1
|
Knepp B, Navi BB, Rodriguez F, DeAngelis LM, Elkind MSV, Iadecola C, Sherman CP, Tagawa ST, Saxena A, Ocean AJ, Hull H, Jickling G, Sharp FR, Ander BP, Stamova B. Ischemic Stroke with Comorbid Cancer Has Specific miRNA-mRNA Networks in Blood That Vary by Ischemic Stroke Mechanism. Ann Neurol 2024; 96:565-581. [PMID: 38874304 DOI: 10.1002/ana.26997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE Approximately half of ischemic strokes (IS) in cancer patients are cryptogenic, with many presumed cardioembolic. We evaluated whether there were specific miRNA and mRNA transcriptome architectures in peripheral blood of IS patients with and without comorbid cancer, and between cardioembolic versus noncardioembolic IS etiologies in comorbid cancer. METHODS We studied patients with cancer and IS (CS; n = 42), stroke only (SO; n = 41), and cancer only (n = 28), and vascular risk factor-matched controls (n = 30). mRNA-Seq and miRNA-Seq data, analyzed with linear regression models, identified differentially expressed genes in CS versus SO and in cardioembolic versus noncardioembolic CS, and miRNA-mRNA regulatory pairs. Network-level analyses identified stroke etiology-specific responses in CS. RESULTS A total of 2,085 mRNAs and 31 miRNAs were differentially expressed between CS and SO. In CS, 122 and 35 miRNA-mRNA regulatory pairs, and 5 and 3 coexpressed gene modules, were associated with cardioembolic and noncardioembolic CS, respectively. Complement, growth factor, and immune/inflammatory pathways showed differences between IS etiologies in CS. A 15-gene biomarker panel assembled from a derivation cohort (n = 50) correctly classified 81% of CS and 71% of SO participants in a validation cohort (n = 33). Another 15-gene panel correctly identified etiologies for 13 of 13 CS-cardioembolic and 11 of 11 CS-noncardioembolic participants upon cross-validation; 11 of 16 CS-cryptogenic participants were predicted cardioembolic. INTERPRETATION We discovered unique mRNA and miRNA transcriptome architecture in CS and SO, and in CS with different IS etiologies. Cardioembolic and noncardioembolic etiologies in CS showed unique coexpression networks and potential master regulators. These may help distinguish CS from SO and identify IS etiology in cryptogenic CS patients. ANN NEUROL 2024;96:565-581.
Collapse
Affiliation(s)
- Bodie Knepp
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Babak B Navi
- Clinical and Translational Neuroscience Unit, Department of Neurology, Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fernando Rodriguez
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Lisa M DeAngelis
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mitchell S V Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons and Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Costantino Iadecola
- Clinical and Translational Neuroscience Unit, Department of Neurology, Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, USA
| | - Carla P Sherman
- Clinical and Translational Neuroscience Unit, Department of Neurology, Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, USA
| | - Scott T Tagawa
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ashish Saxena
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Allyson J Ocean
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Heather Hull
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Glen Jickling
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Frank R Sharp
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Bradley P Ander
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Boryana Stamova
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
2
|
Lombardi M, Bonora M, Baldetti L, Pieri M, Scandroglio AM, Landoni G, Zangrillo A, Foglieni C, Consolo F. Left ventricular assist devices promote changes in the expression levels of platelet microRNAs. Front Cardiovasc Med 2023; 10:1178556. [PMID: 37396581 PMCID: PMC10308775 DOI: 10.3389/fcvm.2023.1178556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction MicroRNAs (miRs) emerged as promising diagnostic and therapeutic biomarkers in cardiovascular diseases. The potential clinical utility of platelet miRs in the setting of left ventricular assist device (LVAD) support is unexplored. Methods We prospectively measured the expression levels of 12 platelet miRs involved in platelet activation, coagulation, and cardiovascular diseases in LVAD patients by quantitative real-time polymerase chain reaction. Data were longitudinally measured before LVAD implant and after 1, 6, and 12 months of LVAD support, and compared with those measured in healthy volunteers (controls). In silico analysis was also performed to identify pathways targeted by differentially expressed miRs. Results Data from 15 consecutive patients and 5 controls were analyzed. Pre-implant expression levels of platelet miR-126, miR-374b, miR-223, and miR-320a were significantly different in patients vs. controls. The expression levels of platelet miR-25, miR-144, miR-320, and miR-451a changed significantly over the course of LVAD support; in silico analysis revealed that these miRs are implicated in both cardiac- and coagulation-associated pathways. Furthermore, the patients who suffered from bleeding (n = 5, 33%) had significantly higher pre-implant expression levels of platelet miR-151a and miR-454 with respect to the patients who did not. The same miRs were also differentially expressed in bleeders following LVAD implantation early before the clinical manifestation of the events. Discussion This study provides a proof-of-concept evidence of significant modulation of platelet miRs expression driven by LVADs. The possible existence of a platelet miRs signature predictive of the development of bleeding events warrants further validation studies.
