1
|
Early and later studies on action potential and fertilization potential of echinoderm oocytes and Ca 2+ response of mammalian oocytes. Methods Cell Biol 2019. [PMID: 30948005 DOI: 10.1016/bs.mcb.2019.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
This is a personal essay starting from the early study on fertilization signals in echinoderm and mammalian oocytes. It presents actual examples showing that a unexpected discovery leads to unimaginable development of the research in diverse directions in later years and yields a common concept after long years' effort and accumulation. Those outcomes are the happiest gift for researchers. We also learn many precepts in our own research life.
Collapse
|
2
|
Mukherjee A, Hollern DP, Williams OG, Rayburn TS, Byrd WA, Yates C, Jones JD. A Review of FOXI3 Regulation of Development and Possible Roles in Cancer Progression and Metastasis. Front Cell Dev Biol 2018; 6:69. [PMID: 30018953 PMCID: PMC6038025 DOI: 10.3389/fcell.2018.00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/14/2018] [Indexed: 12/25/2022] Open
Abstract
Development and cancer share a variety of functional traits such as EMT, cell migration, angiogenesis, and tissue remodeling. In addition, many cellular signaling pathways are noted to coordinate developmental processes and facilitate aspects of tumor progression. The Forkhead box superfamily of transcription factors consists of a highly conserved DNA binding domain, which binds to specific DNA sequences and play significant roles during adult tissue homoeostasis and embryogenesis including development, differentiation, metabolism, proliferation, apoptosis, migration, and invasion. Interestingly, various studies have implicated the role of key Fox family members such as FOXP, FOXO, and FOXA during cancer initiation and metastases. FOXI3, a member of the Forkhead family affects embryogenesis, development, and bone remodeling; however, no studies have reported a role in cancer. In this review, we summarize the role of FOXI3 in embryogenesis and bone development and discuss its potential involvement in cancer progression with a focus on the bone metastasis. Moreover, we hypothesize possible mechanisms underlying the role of FOXI3 in the development of solid tumor bone metastasis.
Collapse
Affiliation(s)
- Angana Mukherjee
- Department of Biological Sciences, Troy University, Troy, AL, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Daniel P Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | | | - Tyeler S Rayburn
- Department of Biological Sciences, Troy University, Troy, AL, United States
| | - William A Byrd
- Department of Biological Sciences, Troy University, Troy, AL, United States
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Jacqueline D Jones
- Department of Biological Sciences, Troy University, Troy, AL, United States.,Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States.,Department of Nursing and Allied Health, Troy University, Troy, AL, United States
| |
Collapse
|
3
|
Abstract
Every cell within living organisms actively maintains an intracellular Na+ concentration that is 10-12 times lower than the extracellular concentration. The cells then utilize this transmembrane Na+ concentration gradient as a driving force to produce electrical signals, sometimes in the form of action potentials. The protein family comprising voltage-gated sodium channels (NaVs) is essential for such signaling and enables cells to change their status in a regenerative manner and to rapidly communicate with one another. NaVs were first predicted in squid and were later identified through molecular biology in the electric eel. Since then, these proteins have been discovered in organisms ranging from bacteria to humans. Recent research has succeeded in decoding the amino acid sequences of a wide variety of NaV family members, as well as the three-dimensional structures of some. These studies and others have uncovered several of the major steps in the functional and structural transition of NaV proteins that has occurred along the course of the evolutionary history of organisms. Here we present an overview of the molecular evolutionary innovations that established present-day NaV α subunits and discuss their contribution to the evolutionary changes in animal bodies.
Collapse
Affiliation(s)
- Atsuo Nishino
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan.
| | - Yasushi Okamura
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Nishino A. Morphology and Physiology of the Ascidian Nervous Systems and the Effectors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542090 DOI: 10.1007/978-981-10-7545-2_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurobiology in ascidians has made many advances. Ascidians have offered natural advantages to researchers, including fecundity, structural simplicity, invariant morphology, and fast and stereotyped developmental processes. The researchers have also accumulated on this animal a great deal of knowledge, genomic resources, and modern genetic techniques. A recent connectomic analysis has shown an ultimately resolved image of the larval nervous system, whereas recent applications of live imaging and optogenetics have clarified the functional organization of the juvenile nervous system. Progress in resources and techniques have provided convincing ways to deepen what we have wanted to know about the nervous systems of ascidians. Here, the research history and the current views regarding ascidian nervous systems are summarized.
Collapse
Affiliation(s)
- Atsuo Nishino
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan.
