1
|
Al Harake SN, Abedin Y, Hatoum F, Nassar NZ, Ali A, Nassar A, Kanaan A, Bazzi S, Azar S, Harb F, Ghadieh HE. Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities. Adipocyte 2024; 13:2403380. [PMID: 39329369 PMCID: PMC11445895 DOI: 10.1080/21623945.2024.2403380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Lipid droplets (LDs) are highly specialized energy storage organelles involved in the maintenance of lipid homoeostasis by regulating lipid flux within white adipose tissue (WAT). The physiological function of adipocytes and LDs can be compromised by mutations in several genes, leading to NEFA-induced lipotoxicity, which ultimately manifests as metabolic complications, predominantly in the form of dyslipidemia, ectopic fat accumulation, and insulin resistance. In this review, we delineate the effects of mutations and deficiencies in genes - CIDEC, PPARG, BSCL2, AGPAT2, PLIN1, LIPE, LMNA, CAV1, CEACAM1, and INSR - involved in lipid droplet metabolism and their associated pathophysiological impairments, highlighting their roles in the development of lipodystrophies and metabolic dysfunction.
Collapse
Affiliation(s)
- Sami N. Al Harake
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Yasamin Abedin
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Fatema Hatoum
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Nour Zahraa Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Ali Ali
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Aline Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Amjad Kanaan
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Samer Bazzi
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Sami Azar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| |
Collapse
|
2
|
Beeram I, Cubria MB, Kamalapathy P, Yeritsyan D, Dubose AJ, Razavi AH, Nafisi N, Erdos MR, Snyder BD, Cabral WA, Collins FS, Nazarian A. Characterization of the craniofacial abnormalities of the homozygous G608G progeria mouse model. Front Physiol 2024; 15:1481985. [PMID: 39568542 PMCID: PMC11576425 DOI: 10.3389/fphys.2024.1481985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by premature aging, impacting multiple organ systems, including cardiovascular, musculoskeletal, and integumentary. Significant abnormalities in a transgenic mouse model (homozygous G608G mutation), specifically targeting the development of skull and facial bone indices through high-resolution CT scanning and cephalometric analysis. Methods Key measurements include bone thickness, skull volume, and cranial suture integrity. Bone volume increased significantly in HGPS mice by 8 months of age compared to wildtype mice. Results Cortical thickness showed a trend toward increased values in HGPS mice. Cranial metrics revealed distinct differences. Discussion HGPS mice exhibited smaller internasal width, interzygomatic distance, and palatine length compared to WT mice over time.
Collapse
Affiliation(s)
- Indeevar Beeram
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Belen Cubria
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Pramod Kamalapathy
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Diana Yeritsyan
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Amanda J Dubose
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ahmad Hedayatzadeh Razavi
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nazanin Nafisi
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Michael R Erdos
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Brian D Snyder
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Wayne A Cabral
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Francis S Collins
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia
| |
Collapse
|
3
|
Tong XY, Norenberg MD, Paidas MJ, Shamaladevi N, Salgueiro L, Jaszberenyi M, John B, Hussain H, El Hiba O, Abdeljalil EG, Bilal EM, Natarajan S, Romaguera R, Papayan S, Carden AK, Ramamoorthy R, Elumalai N, Schally AV, Nithura J, Patrizio R, Jayakumar AR. Mechanism of Alzheimer type II astrocyte development in hepatic encephalopathy. Neurochem Int 2024; 180:105866. [PMID: 39369794 DOI: 10.1016/j.neuint.2024.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Type C hepatic encephalopathy (Type C HE) is a major and complex neurological condition that occurs following chronic liver failure. The molecular basis of Type C HE remains elusive. Type C HE is characterized by mental confusion, cognitive and motor disturbances. The presence of Alzheimer type II astrocytes (AT2A) is the key histopathological finding observed in Type C HE. However, nothing is currently known regarding AT2A development and its involvement in cognitive, and motor deficits in Type C HE. We, therefore, examined in rats the mechanisms by which liver failure contributes to the progression of AT2A, and its role in the development of cognitive and motor deficits in thioacetamide (TAA) model of Type C HE. We and others earlier reported increased oxidative/nitrosative stress (ONS), JNK1/2, and cMyc activation in ammonia-treated astrocyte cultures, as well as in brains from chronic liver failure. We now found increased levels of astrocytic glia maturation factor (GMF, a factor strongly implicated in neuroinflammation), as well as various inflammatory factors (IL-1β, TNF-α, IL-6, MMP-3, COX2, CXCL1, and PGE2), and reduced levels of GFAP and increased levels of aggregated nuclear protein Lamin A/C in rat brain cortex post-chronic liver failure. We also found increased levels of GMF and inflammatory factors (MMP-3, COX2, CXCL1, and PGE2) in astrocytes post-ammonia treatment in vitro. Additionally, pharmacological inhibition of upstream signaling of GMF (ONS, JNK1/2, and cMyc) or GMF inhibitors W-7 and trifluoperazine significantly reduced the levels of inflammatory factors, the number of AT2A cells, as well as the cognitive and motor deficits in TAA-treated rats. Increased levels of GMF were also identified in human post-mortem brain sections. These findings strongly suggest that increased levels of astrocytic GMF due to elevated levels of ONS, JNK1/2, and cMyc and the subsequent inflammation contribute to the development of AT2A and the consequent cognitive, and motor deficits in chronic liver failure.
Collapse
Affiliation(s)
- Xiao Y Tong
- Department of Pathology, University of Miami School of Medicine, Miami, FL, USA
| | - Michael D Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, FL, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA; Department of Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL, USA
| | | | - Luis Salgueiro
- General Medical Research, R&D Services, Department of Veterans Affairs, Miami, FL, USA
| | - Miklos Jaszberenyi
- General Medical Research, R&D Services, Department of Veterans Affairs, Miami, FL, USA; Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary
| | - Binu John
- General Medical Research, R&D Services, Department of Veterans Affairs, Miami, FL, USA
| | - Hussain Hussain
- Larkin Community Hospital, Department of Internal Medicine and Infectious Disease, Miami, FL, USA
| | - Omar El Hiba
- Laboratory of Anthropogenic, Biotechnology, and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av Des facultés, 24000, El Jadida, Morocco; The Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technology, Morocco
| | - El Got Abdeljalil
- Laboratory of Anthropogenic, Biotechnology, and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av Des facultés, 24000, El Jadida, Morocco; The Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technology, Morocco
| | - El-Mansoury Bilal
- Laboratory of Anthropogenic, Biotechnology, and Health, Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av Des facultés, 24000, El Jadida, Morocco; The Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Health Sciences and Technology, Morocco
| | - Sampath Natarajan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Tamil Nadu, India
| | - Rita Romaguera
- Pathology and Laboratory Medicine, Department of Veterans Affairs, Miami, FL, 33125, USA
| | - Stanislav Papayan
- Pathology and Laboratory Medicine, Department of Veterans Affairs, Miami, FL, 33125, USA
| | - Arianna K Carden
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Rajalakshmi Ramamoorthy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Nila Elumalai
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Department of Veterans Affairs, Miami, FL, 33125, USA
| | | | - Rebecca Patrizio
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, FL, USA; General Medical Research, R&D Services, Department of Veterans Affairs, Miami, FL, USA; Neuropathology Section, Veterans Affairs Medical Center, Miami, FL, USA; R&D Services and South Florida VA Foundation for Research and Education Inc, Veterans Affairs Medical Center, Miami, FL, USA.
| |
Collapse
|
4
|
Herrero-Fernández B, Ortega-Zapero M, Gómez-Bris R, Sáez A, Iborra S, Zorita V, Quintas A, Vázquez E, Dopazo A, Sánchez-Madrid F, Arribas SM, González-Granado JM. Role of lamin A/C on dendritic cell function in antiviral immunity. Cell Mol Life Sci 2024; 81:400. [PMID: 39264480 PMCID: PMC11393282 DOI: 10.1007/s00018-024-05423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Dendritic cells (DCs) play a crucial role in orchestrating immune responses, particularly in promoting IFNγ-producing-CD8 cytotoxic T lymphocytes (CTLs) and IFNγ-producing-CD4 T helper 1 (Th1) cells, which are essential for defending against viral infections. Additionally, the nuclear envelope protein lamin A/C has been implicated in T cell immunity. Nevertheless, the intricate interplay between innate and adaptive immunity in response to viral infections, particularly the role of lamin A/C in DC functions within this context, remains poorly understood. In this study, we demonstrate that mice lacking lamin A/C in myeloid LysM promoter-expressing cells exhibit a reduced capacity to induce Th1 and CD8 CTL responses, leading to impaired clearance of acute primary Vaccinia virus (VACV) infection. Remarkably, in vitro-generated granulocyte macrophage colony-stimulating factor bone marrow-derived DCs (GM-CSF BMDCs) show high levels of lamin A/C. Lamin A/C absence on GM-CSF BMDCs does not affect the expression of costimulatory molecules on the cell membrane but it reduces the cellular ability to form immunological synapses with naïve CD4 T cells. Lamin A/C deletion induces alterations in NFκB nuclear localization, thereby influencing NF-κB-dependent transcription. Furthermore, lamin A/C ablation modifies the gene accessibility of BMDCs, predisposing these cells to mount a less effective antiviral response upon TLR stimulation. This study highlights the critical role of DCs in interacting with CD4 T cells during antiviral responses and proposes some mechanisms through which lamin A/C may modulate DC function via gene accessibility and transcriptional regulation.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernández
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain
| | - Marina Ortega-Zapero
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Raquel Gómez-Bris
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain
| | - Angela Sáez
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Spain
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
- Fundacion Inmunotek, Alcalá de Henares, 28805, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Enrique Vázquez
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
- Immunology Unit, Medicine Department, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Instituto Investigacion Sanitaria-Princesa IIS-IP, Madrid, Spain, Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Silvia Magdalena Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain.
| | - Jose Maria González-Granado
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain.
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
5
|
Díaz-López EJ, Sánchez-Iglesias S, Castro AI, Cobelo-Gómez S, Prado-Moraña T, Araújo-Vilar D, Fernandez-Pombo A. Lipodystrophic Laminopathies: From Dunnigan Disease to Progeroid Syndromes. Int J Mol Sci 2024; 25:9324. [PMID: 39273270 PMCID: PMC11395136 DOI: 10.3390/ijms25179324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Lipodystrophic laminopathies are a group of ultra-rare disorders characterised by the presence of pathogenic variants in the same gene (LMNA) and other related genes, along with an impaired adipose tissue pattern and other features that are specific of each of these disorders. The most fascinating traits include their complex genotype-phenotype associations and clinical heterogeneity, ranging from Dunnigan disease, in which the most relevant feature is precisely adipose tissue dysfunction and lipodystrophy, to the other laminopathies affecting adipose tissue, which are also characterised by the presence of signs of premature ageing (Hutchinson Gilford-progeria syndrome, LMNA-atypical progeroid syndrome, mandibuloacral dysplasia types A and B, Nestor-Guillermo progeria syndrome, LMNA-associated cardiocutaneous progeria). This raises several questions when it comes to understanding how variants in the same gene can lead to similar adipose tissue disturbances and, at the same time, to such heterogeneous phenotypes and variable degrees of metabolic abnormalities. The present review aims to gather the molecular basis of adipose tissue impairment in lipodystrophic laminopathies, their main clinical aspects and recent therapeutic strategies. In addition, it also summarises the key aspects for their differential diagnosis.
Collapse
Affiliation(s)
- Everardo Josué Díaz-López
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Ana I Castro
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Teresa Prado-Moraña
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Antia Fernandez-Pombo
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Bhide S, Chandran S, Rajasekaran NS, Melkani GC. Genetic and Pathophysiological Basis of Cardiac and Skeletal Muscle Laminopathies. Genes (Basel) 2024; 15:1095. [PMID: 39202453 PMCID: PMC11354015 DOI: 10.3390/genes15081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Nuclear lamins, a type V intermediate filament, are crucial components of the nuclear envelope's inner layer, maintaining nuclear integrity and mediating interactions between the nucleus and cytoplasm. Research on human iPSC-derived cells and animal models has demonstrated the importance of lamins in cardiac and skeletal muscle development and function. Mutations in lamins result in laminopathies, a group of diseases including muscular dystrophies, Hutchison-Gilford progeria syndrome, and cardiomyopathies with conduction defects. These conditions have been linked to disrupted autophagy, mTOR, Nrf2-Keap, and proteostasis signaling pathways, indicating complex interactions between the nucleus and cytoplasm. Despite progress in understanding these pathways, many questions remain about the mechanisms driving lamin-induced pathologies, leading to limited therapeutic options. This review examines the current literature on dysregulated pathways in cardiac and skeletal muscle laminopathies and explores potential therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Shruti Bhide
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA; (S.B.); (S.C.)
| | - Sahaana Chandran
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA; (S.B.); (S.C.)
| | - Namakkal S. Rajasekaran
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35294, USA;
| | - Girish C. Melkani
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA; (S.B.); (S.C.)
