day, hormonal dosing was performed to confirm hypothyroidism, and the animals were subsequently treated with 10 or 25 mg/kg quercetin for 60 days. NTPDase activity was not altered in the MMI/W group. However, treatment with quercetin decreased ATP and ADP hydrolysis in the MMI/Q10 and MMI/Q25 groups. 5'-nucleotidase activity increased in the MMI/W group, but treatments with 10 or 25 mg/kg quercetin decreased 5'-nucleotidase activity. ADA activity decreased in the CT/25 and MMI/Q25 groups. Furthermore, AChE activity was reduced in all groups with hypothyroidism. In vitro tests also demonstrated that quercetin per se decreased NTPDase, 5'-nucleotidase, and AChE activities. This study demonstrated changes in the 5'-nucleotidase and AChE activities indicating that purinergic and cholinergic neurotransmission are altered in this condition. In addition, quercetin can alter these parameters and may be a promising natural compound with important neuroprotective actions in hypothyroidism.
Collapse
Affiliation(s)
- Jucimara Baldissarelli
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil.
| | - Adriana Santi
- Conselho de Ensino e Pesquisa, Curso de Medicina, Universidade Federal de Mato Grosso, Parque Sagrada Família, Rondonópolis, MT, Brazil
| | - Roberta Schmatz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Ibirubá, Ibirubá, RS, Brazil
| | - Fátima Husein Abdalla
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | | | - Caroline Curry Martins
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Glaecir R Mundstock Dias
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Cidade Universitária Galeão, Rio de Janeiro, RJ, Brazil
| | - Nicéia Spanholi Calgaroto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Luana Paula Pelinson
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Karine Paula Reichert
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Vania Lucia Loro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Vera Maria Melchiors Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
35
|
Marshall-Gradisnik S, Johnston S, Chacko A, Nguyen T, Smith P, Staines D. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Int Med Res 2016; 44:1381-1394. [PMID: 27834303 PMCID: PMC5536760 DOI: 10.1177/0300060516671622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective The pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is unknown; however, a small subgroup of patients has shown muscarinic antibody positivity and reduced symptom presentation following anti-CD20 intervention. Given the important roles of calcium (Ca2+) and acetylcholine (ACh) signalling in B cell activation and potential antibody development, we aimed to identify relevant single nucleotide polymorphisms (SNPs) and genotypes in isolated B cells from CFS/ME patients. Methods A total of 11 CFS/ME patients (aged 31.82 ± 5.50 years) and 11 non-fatigued controls (aged 33.91 ± 5.06 years) were included. Flow cytometric protocols were used to determine B cell purity, followed by SNP and genotype analysis for 21 mammalian TRP ion channel genes and nine mammalian ACh receptor genes. SNP association and genotyping analysis were performed using ANOVA and PLINK analysis software. Results Seventy-eight SNPs were identified in nicotinic and muscarinic acetylcholine receptor genes in the CFS/ME group, of which 35 were in mAChM3. The remaining SNPs were identified in nAChR delta (n = 12), nAChR alpha 9 (n = 5), TRPV2 (n = 7), TRPM3 (n = 4), TRPM4 (n = 1) mAChRM3 2 (n = 2), and mAChRM5 (n = 3) genes. Nine genotypes were identified from SNPs in TRPM3 (n = 1), TRPC6 (n = 1), mAChRM3 (n = 2), nAChR alpha 4 (n = 1), and nAChR beta 1 (n = 4) genes, and were located in introns and 3′ untranslated regions. Odds ratios for these specific genotypes ranged between 7.11 and 26.67 for CFS/ME compared with the non-fatigued control group. Conclusion This preliminary investigation identified a number of SNPs and genotypes in genes encoding TRP ion channels and AChRs from B cells in patients with CFS/ME. These may be involved in B cell functional changes, and suggest a role for Ca2+ dysregulation in AChR and TRP ion channel signalling in the pathomechanism of CFS/ME.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Samantha Johnston
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Anu Chacko
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Thao Nguyen
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Peter Smith
- 2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Donald Staines
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| |
Collapse
|
36
|
Aracri P, Meneghini S, Coatti A, Amadeo A, Becchetti A. α4β2 ∗ nicotinic receptors stimulate GABA release onto fast-spiking cells in layer V of mouse prefrontal (Fr2) cortex. Neuroscience 2016; 340:48-61. [PMID: 27793780 PMCID: PMC5231322 DOI: 10.1016/j.neuroscience.2016.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/08/2016] [Accepted: 10/18/2016] [Indexed: 11/24/2022]
Abstract
α4β2∗ nAChRs stimulate IPSCs in FS interneurons, in layer V of the mouse PFC (Fr2). In P16–P63 mice, nicotine increased both IPSC and mIPSC frequencies. GABAergic terminals adjacent to PV+ cells expressed α4 nAChR. The percentage of FS cells with somatic α4β2∗ currents decreased with age. Hence, nAChRs may be able to induce local circuit disinhibition in Fr2 PFC.