Collapse
Affiliation(s)
- Maria Lombardi
- Cardiovascular Research Center, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Marta Bonora
- Università Vita Salute San Raffaele, Milano, Italy
| | - Luca Baldetti
- Cardiac Intensive Care Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Marina Pieri
- Università Vita Salute San Raffaele, Milano, Italy
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Anna Mara Scandroglio
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Giovanni Landoni
- Università Vita Salute San Raffaele, Milano, Italy
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Alberto Zangrillo
- Università Vita Salute San Raffaele, Milano, Italy
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Chiara Foglieni
- Cardiovascular Research Center, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | |
Collapse
|
3
|
Dacheux MA, Norman DD, Tigyi GJ, Lee SC. Emerging roles of lysophosphatidic acid receptor subtype 5 (LPAR5) in inflammatory diseases and cancer. Pharmacol Ther 2023; 245:108414. [PMID: 37061203 DOI: 10.1016/j.pharmthera.2023.108414] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator that regulates a variety of cellular functions such as cell proliferation, migration, survival, calcium mobilization, cytoskeletal rearrangements, and neurite retraction. The biological actions of LPA are mediated by at least six G protein-coupled receptors known as LPAR1-6. Given that LPAR1-3 were among the first LPARs identified, the majority of research efforts have focused on understanding their biology. This review provides an in-depth discussion of LPAR5, which has recently emerged as a key player in regulating normal intestinal homeostasis and modulating pathological conditions such as pain, itch, inflammatory diseases, and cancer. We also present a chronological overview of the efforts made to develop compounds that target LPAR5 for use as tool compounds to probe or validate LPAR5 biology and therapeutic agents for the treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Mélanie A Dacheux
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America
| | - Derek D Norman
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America
| | - Gábor J Tigyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America
| | - Sue Chin Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America.
| |
Collapse
|
4
|
|
5
|
Spinelli SL, Lannan KL, Loelius SG, Phipps RP. In Vitro and Ex Vivo Approaches to Evaluate Next-Generation Tobacco and Non-Tobacco Products on Human Blood Platelets. ACTA ACUST UNITED AC 2017; 3:110-120. [PMID: 28337466 PMCID: PMC5338183 DOI: 10.1089/aivt.2016.0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human blood platelets are major hemostatic regulators in the circulation and important in the mediation of chronic inflammation and immunomodulation. They are key elements that promote cardiovascular pathogenesis that leads to atherosclerosis, thrombosis, myocardial infarction, and stroke. New information on tobacco use and platelet dysregulation shows that these highly understudied vascular cells are dysregulated by tobacco smoke. Thus, platelet function studies should be an important consideration for the evaluation of existing and next-generation tobacco and non-tobacco products. Novel in vitro approaches are being sought to investigate these products and their influence on platelet function. Platelets are ideally suited for product assessment, as robust and novel in vitro translational methods are available to assess platelet function. Furthermore, the use of human biological systems has the advantage that risk predictions will better reflect the human condition.