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35294, USA;
| |
Collapse
|
7
|
O’Connor W, Arshia A, Prabakar D, Sabesan V, Spindel JF. Nuclear envelope lamin-related dilated cardiomyopathy: a case series including histopathology. Eur Heart J Case Rep 2024; 8:ytae412. [PMID: 39176021 PMCID: PMC11339710 DOI: 10.1093/ehjcr/ytae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Background Lamin A/C gene (LMNA) mutations cause myocardial fibrosis manifesting as arrhythmogenic, non-compaction, or dilated cardiomyopathies. Fibro-fatty replacement largely involves the conduction system and conduction disease commonly occurs prior to contractile dysfunction. Case summary Two young, unrelated Caucasian males, aged 34 and 25, were referred to our centre for treatment of advanced heart failure. Both patients had a family history of heart failure and sudden cardiac death among their first-degree relatives and were diagnosed with Lamin A/C mutations, but they had not been screened prior to disease onset. Although the initial phenotypes were dilated cardiomyopathy and left ventricular non-compaction cardiomyopathy, both patients' disease progressed rapidly to include ventricular arrhythmias, severe global left ventricular hypokinesis, and dependence on outpatient milrinone to complete activities of daily living. Both patients received heart transplantation within 2 years of initial disease onset. The surgical pathology of the explanted hearts revealed characteristic findings of fibro-fatty degeneration of the conduction system, and using light microscopy, they were found to have nuclear membrane thinning, bubbling, and convolution throughout all areas sampled. Discussion Lamin A/C-related cardiomyopathy is associated with sudden cardiac death early in the disease course, warranting early consideration of implantable cardioverter defibrillator implantation, and rapid progression to end-stage cardiomyopathy refractory to standard medical therapies, necessitating early referral to an advanced heart failure centre. We report a newly observed and recorded finding of morphologic nuclear alterations in late-stage disease using high-power light microscopy. These alterations underscore the pathophysiology of Lamin A/C-related cardiomyopathy and provide a basis for future research into disease-specific therapies.
Collapse
Affiliation(s)
- William O’Connor
- Department of Pathology and Laboratory Medicine, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0298, USA
| | - Asma Arshia
- Department of Pathology and Laboratory Medicine, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0298, USA
| | - Deipthan Prabakar
- Government Kilpauk Medical College, 822 Poonamallee High Road, Kilpauk, Chennai 600010, India
| | - Vaishnavi Sabesan
- Government Kilpauk Medical College, 822 Poonamallee High Road, Kilpauk, Chennai 600010, India
| | - Jeffrey F Spindel
- Division of Cardiovascular Medicine, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0298, USA
| |
Collapse
|
8
|
Sengupta D, Sengupta K. Lamin A K97E leads to NF-κB-mediated dysfunction of inflammatory responses in dilated cardiomyopathy. Biol Cell 2024; 116:e2300094. [PMID: 38404031 DOI: 10.1111/boc.202300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND INFORMATION Lamins are type V intermediate filament proteins underlying the inner nuclear membrane which provide structural rigidity to the nucleus, tether the chromosomes, maintain nuclear homeostasis, and remain dynamically associated with developmentally regulated regions of the genome. A large number of mutations particularly in the LMNA gene encoding lamin A/C results in a wide array of human diseases, collectively termed as laminopathies. Dilated Cardiomyopathy (DCM) is one such laminopathic cardiovascular disease which is associated with systolic dysfunction of left or both ventricles leading to cardiac arrhythmia which ultimately culminates into myocardial infarction. RESULTS In this work, we have unraveled the epigenetic landscape to address the regulation of gene expression in mouse myoblast cell line in the context of the missense mutation LMNA 289A CONCLUSIONS We report here for the first time that there is a significant downregulation of the NF-κB pathway, which has been implicated in cardio-protection elsewhere. SIGNIFICANCE This provides a new pathophysiological explanation that correlates an LMNA mutation and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Duhita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
9
|
Luo X, Jia H, Wang F, Mo H, Kang Y, Zhang N, Zhao L, Xu L, Yang Z, Yang Q, Chang Y, Li S, Bian N, Hua X, Cui H, Cao Y, Chu C, Zeng Y, Chen X, Chen Z, Ji W, Long C, Song J, Niu Y. Primate Model Carrying LMNA Mutation Develops Dilated Cardiomyopathy. JACC Basic Transl Sci 2024; 9:380-395. [PMID: 38559624 PMCID: PMC10978409 DOI: 10.1016/j.jacbts.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 04/04/2024]
Abstract
To solve the clinical transformation dilemma of lamin A/C (LMNA)-mutated dilated cardiomyopathy (LMD), we developed an LMNA-mutated primate model based on the similarity between the phenotype of primates and humans. We screened out patients with LMD and compared the clinical data of LMD with TTN-mutated and mutation-free dilated cardiomyopathy to obtain the unique phenotype. After establishment of the LMNA c.357-2A>G primate model, primates were continuously observed for 48 months, and echocardiographic, electrophysiological, histologic, and transcriptional data were recorded. The LMD primate model was found to highly simulate the phenotype of clinical LMD. In addition, the LMD primate model shared a similar natural history with humans.
Collapse
Affiliation(s)
- Xiang Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Han Mo
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Ningning Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Lizhu Xu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhengsheng Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiaoyan Yang
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shulin Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chu Chu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yuqiang Zeng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Xinglong Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhigang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Chengzu Long
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, USA
- Department of Neurology, New York University School of Medicine, New York, New York, USA
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
10
|
Tan CY, Chan PS, Tan H, Tan SW, Lee CJM, Wang JW, Ye S, Werner H, Loh YJ, Lee YL, Ackers-Johnson M, Foo RSY, Jiang J. Systematic in vivo candidate evaluation uncovers therapeutic targets for LMNA dilated cardiomyopathy and risk of Lamin A toxicity. J Transl Med 2023; 21:690. [PMID: 37840136 PMCID: PMC10577912 DOI: 10.1186/s12967-023-04542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a severe, non-ischemic heart disease which ultimately results in heart failure (HF). Decades of research on DCM have revealed diverse aetiologies. Among them, familial DCM is the major form of DCM, with pathogenic variants in LMNA being the second most common form of autosomal dominant DCM. LMNA DCM is a multifactorial and complex disease with no specific treatment thus far. Many studies have demonstrated that perturbing candidates related to various dysregulated pathways ameliorate LMNA DCM. However, it is unknown whether these candidates could serve as potential therapeutic targets especially in long term efficacy. METHODS We evaluated 14 potential candidates including Lmna gene products (Lamin A and Lamin C), key signaling pathways (Tgfβ/Smad, mTor and Fgf/Mapk), calcium handling, proliferation regulators and modifiers of LINC complex function in a cardiac specific Lmna DCM model. Positive candidates for improved cardiac function were further assessed by survival analysis. Suppressive roles and mechanisms of these candidates in ameliorating Lmna DCM were dissected by comparing marker gene expression, Tgfβ signaling pathway activation, fibrosis, inflammation, proliferation and DNA damage. Furthermore, transcriptome profiling compared the differences between Lamin A and Lamin C treatment. RESULTS Cardiac function was restored by several positive candidates (Smad3, Yy1, Bmp7, Ctgf, aYAP1, Sun1, Lamin A, and Lamin C), which significantly correlated with suppression of HF/fibrosis marker expression and cardiac fibrosis in Lmna DCM. Lamin C or Sun1 shRNA administration achieved consistent, prolonged survival which highly correlated with reduced heart inflammation and DNA damage. Importantly, Lamin A treatment improved but could not reproduce long term survival, and Lamin A administration to healthy hearts itself induced DCM. Mechanistically, we identified this lapse as caused by a dose-dependent toxicity of Lamin A, which was independent from its maturation. CONCLUSIONS In vivo candidate evaluation revealed that supplementation of Lamin C or knockdown of Sun1 significantly suppressed Lmna DCM and achieve prolonged survival. Conversely, Lamin A supplementation did not rescue long term survival and may impart detrimental cardiotoxicity risk. This study highlights a potential of advancing Lamin C and Sun1 as therapeutic targets for the treatment of LMNA DCM.
Collapse
Affiliation(s)
- Chia Yee Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Pui Shi Chan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Hansen Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Sung Wei Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Chang Jie Mick Lee
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Jiong-Wei Wang
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Centre for NanoMedicine, Nanomedicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
| | - Shu Ye
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Hendrikje Werner
- Nuevocor Pte Ltd, 1 Biopolis Drive, Amnios, #05-01, Singapore, 138622, Singapore
| | - Ying Jie Loh
- Nuevocor Pte Ltd, 1 Biopolis Drive, Amnios, #05-01, Singapore, 138622, Singapore
| | - Yin Loon Lee
- Nuevocor Pte Ltd, 1 Biopolis Drive, Amnios, #05-01, Singapore, 138622, Singapore
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore, 138665, Singapore
| | - Matthew Ackers-Johnson
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Roger S Y Foo
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Jianming Jiang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore.
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore.
| |
Collapse
|
11
|
Liu C, Rex R, Lung Z, Wang JS, Wu F, Kim HJ, Zhang L, Sohn LL, Dernburg AF. A cooperative network at the nuclear envelope counteracts LINC-mediated forces during oogenesis in C. elegans. SCIENCE ADVANCES 2023; 9:eabn5709. [PMID: 37436986 PMCID: PMC10337908 DOI: 10.1126/sciadv.abn5709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Oogenesis involves transduction of mechanical forces from the cytoskeleton to the nuclear envelope (NE). In Caenorhabditis elegans, oocyte nuclei lacking the single lamin protein LMN-1 are vulnerable to collapse under forces mediated through LINC (linker of nucleoskeleton and cytoskeleton) complexes. Here, we use cytological analysis and in vivo imaging to investigate the balance of forces that drive this collapse and protect oocyte nuclei. We also use a mechano-node-pore sensing device to directly measure the effect of genetic mutations on oocyte nuclear stiffness. We find that nuclear collapse is not a consequence of apoptosis. It is promoted by dynein, which induces polarization of a LINC complex composed of Sad1 and UNC-84 homology 1 (SUN-1) and ZYGote defective 12 (ZYG-12). Lamins contribute to oocyte nuclear stiffness and cooperate with other inner nuclear membrane proteins to distribute LINC complexes and protect nuclei from collapse. We speculate that a similar network may protect oocyte integrity during extended oocyte arrest in mammals.
Collapse
Affiliation(s)
- Chenshu Liu
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rachel Rex
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Zoe Lung
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - John S. Wang
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Fan Wu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Hyung Jun Kim
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Liangyu Zhang
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Lydia L. Sohn
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Abby F. Dernburg
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biological Sciences and Engineering, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
12
|
Del Monte-Monge A, Ruiz-Polo de Lara Í, Gonzalo P, Espinós-Estévez C, González-Amor M, de la Fuente-Pérez M, Andrés-Manzano MJ, Fanjul V, Gimeno JR, Barriales-Villa R, Dorado B, Andrés V. Lamin A/C Ablation Restricted to Vascular Smooth Muscle Cells, Cardiomyocytes, and Cardiac Fibroblasts Causes Cardiac and Vascular Dysfunction. Int J Mol Sci 2023; 24:11172. [PMID: 37446344 DOI: 10.3390/ijms241311172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Mutations in the LMNA gene (encoding lamin A/C proteins) cause several human cardiac diseases, including dilated cardiomyopathies (LMNA-DCM). The main clinical risks in LMNA-DCM patients are sudden cardiac death and progressive left ventricular ejection fraction deterioration, and therefore most human and animal studies have sought to define the mechanisms through which LMNA mutations provoke cardiac alterations, with a particular focus on cardiomyocytes. To investigate if LMNA mutations also cause vascular alterations that might contribute to the etiopathogenesis of LMNA-DCM, we generated and characterized Lmnaflox/floxSM22αCre mice, which constitutively lack lamin A/C in vascular smooth muscle cells (VSMCs), cardiac fibroblasts, and cardiomyocytes. Like mice with whole body or cardiomyocyte-specific lamin A/C ablation, Lmnaflox/floxSM22αCre mice recapitulated the main hallmarks of human LMNA-DCM, including ventricular systolic dysfunction, cardiac conduction defects, cardiac fibrosis, and premature death. These alterations were associated with elevated expression of total and phosphorylated (active) Smad3 and cleaved (active) caspase 3 in the heart. Lmnaflox/floxSM22αCre mice also exhibited perivascular fibrosis in the coronary arteries and a switch of aortic VSMCs from the 'contractile' to the 'synthetic' phenotype. Ex vivo wire myography in isolated aortic rings revealed impaired maximum contraction capacity and an altered response to vasoconstrictor and vasodilator agents in Lmnaflox/floxSM22αCre mice. To our knowledge, our results provide the first evidence of phenotypic alterations in VSMCs that might contribute significantly to the pathophysiology of some forms of LMNA-DCM. Future work addressing the mechanisms underlying vascular defects in LMNA-DCM may open new therapeutic avenues for these diseases.