Nicotinic acetylcholine receptors (nAChRs) produce widespread and complex effects on neocortex excitability. We studied how heteromeric nAChRs regulate inhibitory post-synaptic currents (IPSCs), in fast-spiking (FS) layer V neurons of the mouse frontal area 2 (Fr2). In the presence of blockers of ionotropic glutamate receptors, tonic application of 10 μM nicotine augmented the spontaneous IPSC frequency, with minor alterations of amplitudes and kinetics. These effects were studied since the 3rd postnatal week, and persisted throughout the first two months of postnatal life. The action of nicotine was blocked by 1 μM dihydro-β-erythroidine (DHβE; specific for α4∗ nAChRs), but not 10 nM methyllycaconitine (MLA; specific for α7∗ nAChRs). It was mimicked by 10 nM 5-iodo-3-[2(S)-azetidinylmethoxy]pyridine (5-IA; which activates β2∗ nAChRs). Similar results were obtained on miniature IPSCs (mIPSCs). Moreover, during the first five postnatal weeks, approximately 50% of FS cells displayed DHβE-sensitive whole-cell nicotinic currents. This percentage decreased to ∼5% in mice older than P45. By confocal microscopy, the α4 nAChR subunit was immunocytochemically identified on interneurons expressing either parvalbumin (PV), which mainly labels FS cells, or somatostatin (SOM), which labels the other major interneuron population in layer V. GABAergic terminals expressing α4 were observed to be juxtaposed to PV-positive (PV+) cells. A fraction of these terminals displayed PV immunoreactivity. We conclude that α4β2∗ nAChRs can produce sustained regulation of FS cells in Fr2 layer V. The effect presents a presynaptic component, whereas the somatic regulation decreases with age. These mechanisms may contribute to the nAChR-dependent stimulation of excitability during cognitive tasks as well as to the hyperexcitability caused by hyperfunctional heteromeric nAChRs in sleep-related epilepsy.
Collapse
Affiliation(s)
- Patrizia Aracri
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, piazza della Scienza 2, Milano 20126, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, piazza della Scienza 2, Milano 20126, Italy
| | - Aurora Coatti
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, piazza della Scienza 2, Milano 20126, Italy
| | - Alida Amadeo
- Department of Biosciences, University of Milano, Via Celoria 26, Milano 20133, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, piazza della Scienza 2, Milano 20126, Italy.
| |
Collapse
|
37
|
Ovsepian SV, O'Leary VB, Zaborszky L. Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission. Neuroscientist 2016; 22:238-51. [PMID: 26002948 PMCID: PMC4681696 DOI: 10.1177/1073858415588264] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Functional overviews of cholinergic mechanisms in the cerebral cortex have traditionally focused on the release of acetylcholine with modulator and transmitter effects. Recently, however, data have emerged that extend the role of acetylcholine and cholinergic innervations to a range of housekeeping and metabolic functions. These include regulation of amyloid precursor protein (APP) processing with production of amyloid β (Aβ) and other APP fragments and control of the phosphorylation of microtubule-associated protein (MAP) tau. Evidence has been also presented for receptor-ligand like interactions of cholinergic receptors with soluble Aβ peptide and MAP tau, with modulator and signaling effects. Moreover, high-affinity binding of Aβ to the neurotrophin receptor p75 (p75NTR) enriched in basalo-cortical cholinergic projections has been implicated in clearance of Aβ and nucleation of amyloid plaques. Here, we critically evaluate these unorthodox cholinergic mechanisms and discuss their role in neuronal physiology and the biology of Alzheimer's disease.