Collapse
Affiliation(s)
- Sherry L Spinelli
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Katie L Lannan
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Shannon G Loelius
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Richard P Phipps
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
6
|
Fuentes E, Rojas A, Palomo I. NF-κB signaling pathway as target for antiplatelet activity. Blood Rev 2016; 30:309-15. [PMID: 27075489 DOI: 10.1016/j.blre.2016.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/26/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
In different nucleated cells, NF-κB has long been considered a prototypical proinflammatory signaling pathway with the expression of proinflammatory genes. Although platelets lack a nucleus, a number of functional transcription factors are involved in activated platelets, such as NF-κB. In platelet activation NF-κB regulation events include IKKβ phosphorylation, IκBα degradation, and p65 phosphorylation. Multiple pathways contribute to platelet activation and NF-κB is a common pathway in this activation. Therefore, in platelet activation the modulation of NF-κB pathway could be a potential new target in the treatment of inflammation-related vascular disease therapy (antiplatelet and antithrombotic activities).
Collapse
Affiliation(s)
- Eduardo Fuentes
- Laboratory of Hematology and Immunology, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001, Talca, Chile.
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Iván Palomo
- Laboratory of Hematology and Immunology, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001, Talca, Chile.
| |
Collapse
|
7
|
Hohman TJ, Bush WS, Jiang L, Brown-Gentry KD, Torstenson ES, Dudek SM, Mukherjee S, Naj A, Kunkle BW, Ritchie MD, Martin ER, Schellenberg GD, Mayeux R, Farrer LA, Pericak-Vance MA, Haines JL, Thornton-Wells TA. Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium. Neurobiol Aging 2016; 38:141-150. [PMID: 26827652 PMCID: PMC4735733 DOI: 10.1016/j.neurobiolaging.2015.10.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 12/20/2022]
Abstract
Late-onset Alzheimer disease (AD) has a complex genetic etiology, involving locus heterogeneity, polygenic inheritance, and gene-gene interactions; however, the investigation of interactions in recent genome-wide association studies has been limited. We used a biological knowledge-driven approach to evaluate gene-gene interactions for consistency across 13 data sets from the Alzheimer Disease Genetics Consortium. Fifteen single nucleotide polymorphism (SNP)-SNP pairs within 3 gene-gene combinations were identified: SIRT1 × ABCB1, PSAP × PEBP4, and GRIN2B × ADRA1A. In addition, we extend a previously identified interaction from an endophenotype analysis between RYR3 × CACNA1C. Finally, post hoc gene expression analyses of the implicated SNPs further implicate SIRT1 and ABCB1, and implicate CDH23 which was most recently identified as an AD risk locus in an epigenetic analysis of AD. The observed interactions in this article highlight ways in which genotypic variation related to disease may depend on the genetic context in which it occurs. Further, our results highlight the utility of evaluating genetic interactions to explain additional variance in AD risk and identify novel molecular mechanisms of AD pathogenesis.
Collapse
Affiliation(s)
- Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William S Bush
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Lan Jiang
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Eric S Torstenson
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott M Dudek
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Adam Naj
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian W Kunkle
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marylyn D Ritchie
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Eden R Martin
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Richard Mayeux
- Gertrude H. Sergievsky Center, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University, Boston, MA, USA; Department of Neurology, Boston University, Boston, MA, USA; Department of Ophthalmology, Boston University, Boston, MA, USA; Department of Epidemiology, Boston University, Boston, MA, USA; Department of Biostatistics, Boston University, Boston, MA, USA
| | - Margaret A Pericak-Vance
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jonathan L Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Tricia A Thornton-Wells