Collapse
Affiliation(s)
- Alberto Del Monte-Monge
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Íñigo Ruiz-Polo de Lara
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Pilar Gonzalo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Carla Espinós-Estévez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - María González-Amor
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Miguel de la Fuente-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - María J Andrés-Manzano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Víctor Fanjul
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Juan R Gimeno
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Cardiac Department, Hospital Clínico Universitario Virgen Arrixaca, 30120 Murcia, Spain
| | - Roberto Barriales-Villa
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Unidad de Cardiopatías Familiares, Complexo Hospitalario Universitario A Coruña (INIBIC-CHUAC), 15006 A Coruña, Spain
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
13
|
Kim HJ, Lee PCW, Hong JH. Overview of cellular homeostasis-associated nuclear envelope lamins and associated input signals. Front Cell Dev Biol 2023; 11:1173514. [PMID: 37250905 PMCID: PMC10213260 DOI: 10.3389/fcell.2023.1173514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
With the discovery of the role of the nuclear envelope protein lamin in human genetic diseases, further diverse roles of lamins have been elucidated. The roles of lamins have been addressed in cellular homeostasis including gene regulation, cell cycle, cellular senescence, adipogenesis, bone remodeling as well as modulation of cancer biology. Features of laminopathies line with oxidative stress-associated cellular senescence, differentiation, and longevity and share with downstream of aging-oxidative stress. Thus, in this review, we highlighted various roles of lamin as key molecule of nuclear maintenance, specially lamin-A/C, and mutated LMNA gene clearly reveal aging-related genetic phenotypes, such as enhanced differentiation, adipogenesis, and osteoporosis. The modulatory roles of lamin-A/C in stem cell differentiation, skin, cardiac regulation, and oncology have also been elucidated. In addition to recent advances in laminopathies, we highlighted for the first kinase-dependent nuclear lamin biology and recently developed modulatory mechanisms or effector signals of lamin regulation. Advanced knowledge of the lamin-A/C proteins as diverse signaling modulators might be biological key to unlocking the complex signaling of aging-related human diseases and homeostasis in cellular process.
Collapse
Affiliation(s)
- Hyeong Jae Kim
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Peter C. W. Lee
- Lung Cancer Research Center, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
14
|
Clinical Spectrum of LMNA-Associated Type 2 Familial Partial Lipodystrophy: A Systematic Review. Cells 2023; 12:cells12050725. [PMID: 36899861 PMCID: PMC10000975 DOI: 10.3390/cells12050725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Type 2 familial partial lipodystrophy (FPLD2) is a laminopathic lipodystrophy due to pathogenic variants in the LMNA gene. Its rarity implies that it is not well-known. The aim of this review was to explore the published data regarding the clinical characterisation of this syndrome in order to better describe FPLD2. For this purpose, a systematic review through a search on PubMed until December 2022 was conducted and the references of the retrieved articles were also screened. A total of 113 articles were included. FPLD2 is characterised by the loss of fat starting around puberty in women, affecting limbs and trunk, and its accumulation in the face, neck and abdominal viscera. This adipose tissue dysfunction conditions the development of metabolic complications associated with insulin resistance, such as diabetes, dyslipidaemia, fatty liver disease, cardiovascular disease, and reproductive disorders. However, a great degree of phenotypical variability has been described. Therapeutic approaches are directed towards the associated comorbidities, and recent treatment modalities have been explored. A comprehensive comparison between FPLD2 and other FPLD subtypes can also be found in the present review. This review aimed to contribute towards augmenting knowledge of the natural history of FPLD2 by bringing together the main clinical research in this field.
Collapse
|
15
|
Cubilla M, Papazoglu G, Asteggiano C. Dystroglycanopathies: Genetic Bases of Muscular Dystrophies Due to Alteration in the O-Glycosylation of α-Dystroglycan. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2023; 11. [DOI: 10.1590/2326-4594-jiems-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Affiliation(s)
- M.A. Cubilla
- Hospital de Niños de la Santísima Trinidad, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - G.M. Papazoglu
- Hospital de Niños de la Santísima Trinidad, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - C.G. Asteggiano
- Hospital de Niños de la Santísima Trinidad, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina; Universidad Católica de Córdoba, Argentina
| |
Collapse
|
16
|
Araújo-Vilar D, Fernández-Pombo A, Cobelo-Gómez S, Castro AI, Sánchez-Iglesias S. Lipodystrophy-associated progeroid syndromes. Hormones (Athens) 2022; 21:555-571. [PMID: 35835948 DOI: 10.1007/s42000-022-00386-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/29/2022] [Indexed: 01/07/2023]
Abstract
With the exception of HIV-associated lipodystrophy, lipodystrophy syndromes are rare conditions characterized by a lack of adipose tissue, which is not generally recovered. As a consequence, an ectopic deposition of lipids frequently occurs, which usually leads to insulin resistance, atherogenic dyslipidemia, and hepatic steatosis. These disorders include certain accelerated aging syndromes or progeroid syndromes. Even though each of them has unique clinical features, most show common clinical characteristics that affect growth, skin and appendages, adipose tissue, muscle, and bone and, in some of them, life expectancy is reduced. Although the molecular bases of these Mendelian disorders are very diverse and not well known, genomic instability is frequent as a consequence of impairment of nuclear organization, chromatin structure, and DNA repair, as well as epigenetic dysregulation and mitochondrial dysfunction. In this review, the main clinical features of the lipodystrophy-associated progeroid syndromes will be described along with their causes and pathogenic mechanisms, and an attempt will be made to identify which of López-Otín's hallmarks of aging are present.
Collapse
Affiliation(s)
- David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain.
| | - Antía Fernández-Pombo
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ana I Castro
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine (Medicine Area), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS)-IDIS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
17
|
Restrictive dermopathy: A baby with taut skin, facial dysmorphism, joint contractures, and pulmonary hypoplasia. JAAD Case Rep 2022; 30:41-43. [DOI: 10.1016/j.jdcr.2022.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
18
|
Inagaki E, Yoshimatsu S, Okano H. Accelerated neuronal aging in vitro ∼melting watch ∼. Front Aging Neurosci 2022; 14:868770. [PMID: 36016855 PMCID: PMC9397486 DOI: 10.3389/fnagi.2022.868770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
In developed countries, the aging of the population and the associated increase in age-related diseases are causing major unresolved medical, social, and environmental matters. Therefore, research on aging has become one of the most important and urgent issues in life sciences. If the molecular mechanisms of the onset and progression of neurodegenerative diseases are elucidated, we can expect to develop disease-modifying methods to prevent neurodegeneration itself. Since the discovery of induced pluripotent stem cells (iPSCs), there has been an explosion of disease models using disease-specific iPSCs derived from patient-derived somatic cells. By inducing the differentiation of iPSCs into neurons, disease models that reflect the patient-derived pathology can be reproduced in culture dishes, and are playing an active role in elucidating new pathological mechanisms and as a platform for new drug discovery. At the same time, however, we are faced with a new problem: how to recapitulate aging in culture dishes. It has been pointed out that cells differentiated from pluripotent stem cells are juvenile, retain embryonic traits, and may not be fully mature. Therefore, attempts are being made to induce cell maturation, senescence, and stress signals through culture conditions. It has also been reported that direct conversion of fibroblasts into neurons can reproduce human neurons with an aged phenotype. Here, we outline some state-of-the-art insights into models of neuronal aging in vitro. New frontiers in which stem cells and methods for inducing differentiation of tissue regeneration can be applied to aging research are just now approaching, and we need to keep a close eye on them. These models are forefront and intended to advance our knowledge of the molecular mechanisms of aging and contribute to the development of novel therapies for human neurodegenerative diseases associated with aging.
Collapse
Affiliation(s)
- Emi Inagaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Japanese Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Sho Yoshimatsu
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Hideyuki Okano,
| |
Collapse
|
19
|
Meqbel BRM, Gomes M, Omer A, Gallouzi IE, Horn HF. LINCing Senescence and Nuclear Envelope Changes. Cells 2022; 11:1787. [PMID: 35681483 PMCID: PMC9179861 DOI: 10.3390/cells11111787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
The nuclear envelope (NE) has emerged as a nexus for cellular organization, signaling, and survival. Beyond its role as a barrier to separate the nucleoplasm from the cytoplasm, the NE's role in supporting and maintaining a myriad of other functions has made it a target of study in many cellular processes, including senescence. The nucleus undergoes dramatic changes in senescence, many of which are driven by changes in the NE. Indeed, Lamin B1, a key NE protein that is consistently downregulated in senescence, has become a marker for senescence. Other NE proteins have also been shown to play a role in senescence, including LINC (linker of nucleoskeleton and cytoskeleton) complex proteins. LINC complexes span the NE, forming physical connections between the cytoplasm to the nucleoplasm. In this way, they integrate nuclear and cytoplasmic mechanical signals and are essential not only for a variety of cellular functions but are needed for cell survival. However, LINC complex proteins have been shown to have a myriad of functions in addition to forming a LINC complex, often existing as nucleoplasmic or cytoplasmic soluble proteins in a variety of isoforms. Some of these proteins have now been shown to play important roles in DNA repair, cell signaling, and nuclear shape regulation, all of which are important in senescence. This review will focus on some of these roles and highlight the importance of LINC complex proteins in senescence.
Collapse
Affiliation(s)
- Bakhita R. M. Meqbel
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| | - Matilde Gomes
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah 21589, Saudi Arabia; (M.G.); (I.E.G.)
| | - Amr Omer
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
| | - Imed E. Gallouzi
- KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah 21589, Saudi Arabia; (M.G.); (I.E.G.)
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
| | - Henning F. Horn
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| |
Collapse
|
20
|
Wang N, Li M, Cao Y, Yang H, Li L, Ge L, Fan Z, Zhang C, Jin L. PRMT6/LMNA/CXCL12 signaling pathway regulated the osteo/odontogenic differentiation ability in dental stem cells isolated from apical papilla. Cell Tissue Res 2022; 389:187-199. [PMID: 35543755 DOI: 10.1007/s00441-022-03628-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Tooth loss and maxillofacial bone defect are common diseases, which seriously affect people's health. Effective tooth and maxillofacial bone tissue regeneration is a key problem that need to be solved. In the present study, we investigate the role of PRMT6 in osteo/odontogenic differentiation and migration capacity by using SCAPs. Our results showed that knockdown of PRMT6 promoted the osteo/odontogenic differentiation compared with the control group, as detected by alkaline phosphatase activity, alizarin red staining, and the indicators of osteo/odontogenic differentiation measured by Western blot. In addition, overexpression of PRMT6 inhibited the osteo/odontogenic differentiation potentials of SCAPs. Then, knockdown of PRMT6 promoted the migration ability and overexpression of PRMT6 inhibited the migration ability in SCAPs. Mechanically, we discovered that the depletion of PRMT6 promoted the expression of CXCL12 by decreasing H3R2 methylation in the promoter region of CXCL12. In addition, PRMT6 formed a protein complex with LMNA, a nuclear structural protein. Depletion of LMNA inhibited the osteo/odontogenic differentiation and CXCL12 expression and increased the intranucleus PRMT6 in SCAPs. To sum up, PRMT6 might inhibit the osteo/odontogenic differentiation and migration ability of SCAPs via inhibiting CXCL12. And LMNA might be a negative regulator of PRMT6. It is suggested that PRMT6 may be a key target for SCAP-mediated bone and tooth tissue regeneration.