Collapse
Affiliation(s)
- Saak V Ovsepian
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Valerie B O'Leary
- Institute of Radiation Biology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
38
|
Zhang Y, Yanagawa Y, Saito Y. Nicotinic acetylcholine receptor-mediated responses in medial vestibular and prepositus hypoglossi nuclei neurons showing distinct neurotransmitter phenotypes. J Neurophysiol 2016; 115:2649-57. [PMID: 26936981 DOI: 10.1152/jn.00852.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/27/2016] [Indexed: 11/22/2022] Open
Abstract
Cholinergic transmission in both the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN) plays an important role in horizontal eye movements. We previously demonstrated that the current responses mediated via nicotinic acetylcholine receptors (nAChRs) were larger than those mediated via muscarinic acetylcholine receptors (mAChRs) in cholinergic MVN and PHN neurons that project to the cerebellum. In this study, to clarify the predominant nAChR responses and the expression patterns of nAChRs in MVN and PHN neurons that exhibit distinct neurotransmitter phenotypes, we identified cholinergic, inhibitory, and glutamatergic neurons using specific transgenic rats and investigated current responses to the application of acetylcholine (ACh) using whole cell recordings in brain stem slices. ACh application induced larger nAChR-mediated currents than mAChR-mediated currents in every neuronal phenotype. In the presence of an mAChR antagonist, we found three types of nAChR-mediated currents that exhibited different rise and decay times and designated these as fast (F)-, slow (S)-, and fast and slow (FS)-type currents. F-type currents were the predominant response in inhibitory MVN neurons, whereas S-type currents were observed in the majority of glutamatergic MVN and PHN neurons. No dominant response type was observed in cholinergic neurons. Pharmacological analyses revealed that the F-, S-, and FS-type currents were mainly mediated by α7, non-α7, and both α7 and non-α7 nAChRs, respectively. These findings suggest that cholinergic responses in the major neuronal populations of the MVN and PHN are predominantly mediated by nAChRs and that the expression of α7 and non-α7 nAChRs differ among the neuronal phenotypes.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Department of Physiology, Dalian Medical University, Dalian, China
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Chiyoda-ku, Tokyo, Japan; and
| | - Yasuhiko Saito
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Department of Neurophysiology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
39
|
Akinyemi AJ, Thome GR, Morsch VM, Stefanello N, da Costa P, Cardoso A, Goularte JF, Belló-Klein A, Akindahunsi AA, Oboh G, Chitolina Schetinger MR. Effect of dietary supplementation of ginger and turmeric rhizomes on ectonucleotidases, adenosine deaminase and acetylcholinesterase activities in synaptosomes from the cerebral cortex of hypertensive rats. J Appl Biomed 2016. [DOI: 10.1016/j.jab.2015.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
40
|
Hay YA, Lambolez B, Tricoire L. Nicotinic Transmission onto Layer 6 Cortical Neurons Relies on Synaptic Activation of Non-α7 Receptors. Cereb Cortex 2015; 26:2549-2562. [PMID: 25934969 DOI: 10.1093/cercor/bhv085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nicotinic excitation in neocortex is mediated by low-affinity α7 receptors and by high-affinity α4β2 receptors. There is evidence that α7 receptors are synaptic, but it is unclear whether high-affinity receptors are activated by volume transmission or synaptic transmission. To address this issue, we characterized responses of excitatory layer 6 (L6) neurons to optogenetic release of acetylcholine (ACh) in cortical slices. L6 responses consisted in a slowly decaying α4β2 current and were devoid of α7 component. Evidence that these responses were mediated by synapses was 4-fold. 1) Channelrhodopsin-positive cholinergic varicosities made close appositions onto responsive neurons. 2) Inhibition of ACh degradation failed to alter onset kinetics and amplitude of currents. 3) Quasi-saturation of α4β2 receptors occurred upon ACh release. 4) Response kinetics were unchanged in low release probability conditions. Train stimulations increased amplitude and decay time of responses and these effects appeared to involve recruitment of extrasynaptic receptors. Finally, we found that the α5 subunit, known to be associated with α4β2 in L6, regulates short-term plasticity at L6 synapses. Our results are consistent with previous anatomical observations of widespread cholinergic synapses and suggest that a significant proportion of these small synapses operate via high-affinity nicotinic receptors.