| |
Collapse
|
5
|
|
6
|
Tosti E, Gallo A, Silvestre F. Ion currents involved in oocyte maturation, fertilization and early developmental stages of the ascidian Ciona intestinalis. Mol Reprod Dev 2011; 78:854-60. [DOI: 10.1002/mrd.21316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/25/2011] [Indexed: 11/06/2022]
|
7
|
Király M, Kádár K, Horváthy DB, Nardai P, Rácz GZ, Lacza Z, Varga G, Gerber G. Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochem Int 2011; 59:371-81. [PMID: 21219952 DOI: 10.1016/j.neuint.2011.01.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/26/2010] [Accepted: 01/04/2011] [Indexed: 01/09/2023]
Abstract
Pluripotency and their neural crest origin make dental pulp stem cells (DPSCs) an attractive donor source for neuronal cell replacement. Despite recent encouraging results in this field, little is known about the integration of transplanted DPSC derived neuronal pecursors into the central nervous system. To address this issue, neuronally predifferentiated DPSCs, labeled with a vital cell dye Vybrant DiD were introduced into postnatal rat brain. DPSCs were transplanted into the cerebrospinal fluid of 3-day-old male Wistar rats. Cortical lesion was induced by touching a cold (-60°C) metal stamp to the calvaria over the forelimb motor cortex. Four weeks later cell localization was detected by fluorescent microscopy and neuronal cell markers were studied by immunohistochemistry. To investigate electrophysiological properties of engrafted, fluorescently labeled DPSCs, 300 μm-thick horizontal brain slices were prepared and the presence of voltage-dependent sodium and potassium channels were recorded by patch clamping. Predifferentiated donor DPSCs injected into the cerebrospinal fluid of newborn rats migrated as single cells into a variety of brain regions. Most of the cells were localized in the normal neural progenitor zones of the brain, the subventricular zone (SVZ), subgranular zone (SGZ) and subcallosal zone (SCZ). Immunohistochemical analysis revealed that transplanted DPSCs expressed the early neuronal marker N-tubulin, the neuronal specific intermediate filament protein NF-M, the postmitotic neuronal marker NeuN, and glial GFAP. Moreover, the cells displayed TTX sensitive voltage dependent (VD) sodium currents (I(Na)) and TEA sensitive delayed rectifier potassium currents (K(DR)). Four weeks after injury, fluorescently labeled cells were detected in the lesioned cortex. Neurospecific marker expression was increased in DPSCs found in the area of the cortical lesions compared to that in fluorescent cells of uninjured brain. TTX sensitive VD sodium currents and TEA sensitive K(DR) significantly increased in labeled cells of the cortically injured area. In conclusion, our data demonstrate that engrafted DPSC-derived cells integrate into the host brain and show neuronal properties not only by expressing neuron-specific markers but also by exhibiting voltage dependent sodium and potassium channels. This proof of concept study reveals that predifferentiated hDPSCs may serve as useful sources of neuro- and gliogenesis in vivo, especially when the brain is injured.
Collapse
Affiliation(s)
- Marianna Király
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Király M, Porcsalmy B, Pataki A, Kádár K, Jelitai M, Molnár B, Hermann P, Gera I, Grimm WD, Ganss B, Zsembery A, Varga G. Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochem Int 2009; 55:323-32. [PMID: 19576521 DOI: 10.1016/j.neuint.2009.03.017] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 03/30/2009] [Indexed: 12/12/2022]
Abstract
The plasticity of dental pulp stem cells (DPSCs) has been demonstrated by several studies showing that they appear to self-maintain through several passages, giving rise to a variety of cells. The aim of the present study was to differentiate DPSCs to mature neuronal cells showing functional evidence of voltage gated ion channel activities in vitro. First, DPSC cultures were seeded on poly-l-lysine coated surfaces and pretreated for 48h with a medium containing basic fibroblast growth factor and the demethylating agent 5-azacytidine. Then neural induction was performed by the simultaneous activation of protein kinase C and the cyclic adenosine monophosphate pathway. Finally, maturation of the induced cells was achieved by continuous treatment with neurotrophin-3, dibutyryl cyclic AMP, and other supplementary components. Non-induced DPSCs already expressed vimentin, nestin, N-tubulin, neurogenin-2 and neurofilament-M. The inductive treatment resulted in decreased vimentin, nestin, N-tubulin and increased neurogenin-2, neuron-specific enolase, neurofilament-M and glial fibrillary acidic protein expression. By the end of the maturation period, all investigated genes were expressed at higher levels than in undifferentiated controls except vimentin and nestin. Patch clamp analysis revealed the functional activity of both voltage-dependent sodium and potassium channels in the differentiated cells. Our results demonstrate that although most surviving cells show neuronal morphology and express neuronal markers, there is a functional heterogeneity among the differentiated cells obtained by the in vitro differentiation protocol described herein. Nevertheless, this study clearly indicates that the dental pulp contains a cell population that is capable of neural commitment by our three step neuroinductive protocol.
Collapse
Affiliation(s)
- Marianna Király
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tanaka-Kunishima M, Takahashi K, Watanabe F. Cell contact induces multiple types of electrical excitability from ascidian two-cell embryos that are cleavage arrested and contain all cell fate determinants. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1976-96. [PMID: 17652364 DOI: 10.1152/ajpregu.00835.2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ascidian early embryonic cells undergo cell differentiation without cell cleavage, thus enabling mixture of cell fate determinants in single cells, which will not be possible in mammalian systems. Either cell in a two-cell embryo (2C cell) has multiple fates and develops into any cell types in a tadpole. To find the condition for controlled induction of a specific cell type, cleavage-arrested cell triplets were prepared in various combinations. They were 2C cells in contact with a pair of anterior neuroectoderm cells from eight-cell embryos (2C-aa triplet), with a pair of presumptive notochordal neural cells (2C-AA triplet), with a pair of presumptive posterior epidermal cells (2C-bb triplet), and with a pair of presumptive muscle cells (2C-BB triplet). The fate of the 2C cell was electrophysiologically identified. When two-cell embryos had been fertilized 3 h later than eight-cell embryos and triplets were formed, the 2C cells became either anterior-neuronal, posterior-neuronal or muscle cells, depending on the cell type of the contacting cell pair. When two-cell embryos had been fertilized earlier than eight-cell embryos, most 2C cells became epidermal. When two- and eight-cell embryos had been simultaneously fertilized, the 2C cells became any one of three cell types described above or the epidermal cell type. Differentiation of the ascidian 2C cell into major cell types was reproducibly induced by selecting the type of contacting cell pair and the developmental time difference between the contacting cell pair and 2C cell. We discuss similarities between cleavage-arrested 2C cells and vertebrate embryonic stem cells and propose the ascidian 2C cell as a simple model for toti-potent stem cells.