Collapse
Affiliation(s)
- Ning Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Miao Li
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China.,Department of Endodontics, Capital Medical University School of Stomatology, Beijing, 100050, China.,Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Le Li
- Stomatological Disease Prevention and Control Center, Tsinghua University Hospital, Tsinghua University, Beijing, China
| | - Lihua Ge
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China. .,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chen Zhang
- Department of Endodontics, Capital Medical University School of Stomatology, Beijing, 100050, China.
| | - Luyuan Jin
- Department of General Dentistry and Integrated Emergency Dental Care, Capital Medical University School of Stomatology, Beijing, 100050, China.
| |
Collapse
|
21
|
Ahn J, Jeong S, Kang SM, Jo I, Park BJ, Ha NC. Crystal structure of progeria mutant S143F lamin A/C reveals increased hydrophobicity driving nuclear deformation. Commun Biol 2022; 5:267. [PMID: 35338226 PMCID: PMC8956589 DOI: 10.1038/s42003-022-03212-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022] Open
Abstract
Lamins are intermediate filaments that form a 3-D meshwork in the periphery of the nuclear envelope. The recent crystal structure of a long fragment of human lamin A/C visualized the tetrameric assembly unit of the central rod domain as a polymerization intermediate. A genetic mutation of S143F caused a phenotype characterized by both progeria and muscular dystrophy. In this study, we determined the crystal structure of the lamin A/C fragment harboring the S143F mutation. The obtained structure revealed the X-shaped interaction between the tetrameric units in the crystals, potentiated by the hydrophobic interactions of the mutated Phe143 residues. Subsequent studies indicated that the X-shaped interaction between the filaments plays a crucial role in disrupting the normal lamin meshwork. Our findings suggest the assembly mechanism of the 3-D meshwork and further provide a molecular framework for understanding the aging process by nuclear deformation.
Collapse
Affiliation(s)
- Jinsook Ahn
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soyeon Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Inseong Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
22
|
C9orf72 dipeptides disrupt the nucleocytoplasmic transport machinery and cause TDP-43 mislocalisation to the cytoplasm. Sci Rep 2022; 12:4799. [PMID: 35314728 PMCID: PMC8938440 DOI: 10.1038/s41598-022-08724-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
A repeat expansion in C9orf72 is the major cause of both frontotemporal dementia and amyotrophic lateral sclerosis, accounting for approximately 1 in 12 cases of either disease. The expansion is translated to produce five dipeptide repeat proteins (DPRs) which aggregate in patient brain and are toxic in numerous models, though the mechanisms underlying this toxicity are poorly understood. Recent studies highlight nucleocytoplasmic transport impairments as a potential mechanism underlying neurodegeneration in C9orf72-linked disease, although the contribution of DPRs to this remains unclear. We expressed DPRs in HeLa cells, in the absence of repeat RNA. Crucially, we expressed DPRs at repeat-lengths found in patients (> 1000 units), ensuring our findings were relevant to disease. Immunofluorescence imaging was used to investigate the impact of each DPR on the nucleus, nucleocytoplasmic transport machinery and TDP-43 localisation. DPRs impaired the structural integrity of the nucleus, causing nuclear membrane disruption and misshapen nuclei. Ran and RanGAP, two proteins required for nucleocytoplasmic transport, were also mislocalised in DPR-expressing cells. Furthermore, DPRs triggered mislocalisation of TDP-43 to the cytoplasm, and this occurred in the same cells as Ran and RanGAP mislocalisation, suggesting a potential link between DPRs, nucleocytoplasmic transport impairments and TDP-43 pathology.
Collapse
|
23
|
Wu G, Tian Q, Liu J, Zhou Q, Zou D, Chen Z, Wu T, Wang W, Xia H, Zhou J. Comprehensive analysis of expression and prognosis for LMNB family genes in human sarcoma. Medicine (Baltimore) 2022; 101:e28933. [PMID: 35356902 PMCID: PMC10513290 DOI: 10.1097/md.0000000000028933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Previous studies indicated that lamin proteins were thought to be related to gene expression, chromatin structure, and unclear stability. There are 2 types of vertebrate lamins, including A and B. The 2 B type proteins are encoded by lamin B1 (LMNB1) and lamin B2 (LMNB2). The LMNBs factor has been found to be associated with the development of multiple tumors, but its association with sarcoma has been barely mentioned.The transcription levels of LMNBs were analyzed via Oncomine database. Gene Expression Profiling Interactive Analysis (GEPIA) dataset was adopted to analyze the differential expression of LMNBs in sarcoma. Cancer Cell Line Encyclopedia dataset was used to explore the expression of LMNBs in sarcoma cell line. We analyzed the prognostic value of LMNBs in GEPIA and Kaplan-Meier Plotter. Oncomine and GEPIA datasets were also used to detect the relationship between LMNBs and their co-expressed genes. We used the Database for Annotation, Visualization and Integrated Discovery to conduct the Gene Ontology analysis of LMNBs and their co-expressed genes. Kyoto Encyclopedia of Genes and Genomes was also used to analyze the pathway of LMNBs.LMNB1 and LMNB2 were reported to be hyperexpressed in sarcoma. The expression of LMNBs was elevated in various sarcoma cell lines. According to the results, we observed that LMNBs were connected to the poor overall survival, recurrence-free survival, and disease-free survival of sarcoma patients.This study indicated that hyperexpression of LMNBs was significantly related to worse outcome of sarcoma, LMNB1 and LMNB2 were expected to become potential biomarkers for human.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong Xia
- * Correspondence: Hong Xia, Department of Orthopedics, Xiangtan Central Hospital, Xiangtan, Hunan 411100, China (e-mail: ); Jian Zhou,Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China (e-mail: ).
| | - Jian Zhou
- * Correspondence: Hong Xia, Department of Orthopedics, Xiangtan Central Hospital, Xiangtan, Hunan 411100, China (e-mail: ); Jian Zhou,Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China (e-mail: ).
| |
Collapse
|
24
|
Islam MI, Nagakannan P, Shcholok T, Contu F, Mai S, Albensi BC, Del Bigio MR, Wang J, Sharoar M, Yan R, Park I, Eftekharpour E. Regulatory role of cathepsin L in induction of nuclear laminopathy in Alzheimer's disease. Aging Cell 2022; 21:e13531. [PMID: 34905652 PMCID: PMC8761039 DOI: 10.1111/acel.13531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 01/13/2023] Open
Abstract
Experimental and clinical therapies in the field of Alzheimer's disease (AD) have focused on elimination of extracellular amyloid beta aggregates or prevention of cytoplasmic neuronal fibrillary tangles formation, yet these approaches have been generally ineffective. Interruption of nuclear lamina integrity, or laminopathy, is a newly identified concept in AD pathophysiology. Unraveling the molecular players in the induction of nuclear lamina damage may lead to identification of new therapies. Here, using 3xTg and APP/PS1 mouse models of AD, and in vitro model of amyloid beta42 (Aβ42) toxicity in primary neuronal cultures and SH‐SY5Y neuroblastoma cells, we have uncovered a key role for cathepsin L in the induction of nuclear lamina damage. The applicability of our findings to AD pathophysiology was validated in brain autopsy samples from patients. We report that upregulation of cathepsin L is an important process in the induction of nuclear lamina damage, shown by lamin B1 cleavage, and is associated with epigenetic modifications in AD pathophysiology. More importantly, pharmacological targeting and genetic knock out of cathepsin L mitigated Aβ42 induced lamin B1 degradation and downstream structural and molecular changes. Affirming these findings, overexpression of cathepsin L alone was sufficient to induce lamin B1 cleavage. The proteolytic activity of cathepsin L on lamin B1 was confirmed using mass spectrometry. Our research identifies cathepsin L as a newly identified lamin B1 protease and mediator of laminopathy observed in AD. These results uncover a new aspect in the pathophysiology of AD that can be pharmacologically prevented, raising hope for potential therapeutic interventions.
Collapse
Affiliation(s)
- Md Imamul Islam
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
| | - Pandian Nagakannan
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
| | - Tetiana Shcholok
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
| | - Fabio Contu
- Cell Biology Research Institute of Oncology and Hematology CancerCare Manitoba University of Manitoba Winnipeg MB Canada
| | - Sabine Mai
- Cell Biology Research Institute of Oncology and Hematology CancerCare Manitoba University of Manitoba Winnipeg MB Canada
| | - Benedict C Albensi
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
- St Boniface Hospital Albrechtsen Research Centre Winnipeg MB Canada
- Department of Pharmaceutical Sciences College of Pharmacy Nova Southeastern University Fort Lauderdale Florida USA
| | - Marc R. Del Bigio
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
- Department of Pathology Shared Health Manitoba University of Manitoba Winnipeg MB Canada
| | - Jun‐Feng Wang
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
- Department of Pharmacology and Therapeutics University of Manitoba Winnipeg MB Canada
| | - Md Golam Sharoar
- Department of Neuroscience University of Connecticut Health Farmington Connecticut USA
| | - Riqiang Yan
- Department of Neuroscience University of Connecticut Health Farmington Connecticut USA
| | - Il‐Seon Park
- Department of Cellular and Molecular Medicine Chosun University Gwangju South Korea
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
| |
Collapse
|
25
|
Campos JTADM, Oliveira MSD, Soares LP, Medeiros KAD, Campos LRDS, Lima JG. DNA repair-related genes and adipogenesis: Lessons from congenital lipodystrophies. Genet Mol Biol 2022; 45:e20220086. [DOI: 10.1590/1678-4685-gmb-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
|
26
|
Most myopathic lamin variants aggregate: a functional genomics approach for assessing variants of uncertain significance. NPJ Genom Med 2021; 6:103. [PMID: 34862408 PMCID: PMC8642518 DOI: 10.1038/s41525-021-00265-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 10/21/2021] [Indexed: 02/01/2023] Open
Abstract
Hundreds of LMNA variants have been associated with several distinct disease phenotypes. However, genotype-phenotype relationships remain largely undefined and the impact for most variants remains unknown. We performed a functional analysis for 178 variants across five structural domains using two different overexpression models. We found that lamin A aggregation is a major determinant for skeletal and cardiac laminopathies. An in vitro solubility assay shows that aggregation-prone variants in the immunoglobulin-like domain correlate with domain destabilization. Finally, we demonstrate that myopathic-associated LMNA variants show aggregation patterns in induced pluripotent stem cell derived-cardiomyocytes (iPSC-CMs) in contrast to non-myopathic LMNA variants. Our data-driven approach (1) reveals that striated muscle laminopathies are predominantly protein misfolding diseases, (2) demonstrates an iPSC-CM experimental platform for characterizing laminopathic variants in human cardiomyocytes, and (3) supports a functional assay to aid in assessing pathogenicity for myopathic variants of uncertain significance.
Collapse
|
27
|
Fernández-Pombo A, Sánchez-Iglesias S, Cobelo-Gómez S, Hermida-Ameijeiras Á, Araújo-Vilar D. Familial partial lipodystrophy syndromes. Presse Med 2021; 50:104071. [PMID: 34610417 DOI: 10.1016/j.lpm.2021.104071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Lipodystrophies are a heterogeneous group of rare conditions characterised by the loss of adipose tissue. The most common forms are the familial partial lipodystrophy (FPLD) syndromes, which include a set of disorders, usually autosomal dominant, due to different pathogenetic mechanisms leading to improper fat distribution (loss of fat in the limbs and gluteal region and variable regional fat accumulation). Affected patients are prone to suffering serious morbidity via the development of metabolic complications associated to insulin resistance and an inability to properly store lipids. Although no well-defined diagnostic criteria have been established for lipodystrophy, there are certain clues related to medical history, physical examination and body composition evaluation that may suggest FPLD prior to confirmatory genetic analysis. Its treatment must be fundamentally oriented towards the control of the metabolic abnormalities. In this sense, metreleptin therapy, the newer classes of hypoglycaemic agents and other investigational drugs are showing promising results. This review aims to summarise the current knowledge of FPLD syndromes and to describe their clinical and molecular picture, diagnostic approaches and recent treatment modalities.