- Vanderbilt Genetics Institute, Department of Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
8
|
Liu Y, Park JM, Chang KH, Huh HJ, Lee K, Lee MY. AMP-Activated Protein Kinase Mediates the Antiplatelet Effects of the Thiazolidinediones Rosiglitazone and Pioglitazone. Mol Pharmacol 2015; 89:313-21. [DOI: 10.1124/mol.115.102004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/23/2015] [Indexed: 01/02/2023] Open
|
9
|
Zhou M, Xu H, Liu W, Liu H. Rosiglitazone modulates collagen deposition and metabolism in atherosclerotic plaques of fat-fed ApoE-knockout mice. Exp Ther Med 2015; 10:1265-1270. [PMID: 26622476 PMCID: PMC4578073 DOI: 10.3892/etm.2015.2711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 06/16/2015] [Indexed: 01/16/2023] Open
Abstract
Abnormal collagen deposition, as well as collagen metabolism, plays a crucial role in the formation and progression of vulnerable atherosclerotic plaques (VAPs), which are susceptible to rupture. According to our previous findings, rosiglitazone, a thiazolidinedione, can promote the stability of atherosclerotic plaques in fat-fed ApoE-knockout mice; however, it is unknown whether it can modulate collagen deposition and metabolism in VAPs. The present study was designed to determine the effect of rosiglitazone on collagen deposition and metabolism in the plaques of fat-fed ApoE-knockout mice. Following 13 weeks of the high-fat diet, the mice were randomized into three groups (10 mice/group) and intragastrically administered rosiglitazone, simvastatin and distilled water, respectively, for a further 13 weeks. The category of the collagen present in the plaques was evaluated using the picro-Sirius red polarization method. Additionally, the protein expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in the plaques was determined using immunohistochemistry. The results showed that rosiglitazone reduced the lipid to collagen and type III to type I collagen ratios in the plaques, and these reductions were correlated with the reduction in the plaque MMP-9 to TIMP-1 ratio. These results suggest that rosiglitazone can modulate collagen deposition and metabolism and promote the stabilization of VAPs.
Collapse
Affiliation(s)
- Mingxue Zhou
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Hao Xu
- Department of Cardiovascular Medicine, Xiyuan Hospital, Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Weihong Liu
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Hongxu Liu
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| |
Collapse
|
10
|
Chen TH, Shih CY, Hsu WL, Chou TC. Mechanisms of Nifedipine-Downregulated CD40L/sCD40L Signaling in Collagen Stimulated Human Platelets. PLoS One 2015; 10:e0127054. [PMID: 25970603 PMCID: PMC4430314 DOI: 10.1371/journal.pone.0127054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/10/2015] [Indexed: 01/19/2023] Open
Abstract
The platelet-derived soluble CD40L (sCD40L) release plays a critical role in the development of atherosclerosis. Nifedipine, a dihydropyridine-based L-type calcium channel blocker (CCB), has been reported to have an anti-atherosclerotic effect beyond its blood pressure-lowering effect, but the molecular mechanisms remain unclear. The present study was designed to investigate whether nifedipine affects sCD40L release from collagen-stimulated human platelets and to determine the potential role of peroxisome proliferator-activated receptor-β/-γ (PPAR-β/-γ). We found that treatment with nifedipine significantly inhibited the platelet surface CD40L expression and sCD40L release in response to collagen, while the inhibition was markedly reversed by blocking PPAR-β/-γ activity with specific antagonist such as GSK0660 and GW9662. Meanwhile, nifedipine also enhanced nitric oxide (NO) and cyclic GMP formation in a PPAR-β/-γ-dependent manner. When the NO/cyclic GMP pathway was suppressed, nifedipine-mediated inhibition of sCD40L release was abolished significantly. Collagen-induced phosphorylation of p38MAPK, ERK1/2 and HSP27, matrix metalloproteinase-2 (MMP-2) expression/activity and reactive oxygen species (ROS) formation were significantly inhibited by nifedipine, whereas these alterations were all attenuated by co-treatment with PPAR-β/-γ antagonists. Collectively, these results demonstrate that PPAR-β/-γ-dependent pathways contribute to nifedipine-mediated downregulation of CD40L/sCD40L signaling in activated platelets through regulation of NO/ p38MAPK/ERK1/2/HSP27/MMP-2 signalings and provide a novel mechanism regarding the anti-atherosclerotic effect of nifedipine.