Collapse
Affiliation(s)
- Motoko Tanaka-Kunishima
- Department of Medical Physiology, Meiji Pharmaceutical Uniersity, Noshio 2-522-1, Kiyose, Tokyo MZC204-8588, Japan.
| | | | | |
Collapse
|
10
|
Mohler ER, Fang Y, Shaffer RG, Moore J, Wilensky RL, Parmacek M, Levitan I. Hypercholesterolemia suppresses Kir channels in porcine bone marrow progenitor cells in vivo. Biochem Biophys Res Commun 2007; 358:317-24. [PMID: 17482574 PMCID: PMC2703014 DOI: 10.1016/j.bbrc.2007.04.138] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 04/20/2007] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Inwardly-rectifying K(+) (Kir) channels are responsible for maintaining membrane potentials in a variety of cell types including endothelial cells where they modulate endothelium-dependent vasorelaxation. The goal of this study is to determine the functional expression of Kir channels in porcine bone marrow-derived side population (BM-SP) cells that demonstrate phenotypes of endothelial progenitor cells (EPCs). We further asses the hypercholesterolemia sensitivity of Kir channels in BM-SP cells, which may play a key role in hypercholesterolemia-mediated regulation of EPCs. METHODS To assess the effect of hypercholesterolemia on Kir channels in BM-SP, Kir currents were recorded in SP cells sorted from the bone marrow of healthy or hypercholesterolemic animals. RESULTS We found Kir channels constitute the major conductance in porcine bone marrow-derived side population (BM-SP) cells. These cells are defined by their efficiency of Hoechst dye efflux and have been reported to differentiate into multiple cell lineages including endothelium in vivo. We demonstrate here that porcine BM-SP cells differentiate to an endothelial lineage (CD31(+), vWF(+)) supporting the hypothesis that these cells are endothelial progenitor cells. Also, BM-SP cells express Kir with biophysical properties recapitulating those in mature endothelial cells, but with a much higher current density. Flow cytometric (FACS) analysis indicated that the number of SP cells was unaffected by hypercholesterolemia. However, hypercholesterolemia significantly inhibited Kir channels in BM-SP cells. CONCLUSIONS We successfully demonstrate that BM side population cells represent an origin of endothelial progenitor cells. This study further shows, for the fist time, that the functional expression of Kir channels in bone marrow (BM)-derived SP. Moreover, we demonstrate that hypercholesterolemia condition significantly suppresses the Kir channels in BM-SP cells, suggesting that hypercholesterolemia-mediated regulation of Kir channels may be an important factor not only in dysfunction of mature endothelium but also in dysfunction of BM-SP cells.
Collapse
Affiliation(s)
- Emile R Mohler
- Department of Medicine, Cardiovascular Division, Section of Vascular Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ohtsuka Y, Okamura Y. Voltage-dependent calcium influx mediates maturation of myofibril arrangement in ascidian larval muscle. Dev Biol 2006; 301:361-73. [PMID: 16962575 DOI: 10.1016/j.ydbio.2006.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/28/2006] [Accepted: 08/04/2006] [Indexed: 11/18/2022]
Abstract
Calcium signaling is important for multiple events during embryonic development. However, roles of calcium influx during embryogenesis have not been fully understood since routes of calcium influx are often redundant. To define roles of voltage-gated calcium channel (Cav) during embryogenesis, we have isolated an ascidian Cav beta subunit gene (TuCavbeta) and performed gene knockdown using the morpholino antisense oligonucleotide (MO). The suppression of Cav activity by TuCavbetaMO remarkably perturbed gastrulation and tail elongation. Further, larvae with normal morphology also failed to exhibit motility. Phalloidin-staining showed that arrangement of myofibrils was uncoordinated in muscle cells of TuCavbetaMO-injected larvae with normal tail. To further understand the roles of Cav activity in myofibrillogenesis, we tested pharmacological inhibitions with ryanodine, curare, and N-benzyl-p-toluensulphonamide (BTS). The treatment with ryanodine, an intracellular calcium release blocker, did not significantly affect the motility and establishment of the myofibril orientation. However, treatment with curare, an acetylcholine receptor blocker, and BTS, an actomyosin ATPase specific inhibitor, led to abnormal motility and irregular orientation of myofibrils that was similar to those of TuCavbetaMO-injected larvae. Our results suggest that contractile activation regulated by voltage-dependent calcium influx but not by intracellular calcium release is required for proper arrangement of myofibrils.