Collapse
Affiliation(s)
- Antía Fernández-Pombo
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Álvaro Hermida-Ameijeiras
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Division of Internal Medicine, University Clinical Hospital of Santiago de Compostela, 15706, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Spain.
| |
Collapse
|
28
|
Nicolas HA, Hua K, Quigley H, Ivare J, Tesson F, Akimenko MA. A CRISPR/Cas9 zebrafish lamin A/C mutant model of muscular laminopathy. Dev Dyn 2021; 251:645-661. [PMID: 34599606 DOI: 10.1002/dvdy.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/13/2021] [Accepted: 09/16/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Lamin A/C gene (LMNA) mutations frequently cause cardiac and/or skeletal muscle diseases called striated muscle laminopathies. We created a zebrafish muscular laminopathy model using CRISPR/Cas9 technology to target the zebrafish lmna gene. RESULTS Heterozygous and homozygous lmna mutants present skeletal muscle damage at 1 day post-fertilization (dpf), and mobility impairment at 4 to 7 dpf. Cardiac structure and function analyses between 1 and 7 dpf show mild and transient defects in the lmna mutants compared to wild type (WT). Quantitative RT-PCR analysis of genes implicated in striated muscle laminopathies show a decrease in jun and nfκb2 expression in 7 dpf homozygous lmna mutants compared to WT. Homozygous lmna mutants have a 1.26-fold protein increase in activated Erk 1/2, kinases associated with striated muscle laminopathies, compared to WT at 7 dpf. Activated Protein Kinase C alpha (Pkc α), a kinase that interacts with lamin A/C and Erk 1/2, is also upregulated in 7 dpf homozygous lmna mutants compared to WT. CONCLUSIONS This study presents an animal model of skeletal muscle laminopathy where heterozygous and homozygous lmna mutants exhibit prominent skeletal muscle abnormalities during the first week of development. Furthermore, this is the first animal model that potentially implicates Pkc α in muscular laminopathies.
Collapse
Affiliation(s)
- Hannah A Nicolas
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Khang Hua
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Hailey Quigley
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Joshua Ivare
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Frédérique Tesson
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Andrée Akimenko
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Rajeev M, Ratan C, Krishnan K, Vijayan M. Hutchinson-Gilford Progeria Syndrome (Hgps) And Application Of Gene Therapy Based Crispr/Cas Technology As A Promising Innovative Treatment Approach. Recent Pat Biotechnol 2021; 15:266-285. [PMID: 34602042 DOI: 10.2174/1872208315666210928114720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hutchinson-Gilford progeria syndrome (HGPS) also known as progeria of childhood or progeria is a rare, rapid, autosomal dominant genetic disorder characterized by premature aging which occurs shortly after birth. HGPS occurs as a result of de novo point mutation in the gene recognized as LMNA gene that encodes two proteins Lamin A protein and Lamin C protein which are the structural components of the nuclear envelope. Mutations in the gene trigger abnormal splicing and induce internal deletion of 50 amino acids leading to the development of a truncated form of Lamin A protein known as Progerin. Progerin generation can be considered as the crucial step in HGPS since the protein is highly toxic to human cells, permanently farnesylated, and exhibits variation in several biochemical and structural properties within the individual. HGPS also produces complications such as skin alterations, growth failure, atherosclerosis, hair and fat loss, and bone and joint diseases. We have also revised all relevant patents relating to Hutchinson-gilford progeria syndrome and its therapy in the current article. METHOD The goal of the present review article is to provide information about Hutchinson-Gilford progeria syndrome (HGPS) and the use of CRISPR/Cas technology as a promising treatment approach in the treatment of the disease. The review also discusses about different pharmacological and non-pharmacological methods of treatment currently used for HGPS. RESULTS The main limitation associated with progeria is the lack of a definitive cure. The existing treatment modality provides only symptomatic relief. Therefore, it is high time to develop a therapeutic method that hastens premature aging in such patients. CONCLUSION CRISPR/Cas technology is a novel gene-editing tool that allows genome editing at specific loci, and is found to be a promising therapeutic approach for the treatment of genetic disorders such as HGPS where dominant-negative mutations take place.
Collapse
Affiliation(s)
- Mekha Rajeev
- Amrita School of Pharmacy, Amrita Vihwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041. India
| | - Chameli Ratan
- Amrita School of Pharmacy, Amrita Vihwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041. India
| | - Karthik Krishnan
- Amrita School of Pharmacy, Amrita Vihwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041. India
| | - Meenu Vijayan
- Amrita School of Pharmacy, Amrita Vihwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041. India
| |
Collapse
|
30
|
Stiekema M, Ramaekers FCS, Kapsokalyvas D, van Zandvoort MAMJ, Veltrop RJA, Broers JLV. Super-Resolution Imaging of the A- and B-Type Lamin Networks: A Comparative Study of Different Fluorescence Labeling Procedures. Int J Mol Sci 2021; 22:ijms221910194. [PMID: 34638534 PMCID: PMC8508656 DOI: 10.3390/ijms221910194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
A- and B-type lamins are type V intermediate filament proteins. Mutations in the genes encoding these lamins cause rare diseases, collectively called laminopathies. A fraction of the cells obtained from laminopathy patients show aberrations in the localization of each lamin subtype, which may represent only the minority of the lamina disorganization. To get a better insight into more delicate and more abundant lamina abnormalities, the lamin network can be studied using super-resolution microscopy. We compared confocal scanning laser microscopy and stimulated emission depletion (STED) microscopy in combination with different fluorescence labeling approaches for the study of the lamin network. We demonstrate the suitability of an immunofluorescence staining approach when using STED microscopy, by determining the lamin layer thickness and the degree of lamin A and B1 colocalization as detected in fixed fibroblasts (co-)stained with lamin antibodies or (co-)transfected with EGFP/YFP lamin constructs. This revealed that immunofluorescence staining of cells does not lead to consequent changes in the detected lamin layer thickness, nor does it influence the degree of colocalization of lamin A and B1, when compared to the transfection approach. Studying laminopathy patient dermal fibroblasts (LMNA c.1130G>T (p.(Arg377Leu)) variant) confirmed the suitability of immunofluorescence protocols in STED microscopy, which circumvents the need for less convenient transfection steps. Furthermore, we found a significant decrease in lamin A/C and B1 colocalization in these patient fibroblasts, compared to normal human dermal fibroblasts. We conclude that super-resolution light microscopy combined with immunofluorescence protocols provides a potential tool to detect structural lamina differences between normal and laminopathy patient fibroblasts.
Collapse
Affiliation(s)
- Merel Stiekema
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Frans C. S. Ramaekers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Dimitrios Kapsokalyvas
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- Interdisciplinary Center for Clinical Research, IZKF, RWTH Aachen University, 52074 Aachen, Germany
| | - Marc A. M. J. van Zandvoort
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, 52074 Aachen, Germany
| | - Rogier J. A. Veltrop
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, 52074 Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Jos L. V. Broers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (M.S.); (F.C.S.R.); (D.K.); (M.A.M.J.v.Z.)
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-433881366
| |
Collapse
|
31
|
Mayca Pozo F, Geng X, Tamagno I, Jackson MW, Heimsath EG, Hammer JA, Cheney RE, Zhang Y. MYO10 drives genomic instability and inflammation in cancer. SCIENCE ADVANCES 2021; 7:eabg6908. [PMID: 34524844 PMCID: PMC8443186 DOI: 10.1126/sciadv.abg6908] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/26/2021] [Indexed: 05/29/2023]
Abstract
Genomic instability is a hallmark of human cancer; yet the underlying mechanisms remain poorly understood. Here, we report that the cytoplasmic unconventional Myosin X (MYO10) regulates genome stability, through which it mediates inflammation in cancer. MYO10 is an unstable protein that undergoes ubiquitin-conjugating enzyme H7 (UbcH7)/β-transducin repeat containing protein 1 (β-TrCP1)–dependent degradation. MYO10 is upregulated in both human and mouse tumors and its expression level predisposes tumor progression and response to immune therapy. Overexpressing MYO10 increased genomic instability, elevated the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING)–dependent inflammatory response, and accelerated tumor growth in mice. Conversely, depletion of MYO10 ameliorated genomic instability and reduced the inflammation signaling. Further, inhibiting inflammation or disrupting Myo10 significantly suppressed the growth of both human and mouse breast tumors in mice. Our data suggest that MYO10 promotes tumor progression through inducing genomic instability, which, in turn, creates an immunogenic environment for immune checkpoint blockades.
Collapse
Affiliation(s)
- Franklin Mayca Pozo
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xinran Geng
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ilaria Tamagno
- Department of Pathology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mark W. Jackson
- Department of Pathology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ernest G. Heimsath
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Richard E. Cheney
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
32
|
Setti Boubaker N, Gurtner A, Trabelsi N, Manni I, Ayed H, Saadi A, Zaghbib S, Naimi Z, Sahraoui G, Zouari S, Meddeb K, Mrad K, Chebil M, Piaggio G, Ouerhani S. The diagnostic applicability of A-type Lamin in non-muscle invasive bladder cancer. Ann Diagn Pathol 2021; 54:151808. [PMID: 34438192 DOI: 10.1016/j.anndiagpath.2021.151808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Lamin A is a major component of the nuclear lamina maintaining nuclear integrity, regulation of gene expression, cell proliferation, and apoptosis. Its deregulation in cancer has been recently reported to be associated with its prognosis. However, its clinical significance in non-muscle invasive bladder cancer (NMIBC) remains to be defined. MATERIAL/METHODS Immunohistochemical staining and RT-qPCR were performed to screen the expression patterns of Lamin A/C protein and Lamin A mRNA respectively in 58 high and low grade NMIBC specimens. RESULTS Lamin A/C protein was expressed only in the nucleus and less exhibited in NMIBC tissues compared to non-tumoral ones. On the other side, Lamin A mRNA was up-regulated in NMIBC compared to controls. Nevertheless, both expression patterns (protein and mRNA) were not correlated to clinical prognosis factors and were not able to predict the overall survival of patients with high-grade NMIBC. CONCLUSIONS The deregulation of A-type Lamin is not associated with the prognosis of NMIBC, but it could serve as a diagnostic biomarker distinguishing NMIBC patients from healthy subjects suggesting its involvement as an initiator event of tumorigenesis in our cohort.
Collapse
Affiliation(s)
- Nouha Setti Boubaker
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), INSAT, University of Tunis Carthage, Tunis, Tunisia; UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Aymone Gurtner
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy; Institute of Translational Pharmacology, National Research Council, Rome, Italy.
| | - Nesrine Trabelsi
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), INSAT, University of Tunis Carthage, Tunis, Tunisia.
| | - Isabella Manni
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Haroun Ayed
- Urology Department, Charles Nicolle Hospital, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Ahmed Saadi
- Urology Department, Charles Nicolle Hospital, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Selim Zaghbib
- Urology Department, Charles Nicolle Hospital, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Zeineb Naimi
- Medical Oncology Department, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Ghada Sahraoui
- Pathology Department, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Skander Zouari
- Urology Department, Charles Nicolle Hospital, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Khedija Meddeb
- Medical Oncology Department, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Karima Mrad
- Pathology Department, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Mohamed Chebil
- Urology Department, Charles Nicolle Hospital, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Slah Ouerhani
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), INSAT, University of Tunis Carthage, Tunis, Tunisia.
| |
Collapse
|
33
|
Vivante A, Shoval I, Garini Y. The Dynamics of Lamin a During the Cell Cycle. Front Mol Biosci 2021; 8:705595. [PMID: 34513921 PMCID: PMC8427529 DOI: 10.3389/fmolb.2021.705595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
Lamin proteins play an essential role in maintaining the nuclear organization and integrity; and lamin A, in particular, plays a major role in the whole volume of the nuclear interior. Although the nucleus is highly organized, it is rather dynamic, it affects crucial nuclear processes and its organization must change as cells progress through the cell cycle. Although many aspects of these changes are already known, the role of lamin A during nuclear assembly and disassembly as well as its underlying mechanisms remains controversial. Here we used live cells imaging and Continuous Photobleaching (CP) method to shed light on the dynamics and mechanisms of lamin A during the cell cycle, combined with imaging flow cytometry measurements, which provides the high-throughput capabilities of flow cytometry with single-cell imaging. As a major analysis tool, we used spatial correlation algorithm for allocating the distribution of lamin A, chromatin and tubulin, as well as their mutual colocalization. Furthermore, we analyzed the distribution of lamin A along the nuclear lamina and in the nucleus interior during the cell cycle. Our results indicate that at the beginning of the cell division that include prophase, metaphase and anaphase, lamin A is distributed throughout the cytoplasm and its concentration in the chromosomal regions is reduced, whereas the spatial correlation between lamin A and tubulin is increased. It implies that lamin A also disassembled in the whole cellular volume. At the telophase and early G1, lamin A is concentrated in the whole volume of the newly formed nuclei of the daughter cells and it assembles to the lamina. We also explored the functional aspects of lamin A during the cell cycle and its binding to the chromatin versus the freely diffusion form. We found that the fraction of the bound proteins of lamin A in the S phase increased, relative to the G1 phase, which means that during replication, the concentration of lamin A on the chromatin increases. All these results shed light on the function of lamin A throughout the cell cycle.