Collapse
Affiliation(s)
- Y Audrey Hay
- Sorbonne Universités, UPMC Univ Paris 06, UM119, Neuroscience Paris Seine, Paris F-75005, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris F-75005, France
| | - Bertrand Lambolez
- Sorbonne Universités, UPMC Univ Paris 06, UM119, Neuroscience Paris Seine, Paris F-75005, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris F-75005, France
| | - Ludovic Tricoire
- Sorbonne Universités, UPMC Univ Paris 06, UM119, Neuroscience Paris Seine, Paris F-75005, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris F-75005, France
| |
Collapse
|
41
|
Marchi M, Grilli M, Pittaluga AM. Nicotinic modulation of glutamate receptor function at nerve terminal level: a fine-tuning of synaptic signals. Front Pharmacol 2015; 6:89. [PMID: 25972809 PMCID: PMC4413670 DOI: 10.3389/fphar.2015.00089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/10/2015] [Indexed: 11/13/2022] Open
Abstract
This review focuses on a specific interaction occurring between the nicotinic cholinergic receptors (nAChRs) and the glutamatergic receptors (GluRs) at the nerve endings level. We have employed synaptosomes in superfusion and supplemented and integrated our findings with data obtained using techniques from molecular biology and immuno-cytochemistry, and the assessment of receptor trafficking. In particular, we characterize the following: (1) the direct and unequivocal localization of native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) glutamatergic receptors on specific nerve terminals, (2) their pharmacological characterization and functional co-localization with nAChRs on the same nerve endings, and (3) the existence of synergistic or antagonistic interactions among them. Indeed, in the rat nucleus accumbens (NAc), the function of some AMPA and NMDA receptors present on the dopaminergic and glutamatergic nerve terminals can be regulated negatively or positively in response to a brief activation of nAChRs. This effect occurs rapidly and involves the trafficking of AMPA and NMDA receptors. The event takes place also at very low concentrations of nicotine and involves the activation of several nAChRs subtypes. This dynamic control by cholinergic nicotinic system of glutamatergic NMDA and AMPA receptors might therefore represent an important neuronal presynaptic adaptation associated with nicotine administration. The understanding of the role of these nicotine-induced functional changes might open new and interesting perspectives both in terms of explaining the mechanisms that underlie some of the effects of nicotine addiction and in the development of new drugs for smoking cessation.