Collapse
Affiliation(s)
- Yukio Ohtsuka
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan.
| | | |
Collapse
|
12
|
Cuomo A, Silvestre F, De Santis R, Tosti E. Ca2+ and Na+ current patterns during oocyte maturation, fertilization, and early developmental stages ofCiona intestinalis. Mol Reprod Dev 2006; 73:501-11. [PMID: 16425233 DOI: 10.1002/mrd.20404] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using the whole-cell voltage clamp technique, the electrical changes in oocyte and embryo plasma membrane were followed during different meiotic and developmental stages in Ciona intestinalis. We show, for the first time, an electrophysiological characterization of the plasma membrane in oocytes at the germinal vesicle (GV) stage with high L-type calcium (Ca2+) current activity that decreased through meiosis. Moreover, the absence of Ca2+ reduced germinal vesicle breakdown (GVBD), which is consistent with a role of Ca2+ currents in the prophase/metaphase transition. In mature oocytes at the metaphase I (MI) stage, Ca2+ currents decreased and then disappeared and sodium (Na+) currents first appeared remaining high up to the zygote stage. Intracellular Ca2+ release was higher in MI than in GV, indicating that Ca2+ currents in GV may contribute to fill the stores which are essential for oocyte contraction at fertilization. The fertilization current generated in Na+ free sea water was significantly lower than the control; furthermore, oocytes fertilized in the absence of Na+ showed high development of anomalous "rosette" embryos. Current amplitudes became negligible in embryos at the 2- and 4-cell stage, suggesting that signaling pathways that mediate first cleavage do not rely on ion current activities. At the 8-cell stage embryo, a resumption of Na+ current activity and conductance occurred, without a correlation with specific blastomeres. Taken together, these results imply: (i) an involvement of L-type Ca2+ currents in meiotic progression from the GV to MI stage; (ii) a role of Na+ currents during electrical events at fertilization and subsequent development; (iii) a major role of plasma membrane permeability and a minor function of specific currents during initial cell line segregation events.
Collapse
|
13
|
Okamura Y, Nishino A, Murata Y, Nakajo K, Iwasaki H, Ohtsuka Y, Tanaka-Kunishima M, Takahashi N, Hara Y, Yoshida T, Nishida M, Okado H, Watari H, Meinertzhagen IA, Satoh N, Takahashi K, Satou Y, Okada Y, Mori Y. Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes. Physiol Genomics 2005; 22:269-82. [PMID: 15914577 DOI: 10.1152/physiolgenomics.00229.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ion fluxes through membrane ion channels play crucial roles both in neuronal signaling and the homeostatic control of body electrolytes. Despite our knowledge about the respective ion channels, just how diversification of ion channel genes underlies adaptation of animals to the physical environment remains unknown. Here we systematically survey up to 160 putative ion channel genes in the genome of Ciona intestinalis and compare them with corresponding gene sets from the genomes of the nematode Chaenorhabditis elegans, the fruit fly Drosophila melanogaster, and the more closely related genomes of vertebrates. Ciona has a set of so-called "prototype" genes for ion channels regulating neuronal excitability, or for neurotransmitter receptors, suggesting that genes responsible for neuronal signaling in mammals appear to have diversified mainly via gene duplications of the more restricted members of ancestral genomes before the ascidian/vertebrate divergence. Most genes responsible for modulation of neuronal excitability and pain sensation are absent from the ascidian genome, suggesting that these genes arose after the divergence of urochordates. In contrast, the divergent genes encoding connexins, transient receptor potential-related channels and chloride channels, channels involved rather in homeostatic control, indicate gene duplication events unique to the ascidian lineage. Because several invertebrate-unique channel genes exist in Ciona genome, the crown group of extant vertebrates not only acquired novel channel genes via gene/genome duplications but also discarded some ancient genes that have persisted in invertebrates. Such genome-wide information of ion channel genes in basal chordates enables us to begin correlating the innovation and remodeling of genes with the adaptation of more recent chordates to their physical environment.
Collapse
Affiliation(s)
- Yasushi Okamura
- Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nakajo K, Okamura Y. Development of Transient Outward Currents Coupled With Ca2+-Induced Ca2+Release Mediates Oscillatory Membrane Potential in Ascidian Muscle Cells. J Neurophysiol 2004; 92:1056-66. [PMID: 15056691 DOI: 10.1152/jn.00043.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isolated ascidian Halocynthia roretzi blastomeres of the muscle lineage exhibit muscle cell-like excitability on differentiation despite the arrest of cell cleavage early in development. This characteristic provides a unique opportunity to track changes in ion channel expression during muscle cell differentiation. Here, we show that the intrinsic membrane property of ascidian cleavage-arrested muscle-type cells becomes oscillatory by expressing transient outward currents ( Ito) activated by Ca2+-induced Ca2+release (CICR) in a maturation-dependent manner. In current-clamp mode, most day 4 (72 h after fertilization) cleavage-arrested muscle cells exhibited an oscillatory membrane potential of –20 mV at 15 Hz, whereas most day 3 (48 h after fertilization) cells exhibited a spiking pattern. In voltage-clamp mode, the day 4 cells exhibited prominent transient outward currents that were not present in day 3 cells. Itowas abolished by the application of 10 mM caffeine, implying that CICR was involved in Itoactivation. Itowas based on K+efflux and sensitive to tetraethylammonium and some Ca2+-activated K+channel inhibitors. We found a 60-pS single channel conductance that was activated by local Ca2+release in ascidian muscle cell. Voltage-clamp recording with an oscillatory waveform as a command pulse showed that CICR-activated K+currents were activated during the falling phase of the membrane potential oscillation. These results suggest that developmental expression of CICR-activated K+current plays a role in the maturation of larval locomotion by modifying the intrinsic membrane excitability of muscle cells.