Collapse
Affiliation(s)
- Anat Vivante
- Physics Department, The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Irit Shoval
- Scientific Equipment Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Yuval Garini
- Physics Department, The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
- Department of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
34
|
Murray-Nerger LA, Cristea IM. Lamin post-translational modifications: emerging toggles of nuclear organization and function. Trends Biochem Sci 2021; 46:832-847. [PMID: 34148760 DOI: 10.1016/j.tibs.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/03/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023]
Abstract
Nuclear lamins are ancient type V intermediate filaments with diverse functions that include maintaining nuclear shape, mechanosignaling, tethering and stabilizing chromatin, regulating gene expression, and contributing to cell cycle progression. Despite these numerous roles, an outstanding question has been how lamins are regulated. Accumulating work indicates that a range of lamin post-translational modifications (PTMs) control their functions both in homeostatic cells and in disease states such as progeria, muscular dystrophy, and viral infection. Here, we review the current knowledge of the diverse types of PTMs that regulate lamins in a site-specific manner. We highlight methods that can be used to characterize lamin PTMs whose functions are currently unknown and provide a perspective on the future of the lamin PTM field.
Collapse
Affiliation(s)
- Laura A Murray-Nerger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
35
|
Mosquera JV, Bacher MC, Priess JR. Nuclear lipid droplets and nuclear damage in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009602. [PMID: 34133414 PMCID: PMC8208577 DOI: 10.1371/journal.pgen.1009602] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/14/2021] [Indexed: 01/01/2023] Open
Abstract
Fat stored in the form of lipid droplets has long been considered a defining characteristic of cytoplasm. However, recent studies have shown that nuclear lipid droplets occur in multiple cells and tissues, including in human patients with fatty liver disease. The function(s) of stored fat in the nucleus has not been determined, and it is possible that nuclear fat is beneficial in some situations. Conversely, nuclear lipid droplets might instead be deleterious by disrupting nuclear organization or triggering aggregation of hydrophobic proteins. We show here that nuclear lipid droplets occur normally in C. elegans intestinal cells and germ cells, but appear to be associated with damage only in the intestine. Lipid droplets in intestinal nuclei can be associated with novel bundles of microfilaments (nuclear actin) and membrane tubules that might have roles in damage repair. To increase the normal, low frequency of nuclear lipid droplets in wild-type animals, we used a forward genetic screen to isolate mutants with abnormally large or abundant nuclear lipid droplets. Genetic analysis and cloning of three such mutants showed that the genes encode the lipid regulator SEIP-1/seipin, the inner nuclear membrane protein NEMP-1/Nemp1/TMEM194A, and a component of COPI vesicles called COPA-1/α-COP. We present several lines of evidence that the nuclear lipid droplet phenotype of copa-1 mutants results from a defect in retrieving mislocalized membrane proteins that normally reside in the endoplasmic reticulum. The seip-1 mutant causes most germ cells to have nuclear lipid droplets, the largest of which occupy more than a third of the nuclear volume. Nevertheless, the nuclear lipid droplets do not trigger apoptosis, and the germ cells differentiate into gametes that produce viable, healthy progeny. Thus, our results suggest that nuclear lipid droplets are detrimental to intestinal nuclei, but have no obvious deleterious effect on germ nuclei.
Collapse
Affiliation(s)
| | - Meghan C. Bacher
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
36
|
Mozzini C, Setti A, Cicco S, Pagani M. The Most Severe Paradigm of Early Cardiovascular Disease: Hutchinson-Gilford Progeria. Focus on the Role of Oxidative Stress. Curr Probl Cardiol 2021; 47:100900. [PMID: 34167843 DOI: 10.1016/j.cpcardiol.2021.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) is one of the most frequently recognized causes of ageing. Telomere erosion, defects in the DNA damage response and alterations in the nuclear architecture are also associated with premature ageing. The most severe premature ageing syndrome, Hutchinson-Gilford progeria syndrome (HGPS) is associated with alterations in nuclear shape resulting in the deregulation of lamin A/C. In this review we describe emerging data reporting the role of OS and antioxidant defence in progeroid syndromes focusing on HGPS. We explore precise antioxidant defence mechanisms and related drugs that may create a potential path out of the woods in this disease. Pathways regulated by Nuclear factor E2 related factor (Nrf2), by Nuclear Factor kappa B (NF-kB), and related to the Unfolded Protein Response (UPR) and Endoplasmic Reticulum (ER) stress are under investigation in HGPS patients for which the goal is a significant lifespan extension in particular by postponing atherosclerosis-related complications.
Collapse
Affiliation(s)
- Chiara Mozzini
- Department of Medicine, Section of Internal Medicine, Carlo Poma Hospital, Mantova Italy.
| | - Angela Setti
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy.
| | - Sebastiano Cicco
- Unit of Internal Medicine "Guido Baccelli", Department of Biomedical Sciences and Human Oncology University of Bari, Aldo Moro Medical School, Bari, Italy.
| | - Mauro Pagani
- Department of Medicine, Section of Internal Medicine, Carlo Poma Hospital, Mantova Italy.
| |
Collapse
|
37
|
Dobrowolny G, Barbiera A, Sica G, Scicchitano BM. Age-Related Alterations at Neuromuscular Junction: Role of Oxidative Stress and Epigenetic Modifications. Cells 2021; 10:1307. [PMID: 34074012 PMCID: PMC8225025 DOI: 10.3390/cells10061307] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
With advancing aging, a decline in physical abilities occurs, leading to reduced mobility and loss of independence. Although many factors contribute to the physio-pathological effects of aging, an important event seems to be related to the compromised integrity of the neuromuscular system, which connects the brain and skeletal muscles via motoneurons and the neuromuscular junctions (NMJs). NMJs undergo severe functional, morphological, and molecular alterations during aging and ultimately degenerate. The effect of this decline is an inexorable decrease in skeletal muscle mass and strength, a condition generally known as sarcopenia. Moreover, several studies have highlighted how the age-related alteration of reactive oxygen species (ROS) homeostasis can contribute to changes in the neuromuscular junction morphology and stability, leading to the reduction in fiber number and innervation. Increasing evidence supports the involvement of epigenetic modifications in age-dependent alterations of the NMJ. In particular, DNA methylation, histone modifications, and miRNA-dependent gene expression represent the major epigenetic mechanisms that play a crucial role in NMJ remodeling. It is established that environmental and lifestyle factors, such as physical exercise and nutrition that are susceptible to change during aging, can modulate epigenetic phenomena and attenuate the age-related NMJs changes. This review aims to highlight the recent epigenetic findings related to the NMJ dysregulation during aging and the role of physical activity and nutrition as possible interventions to attenuate or delay the age-related decline in the neuromuscular system.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (DAHFMO)-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy;
| | - Alessandra Barbiera
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Gigliola Sica
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Bianca Maria Scicchitano
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| |
Collapse
|
38
|
Ben Yaou R, Yun P, Dabaj I, Norato G, Donkervoort S, Xiong H, Nascimento A, Maggi L, Sarkozy A, Monges S, Bertoli M, Komaki H, Mayer M, Mercuri E, Zanoteli E, Castiglioni C, Marini-Bettolo C, D'Amico A, Deconinck N, Desguerre I, Erazo-Torricelli R, Gurgel-Giannetti J, Ishiyama A, Kleinsteuber KS, Lagrue E, Laugel V, Mercier S, Messina S, Politano L, Ryan MM, Sabouraud P, Schara U, Siciliano G, Vercelli L, Voit T, Yoon G, Alvarez R, Muntoni F, Pierson TM, Gómez-Andrés D, Reghan Foley A, Quijano-Roy S, Bönnemann CG, Bonne G. International retrospective natural history study of LMNA-related congenital muscular dystrophy. Brain Commun 2021; 3:fcab075. [PMID: 34240052 PMCID: PMC8260964 DOI: 10.1093/braincomms/fcab075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/23/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Muscular dystrophies due to heterozygous pathogenic variants in LMNA gene cover a broad spectrum of clinical presentations and severity with an age of onset ranging from the neonatal period to adulthood. The natural history of these conditions is not well defined, particularly in patients with congenital or early onset who arguably present with the highest disease burden. Thus the definition of natural history endpoints along with clinically revelant outcome measures is essential to establishing both clinical care planning and clinical trial readiness for this patient group. We designed a large international cross-sectional retrospective natural history study of patients with genetically proven muscle laminopathy who presented with symptoms before two years of age intending to identify and characterize an optimal clinical trial cohort with pertinent motor, cardiac and respiratory endpoints. Quantitative statistics were used to evaluate associations between LMNA variants and distinct clinical events. The study included 151 patients (median age at symptom onset 0.9 years, range: 0.0–2.0). Age of onset and age of death were significantly lower in patients who never acquired independent ambulation compared to patients who achieved independent ambulation. Most of the patients acquired independent ambulation (n = 101, 66.9%), and subsequently lost this ability (n = 86; 85%). The age of ambulation acquisition (median: 1.2 years, range: 0.8–4.0) and age of ambulation loss (median: 7 years, range: 1.2–38.0) were significantly associated with the age of the first respiratory interventions and the first cardiac symptoms. Respiratory and gastrointestinal interventions occurred during first decade while cardiac interventions occurred later. Genotype–phenotype analysis showed that the most common mutation, p.Arg249Trp (20%), was significantly associated with a more severe disease course. This retrospective natural history study of early onset LMNA-related muscular dystrophy confirms the progressive nature of the disorder, initially involving motor symptoms prior to onset of other symptoms (respiratory, orthopaedic, cardiac and gastrointestinal). The study also identifies subgroups of patients with a range of long-term outcomes. Ambulatory status was an important mean of stratification along with the presence or absence of the p.Arg249Trp mutation. These categorizations will be important for future clinical trial cohorts. Finally, this study furthers our understanding of the progression of early onset LMNA-related muscular dystrophy and provides important insights into the anticipatory care needs of LMNA-related respiratory and cardiac manifestations.