Collapse
Affiliation(s)
- Mario Marchi
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa , Genoa, Italy ; Center of Excellence for Biomedical Research, University of Genoa , Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa , Genoa, Italy
| | - Anna M Pittaluga
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa , Genoa, Italy ; Center of Excellence for Biomedical Research, University of Genoa , Genoa, Italy
| |
Collapse
|
42
|
Hao Y, Tang J, Wang K. Development of Automated Patch Clamp Assay for Evaluation of α7 Nicotinic Acetylcholine Receptor Agonists in Automated QPatch-16. Assay Drug Dev Technol 2015; 13:174-84. [PMID: 25880723 DOI: 10.1089/adt.2014.622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor (α7 nAChR) is an important and challenging target for drug discovery in the area of neuropsychiatric disorders. The current screening for chemicals targeting α7 nAChRs is primarily achieved by the use of low-throughput assay two-electrode voltage clamp (TEVC) in nonmammalian Xenopus oocytes. Automated patch clamp system has emerged as an attractive approach compared to conventional electrophysiology. To develop a mammalian cell-based functional assay in an automated electrophysiology system, we in this study generated a stable expression of α7 nAChRs in GH3 cells that originated from a rat pituitary tumor cell line and utilized automated QPatch-16 to test a set of tool compounds and chemicals identified as α7 agonists by TEVC. For the improvement of evaluating weak or partial α7 nAChRs agonists, we achieved enhancement of the signal-to-noise ratio by the addition of a positive allosteric modulator PNU-120596, which only activates α7 current in the presence of agonist. This improved assay was further validated by using known α7 partial agonists, such as RG3487, EVP-6124, and A-P90. Using this validated assay, we were able to identify a novel agonist 140507C that partially activates α7 nAChRs. Taken together, our results validate the use of QPatch-16 for evaluation α7 partial agonists, demonstrating its utility as an effective tool for α7 ion channel drug discovery.
Collapse
Affiliation(s)
- Yuchen Hao
- 1 Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences , Beijing, China
| | | | | |
Collapse
|
43
|
Yang YC, Hu CC, Lai YC. Non-additive modulation of synaptic transmission by serotonin, adenosine, and cholinergic modulators in the sensory thalamus. Front Cell Neurosci 2015; 9:60. [PMID: 25852468 PMCID: PMC4360759 DOI: 10.3389/fncel.2015.00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/09/2015] [Indexed: 11/13/2022] Open
Abstract
The thalamus relays sensory information to the cortex. Oscillatory activities of the thalamocortical network are modulated by monoamines, acetylcholine, and adenosine, and could be the key features characteristic of different vigilance states. Although the thalamus is almost always subject to the actions of more than just one neuromodulators, reports on the modulatory effect of coexisting neuromodulators on thalamic synaptic transmission are unexpectedly scarce. We found that, if present alone, monoamine or adenosine decreases retinothalamic synaptic strength and short-term depression, whereas cholinergic modulators generally enhance postsynaptic response to presynaptic activity. However, coexistence of different modulators tends to produce non-additive effect, not predictable based on the action of individual modulators. Acetylcholine, acting via nicotinic receptors, can interact with either serotonin or adenosine to abolish most short-term synaptic depression. Moreover, the coexistence of adenosine and monoamine, with or without acetylcholine, results in robustly decreased synaptic strength and transforms short-term synaptic depression to facilitation. These findings are consistent with a view that acetylcholine is essential for an "enriched" sensory flow through the thalamus, and the flow is trimmed down by concomitant monoamine or adenosine (presumably for the wakefulness and rapid-eye movement, or REM, sleep states, respectively). In contrast, concomitant adenosine and monoamine would lead to a markedly "deprived" (and high-pass filtered) sensory flow, and thus the dramatic decrease of monoamine may constitute the basic demarcation between non-REM and REM sleep. The collective actions of different neuromodulators on thalamic synaptic transmission thus could be indispensable for the understanding of network responsiveness in different vigilance states.