Collapse
Affiliation(s)
- Koichi Nakajo
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, 153-8902 Tokyo, Japan.
| | | |
Collapse
|
15
|
Lenka N, Lu ZJ, Sasse P, Hescheler J, Fleischmann BK. Quantitation and functional characterization of neural cells derived from ES cells using nestin enhancer-mediated targeting in vitro. J Cell Sci 2002; 115:1471-85. [PMID: 11896195 DOI: 10.1242/jcs.115.7.1471] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To gain insight into early events of neurogenesis, transgenic embryonic stem (ES) cells were generated using the enhanced green fluorescence protein(EGFP) reporter gene under the regulatory control of the neural stem cell marker, nestin. The expression of EGFP in undifferentiated ES cells suggested that the onset of endogenous nestin occurred before neurulation. Upon differentiation of ES cells, the EGFP expression became confined to the neural lineage and asynchrony in ES-cell-derived neural differentiation was evident. The EGFP intensity was prominent in the proliferative progenitors and unipolar neurons, whereas downregulation occurred in differentiating bi- and multipolar neurons. This was corroborated quantitatively using flow cytometry where maximal generation of neural progenitors was observed 4-12 days post-plating. The proliferative potential of neural progenitors as well as glia, in contrast to post-mitotic neurons,was also evident by time-lapse microscopy. The functional characterization of progenitors revealed an absence of voltage-activated inward currents, whereas the Na+ current (INa) was detected prior to Ca2+ currents (ICa) in differentiating neurons. Additionally, inhibitory receptor-operated channels could be detected at these early stages of development in bi- and multipolar neurons suggesting that the pre-committed progenitors had retained their intrinsic ability to give rise to functional neurons. This study sheds new light on early events of neurogenesis defining the quantitative and qualitative aspects and demarcating the functional neural cell types from ES cells in vitro.
Collapse
Affiliation(s)
- Nibedita Lenka
- Institute of Neurophysiology, University of Cologne, Cologne, Germany.
| | | | | | | | | |
Collapse
|
16
|
Tanaka-Kunishima M, Takahashi K. Cleavage-arrested cell triplets from ascidian embryo differentiate into three cell types depending on cell combination and contact timing. J Physiol 2002; 540:153-76. [PMID: 11927677 PMCID: PMC2290224 DOI: 10.1113/jphysiol.2001.013293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2001] [Accepted: 01/04/2002] [Indexed: 11/08/2022] Open
Abstract
During early ascidian development, which is a prototype of early vertebrate development, anterior neuroectoderm cells (a4.2) from the eight-cell embryo are destined to become anterior neural structures including the brain vesicle, while presumptive notochordal neural cells (A4.1) become larval posterior neural structures including motoneurons. Whereas, an anterior quadrant cell (A3) of the four-cell embryo, from which both anterior neuroectoderm (a4.2) and notochordal neural cells (A4.1) are derived, has both fates. Cleavage-arrested cell triplets were prepared from the anterior quadrant cell and a pair of anterior neuroectoderm cells (A3-aa triplet) or a pair of presumptive notochordal neural cells (A3-AA triplet), and cultured in contact. Differentiation of cells in the triplet was determined electrophysiologically by observing cell type-specific currents. In the A3-aa triplet, when two neuroectoderm cells and an anterior quadrant cell were prepared from the same batch of embryos, all three cells in the triplet developed into neuronal cells in 60 % of cases, but in 40 % of cases all of them differentiated into epidermal cells. However, when the batch of embryos from which neuroectoderm cells were prepared was fertilized 3 h later than that from which the anterior quadrant cell was prepared all three cells in the triplet consistently became neuronal cells. In contrast, when the batch of embryos from which neuroectoderm cells were prepared was fertilized 3 h earlier, all three cells became epidermal. In the A3-AA triplet no switching of differentiation occurred and all three cells in the triplet differentiated into neuronal cells, although the amplitude of inward current was often small. In neuralized A3-aa triplets the spikes in the anterior quadrant cell were characteristically small in amplitude and brief in duration, suggesting the presence of A-currents, which is a characteristic feature of posterior neuronal differentiation. In contrast, the spikes in the anterior neuroectoderm cells were large in amplitude and long in duration, chracteristic to the anterior neuronal type. The majority of single isolated anterior quadrant cells became non-excitable. However, the minority was apparently autonomously neuralized to become the posterior neuronal type. In neuralized A3-AA triplets, the majority of anterior quadrant cells was induced to become the anterior neuronal type. When isolated anterior quadrant cells were neuralized with subtilisin, a protease, they also predominantly became the anterior neuronal type. While, in medium containing a fibroblast growth factor posterior neuralization of isolated anterior quadrant cells was facilitated, but the anterior neuronal type, although minor, appeared anew. These observations indicate that the multiple fates of the anterior quadrant cell expressed in vivo were effectively reproduced in this experimental condition at the single cell level. Interactive differentiation in this triplet system recapitulates not only fundamental neural induction of ascidian neuroectoderm cells, but also functional and positional specificity within the neuronal group.