Collapse
Affiliation(s)
- Tso-Hsiao Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yu Shih
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Lin Hsu
- School of Medicine, Tzu Chi University; Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Tz-Chong Chou
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department ofBiotechnology, Asia University, Taichung, Taiwan
- China Medical University Hospital, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Formononetin Inhibited the Inflammation of LPS-Induced Acute Lung Injury in Mice Associated with Induction of PPAR Gamma Expression. Inflammation 2013; 36:1560-6. [DOI: 10.1007/s10753-013-9700-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
|
13
|
Emerging PPARγ-Independent Role of PPARγ Ligands in Lung Diseases. PPAR Res 2012; 2012:705352. [PMID: 22778711 PMCID: PMC3385049 DOI: 10.1155/2012/705352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/28/2012] [Accepted: 04/12/2012] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator activated receptor (PPAR)-γ is a nuclear hormone receptor that is activated by multiple agonists including thiazolidinediones, prostaglandins, and synthetic oleanolic acids. Many PPARγ ligands are under investigation as potential therapies for human diseases. These ligands modulate multiple cellular pathways via both PPARγ-dependent and PPARγ-independent mechanisms. Here, we review the role of PPARγ and PPARγ ligands in lung disease, with emphasis on PPARγ-independent effects. PPARγ ligands show great promise in moderating lung inflammation, as antiproliferative agents in combination to enhance standard chemotherapy in lung cancer and as treatments for pulmonary fibrosis, a progressive fatal disease with no effective therapy. Some of these effects occur when PPARγ is pharmaceutically antagonized or genetically PPARγ and are thus independent of classical PPARγ-dependent transcriptional control. Many PPARγ ligands demonstrate direct binding to transcription factors and other proteins, altering their function and contributing to PPARγ-independent inhibition of disease phenotypes. These PPARγ-independent mechanisms are of significant interest because they suggest new therapeutic uses for currently approved drugs and because they can be used as probes to identify novel proteins and pathways involved in the pathogenesis or treatment of disease, which can then be targeted for further investigation and drug development.
Collapse
|
14
|
Frazier-Wood AC, Ordovas JM, Straka RJ, Hixson JE, Borecki IB, Tiwari HK, Arnett DK. The PPAR alpha gene is associated with triglyceride, low-density cholesterol and inflammation marker response to fenofibrate intervention: the GOLDN study. THE PHARMACOGENOMICS JOURNAL 2012; 13:312-7. [PMID: 22547144 PMCID: PMC3410976 DOI: 10.1038/tpj.2012.9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 02/15/2012] [Accepted: 03/05/2012] [Indexed: 11/28/2022]
Abstract
As a peroxisome proliferator-activated receptor alpha (PPARα) agonist, fenofibrate favorably modulates dyslipidemia and inflammation markers, which are associated with cardiovascular risk. To determine whether variation in the PPARα receptor gene was associated with lipid and inflammatory marker response, we conducted a three week trial of fenofibrate in 861 men and women. Mixed linear models which controlled for age and sex, as well as family pedigree and study-center, were constructed using SNPs in the PPARα gene as predictors and changes in fasting triglycerides (TGs), cholesterol and inflammatory markers as outcomes. Significant associations with low-density cholesterol (LDL-C) and interleukin-2 (IL-2; P<.001) responses to fenofibrate were found. Although there were suggestive associations with tumour necrosis factor-alpha (TNF-α) and TG responses (P<.05), these did not survive the correction for multiple testing. We conclude that variants in the PPARα gene may contribute to future pharmacogenomic paradigms seeking to predict fenofibrate responders from both an anti-dyslipidemic and anti-inflammatory perspective.