Collapse
Affiliation(s)
- Rabah Ben Yaou
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France.,APHP-Sorbonne Université, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS, ERN-Euro-NMD, Service de Neuromyologie, Institute de Myologie, G.H. Pitié-Salpêtrière Paris F-75013, France
| | - Pomi Yun
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ivana Dabaj
- APHP-Université Paris-Saclay, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS, ERN-Euro-NMD, Pediatric Neurology and ICU Department, DMU Santé Enfant Adolescent (SEA), Raymond Poincaré University Hospital, Garches France.,INSERM U 1245, ED497, School of Medicine, Rouen University, Rouen, France
| | - Gina Norato
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hui Xiong
- INSERM U 1245, ED497, School of Medicine, Rouen University, Rouen, France
| | - Andrés Nascimento
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lorenzo Maggi
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, CIBERER - ISC III, Barcelona, Spain
| | - Anna Sarkozy
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, Milano, Italy.,Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital Trust, London, UK
| | - Soledad Monges
- Servicio de Neurología, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Marta Bertoli
- Northern Genetics Service, The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Michèle Mayer
- APHP-Sorbonne Université, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS, ERN-Euro-NMD, Department of Neuropediatrics, Hôpital Armand Trousseau, Paris, France
| | - Eugenio Mercuri
- Paediatric Neurology, Policlinico Gemelli, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Institute of Integrated Laboratory Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Adele D'Amico
- Unit of Muscular and Neurodegenerative diseases, Department of Neurological and Psychiatric science,s Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicolas Deconinck
- Paediatric Neurology Department and neuromuscular Center, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Desguerre
- APHP-Centre - Université de Paris, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS, ERN-Euro-NMD, Necker-Enfants Malades Hospital, Paris, France
| | - Ricardo Erazo-Torricelli
- Neurología Pediátrica, Unidad Neuromuscular, Hospital Luis Calvo Mackenna, Clínica Alemana de Santiago, Santiago, Chile
| | - Juliana Gurgel-Giannetti
- Department of Pediatrics, Pediatric Neurology Service, Medical School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Karin S Kleinsteuber
- Neurología Pediátrica Hospital Roberto del Río- Universidad de Chile - Clínica Las Condes Santiago, Chile
| | - Emmanuelle Lagrue
- CHRU de Tours, Université François Rabelais de Tours, INSERM U1253, Tours, France
| | - Vincent Laugel
- Department of neuropediatrics, CHU Strasbourg- Hautepierre, Strasbourg, France
| | - Sandra Mercier
- Service de Génétique médicale, INSERM, CNRS, UNIV Nantes, CHU Nantes, l'institut du Thorax, Nantes, France
| | - Sonia Messina
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Luisa Politano
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Monique M Ryan
- Children's Neurosciences Centre, Royal Children's Hospital, Victoria, Australia
| | - Pascal Sabouraud
- Service de Pédiatrie A, Neurologie pédiatrique, CHU de Reims, American Memorial Hospital, Reims, France
| | - Ulrike Schara
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Children's Hospital 1, University of Duisburg-Essen, Essen, Germany
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Liliana Vercelli
- Department of Neuroscience, Center for Neuromuscular Diseases, University of Turin, Turin, Italy
| | - Thomas Voit
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, Milano, Italy.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Grace Yoon
- Divisions of Neurology and Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Alvarez
- Congenital Muscle Disease International Registry (CMDIR), Cure CMD, Lakewood, CA, USA
| | - Francesco Muntoni
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, Milano, Italy.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Tyler M Pierson
- Departments of Pediatrics and Neurology and the Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David Gómez-Andrés
- Pediatric Neurology (ERN-RND - EURO-NMD), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Susana Quijano-Roy
- APHP-Université Paris-Saclay, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS, ERN-Euro-NMD, Pediatric Neurology and ICU Department, DMU Santé Enfant Adolescent (SEA), Raymond Poincaré University Hospital, Garches France.,INSERM U 1179, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), France
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France.,APHP-Sorbonne Université, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS France, ERN-Euro-NMD, Paris, France
| |
Collapse
|
39
|
Kundu S, Ray MD, Sharma A. Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer. J Genet Genomics 2021; 48:184-197. [PMID: 33840602 DOI: 10.1016/j.jgg.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/07/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022]
Abstract
In eukaryotic genome biology, the genomic organization inside the three-dimensional (3D) nucleus is highly complex, and whether this organization governs gene expression is poorly understood. Nuclear lamina (NL) is a filamentous meshwork of proteins present at the lining of inner nuclear membrane that serves as an anchoring platform for genome organization. Large chromatin domains termed as lamina-associated domains (LADs), play a major role in silencing genes at the nuclear periphery. The interaction of the NL and genome is dynamic and stochastic. Furthermore, many genes change their positions during developmental processes or under disease conditions such as cancer, to activate certain sorts of genes and/or silence others. Pericentromeric heterochromatin (PCH) is mostly in the silenced region within the genome, which localizes at the nuclear periphery. Studies show that several genes located at the PCH are aberrantly expressed in cancer. The interesting question is that despite being localized in the pericentromeric region, how these genes still manage to overcome pericentromeric repression. Although epigenetic mechanisms control the expression of the pericentromeric region, recent studies about genome organization and genome-nuclear lamina interaction have shed light on a new aspect of pericentromeric gene regulation through a complex and coordinated interplay between epigenomic remodeling and genomic organization in cancer.
Collapse
Affiliation(s)
- Subhadip Kundu
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - M D Ray
- Department of Surgical Oncology, IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashok Sharma
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
40
|
Araújo-Vilar D, Sánchez-Iglesias S, Castro AI, Cobelo-Gómez S, Hermida-Ameijeiras Á, Rodríguez-Carnero G, Casanueva FF, Fernández-Pombo A. Variable Expressivity in Type 2 Familial Partial Lipodystrophy Related to R482 and N466 Variants in the LMNA Gene. J Clin Med 2021; 10:jcm10061259. [PMID: 33803652 PMCID: PMC8002937 DOI: 10.3390/jcm10061259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Patients with Dunnigan disease (FPLD2) with a pathogenic variant affecting exon 8 of the LMNA gene are considered to have the classic disease, whereas those with variants in other exons manifest the "atypical" disease. The aim of this study was to investigate the degree of variable expressivity when comparing patients carrying the R482 and N466 variants in exon 8. Thus, 47 subjects with FPLD2 were studied: one group of 15 patients carrying the N466 variant and the other group of 32 patients with the R482 variant. Clinical, metabolic, and body composition data were compared between both groups. The thigh skinfold thickness was significantly decreased in the R482 group in comparison with the N466 group (4.2 ± 1.8 and 5.6 ± 2.0 mm, respectively, p = 0.002), with no other differences in body composition. Patients with the N466 variant showed higher triglyceride levels (177.5 [56-1937] vs. 130.0 [55-505] mg/dL, p = 0.029) and acute pancreatitis was only present in these subjects (20%). Other classic metabolic abnormalities related with the disease were present regardless of the pathogenic variant. Thus, although FPLD2 patients with the R482 and N466 variants share most of the classic characteristics, some phenotypic and metabolic differences suggest possible heterogeneity even within exon 8 of the LMNA gene.
Collapse
Affiliation(s)
- David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (D.A.-V.); (S.S.-I.); (S.C.-G.); (Á.H.-A.)
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.I.C.); (G.R.-C.); (F.F.C.)
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (D.A.-V.); (S.S.-I.); (S.C.-G.); (Á.H.-A.)
| | - Ana I. Castro
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.I.C.); (G.R.-C.); (F.F.C.)
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (D.A.-V.); (S.S.-I.); (S.C.-G.); (Á.H.-A.)
| | - Álvaro Hermida-Ameijeiras
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (D.A.-V.); (S.S.-I.); (S.C.-G.); (Á.H.-A.)
- Division of Internal Medicine, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Gemma Rodríguez-Carnero
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.I.C.); (G.R.-C.); (F.F.C.)
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Felipe F. Casanueva
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.I.C.); (G.R.-C.); (F.F.C.)
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), 28029 Madrid, Spain
| | - Antía Fernández-Pombo
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (D.A.-V.); (S.S.-I.); (S.C.-G.); (Á.H.-A.)
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.I.C.); (G.R.-C.); (F.F.C.)
- Correspondence: ; Tel.: +34-981-951-611
| |
Collapse
|
41
|
Araújo de Melo Campos JT, Dantas de Medeiros JL, Cardoso de Melo ME, Alvares da Silva M, Oliveira de Sena M, Sales Craveiro Sarmento A, Fassarella Agnez Lima L, de Freitas Fregonezi GA, Gomes Lima J. Endoplasmic reticulum stress and muscle dysfunction in congenital lipodystrophies. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166120. [PMID: 33713793 DOI: 10.1016/j.bbadis.2021.166120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/17/2023]
Abstract
Lipodystrophy syndromes are a group of rare diseases related to the pathological impairment of adipose tissue and metabolic comorbidities, including dyslipidemia, diabetes, insulin resistance, hypoleptinemia, and hypoadiponectinemia. They can be categorized as partial or generalized according to the degree of fat loss, and inherited or acquired disorders, if they are associated with genetic mutations or are related to autoimmunity, respectively. Some types of lipodystrophies have been associated with changes in both redox and endoplasmic reticulum (ER) homeostasis as well as muscle dysfunction (MD). Although ER stress (ERS) has been related to muscle dysfunction (MD) in many diseases, there is no data concerning its role in lipodystrophies' muscle physiopathology. Here we focused on congenital lipodystrophies associated with ERS and MD. We also described recent advances in our understanding of the relationships among ERS, MD, and genetic lipodystrophies, highlighting the adiponectin-protective roles.
Collapse
Affiliation(s)
- Julliane Tamara Araújo de Melo Campos
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Jorge Luiz Dantas de Medeiros
- PneumoCardioVascular Lab/HUOL, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares and Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Maria Eduarda Cardoso de Melo
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Monique Alvares da Silva
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Matheus Oliveira de Sena
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Aquiles Sales Craveiro Sarmento
- Unidade de Laboratório de Análises Clínicas e Anatomia Patológica, Hospital Universitário de Lagarto (HUL)/UFS, Lagarto, SE, Brazil
| | - Lucymara Fassarella Agnez Lima
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Guilherme Augusto de Freitas Fregonezi
- PneumoCardioVascular Lab/HUOL, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares and Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Laboratório de Inovação Tecnológica em Reabilitação, Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Josivan Gomes Lima
- Departamento de Medicina Clínica, Hospital Universitário Onofre Lopes (HUOL)/UFRN, Natal, RN, Brazil
| |
Collapse
|
42
|
Muscle Enriched Lamin Interacting Protein ( Mlip) Binds Chromatin and Is Required for Myoblast Differentiation. Cells 2021; 10:cells10030615. [PMID: 33802236 PMCID: PMC7998221 DOI: 10.3390/cells10030615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
Muscle-enriched A-type lamin-interacting protein (Mlip) is a recently discovered Amniota gene that encodes proteins of unknown biological function. Here we report Mlip’s direct interaction with chromatin, and it may function as a transcriptional co-factor. Chromatin immunoprecipitations with microarray analysis demonstrated a propensity for Mlip to associate with genomic regions in close proximity to genes that control tissue-specific differentiation. Gel mobility shift assays confirmed that Mlip protein complexes with genomic DNA. Blocking Mlip expression in C2C12 myoblasts down-regulates myogenic regulatory factors (MyoD and MyoG) and subsequently significantly inhibits myogenic differentiation and the formation of myotubes. Collectively our data demonstrate that Mlip is required for C2C12 myoblast differentiation into myotubes. Mlip may exert this role as a transcriptional regulator of a myogenic program that is unique to amniotes.
Collapse
|
43
|
Ding B, Tang Y, Ma S, Akter M, Liu ML, Zang T, Zhang CL. Disease Modeling with Human Neurons Reveals LMNB1 Dysregulation Underlying DYT1 Dystonia. J Neurosci 2021; 41:2024-2038. [PMID: 33468570 PMCID: PMC7939088 DOI: 10.1523/jneurosci.2507-20.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023] Open
Abstract
DYT1 dystonia is a hereditary neurologic movement disorder characterized by uncontrollable muscle contractions. It is caused by a heterozygous mutation in Torsin A (TOR1A), a gene encoding a membrane-embedded ATPase. While animal models provide insights into disease mechanisms, significant species-dependent differences exist since animals with the identical heterozygous mutation fail to show pathology. Here, we model DYT1 by using human patient-specific cholinergic motor neurons (MNs) that are generated through either direct conversion of patients' skin fibroblasts or differentiation of induced pluripotent stem cells (iPSCs). These human MNs with the heterozygous TOR1A mutation show reduced neurite length and branches, markedly thickened nuclear lamina, disrupted nuclear morphology, and impaired nucleocytoplasmic transport (NCT) of mRNAs and proteins, whereas they lack the perinuclear "blebs" that are often observed in animal models. Furthermore, we uncover that the nuclear lamina protein LMNB1 is upregulated in DYT1 cells and exhibits abnormal subcellular distribution in a cholinergic MNs-specific manner. Such dysregulation of LMNB1 can be recapitulated by either ectopic expression of the mutant TOR1A gene or shRNA-mediated downregulation of endogenous TOR1A in healthy control MNs. Interestingly, downregulation of LMNB1 can largely ameliorate all the cellular defects in DYT1 MNs. These results reveal the value of disease modeling with human patient-specific neurons and indicate that dysregulation of LMNB1, a crucial component of the nuclear lamina, may constitute a major molecular mechanism underlying DYT1 pathology.SIGNIFICANCE STATEMENT Inaccessibility to patient neurons greatly impedes our understanding of the pathologic mechanisms for dystonia. In this study, we employ reprogrammed human patient-specific motor neurons (MNs) to model DYT1, the most severe hereditary form of dystonia. Our results reveal disease-dependent deficits in nuclear morphology and nucleocytoplasmic transport (NCT). Most importantly, we further identify LMNB1 dysregulation as a major contributor to these deficits, uncovering a new pathologic mechanism for DYT1 dystonia.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70503
| | - Yu Tang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Shuaipeng Ma
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Masuma Akter
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70503
| | - Meng-Lu Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Tong Zang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chun-Li Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
44
|
Hachiya N, Sochocka M, Brzecka A, Shimizu T, Gąsiorowski K, Szczechowiak K, Leszek J. Nuclear Envelope and Nuclear Pore Complexes in Neurodegenerative Diseases-New Perspectives for Therapeutic Interventions. Mol Neurobiol 2021; 58:983-995. [PMID: 33067781 PMCID: PMC7878205 DOI: 10.1007/s12035-020-02168-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Transport of proteins, transcription factors, and other signaling molecules between the nucleus and cytoplasm is necessary for signal transduction. The study of these transport phenomena is particularly challenging in neurons because of their highly polarized structure. The bidirectional exchange of molecular cargoes across the nuclear envelope (NE) occurs through nuclear pore complexes (NPCs), which are aqueous channels embedded in the nuclear envelope. The NE and NPCs regulate nuclear transport but are also emerging as relevant regulators of chromatin organization and gene expression. The alterations in nuclear transport are regularly identified in affected neurons associated with human neurodegenerative diseases. This review presents insights into the roles played by nuclear transport defects in neurodegenerative disease, focusing primarily on NE proteins and NPCs. The subcellular mislocalization of proteins might be a very desirable means of therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Naomi Hachiya
- Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan
| | - Marta Sochocka
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Takuto Shimizu
- Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | | | | | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wybrzeże L. Pasteura 10, 50-367, Wroclaw, Poland.