Collapse
Affiliation(s)
- Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University Tao-Yuan, Taiwan ; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Chun-Chang Hu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University Tao-Yuan, Taiwan ; Department of Neurosurgery, Chang-Gung Memorial Hospital Linkou, Taiwan
| | - Yi-Chen Lai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| |
Collapse
|
44
|
Brassai A, Suvanjeiev RG, Bán EG, Lakatos M. Role of synaptic and nonsynaptic glutamate receptors in ischaemia induced neurotoxicity. Brain Res Bull 2015; 112:1-6. [DOI: 10.1016/j.brainresbull.2014.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/17/2022]
|
45
|
Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol 2015; 6:22. [PMID: 25717303 PMCID: PMC4324070 DOI: 10.3389/fphys.2015.00022] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Brusco
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Alida Amadeo
- Department of Biosciences, University of Milano Milano, Italy
| |
Collapse
|
46
|
Elgueta C, Vielma AH, Palacios AG, Schmachtenberg O. Acetylcholine induces GABA release onto rod bipolar cells through heteromeric nicotinic receptors expressed in A17 amacrine cells. Front Cell Neurosci 2015; 9:6. [PMID: 25709566 PMCID: PMC4321611 DOI: 10.3389/fncel.2015.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 01/07/2015] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) is a major retinal neurotransmitter that modulates visual processing through a large repertoire of cholinergic receptors expressed on different retinal cell types. ACh is released from starburst amacrine cells (SACs) under scotopic conditions, but its effects on cells of the rod pathway have not been investigated. Using whole-cell patch clamp recordings in slices of rat retina, we found that ACh application triggers GABA release onto rod bipolar (RB) cells. GABA was released from A17 amacrine cells and activated postsynaptic GABAA and GABAC receptors in RB cells. The sensitivity of ACh-induced currents to nicotinic ACh receptor (nAChR) antagonists (TMPH ~ mecamylamine > erysodine > DhβE > MLA) together with the differential potency of specific agonists to mimic ACh responses (cytisine >> RJR2403 ~ choline), suggest that A17 cells express heteromeric nAChRs containing the β4 subunit. Activation of nAChRs induced GABA release after Ca(2+) accumulation in A17 cell dendrites and varicosities mediated by L-type voltage-gated calcium channels (VGCCs) and intracellular Ca(2+) stores. Inhibition of acetylcholinesterase depolarized A17 cells and increased spontaneous inhibitory postsynaptic currents in RB cells, indicating that endogenous ACh enhances GABAergic inhibition of RB cells. Moreover, injection of neostigmine or cytisine reduced the b-wave of the scotopic flash electroretinogram (ERG), suggesting that cholinergic modulation of GABA release controls RB cell activity in vivo. These results describe a novel regulatory mechanism of RB cell inhibition and complement our understanding of the neuromodulatory control of retinal signal processing.
Collapse
Affiliation(s)
- Claudio Elgueta
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile ; Systemic and Cellular Neurophysiology, Institute of Physiology I, Albert-Ludwigs-Universität Freiburg, Germany
| | - Alex H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
47
|
Dineley KT, Pandya AA, Yakel JL. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 2015; 36:96-108. [PMID: 25639674 PMCID: PMC4324614 DOI: 10.1016/j.tips.2014.12.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/30/2023]
Abstract
The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain.
Collapse
Affiliation(s)
- Kelly T Dineley
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, USA
| | - Anshul A Pandya
- Chukchi Campus, Department of Bioscience, College of Rural and Community Development, University of Alaska Fairbanks, P.O. Box 297, Kotzebue, AK 99752-0297, USA
| | - Jerrel L Yakel
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health (NIEHS/NIH), Department of Health and Human Services (DHHS), F2-08, P.O. Box 12233, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
48
|
Bali ZK, Inkeller J, Csurgyók R, Bruszt N, Horváth H, Hernádi I. Differential effects of α7 nicotinic receptor agonist PHA-543613 on spatial memory performance of rats in two distinct pharmacological dementia models. Behav Brain Res 2015; 278:404-10. [DOI: 10.1016/j.bbr.2014.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 12/18/2022]
|
49
|
Grupe M, Grunnet M, Bastlund JF, Jensen AA. Targeting α4β2 Nicotinic Acetylcholine Receptors in Central Nervous System Disorders: Perspectives on Positive Allosteric Modulation as a Therapeutic Approach. Basic Clin Pharmacol Toxicol 2014; 116:187-200. [DOI: 10.1111/bcpt.12361] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/24/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Morten Grupe
- Synaptic Transmission; H. Lundbeck A/S; Valby Denmark
| | - Morten Grunnet
- Synaptic Transmission; H. Lundbeck A/S; Valby Denmark
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | | | - Anders A. Jensen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
50
|
Dionisio L, Bergé I, Bravo M, Esandi MDC, Bouzat C. Neurotransmitter GABA Activates Muscle but Not α7 Nicotinic Receptors. Mol Pharmacol 2014; 87:391-400. [DOI: 10.1124/mol.114.095539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|