Collapse
Affiliation(s)
- A C Frazier-Wood
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Simpson-Haidaris PJ, Seweryniak KE, Spinelli SL, Garcia-Bates TM, Murant TI, Pollock SJ, Sime PJ, Phipps RP. A putative role for platelet-derived PPARγ in vascular homeostasis demonstrated by anti-PPARγ induction of bleeding, thrombocytopenia and compensatory megakaryocytopoiesis. J Biotechnol 2010; 150:417-27. [PMID: 20888877 DOI: 10.1016/j.jbiotec.2010.09.955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/16/2010] [Accepted: 09/23/2010] [Indexed: 01/11/2023]
Abstract
Widely known for its role in adipogenesis and energy metabolism, PPARγ also plays a role in platelet function. To further understand functions of platelet-derived PPARγ, we produced rabbit polyclonal (PoAbs) and mouse monoclonal (MoAbs) antibodies against PPARγ 14mer/19mer peptide-immunogens. Unexpectedly, our work produced two key findings. First, MoAbs but not PoAbs produced against PPARγ peptide-immunogens displayed antigenic crossreactivity with highly conserved PPARα and PPARβ/δ. Similarly, Santa Cruz PoAb sc-7196 was monospecific for PPARγ while MoAb sc-7273 crossreacted with PPARα and PPARβ/δ. Second, immunized rabbits and mice exhibited unusual pathology including cachexia, excessive bleeding, and low platelet counts leading to thrombocytopenia. Spleens from immunized mice were fatty, hemorrhagic and friable. Although passive administration of anti-PPARγ PoAbs failed to induce experimental thrombocytopenia, megakaryocytopoiesis was induced 4-8-fold in mouse spleens. Similarly, marrow megakaryocytopoiesis was enhanced 1.8-4-fold in immunized rabbits. These peptide-immunogens are 100% conserved in human, rabbit and mouse; thus, immune-mediated platelet destruction via crossreactivity with platelet-derived PPARγ likely caused bleeding, thrombocytopenia, and compensatory megakaryocytopoiesis. Such overt pathology would cause significant problems for large-scale production of anti-PPARγ PoAbs. Furthermore, a major pitfall associated with MoAb production against closely related molecules is that monoclonicity does not guarantee monospecificity, an issue worth further scientific scrutiny.
Collapse
Affiliation(s)
- Patricia J Simpson-Haidaris
- Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA. pj
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bishop-Bailey D. The platelet as a model system for the acute actions of nuclear receptors. Steroids 2010; 75:570-5. [PMID: 19778546 DOI: 10.1016/j.steroids.2009.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 12/18/2022]
Abstract
Platelets are circulating cell fragments which play a critical role in thrombosis, and whose activity is associated with the progress of cardiovascular diseases, diabetes, inflammation, and cancer cell metastasis. Recently, a number of nuclear receptors have been found present in human platelets, including the receptors for sex steroids, and glucocorticoids, along with peroxisome proliferator-activated receptors (PPAR)s and retinoid X receptors (RXR)s. Although the platelet contains no nucleus, selective ligands for these receptors activate their respective platelet nuclear receptors and regulate platelet aggregation and activation. The human platelet, because of its abundance and accessibility therefore represents an excellent model system to study the rapid non-genomic mechanism of nuclear receptors. Moreover, since targeting platelets is a major clinical therapeutic area, analysis of platelet nuclear receptors may provide clues for new drug targets as well as provide important information regarding the physiological roles of nuclear receptors in the circulation.
Collapse
Affiliation(s)
- David Bishop-Bailey
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London, Queen Mary University of London, Charterhouse Square, London EC1 M 6BQ, UK.
| |
Collapse
|
17
|
Saluk-Juszczak J, Krolewska K, Wachowicz B. β-glucan fromSaccharomyces cerevisiaeas a blood platelet antioxidant. Platelets 2010; 21:451-9. [DOI: 10.3109/09537101003780032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Simpson-Haidaris PJ, Pollock SJ, Ramon S, Guo N, Woeller CF, Feldon SE, Phipps RP. Anticancer Role of PPARgamma Agonists in Hematological Malignancies Found in the Vasculature, Marrow, and Eyes. PPAR Res 2010; 2010:814609. [PMID: 20204067 PMCID: PMC2829627 DOI: 10.1155/2010/814609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/30/2009] [Accepted: 12/16/2009] [Indexed: 12/19/2022] Open
Abstract
The use of targeted cancer therapies in combination with conventional chemotherapeutic agents and/or radiation treatment has increased overall survival of cancer patients. However, longer survival is accompanied by increased incidence of comorbidities due, in part, to drug side effects and toxicities. It is well accepted that inflammation and tumorigenesis are linked. Because peroxisome proliferator-activated receptor (PPAR)-gamma agonists are potent mediators of anti-inflammatory responses, it was a logical extension to examine the role of PPARgamma agonists in the treatment and prevention of cancer. This paper has two objectives: first to highlight the potential uses for PPARgamma agonists in anticancer therapy with special emphasis on their role when used as adjuvant or combined therapy in the treatment of hematological malignancies found in the vasculature, marrow, and eyes, and second, to review the potential role PPARgamma and/or its ligands may have in modulating cancer-associated angiogenesis and tumor-stromal microenvironment crosstalk in bone marrow.