| |
Collapse
|
45
|
Murray-Nerger LA, Justice JL, Rekapalli P, Hutton JE, Cristea I. Lamin B1 acetylation slows the G1 to S cell cycle transition through inhibition of DNA repair. Nucleic Acids Res 2021; 49:2044-2064. [PMID: 33533922 PMCID: PMC7913768 DOI: 10.1093/nar/gkab019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
The integrity and regulation of the nuclear lamina is essential for nuclear organization and chromatin stability, with its dysregulation being linked to laminopathy diseases and cancer. Although numerous posttranslational modifications have been identified on lamins, few have been ascribed a regulatory function. Here, we establish that lamin B1 (LMNB1) acetylation at K134 is a molecular toggle that controls nuclear periphery stability, cell cycle progression, and DNA repair. LMNB1 acetylation prevents lamina disruption during herpesvirus type 1 (HSV-1) infection, thereby inhibiting virus production. We also demonstrate the broad impact of this site on laminar processes in uninfected cells. LMNB1 acetylation negatively regulates canonical nonhomologous end joining by impairing the recruitment of 53BP1 to damaged DNA. This defect causes a delay in DNA damage resolution and a persistent activation of the G1/S checkpoint. Altogether, we reveal LMNB1 acetylation as a mechanism for controlling DNA repair pathway choice and stabilizing the nuclear periphery.
Collapse
Affiliation(s)
- Laura A Murray-Nerger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Joshua L Justice
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Pranav Rekapalli
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
46
|
Yin Y, Ji J, Zhao J, Chen S, Tian W. Clinical and epidemiological features of heart-hand syndrome, an updated analysis in China. BMC Musculoskelet Disord 2020; 21:777. [PMID: 33238988 PMCID: PMC7690113 DOI: 10.1186/s12891-020-03813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to prospectively recruit patients treated with limb malformation and to explore the prevalence and the clinical and epidemiological features of Heart-Hand Syndrome (HHS) in China. METHODS The consecutive patients treated for congenital upper limb malformation in Beijing Ji Shui Tan Hospital from October 1st, 2016 to October 1st, 2019 were prospectively recruited. We reviewed the patients' medical records and identified patients with abnormal electrocardiogram (ECG) and/or abnormal ultrasonic cardiogram as well as their basic demographic and clinical characteristics. RESULTS A total 1653 (1053 male and 600 female) patients with congenital upper extremity malformations were prospectively recruited. Among them, 200 (12.1%) had abnormal ultrasonic cardiogram (181patients, 10.9%) and/or abnormal ECG (19 patients, 1.1%). The commonest type of abnormal heart structure was atrial septal defect (69/181 38.1%), and the commonest abnormal ECG was wave patterns (7/19, 36.8%). HHS patients had a higher comorbidity rate (11%) than non-HHS patients (6.9%). Patients with HHS were classified into four groups by the types of congenital upper extremity malformations, among which the most common group was thumb type (121/200, 60.5%). CONCLUSIONS HHS occurred frequently among patients with congenital upper extremity malformation in China, particularly for those with multiple congenital malformations. The commonest type of hand malformations of HHS patients was thumb malformation.
Collapse
Affiliation(s)
- Yaobin Yin
- Department of Hand Surgery, Beijing Ji Shui Tan Hospital, Xin jie kou dong jie 31, Xi Cheng Qu, Beijing, 100035, China
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University, Malmö, Sweden.,Clinical Research Centre (CRC), Skåne University Hospital, Building 28, floor 11, Jan Waldenströms gata 35, SE-205 02, Malmö, Sweden
| | - Junhui Zhao
- Department of Hand Surgery, Beijing Ji Shui Tan Hospital, Xin jie kou dong jie 31, Xi Cheng Qu, Beijing, 100035, China
| | - Shanlin Chen
- Department of Hand Surgery, Beijing Ji Shui Tan Hospital, Xin jie kou dong jie 31, Xi Cheng Qu, Beijing, 100035, China.
| | - Wen Tian
- Department of Hand Surgery, Beijing Ji Shui Tan Hospital, Xin jie kou dong jie 31, Xi Cheng Qu, Beijing, 100035, China.
| |
Collapse
|
47
|
Nicolas HA, Bertrand AT, Labib S, Mohamed-Uvaize M, Bolongo PM, Wu WY, Bilińska ZT, Bonne G, Akimenko MA, Tesson F. Protein Kinase C Alpha Cellular Distribution, Activity, and Proximity with Lamin A/C in Striated Muscle Laminopathies. Cells 2020; 9:cells9112388. [PMID: 33142761 PMCID: PMC7693451 DOI: 10.3390/cells9112388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
Striated muscle laminopathies are cardiac and skeletal muscle conditions caused by mutations in the lamin A/C gene (LMNA). LMNA codes for the A-type lamins, which are nuclear intermediate filaments that maintain the nuclear structure and nuclear processes such as gene expression. Protein kinase C alpha (PKC-α) interacts with lamin A/C and with several lamin A/C partners involved in striated muscle laminopathies. To determine PKC-α’s involvement in muscular laminopathies, PKC-α’s localization, activation, and interactions with the A-type lamins were examined in various cell types expressing pathogenic lamin A/C mutations. The results showed aberrant nuclear PKC-α cellular distribution in mutant cells compared to WT. PKC-α activation (phos-PKC-α) was decreased or unchanged in the studied cells expressing LMNA mutations, and the activation of its downstream targets, ERK 1/2, paralleled PKC-α activation alteration. Furthermore, the phos-PKC-α-lamin A/C proximity was altered. Overall, the data showed that PKC-α localization, activation, and proximity with lamin A/C were affected by certain pathogenic LMNA mutations, suggesting PKC-α involvement in striated muscle laminopathies.
Collapse
Affiliation(s)
- Hannah A. Nicolas
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.A.N.); (W.Y.W.); (M.-A.A.)
| | - Anne T. Bertrand
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, UMRS 974, G.H. Pitié-Salpêtrière, 75013 Paris, France; (A.T.B.); (G.B.)
| | - Sarah Labib
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.L.); (M.M.-U.); (P.M.B.)
| | - Musfira Mohamed-Uvaize
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.L.); (M.M.-U.); (P.M.B.)
| | - Pierrette M. Bolongo
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.L.); (M.M.-U.); (P.M.B.)
| | - Wen Yu Wu
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.A.N.); (W.Y.W.); (M.-A.A.)
| | - Zofia T. Bilińska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, UMRS 974, G.H. Pitié-Salpêtrière, 75013 Paris, France; (A.T.B.); (G.B.)
| | - Marie-Andrée Akimenko
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.A.N.); (W.Y.W.); (M.-A.A.)
| | - Frédérique Tesson
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.L.); (M.M.-U.); (P.M.B.)
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 7370)
| |
Collapse
|
48
|
Fan JR, You LR, Wang WJ, Huang WS, Chu CT, Chi YH, Chen HC. Lamin A-mediated nuclear lamina integrity is required for proper ciliogenesis. EMBO Rep 2020; 21:e49680. [PMID: 32815283 PMCID: PMC7534621 DOI: 10.15252/embr.201949680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/12/2020] [Accepted: 07/23/2020] [Indexed: 01/10/2023] Open
Abstract
The primary cilium is a sensory organelle that receives specific signals from the extracellular environment important for vertebrate development and tissue homeostasis. Lamins, the major components of the nuclear lamina, are required to maintain the nuclear structure and are involved in most nuclear activities. In this study, we show that deficiency in lamin A/C causes defective ciliogenesis, accompanied by increased cytoplasmic accumulation of actin monomers and increased formation of actin filaments. Disruption of actin filaments by cytochalasin D rescues the defective ciliogenesis in lamin A/C-depleted cells. Moreover, lamin A/C-deficient cells display lower levels of nesprin 2 and defects in recruiting Arp2, myosin Va, and tau tubulin kinase 2 to the basal body during ciliogenesis. Collectively, our results uncover a functional link between nuclear lamina integrity and ciliogenesis and implicate the malfunction of primary cilia in the pathogenesis of laminopathy.
Collapse
Affiliation(s)
- Jia-Rong Fan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Syun Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Tung Chu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Hong-Chen Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
49
|
Báez-Becerra CT, Valencia-Rincón E, Velásquez-Méndez K, Ramírez-Suárez NJ, Guevara C, Sandoval-Hernandez A, Arboleda-Bustos CE, Olivos-Cisneros L, Gutiérrez-Ospina G, Arboleda H, Arboleda G. Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. Mech Ageing Dev 2020; 192:111360. [PMID: 32976914 DOI: 10.1016/j.mad.2020.111360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023]
Abstract
Recently, mutations in the RNA polymerase III subunit A (POLR3A) have been described as the cause of the neonatal progeria or Wiedemann-Rautenstrauch syndrome (WRS). POLR3A has important roles in transcription regulation of small RNAs, including tRNA, 5S rRNA, and 7SK rRNA. We aim to describe the cellular and molecular features of WRS fibroblasts. Cultures of primary fibroblasts from one WRS patient [monoallelic POLR3A variant c.3772_3773delCT (p.Leu1258Glyfs*12)] and one control patient were cultured in vitro. The mutation caused a decrease in the expression of wildtype POLR3A mRNA and POLR3A protein and a sharp increase in mutant protein expression. In addition, there was an increase in the nuclear localization of the mutant protein. These changes were associated with an increase in the number and area of nucleoli and to a high increase in the expression of pP53 and pH2AX. All these changes were associated with premature senescence. The present observations add to our understanding of the differences between Hutchinson-Gilford progeria syndrome and WRS and opens new alternatives to study cell senesce and human aging.
Collapse
Affiliation(s)
- Cindy Tatiana Báez-Becerra
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Estefania Valencia-Rincón
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Karen Velásquez-Méndez
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Nelson J Ramírez-Suárez
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Claudia Guevara
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Adrian Sandoval-Hernandez
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos E Arboleda-Bustos
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Leonora Olivos-Cisneros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Gabriel Gutiérrez-Ospina
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Humberto Arboleda
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Pediatría, Facultad de Medicina, Universidad Nacional de Colombia Bogotá, Colombia
| | - Gonzalo Arboleda
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
50
|
Saez A, Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Rius C, Gonzalez-Granado JM. Lamin A/C and the Immune System: One Intermediate Filament, Many Faces. Int J Mol Sci 2020; 21:E6109. [PMID: 32854281 PMCID: PMC7504305 DOI: 10.3390/ijms21176109] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Nuclear envelope lamin A/C proteins are a major component of the mammalian nuclear lamina, a dense fibrous protein meshwork located in the nuclear interior. Lamin A/C proteins regulate nuclear mechanics and structure and control cellular signaling, gene transcription, epigenetic regulation, cell cycle progression, cell differentiation, and cell migration. The immune system is composed of the innate and adaptive branches. Innate immunity is mediated by myeloid cells such as neutrophils, macrophages, and dendritic cells. These cells produce a rapid and nonspecific response through phagocytosis, cytokine production, and complement activation, as well as activating adaptive immunity. Specific adaptive immunity is activated by antigen presentation by antigen presenting cells (APCs) and the cytokine microenvironment, and is mainly mediated by the cellular functions of T cells and the production of antibodies by B cells. Unlike most cell types, immune cells regulate their lamin A/C protein expression relatively rapidly to exert their functions, with expression increasing in macrophages, reducing in neutrophils, and increasing transiently in T cells. In this review, we discuss and summarize studies that have addressed the role played by lamin A/C in the functions of innate and adaptive immune cells in the context of human inflammatory and autoimmune diseases, pathogen infections, and cancer.
Collapse
Affiliation(s)
- Angela Saez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Beatriz Somovilla-Crespo
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
| | - Cristina Rius
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, 28670 Madrid, Spain;
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| |
Collapse
|