Collapse
Affiliation(s)
- Motoko Tanaka-Kunishima
- Department of Medical Physiology, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose, Tokyo MZC204-8588, Japan.
| | | |
Collapse
|
17
|
Abstract
Ascidian tadpole larvae have a similar dorsal tubular nervous system as vertebrates. The induction of brain formation from a4.2-derived (a-line) cells requires signals from the A4.1-derived (A-line) cells. However, little is known about the mechanism underlying the development of the larval peripheral nervous system due to the lack of a suitable molecular marker. Gelsolin, an actin-binding protein, is specifically expressed in epidermal sensory neurons (ESNs) that mainly constitute the entire peripheral nervous system of the ascidian young tadpoles. Here, we address the role of cell interactions in the specification of ESNs using immunostaining with an anti-gelsolin antibody. Animal half (a4.2- and b4.2-derived) embryos did not give rise to any gelsolin-positive neurons, indicating that differentiation of ESNs requires signals from vegetal cells. Cell isolation experiments showed that A4.1 blastomeres induce gelsolin-positive neurons from a-line cells but not from b4.2-derived (b-line) cells. On the other hand, B4.1 blastomeres induce gelsolin-positive neurons both from b-line cells and a-line cells. This is in sharp contrast to the specification of brain cells which is not affected by the ablation of B4.1-derived (B-line) cells. Furthermore, basic fibroblast growth factor (bFGF) induced ESNs from the a-line cells and b-line cells in the absence of vegetal cells. Their competence to form ESNs was lost between the 110-cell stage and the neurula stage. Our results suggested that the specification of the a-line cells and b-line cells into ESNs is controlled by distinct inducing signals from the anterior and posterior vegetal blastomeres. ESNs in the trunk appear to be derived from the a8.26 blastomeres aligning on the edge of presumptive neural region where ascidian homologue of Pax3 is expressed. These findings highlight the close similarity of ascidian ESNs development with that of vertebrate placode and neural crest.
Collapse
Affiliation(s)
- Y Ohtsuka
- Molecular Neurobiology Group, Neuroscience Research Institute, AIST, Tsukuba Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | |
Collapse
|
18
|
Meinertzhagen IA, Okamura Y. The larval ascidian nervous system: the chordate brain from its small beginnings. Trends Neurosci 2001; 24:401-10. [PMID: 11410271 DOI: 10.1016/s0166-2236(00)01851-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The body plan of the tadpole larva of ascidians, or sea-squirts, is widely presumed to be close to that of the hypothetical ancestor of all chordate animal groups, including vertebrates. This is nowhere more obvious than in the organization and development of the dorsal tubular nervous system. Several recent developments advocate this model neural system for studies on neurobiology and neurogenesis. These include advances in our understanding of development in ascidian embryos and of differentiation among the cellular progeny of its neural plate; the application of transgenic and mutant approaches to studies on ascidian larval neurones; and the prospect of advances in genomic analyses. In addition to providing ways to study a working chordate brain in miniature, all these offer insights into the ancestral condition of the developing vertebrate brain.
Collapse
Affiliation(s)
- I A Meinertzhagen
- Neuroscience Institute, Life Sciences Centre, Dalhousie University, Halifax, NS, B3H 4J1, Canada
| | | |
Collapse
|
19
|
Murata Y, Okado H, Kubo Y. Characterization of heteromultimeric G protein-coupled inwardly rectifying potassium channels of the tunicate tadpole with a unique pore property. J Biol Chem 2001; 276:18529-39. [PMID: 11278535 DOI: 10.1074/jbc.m009644200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two cDNAs that encode the G protein-coupled inwardly rectifying K(+) channel (GIRK, Kir3) of tunicate tadpoles (tunicate G protein-coupled inwardly rectifying K(+) channel-A and -B; TuGIRK-A and -B) have been isolated. The deduced amino acid sequences showed approximately 60% identity with the mammalian Kir3 family. Detected by whole mount in situ hybridization, both TuGIRK-A and -B were expressed similarly in the neural cells of the head and neck region from the tail bud stage to the young tadpole stage. By co-injecting cRNAs of TuGIRK-A and G protein beta(1)/gamma(2) subunits (Gbetagamma) in Xenopus oocytes, an inwardly rectifying K(+) current was expressed. In contrast, coinjection of TuGIRK-B with Gbetagamma did not express any current. When both TuGIRK-A and -B were coexpressed together with Gbetagamma, an inwardly rectifying K(+) current was also detected. The properties of this current clearly differed from those of TuGIRK-A current, since it displayed a characteristic decline of the macroscopic conductance at strongly hyperpolarized potentials. TuGIRK-A/B current also differed from TuGIRK-A current in terms of the lower sensitivity to the Ba(2+) block, the higher sensitivity to the Cs(+) block, and the smaller single channel conductance. Taken together, we concluded that TuGIRK-A and -B form functional heteromultimeric G protein-coupled inwardly rectifying K(+) channels in the neural cells of the tunicate tadpole. By introducing a mutation of Lys(161) to Thr in TuGIRK-B, TuGIRK-A/B channels acquired a higher sensitivity to the Ba(2+) block and a slightly lower sensitivity to the Cs(+) block, and the decrease in the macroscopic conductance at hyperpolarized potentials was no longer observed. Thus, the differences in the electrophysiological properties between TuGIRK-A and TuGIRK-A/B channels were shown to be, at least partly, due to the presence of Lys(161) at the external mouth of the pore of the TuGIRK-B subunit.