Collapse
Affiliation(s)
- P. J. Simpson-Haidaris
- Department of Medicine/Hem-Onc Division, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. J. Pollock
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. Ramon
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - N. Guo
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - C. F. Woeller
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. E. Feldon
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - R. P. Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- The Lung Biology and Disease Program, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
19
|
Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, Steven Alexander J, Minagar A. Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation 2010; 7:10. [PMID: 20128908 PMCID: PMC2829540 DOI: 10.1186/1742-2094-7-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/03/2010] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES This review summarizes recent developments in platelet biology relevant to neuroinflammatory disorders. Multiple sclerosis (MS) is taken as the "Poster Child" of these disorders but the implications are wide. The role of platelets in inflammation is well appreciated in the cardiovascular and cancer research communities but appears to be relatively neglected in neurological research. ORGANIZATION After a brief introduction to platelets, topics covered include the matrix metalloproteinases, platelet chemokines, cytokines and growth factors, the recent finding of platelet PPAR receptors and Toll-like receptors, complement, bioactive lipids, and other agents/functions likely to be relevant in neuroinflammatory diseases. Each section cites literature linking the topic to areas of active research in MS or other disorders, including especially Alzheimer's disease. CONCLUSION The final section summarizes evidence of platelet involvement in MS. The general conclusion is that platelets may be key players in MS and related disorders, and warrant more attention in neurological research.
Collapse
Affiliation(s)
- Lawrence L Horstman
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wenche Jy
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Yeon S Ahn
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, The Jacobs Neurological Institute, Department of Neurology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo NY, USA
| | - Amir H Maghzi
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - J Steven Alexander
- Department of Cellular and Molecular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
20
|
Saluk-Juszczak J, Olas B, Wachowicz B, Glowacki R, Bald E. L-carnitine modulates blood platelet oxidative stress. Cell Biol Toxicol 2010; 26:355-65. [PMID: 20069352 DOI: 10.1007/s10565-009-9148-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/09/2009] [Indexed: 12/14/2022]
Abstract
The oxidative stress induced by acute exertion may interfere with blood platelet activation. The beneficial effect of L-carnitine (gamma-trimethylamino-beta-hydroxybutyric acid) on oxidative stress in blood platelets has not been fully investigated; however, different studies indicate that this compound modulates platelet functions. The aim of our study was to assess the effects of L-carnitine on platelet activation and oxidative/nitrative protein damage (determined by the levels of protein carbonyl groups, thiol groups, and 3-nitrotyrosine residues) in resting blood platelets or platelets treated with peroxynitrite (ONOO(-), a strong physiological oxidant) in vitro. We also investigated the effects of L-carnitine on the level of platelet glutathione and on the formation of superoxide anion radicals O2(-*), lipid peroxidation measured by thiobarbituric acid reactive substances (TBARS) in blood platelets stimulated by thrombin (a strong physiological agonist), and platelet aggregation induced by adenosine diphosphate (a strong physiological stimulator). We have observed that carnitine decreases platelet activation (measured by platelet aggregation, the generation of O2(-*), and TBARS production). Moreover, our results in vitro demonstrate that carnitine may protect against oxidation of thiol groups induced by ONOO(-). Thus, carnitine may have some protectory effects against oxidative changes induced in blood platelets.
Collapse
Affiliation(s)
- Joanna Saluk-Juszczak
- Department of General Biochemistry, Institute of Biochemistry, University of Lodz, Lodz, Poland.
| | | | | | | | | |
Collapse
|