Collapse
Affiliation(s)
- Y Murata
- Department of Physiology, Tokyo Medical and Dental University, Graduate School and Faculty of Medicine, Bunkyo, Tokyo 113-8519, Japan
| | | | | |
Collapse
|
20
|
Okagaki R, Izumi H, Okada T, Nagahora H, Nakajo K, Okamura Y. The maternal transcript for truncated voltage-dependent Ca2+ channels in the ascidian embryo: a potential suppressive role in Ca2+ channel expression. Dev Biol 2001; 230:258-77. [PMID: 11161577 DOI: 10.1006/dbio.2000.0119] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca2+ entry during electrical activity plays several critical roles in development. However, the mechanisms that regulate Ca2+ influx during early embryogenesis remain unknown. In ascidians, a primitive chordate, development is rapid and blastomeres of the muscle and neuronal lineages are easily identified, providing a simple model for studying the expression of voltage-dependent Ca2) channels (VDCCs) in cell differentiation. Here we isolate an ascidian cDNA, TuCa1, a homologue of the alpha(1)-subunit of L-type class Ca2+ channels. We unexpectedly found another form of Ca2+ channel cDNA (3-domain-type) potentially encoding a truncated type which lacked the first domain and a part of the second domain. An analysis of genomic sequence suggested that 3-domain-type RNA and the full-length type have alternative transcriptional start sites. The temporal pattern of the amount of 3-domain-type RNA was the reverse of that of the full-length type; the 3-domain type was provided maternally and persisted during early embryogenesis, whereas the full-length type was expressed zygotically in neuronal and muscular lineage cells. Switching of the two forms occurred at a critical stage when VDCC currents appeared in neuronal or muscular blastomeres. To examine the functional roles of the 3-domain type, it was coexpressed with the full-length type in Xenopus oocyte. The 3-domain type did not produce a functional VDCC current, whereas it had a remarkable inhibitory effect on the functional expression of the full-length form. In addition, overexpression of the 3-domain type under the control of the muscle-specific actin promoter in ascidian muscle blastomeres led to a significant decrease in endogenous VDCC currents. These findings raise the possibility that the 3-domain type has some regulatory role in tuning current amplitudes of VDCCs during early development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Calcium Channels/chemistry
- Calcium Channels/genetics
- Calcium Channels/physiology
- Calcium Channels, L-Type/chemistry
- Calcium Channels, L-Type/genetics
- Cloning, Molecular
- DNA, Complementary
- Embryo, Nonmammalian/physiology
- Female
- Genomic Imprinting
- Molecular Sequence Data
- Morphogenesis
- Muscles/embryology
- Oocytes/physiology
- Protein Structure, Secondary
- RNA Splicing
- RNA, Messenger/analysis
- Rabbits
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Urochordata/embryology
- Urochordata/genetics
- Xenopus laevis
Collapse
Affiliation(s)
- R Okagaki
- Ion Channel Group, National Institute of Bioscience and Human Technology, Ibaraki, 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Fitzakerley JL, Star KV, Rinn JL, Elmquist BJ. Expression of Shal potassium channel subunits in the adult and developing cochlear nucleus of the mouse. Hear Res 2000; 147:31-45. [PMID: 10962171 DOI: 10.1016/s0378-5955(00)00118-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pattern of expression of potassium (K(+)) channel subunits is thought to contribute to the establishment of the unique discharge characteristics exhibited by cochlear nucleus (CN) neurons. This study describes the developmental distribution of mRNA for the three Shal channel subunits Kv4.1, Kv4.2 and Kv4.3 within the mouse CN, as assessed with in situ hybridization and RT-PCR techniques. Kv4.1 was not present in CN at any age. Kv4.2 mRNA was detectable as early as postnatal day 2 (P2) in all CN subdivisions, and continued to be constitutively expressed throughout development. Kv4.2 was abundantly expressed in a variety of CN cell types, including all of the major projection neuron classes (i.e., octopus, bushy, stellate, fusiform, and giant cells). In contrast, Kv4.3 was expressed at lower levels and by fewer cell types. Kv4.3-labeled cells were more prevalent in ventral subdivisions than in the dorsal CN. Kv4.3 expression was significantly delayed developmentally in comparison to Kv4.2, as it was detectable only after P14. Although the techniques employed in this study detect mRNA and not protein, it can be inferred from the differential distribution of Kv4 transcripts that CN neurons selectively regulate the expression of Shal K(+) channels among individual neurons throughout development.
Collapse
Affiliation(s)
- J L Fitzakerley
- Departments of Pharmacology and Medical and Molecular Physiology, University of Minnesota School of Medicine, Duluth 55812, USA.
| | | | | | | |
Collapse
|
22
|
Althaus HH, Richter-Landsberg C. Glial cells as targets and producers of neurotrophins. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 197:203-77. [PMID: 10761118 DOI: 10.1016/s0074-7696(00)97005-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glial cells fulfill important tasks within the neural network of the central and peripheral nervous systems. The synthesis and secretion of various polypeptidic factors (cytokines) and a number of receptors, with which glial cells are equipped, allow them to communicate with their environment. Evidence has accumulated during recent years that neurotrophins play an important role not only for neurons but also for glial cells. This brief update of some morphological, immunocytochemical, and biochemical characteristics of glial cell lineages conveys our present knowledge about glial cells as targets and producers of neurotrophins under normal and pathological conditions. The chapter discusses the presence of neurotrophin receptors on glial cells, glial cells as producers of neurotrophins, signaling pathways downstream Trk and p75NTR, and the significance of neurotrophins and their receptors for glial cells during development, in cell death and survival, and in neurological disorders.
Collapse
Affiliation(s)
- H H Althaus
- AG Neural Regeneration, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
23
|
Subfamily-specific posttranscriptional mechanism underlies K(+) channel expression in a developing neuronal blastomere. J Neurosci 1999. [PMID: 10436045 DOI: 10.1523/jneurosci.19-16-06874.1999] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Na(+) and K(+) channels are the two key proteins that shape the action potentials in neurons. However, little is known about how the expression of these two channels is coordinated. To address this issue, we cloned a Shab-related K(+) channel gene from ascidian Halocynthia roretzi (TuKv2). In this animal, a blastomere of neuronal lineage isolated from the 8-cell embryo expresses single Na(+) channel and K(+) channel genes after neural induction. Expression of a dominant negative form of TuKv2 eliminated the native delayed rectifier K(+) currents, indicating that the entire delayed rectifier K(+) current of the neuronal blastomere is exclusively encoded by TuKv2. TuKv2 transcripts are expressed more broadly than Na(+) channel transcripts, which are restricted to the neuronal lineages. There is also a temporal mismatch in the expression of TuKv2 transcript and the K(+) current; TuKv2 transcripts are present throughout development, whereas delayed rectifier K(+) currents only appear after the tailbud stage, suggesting that the functional expression of the TuKv2 transcript is suppressed during the early embryonic stages. To test if this suppression occurs by a mechanism specific to the TuKv2 channel protein, an ascidian Shaker-related gene, TuKv1, was misexpressed in neural blastomeres. A TuKv1-encoded current was expressed earlier than the TuKv2 current. Furthermore, the introduction of the TuKv2-expressing plasmid into noninduced cells did not lead to the current expression. These results raise the possibility that the expression of TuKv2 is post-transcriptionally controlled through a mechanism that is dependent on neural induction.
Collapse
|
24
|
Nakajo K, Chen L, Okamura Y. Cross-coupling between voltage-dependent Ca2+ channels and ryanodine receptors in developing ascidian muscle blastomeres. J Physiol 1999; 515 ( Pt 3):695-710. [PMID: 10066898 PMCID: PMC2269182 DOI: 10.1111/j.1469-7793.1999.695ab.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/1998] [Accepted: 12/15/1998] [Indexed: 11/28/2022] Open
Abstract
1. Ascidian blastomeres of muscle lineage express voltage-dependent calcium channels (VDCCs) despite isolation and cleavage arrest. Taking advantage of these large developing cells, developmental changes in functional relations between VDCC currents and intracellular Ca2+ stores were studied. 2. Inactivation of ascidian VDCCs is Ca2+ dependent, as demonstrated by two pieces of evidence: (1) a bell-shaped relationship between prepulse voltage and amplitude during the test pulse in Ca2+, but not in Ba2+, and (2) the decay kinetics of Ca2+ currents (ICa) obtained as the size of tail currents. 3. During replacement in the external solution of Ca2+ with Ba2+, the inward current appeared biphasic: it showed rapid decay followed by recovery and slow decay. This current profile was most evident in the mixed bath solution (2 % Ca2+ and 98 % Ba2+, abbreviated to '2Ca/98Ba'). 4. The biphasic profile of I2Ca/98Ba was significantly attenuated in caffeine and in ryanodine, indicating that Ca2+ release is involved in shaping the current kinetics of VDCCs. After washing out the caffeine, the biphasic pattern was reproducibly restored by depolarizing the membrane in calcium-rich solution, which is expected to refill the internal Ca2+ stores. 5. The inhibitors of endoplasmic reticulum (ER) Ca2+-ATPase (SERCAs) cyclopiazonic acid (CPA) and thapsigargin facilitated elimination of the biphasic profile with repetitive depolarization. 6. At a stage earlier than 36 h after fertilization, the biphasic profile of I2Ca/98Ba was not observed. However, caffeine induced a remarkable decrease in the amplitude of I2Ca/98Ba and this suppression was blocked by microinjection of the Ca2+ chelator BAPTA, showing the presence of caffeine-sensitive Ca2+ stores at this stage. 7. Electron microscopic observation shows that sarcoplasmic membranes (SR) arrange closer to the sarcolemma with maturation, suggesting that the formation of the ultrastructural machinery underlies development of the cross-coupling between VDCCs and Ca2+ stores.
Collapse
Affiliation(s)
- K Nakajo
- Department of Life Sciences, Graduate Program in Interdisciplinary Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-0041, Japan
| | | | | |
Collapse
|